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Abstract 
 
We analyse the determinants of the decline in measured research 
productivity (the patent/R&D ratio) using panel data on manufacturing 
firms in the U.S. for the period 1980-93. We focus on three factors: the 
level of demand, the quality of patents, and technological exhaustion. We 
first develop an index of patent ‘quality’ using detailed information on 
patents in the U.S. in seven technology fields. Using a factor model, we 
construct a minimum-variance index based on four patent characteristics 
and show that using multiple indicators substantially reduces the 
measured variance in quality. We then show that research productivity at 
the firm level is negatively related to the patent quality index and the 
level of demand, as predicted by an optimizing model of R&D, and 
positively related to the stock market valuation of patented innovations 
held by firms.     
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Introduction 
 

Research productivity, as typically measured by the ratio of patents to R&D, 

has declined sharply over the last forty years, in many different industries and 

countries (see Figure 1 for U.S. experience).  By 1990 the number of patents 

produced per U.S. scientist or engineer (S&E) had fallen to just 55 percent of its 

1970 level, with even steeper declines in Europe (Evenson, 1984 and 1993).  At 

any time there are also large cross-sectional differences in measured research 

productivity across industries and firms (Evenson, 1984; Griliches, 1990). These 

facts have attracted increasing attention from academics and international 

organizations such as the OECD (1991) because of concern about the apparent 

slowdown in total factor productivity since the late 1960’s. But scholarly observers 

have voiced concerns about the decline in research productivity for a long time. As 

Griliches (1990) points out, aggregate patent numbers have fluctuated widely and 

have grown more slowly than investments over much of the twentieth century. 

This fall in research productivity could simply derive from diminishing returns 

in the ‘knowledge production function’.  As markets expand, the private returns to 

R&D increase.  The induced rise in the level of R&D investment leads to a fall in 

research productivity. A number of quality-ladder growth models have formalized 

this relationship, showing that in equilibrium research productivity should fall with 

growth in demand (Caballero and Jaffe, 1993; Kortum, 1993).  Empirical studies 

using sector-level data for the U.S. and other countries typically find that market 

size does matter.  However, demand growth is not sufficient to explain the 

observed declines in R&D productivity as measured by the ratio of patents to R&D 

inputs (Evenson, 1993; Kortum, 1993). 

Thus the evidence of declining research productivity raises the specter of 

technological exhaustion – getting less inventive output for any given level of 

R&D investment.  This is of great concern.  A process of technological exhaustion 
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would lower innovative output directly and, by reducing the private returns to 

R&D, it would also bring down the equilibrium level of private R&D investment.  

These two features of technological exhaustion could undermine our ability to 

sustain growth in total factor productivity. This process could be countered with 

government policies to provide stronger R&D incentives, recharging the pool of 

invention potential through government-funded R&D and programs to strengthen 

industry-government research links.  Therefore, a key question is whether we can 

take the decline in the ratio of patents to R&D as indicating a decline in the 

fecundity of R&D – i.e., as deterioration in the underlying knowledge production 

function. 

In considering this question it is useful to break the patent to R&D ratio into its 

two component parts: the patent to invention ratio, and the invention to R&D ratio. 

A fall in measured research productivity may be real – a declining invention/R&D 

ratio – or only apparent – a declining patent/invention ratio. Since we do not 

normally have information on the number of inventions, there is an identification 

problem in interpreting changes in the patent to R&D ratio.  What appears to be 

technological exhaustion may simply be mismeasurement.  Inventors may be 

making less use of the patent system, perhaps because the costs of obtaining and 

enforcing patents have risen relative to alternative protection mechanisms. (See 

Cohen, Nelson and Walsh, 2000, for discussion and survey evidence.)  If so, the 

observed growth in the number of patents over time understates growth in 

innovation.  Further, the average value of the innovation covered by a patent may 

be increasing over time. Both of these ‘measurement’ issues imply that counting 

patents can give a misleading impression of the true output of the research 

process.1 

                                                           
1 Evenson (1991) argues that it is reasonable to interpret variations in the patent/R&D ratio that are 
common across industries (country-year effects) as due to changes the patent/invention ratio, and those 
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When looking for evidence of technological exhaustion, a common approach 

taken in the literature is to look for a decline in the R&D elasticity in production 

function or total factor productivity regressions.  Focusing on R&D inputs avoids 

the potential pitfalls of measuring invention output. However, it involves other 

serious problems associated with productivity measurement (see Griliches, 1979). 

Moreover, the R&D elasticity in a production function reflects two distinct factors: 

the impact of R&D on invention, which could exhibit technological exhaustion, 

and the effect of invention on productivity. The latter depends on other 

characteristics of the firm and market, including the level of demand and the ability 

of the firm to appropriate the rents from invention. Both technological exhaustion 

and a decline in demand or appropriation imply that the rate of return to R&D 

would fall.  Econometric estimates at the firm and industry level do not show any 

systematic decline in the output elasticity of R&D through the mid-1980s, and thus 

the evidence of ‘exhaustion’ is at best inconclusive (Griliches, 1994; Hall, 1993a, 

1993b; and Griliches, 1990, for an excellent review of relevant studies).   

In this paper we use a large panel data set to examine the relationships between 

research productivity, market size and technological exhaustion at the firm level. 

Studying the micro level data allows us to avoid changes in composition of more 

aggregate data (e.g., growth in markets may encourage marginal firms to enter 

R&D activity).  We also develop a new control for the changes in the quality of 

patented output in order to separate real from apparent changes in research 

productivity. 

In micro data various indicators have been used to adjust for variation in the 

quality of patents. Schankerman and Pakes (1986) use patent renewal data to 

estimate the value of patent rights and found that adjusting for quality at the 

                                                                                                                                                                                           
that are common across countries (industry-year effects) as due to variation in true research productivity. 
He finds evidence of negative industry-specific time trends, pointing to exhaustion. 
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country level accounted for most of the observed decline in patents per scientist 

and engineer. Other important indicators that have been used include the number 

patent citations (Trajtenberg, 1990; Hall, Jaffe and Trajtenberg, 1999b), patent 

family size (the number of countries in which the patent is taken out – Putnam, 

1996), and the number of claims in the patent application (Tong and Frame, 1994). 

 

In this paper we develop a composite index of patent quality using multiple 

characteristics of patents. We use the term quality to emphasize both the 

technological and value dimensions of an innovation.  We formulate a factor model 

with four separate indicators of a patent’s underlying, unobservable quality: the 

number of claims, forward citations to the patent, backward citations in the patent 

application, and family size.  Each indicator has quality and quality-unrelated 

variation, or ‘measurement error’. The factor model is estimated using over 

100,000 patents applied for during the period 1975-1993 in seven technology areas 

- drugs, biotechnology, other health, chemicals, electronics, computers and 

communications, and mechanical. The parameter estimates are used to construct a 

minimum-variance estimator of quality for each patent, conditional on its observed 

characteristics. We show that using the composite index reduces the variance in 

patent quality substantially, to as little as one-quarter of the unconditional 

variation. 

Developing a composite quality index is an ‘information-reduction’ exercise. 

This is most useful when a single index is needed to construct a quality-adjusted 

patent measure to be used, for example, in generating more meaningful measures 

of research productivity or in econometric studies where quality-adjusted patents 

appear on the left-hand side of a regression. Even where it would be reasonable to 

use the component indicators as separate controls without imposing weighting 

restrictions, the composite may be preferred.  Individual indicators may have links 
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to the dependent variables that are not associated with quality, and in such cases a 

composite index would be more informative about the specific effect of quality 

differences. 

We find that adjusting for a rise in patent quality accounts for some of the time 

series variation in research productivity at the sector level, except in 

pharmaceuticals where there was especially fast growth in R&D.  Differences 

across firms in research productivity are related to differences in the level of 

demand and in average patent quality as predicted by theory. At the same time we 

find no evidence of technological exhaustion at the micro level, i.e., there are no 

negative time trends in research productivity, conditional on the level of R&D.  We 

find that differences in (average) patent quality across firms are strongly associated 

with the market valuation of firms, with an especially large effect in 

pharmaceuticals.  However, these relationships do not hold up in the time series 

dimension at the firm level. The patent quality index is most useful when one 

averages − either over time for firms, or over firms for a given year. The results are 

encouraging and suggest that the quality index may be useful in a wide range of 

empirical studies that require measurement of innovation. 

The paper is organized as follows. In Section 1 we outline a simple model of 

the relationship between R&D, market size and innovation quality.  This serves to 

highlight the difference between technological exhaustion and demand growth 

explanations for a decline in research productivity. Section 2 describes the data and 

the indicators used.  Sections 3 through 5 describe the construction of our index of 

innovation quality and discuss changes in the index over time.  In Sections 6 

through 8 we explore how the quality index relates to research productivity and the 

market value of firms.  The final section concludes. 

 

 5



 
 

1.   Analytical Framework: Research Productivity, Patent Quality and 

Demand 

 

In this section we present a stylized model of research productivity that 

incorporates patent quality. Assume that each firm has the following patent 

production function:  

 

(1) E(NftRft)= e -τt Rft
β(t)   0 < β(t) < 1, 

 

where E(NR) is the expected flow of patents and Rft is R&D expenditure in year t 

by firm f.2 Technological exhaustion can take the form of an increase in the 

parameter τ, or a decline in the R&D elasticity β(t).  

Each innovation is endowed with a given quality level, which can be thought 

of as a measure of the maximum potential rent the innovation can generate. Let qfti 

denote the quality of innovation i of firm f in year t. We assume that innovation 

quality is drawn from a distribution with a firm-specific and time-varying mean: 

 

qfti = qf + qt + ufti, 

 

where ufti has zero mean and constant variance, and qt may be correlated over time. 

The mean of this distribution is unrelated to R&D (this is consistent with micro 

evidence presented in Section 7). Let qft
* denote the expected mean quality for the 

firm in a given year. 

The expected profit flow per invention depends on expected innovation 

quality and the relevant market size for the firm, S.  For simplicity, we assume that 

                                                           
2 The empirical evidence indicates that the average lag in the relationship between patents (by date of 
application) and R&D is very short (Hall, Griliches and Hausman, 1986).  
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market size is exogenous and non-stochastic.  Demand for each invention is 

specified as monotonic in the level of sales of the firm: 

 

(2) E(πfti) = qft
*
 
α Sft

σ   where   α > 0 and σ ∈ [0,1].  

 

This specification of how demand affects the profitability of R&D is standard in 

the empirical literature (Cohen and Levin, 1995). In the extreme case where an 

invention applies to whole of the firm’s market, we have σ = 1 and flow profits 

would be proportional to sales. However, in general an innovation will be relevant 

only to some part of the firm’s market (e.g. the innovation may represent a new 

variety of product that appeals to a subset of tastes). In such cases we expect σ < 1. 
3 

We assume that each innovation enjoys patent protection for T years. The 

flow profit πt depreciates at rate δ during the patent life, and no rent is earned after 

the patent expires. The expected present value of innovation rents net of R&D 

costs for all innovations made by firm f in time t is  

 

(3) E(Πft Rft) = φ qft
*
 
α Sft

σ e -τt Rft
β(t) - Rft, 

 

where φ = (1-e-(r+δ)T)/(r+δ) is the present value of a dollar of rent over the patent 

life with discount rate r.4  We assume diminishing returns to R&D, as supported by 

numerous empirical studies. (See, Griliches, 1990, for a summary.)  The firm 

                                                           
3 In principle the relevant market size could be larger than current sales (e.g., if a radical innovation 
captured a large part of other firms’ market shares). We are modeling the ‘typical’ innovation.  
4 This is a simplification in two respects. First, some innovations may not be patented (this can easily be 
absorbed in the parameter φ). Second, most patents are terminated by non-payment of patent renewal fees 
before the maximum statutory lifespan is reached.     
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chooses optimal R&D, Rft
* = argmax E(Πft Rft). From the first-order condition, we 

get  

(4) Rft
* = [e -τtβ(t)φ qft

*
 
α Sft

σ]1/(1-β(t))  

Let Pft = Nft/Rft
 denote the number of patents per R&D dollar, which is the 

standard measure of research productivity.  From (1) and (4), we get   

(5) E(Pft  Rft
*) = [φβ(t)qft

*
 
α Sft

σ]-1  

In equilibrium, observed research productivity depends on the ability of the firm to 

appropriate innovation rents (φ), returns to R&D (β), expected quality of 

inventions (q*), and demand (S). An increase in any of these factors raises 

equilibrium R&D spending, reducing research productivity when there are 

diminishing returns. 

Adding a multiplicative error term, we write observed research productivity 

as 

(6) log Pft = - logφβ(t) -α log qft
*- σ log Sft + νft, 

where ν is assumed to be a normal, independently and identically distributed  error. 

Given an index of patent quality, we can estimate parameters and test the basic 

predictions of the model: α > 0 and σ ∈ [0,1].  We can also test the null hypothesis 

that technological exhaustion is not a source of change in research productivity 

once quality has been controlled by checking whether there are trended year-

effects in equation (6).    
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2. Description of the Data 

 

The patent data covers U.S. patents applied for during the period 1975-1993 

and issued by the beginning of 2000. It includes those held by all publicly listed 

corporations that had a firm identification code (CUSIP) in the Standard & Poor’s 

CRISP data set in 1989, including all patents assigned to these firms or any of their 

subsidiary bodies, as determined by their corporate structure in 1989.5 These firms 

held 434,108 patents. By drawing on several data sources, we obtained information 

on a range of characteristics for each patent-owning firm and patent.  For all firms, 

we know from the U.S. Patent and Trademark Office (PTO) whether it is foreign 

or domestic, and for a subset we have annual R&D expenditure, sales, capital stock 

and market value. For patents, the variables include: 

 

Claims: The claims in the patent specification delineate the property rights 

protected by the patent.  The principal claims define the essential novel features of 

the invention and subordinate claims describe detailed features of the innovation. 

The patentee has an incentive to claim as much as possible in the application, but 

the patent examiner may require that the claims be narrowed before granting.  The 

number of claims is available on a PTO-CD. 

 

Citations: An inventor must cite all related prior U.S. patents in the application.  A 

patent examiner is responsible for insuring that all appropriate patents (and other 

prior art) have been cited.  Like the claims, these identify the rights of the patentee.  

For each patent, we obtained the number of prior patents cited in the application 

                                                           
5 Thus, if firm A acquired firm B after 1989, the existing patent portfolio of firm B would not become part 
of the portfolio of firm A in our data.  Further, firm B would continue as a separate entity in our data but 
would appear to obtain no patents after it was acquired. We thank Adam Jaffe for making these data 
available to us. For details see Hall, Jaffe and Trajtenberg (1999a).   
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(backward citations). We obtained the same information on all subsequent patents 

that had cited a given patent in their own applications, as of the end of 1998 

(forward citations).  We construct two forward citation measures.  Fwd5 includes 

all forward cites to the patent that occur within five years of the patent application 

date, a period which we call the ‘citation span’.  Fwd610 includes citations that 

occur between six and ten years of patent application. The latter can be calculated 

for fewer cohorts, but each indicator treats all patents within eligible cohorts 

symmetrically.  These variables are constructed from data on a PTO-CD. 

 

Family Size: In order to protect an innovation in multiple countries, a patentee 

must secure a patent in each country. We call the group of patents protecting the 

same innovation its ‘family’ (also referred to as parallel patents).  More than two-

thirds of patentees do not seek protection outside their home markets. A small 

fraction finds it worthwhile to patent widely - about five percent of U.S. patent 

owners apply for protection in more than ten countries.  International agreements 

give inventors at most 30 months to file applications worldwide, so family size 

captures information available to the patentee up that date.6 Information on family 

size was provided by Derwent, a private data base vendor. Due to limitations on 

access, we have family data for a random sample of just over 100,000 patents, or 

about 20% of our total population of patents.  

 

Technology Area (USPC): The patent examiner assigns each patent to one or more 

9-digit technology groups, based on the USPC system.  Using these detailed 

assignments, we classify each patent into one of seven, more aggregated classes: 

Pharmaceuticals, Biotechnology, Other Health, Chemicals, Computers, Other 
                                                           
6 The Paris Convention gives applicants twelve months to apply in other signatory countries after having 
made the first, or priority, application.  The Patent Cupertino Treaty allows a 25-month period after a 
priority PCT application, increased to 30 months in the late 1980’s. 
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Electronic, and Mechanical.7 For patents with more than one, we use the primary 

technology classification. 

 

Table 1 presents the correlation matrix for the indicators for the pooled sample 

(results are similar by technology group). Since the raw data are skewed, we log 

transform the indicators.8 The numbers of claims, forward cites, backward cites 

and family size vary substantially both across patents within a given technology 

area and across technology fields.  The correlation between forward citations and 

the other indicators does not fall off when we use a longer citation span – compare 

Fwd610 and Fwd5 − which suggests a payoff to using forward citations over a 

longer span when the information is available. 

 

3. Specification and Estimation of the Factor Model 

 

 We use a multiple-indicator model with one latent common factor:  

 

(7) yki = µk  + λk qi + β'Xi + eki, 

 

where yki indicates the value of the kth indicator for the ith patent (in logs, k = 1,..., 

K ); q is the common factor with factor loadings λk;, and X denotes a vector of 

controls. Since q is unobservable, we normalize by setting its variance equal to 

                                                           
7 This classification updates an earlier aggregation of patent classes created by Adam Jaffe.  The 
computer classes are readily identifiable new additions to the USPC system.  The classes designated as 
corresponding to biotechnology follow the PTO’s identification for examination purposes.  These were 
also checked against the distribution across classes of patents owned by biotechnology companies.  We 
thank Josh Lerner for providing the latter information. 
8 When there are zero forward citations, we set the log of this variable to zero. Results are similar if we 
drop such observations.  
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one: q ~ Ν(0, 1).9  Each indicator contains an idiosyncratic error, ek ~ Ν(0, σ2
k), 

that captures any variation that is not common to the other indicators in the model.  

The common factor is simply the unobserved characteristic of a patented 

innovation that influences all four of the indicators we use: the number of forward 

cites, backward cites, claims and family size. Because applying for protection in 

each country is costly, family size should be directly related to the expected 

(private) value of protecting an innovation and thus to the value of the innovation 

itself.10 This should reflect both the technological importance of the innovation and 

market opportunities. Forward citations are related most directly to technological 

importance. Forward citations over the long term indicate an innovation has 

contributed to future research. Citations soon after patent application suggests 

rapid recognition of its importance as well as the presence of others working in a 

similar area, and thus the expectation of a valuable technological area. This is also 

true of backward citations, although large numbers of citations to others also 

suggests that the particular innovation is likely to be more derivative in nature 

(Lanjouw and Schankerman, 2001). The number of claims is also an indication that 

an innovation is broader and of greater potential profitability.  

We call the common factor ‘quality’ because we find it difficult to think of 

any other characteristic that would be common to all four indicators. While 

advances in information technology might increase the number of backward and 

forward citations per patent, by making it easier to search for relevant prior art, 

there is no reason that this would also increase the number of claims per patent. 

Similarly, changes in patent application fees would affect patent family size, and 

possibly the number of claims per patent (as ideas are repackaged into ‘broader’ 

patents), but this would not directly affect the number of citations.  
                                                           
9 The interpretation is the same under an alternative normalisation, such as λk  = 1. For technical 
discussion of latent variable models and their uses, see Bartholomew (1987).  
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The theoretical covariance matrix for the indicators is 

 

(8) Λ = E[yy′] =  λλ′ + Φ 

 

where y is the vector of indicators, now demeaned to control for nationality 

(domestic or foreign) and cohorts, and Φ = E[ee′] is not constrained to be 

diagonal.11 We estimate by maximum likelihood (estimated parameters make the 

theoretical covariance matrix as close as possible to the observed covariance 

structure).  The k-indicator model has K(K+1)/2 covariance terms and 2K 

parameters, and thus K(K-3)/2 over-identifying restrictions. In our study K = 4, so 

there are two testable restrictions. 

The latent variable and K indicators have the joint normal distribution  

 

(9)  ~ N(0, Σ),   where Σ =  







y
q








 ′

Λλ
λ1 . 

 

The posterior mean and variance of the latent variable, conditional on the observed 

indicators, y, are 

 

(10) E[q y]  =  λ′ Λ-1 y, 

 

(11) Var (q y)  = 1 - λ′ Λ-1 λ. 

 

                                                                                                                                                                                           
10 For related evidence, see Putnam (1996).   
11 The assumption of constant variance in the measurement error is not critical.  Since identification of λ 
comes from the covariance terms in Λ, the important assumption is that each covariance is constant 
across patents (within a given technology field, as we estimate separately).  Of course, if the measurement 
error variances are not constant, the estimates are not efficient and the estimated standard errors may be 
inconsistent. 
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Given λ, equation (10) provides an estimate of the latent variable for each patent 

(as a deviation around mean zero), which we will use as a measure of its quality. 

The conditional posterior mean of the latent variable is a linear combination of the 

set of indicators, where weights depend on the factor loadings. The conditional 

posterior variance of quality is a constant that can be estimated. The term λ′Λ-1λ, 

represents the percentage reduction in the variance of quality due to conditioning 

on the set of indicators, y (since the unconditional variance is normalised to one). 

 
Parameter Estimates    
 

 Table 2 presents the parameter estimates for each technology group. We 

include nationality and cohort effects, and estimate each model separately for two 

sub-periods, 1975-85 and 1986-93, to allow for changes over time in the 

covariance matrix of the indicators. We tested for parameter stability across the 

sub-periods and include pooled estimates in the table when the test is rejected.  

Results are robust to alternative definitions of the sub-periods.12  

 We conduct a sequence of tests and interpret the statistics using both the 

conventional significance criterion and the alternative measure proposed by 

Leamer (1978), which we call the Bayesian-F. Leamer’s criterion has the property 

that, given a diffuse prior distribution, the critical value is exceeded only if the 

posterior odds favor the alternative hypothesis.13 This is useful as any null 

hypothesis will be rejected in large enough samples if the significance level is not 

adjusted for sample size. 

First we test the hypothesis that there is no common factor linking the four 

indicators.  This is decisively rejected in every technology group (p-values 
                                                           
12 Since indicators are in logs, in estimating the factor model we drop observations that have zero values 
for forward citations (all indicators are always positive).  
13 The critical value is F = (T/p)(Tp/T-1) where T is the sample size, T-k is degrees of freedom, and p is the 
number of restrictions being tested. 
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<0.001). Second, we test whether cohort controls are important. Cohort dummies 

are jointly significant in all technology fields, so we include them in the 

subsequent analysis. Finally, we test the two over-identifying restrictions of the 

one-factor model. We reject the restrictions at the five percent significance level 

except in biotechnology and computers. In the other five technology groups we 

relax one of the zero-constraints in the error covariance matrix Φ (the choice was 

made on the basis of the associated gradient of the likelihood function), and test the 

remaining restriction.14  The error covariance chosen to be unrestricted always 

turned out to be the covariance between forward cites and patent family size. This 

is not surprising, as these two indicators both reflect information that accumulates 

after the patent is applied for. When we allow for the desired free covariance 

between forward cites and family size, the remaining restriction is not rejected for 

drugs, other health, chemicals and mechanical patents, using the Bayesian-F. We 

reject the remaining restriction in electronics and tried relaxing different zero 

constraints in Φ without success. We include that category for completeness, but 

those results should be viewed with some caution.  

The lower panel in the table presents estimated signal rates, defined as the 

percentage of variance in an indicator accounted for by the common factor. Signal 

rates vary both across indicators and technology fields.  Forward citations have 

largest signal rate in drugs, whereas patent claims dominate in all of the other 

fields.15  

 
                                                           
14 We introduce flexibility by freeing up a single covariance because we cannot identify a two-factor 
model without another indicator. 
15 Controlling for claims reduces the variance in the forward citations indicator (also holds for backward 
cites). The between-group variance (groups defined by the number of claims) accounts for 7-12 percent of 
the total variance in forward citations, and about 20 percent in drugs and chemicals. However, controlling 
for claims does not increase the signal rate for forward citations.  Letting zfwd = yfwd -yclm denote (log) 
forward cites per claim, the signal rates for zfwd and yfwd are (λfwd-λclm)2/σ2

z,fwd and λfwd
2 /σ2

y,fwd.. Using the 

 15



 
 

4. The Patent Quality Index and Gains from Multiple Indicators 

 

The composite quality index is a linear combination of observed indicators. In 

this section we describe the weights used for the quality index, and discuss two 

advantages of using multiple indicators. The weight for each indicator corresponds 

to the increase in the expected value of quality associated with a unit increase in 

that indicator ∂E[q y]/∂yk . Using equation (10), the weights (normalized to sum to 

unity) are Λ-1λ / ι' Λ-1 λ, where λ is the column vector of estimated factor loadings, 

Λ is the covariance matrix of the indicators and ι a unit vector. 

Table 3 presents the weights based on the parameter estimates in Table 2. For 

drug patents, forward citations get about 48 percent of the weight, with claims 

taking another 28 percent, backward citations nearly 20 percent, with about five 

percent to family size. In the other technology fields, claims are much more 

important than forward cites, the former accounting for more than half the weight. 

Patent family size gets very little weight in the index in drugs, biotechnology and 

chemicals, but plays a larger role for computer patents and, to a lesser extent, in 

electronics and mechanical.  

 

Greater Variance Reduction with Multiple Indicators 

 Because putting together sets of indicators is costly, we analyze the potential 

information gains from using multiple indicators.  It is not necessary to have four 

indicators – the single latent variable model is estimable with any subset of K = 3 

indicators.16  Moreover, it might be convenient to apply the parameters estimated 

here to construct an estimate of q from any available subset of these indicators 

                                                                                                                                                                                           
estimated parameters, we find that forward cites per claim are much noisier than either claims or forward 
cites in all technology groups except mechanical patents. 
16 Of course, the common factor will depend on the subset of indicators used, as will the composite 
quality index.  The model with three indicators is exactly identified and thus not testable. 
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without re-estimating the model, provided it is reasonable to assume a similar 

correlation structure holds across the different sets of data.  Therefore, we analyze 

how the conditional variance of quality, given in equation (11), varies when using 

different subsets of the indicators to predict the latent variable (Table 4).  The 

unconditional variance is normalized to unity, so the entries in the table represent 

the percentage reduction in variance we get by using different subsets of indicators. 

Using all four indicators reduces the conditional variance of quality by about 

a third in drugs, and by more than half in the other technology fields except 

computers (see first row in the table). Forward citations are the most important 

indicator for drugs − if they are dropped from the quality index, the reduction in 

variance is cut in half. In contrast, dropping forward cites has only a modest effect 

in the other technology fields. In those areas, claims are the key indicator − 

dropping them from the quality index cuts the original reduction in variance by 

two-thirds. Patent family size is much less important than forward cites or claims, 

except for computer patents.17 

In short, there is a substantial information gain from using multiple 

indicators to measure the quality of innovations.  Their relative importance is also 

fortuitous since it tracks their relative cost.  Information on the number of claims 

and backward citations is available in the patent application and inexpensive to 

obtain.  Even if we use only these two indicators, we get most of the reduction in 

the conditional variance of quality, except in drugs.  Forward citations are also 

straightforward to obtain, but have the added drawback of taking time to 

accumulate. Family size requires considerable effort to construct. 

 
                                                           
17 We also re-estimated the model using forward citations over a five-year span and then a ten-year span 
(on a common sample of earlier cohorts), and compared the signal rates. Doubling the citation span 
roughly doubles the signal rate in each technology area, and the differences are statistically significant.  
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Improved Understanding of Time Trends 

Most studies that adjust for variation in the quality of patented innovation 

using the single indicator forward citations. A difficulty with using any single 

indicator over time is that the cost of ‘producing’ the indicator may change.  For 

instance, computerization reduces the cost of citing.  It is difficult to disentangle 

this from changes in underlying quality.  On the other hand, for a change in the 

production of an indicator to influence our quality index it would have to affect all 

four indicators, and it is difficult to think of plausible examples. As a result, using 

the indicators together enables us to interpret changes in citation rates (or any other 

single indicator) over time.   

For example, in a study of patent citation rates Hall, Jaffe and Trajtenberg 

(1999b) show that a patent would have been 1.63 times more likely to be cited in 

1985-93 than in 1977-85, conditional on characteristics of the patent and the size 

of the patent population. As they recognize, this finding combines two very 

different factors: changes in the underlying quality of patents, and changes in the 

ease of citation.  The multiple-indicator factor model allows us to isolate the 

quality-related changes in citation rates. To do this we allow the coefficients in the 

factor model to vary across sub-periods, and use the estimated coefficients to 

compute ∂E[q y]∂y =Λ-1λ for each period. Weighting the estimates across all 

technology fields, we find that an average first-period citation is equivalent to 1.10 

second-period citations in terms of implied patent quality. Comparing this estimate 

with the 1.63 figure from Hall, Jaffe and Trajtenberg, we conclude that about 16 

percent of the increase in citation is due to changes in innovation quality, with the 

remaining 84 percent reflecting an increase in the ‘propensity to cite’. 

 

                                                                                                                                                                                           
Thus it is possible to achieve an even greater reduction in the conditional variance of quality with longer-
term forward citations, so longer spans should be used when feasible. 
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5. Changes in the Patent Quality Index   

 

We demonstrate below that there has been a substantial growth in the quality 

index over time.  We would like to interpret this as the reflection of an upward 

shift in the underlying distribution of innovation. However, the increase in the 

index over time could be the result of rising patent application and enforcement 

costs that cause lower-quality patents to drop out. To discriminate between these 

explanations note that, under the assumption that the quality index is correlated 

with innovation value, shifts in the underlying distribution of innovation should 

shift the composite index for patents throughout the distribution. In the special case 

where there is a proportional shift in the innovation distribution (so the coefficient 

of variation is constant) and the quality index is proportional to innovation value, 

the percentage change in the quality index should be similar in different percentiles 

of the quality distribution.  On the other hand, changes in the cost of patenting that 

shifted the cut-off point on the distribution of innovations that are patented would 

primarily affect patents in the lower quantiles of the distribution.   

Thus, to examine the issue we draw a (fixed size) random sample of patents 

from each cohort in a technology field and compute the mean value of the quality 

index for various percentiles of the distribution of sampled patents, say q (κ,t) for 

the κ-percentile for cohort t.  The ‘test’ involves comparing the percentage change 

in q (κ, t) for different value of κ both over the whole sample period and for cohort 

sub-groups. Table 5 presents results for the cumulative changes over the period 

1975-93. In each technology area, the changes in the quality index are evident both 

in the upper and lower ends of the distribution. This also holds for different sub-

periods (not reported). There is some evidence that increases in the cost of 

patenting may be at work − the changes in the quality index are higher in the lower 

tail of the distributions for electronic and mechanical patents, but not for drugs and 
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chemicals. One would expect changes in patenting costs to affect all technology 

areas in a roughly similar way. This non-parametric evidence suggests that 

variations in the patent quality index are related to changes in the underlying value 

of innovations.  

 

6. Understanding Research Productivity at the Sector Level 
 
 

For the remainder of the paper, we focus on the five largest technology fields 

and allocate our firms to these groups. Firms classified in a given SIC industry may 

have patents in multiple technology fields.  In order to assign a given firm to a 

technology field (e.g., to treat it as a drug firm), we require that a plurality of its 

patents during the period 1975-1993 fall into that field. Of such assigned firms, it 

turns out that about three-quarters have at least a majority of their patents in one 

field, and the minimum share is about 25 percent.18  Table 6 presents descriptive 

statistics for these data. There is large variation in firm size as measured by sales, 

R&D intensity (R&D/sales) and research productivity (patents/R&D) both across 

technology fields and within a given field.   

The patent quality index used in the analysis that follows is constructed with 

three indicators – claims, forward citations and backward citations – using 

renormalized weights from Table 3. We do not use family size here because we 

only have family data for a subset of patents and, to compare to R&D aggregates, 

we must have complete patent coverage for each firm.19  

                                                           
18 We made one other adjustment to the sample to take account of major mergers in the drug sector. When 
a merged company takes on a new name, the R&D and patent data are not always merged to produce a 
consistent series for the new firm. We dropped two firms with abnormal breaks in the R&D and patent 
series after confirming they were involved in mergers.  
19 In constructing the weighted patent counts, the log of zero-valued indicators were set to zero rather than 
missing to avoid dropping firms’ lowest-valued patents. In the estimation of the factor model, such 
observations were dropped. 
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Figures 2-6 present the time paths of R&D expenditures, unadjusted research 

productivity (the number of patents divided by R&D), and a patent quality-

adjusted measure of research productivity for each technology field over the period 

1980-93. In pharmaceuticals, R&D increased 2.5 times during the period, mostly 

from 1980-87. There was a concurrent, sharp decline in the patents to R&D ratio, 

by about 50 percent. Adjusting for patent quality in this sector makes a very 

modest difference in measured research productivity over the sample period, and 

the difference disappears by the end of period. In the other sectors the quality 

adjustment is more important in accounting for changes in research productivity. In 

both other health and electronics the patents to R&D ratio fell sharply and then 

rose, ending the period 13 and 20 percent higher, respectively. After adjusting for 

quality, the increase in their productivity by the end of the period was more than 

twice as large. In chemicals, patents/R&D declined by 20 percent, but the quality 

adjustment reduces this fall to 7 percent. Finally, the mechanical field experienced 

quite rapid growth in R&D, nearly doubling over the period. This was 

accompanied by a 40 percent decline in unadjusted research productivity, but a 

moderated 29 percent fall when the quality adjustment is made. 

Thus, it appears that an increase in the quality of patented innovation accounts 

for a sizable share of declines in research productivity when they are observed at 

the sector level, apart from drugs. We emphasise that the interpretation of trends 

does not rest on an identifying assumption that there is a stable relationship 

between quality and the four indicators. (We allow the coefficients in the factor 

model to vary by sub-period. See Section 3.) 
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7.  Research Productivity and Innovation Quality: Micro Evidence 

 

We next examine the role of patent quality and sales in explaining the micro 

level variations in research productivity. The model of Section 1 assumed that 

R&D affects the number of innovations but not their quality (equation 1).  We first 

explore this relationship and then turn to the equilibrium research productivity 

equation (6). 

 

R&D Investment and Quality 

Quality-adjusted patent counts can be either more or less closely correlated 

with R&D than simple patent counts. This depends on whether there are 

differences in the ex ante distributions of innovation quality faced by firms. This 

would occur if firms adopt research strategies for trading off quantity for quality of 

innovation, in which case we expect R&D to be more strongly correlated with 

quality-adjusted patents than with unadjusted patents counts. If, on the other hand, 

the ex ante distribution of quality is the same across firms, differences in the ex 

post average quality of their patents simply reflect stochastic R&D outcomes.  

Then making a quality adjustment would not strengthen the correlation between 

patents and R&D. The latter is what we find: the simple correlation between firm 

R&D and quality-adjusted patent count in the pooled sample is 0.68, which is 

virtually identical to the correlation with unadjusted patent counts. This conclusion 

also holds in each technology field. 

If there is a trade off between the quality and quantity of innovation we 

would also expect a negative relationship between patent counts and mean patent 

quality at the firm level, conditional on R&D. This would generate a different 

relationship between R&D and simple patent counts as compared to R&D and 

quality-adjusted patents. We explored this by estimating a ‘patent production 
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function’ for each technology field. Using the deviations around firm means, we 

regressed the (log) number of new patent applications against the stock of R&D 

and year dummies.20 We also estimated the between-firm regression. For brevity 

we summarize the relevant results. As in many other studies, we find decreasing 

returns to R&D in both the within- and between-firm regressions.21 What is 

striking is that we obtain virtually identical coefficients on R&D when we use 

quality-adjusted patent counts, both in the within- and the between-firm 

regressions. This evidence suggests that variations in patent quality over time at 

the micro level are dominated by stochastic factors rather than by variations in 

R&D expenditures. 

Because variations in patent quality over time (for a given firm) may be 

largely noise, we also investigate whether cross-firm differences in the patent 

quality index are related to the number of patents, conditional on the firm’s R&D 

level.  Again, if firms choose between quality and quantity then we expect a 

negative relationship. We test this by including in the patent production function 

regressions the mean value of the patent quality index for the firm, computed over 

the firm’s patents applied for during the entire sample period: = /Nfq̂ ∑t ftq̂ f.  In the 

within-firm regressions the coefficient on mean patent quality is completely 

insignificant in all technology fields, except drugs where it is positive.22 There is 

no relationship evident in the between-firm regressions. Thus again we find no 

evidence that firms target different quality levels in their R&D strategies.  We 
                                                           
20 Results are similar using the R&D flow rather than stock. The R&D stock is computed using a 
declining balance formula with a depreciation rate of 0.15. To construct the initial stock we assume 
constant past growth rate equal to the average growth in R&D for the firm during the first five years of 
the sample. Results are not sensitive to alternative assumptions.  
21 In the within-firm regressions, the estimated R&D elasticity of patents and its standard error are 0.77 
(.18) in drugs, 0.37 (.095) in other health, 0.55 (.07) in chemicals, 0.64 (.068) in electronics, and 0.36 
(.05) in mechanical. The between-firm estimates are not statistically different from these in drugs or 
electronics, but are larger in the other three fields (this is not surprising since measurement error in R&D 
gets amplified in the ‘within’ dimension). 
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conclude that differences in the (average) quality of their innovations are not 

related to R&D, or that whatever differences are present get swamped by the 

stochastic element in the R&D process.  

  

Research Productivity at the Firm Level 

The equilibrium equation (6) predicts that the log of research productivity 

should be inversely related to the level of log sales and average patent quality, and 

that the coefficient on sales should be less than unity in absolute value. Table 7 

presents parameter estimates for both within-firm and between-firm regressions. 

We include year dummies in the within-firm regressions to capture technological 

exhaustion over the period, and report F-tests of the null hypothesis that these 

coefficients are jointly zero. 

In the within-firm dimension, the evidence is mixed. The variation in 

research productivity over time is very noisy – the regressions explain very little of 

the within-firm variance. This is not surprising, since we expect a large stochastic 

element in R&D outcomes that lead to patenting. Nonetheless, we find that 

changes in research productivity are negatively and significantly related to the 

level of sales in the the drugs, other health, and mechanical technology fields. The 

patent quality index does not explain any of the within-firm variation in research 

productivity. The results are more encouraging in the between-firm regressions. 

The sales and patent quality variables account for between 20 and 40 percent of the 

cross-firm variation in research productivity. Differences across firms in research 

productivity are negatively and significantly related to differences in the level of 

sales in all technology fields, and all of the estimated sales coefficients are less 

than unity, as predicted. In addition, research productivity is strongly and 

                                                                                                                                                                                           
22 This positive coefficient probably reflects unobserved heterogeneity in research capability, for which 
the mean patent quality for a firm is serving as a proxy. 
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negatively related to the patent quality index in the electronics and mechanical 

technology fields, and weakly so in other health (with no relationship in drugs or 

chemicals). We do not reject the hypothesis that there are no year effects in the 

within-firm regression for drugs, chemicals and mechanical fields. Although we do 

reject the hypothesis for electronics, the estimated year effects (not reported) do 

not show any systematic decline over the sample period. In the context of the 

model in Section 1 (equation 6), this evidence provides no support for the 

hypothesis of technological exhaustion at the micro-level, once we control for sales 

and patent quality.23 

 

8. Stock Market Value and Innovation Quality 

 

 The results above indicate that accounting for the relative quality of patented 

innovation helps in understanding the relationship between research inputs and 

patent counts.  We now consider whether accounting for quality is also useful in 

understanding how the stock market values patented innovation. 24 

We use the approach developed by Griliches (1981) and applied in many 

subsequent studies. We estimate an equation that relates the value of Tobin’s Q for 

the firm (the ratio of market value to capital stock) to the stock of patents, plus year 

and technology field effects.25 The market value of firm f in year t is the sum of the 

value of the stocks of physical and knowledge capital: 

                                                           
23 We also tested the hypothesis that there are no year effects in the within-firm regression that excludes 
the sales and patent quality index. The finding for drugs is reversed – the F-statistic rises from 0.91 to 
2.81 when we drop sales and the patent quality index. The conclusions are unchanged in the other fields.  
24 We also examined whether the quality of innovations is related to the firm’s decision to maintain patent 
protection by paying periodic renewal fees. Patent renewal models imply that, at any age, the likelihood 
of renewal should increase in the profit associated with the patent, equation 2 (e.g., Schankerman and 
Pakes, 1986). We estimate probit regressions for patent renewals at various ages (four, eight and twelve, 
as required in the U.S.). The coefficient on qf is positive and significant in all technology areas.  
25 Following Hall, Jaffe and Trajtenberg (1999b), we compute market value as the sum of the values of 
common stock, preferred stock, long-term debt and short-term debt net of assets. Book value of capital 
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(12) MVft = (ηt Cft + ρtKft)ψ, 

 

where η and ρ denote the shadow prices of physical and knowledge capital, 

respectively.  Assuming constant returns to scale (ψ = 1) and that the shadow price 

of each capital stock is equalized across firms in equilibrium, 

 

 (13) log (MV/C)ft = ηt + log (1+ µt Kft /Cft ). 

 

MV/C is the conventional measure of Tobin’s Q and µt = ρt/ηt is the shadow price 

of knowledge capital relative to physical capital in year t. The equation is 

estimated by non-linear least squares. We include either the cumulative number of 

patents or of quality-adjusted patents (Nstk and Vstk, respectively) as our measure 

of the knowledge stock.26  Since the mean quality is not unity, we have scaled the 

estimated coefficients (and standard error) on Vstk in Table 8 so that it can be 

compared directly to the coefficients on Nstk. We include year effects in the 

regression to pick up variation in ηt. The baseline specification treats µ as constant 

over time. We also allowed it to vary across three sub-periods in the sample and 

the results were similar to those reported here.27  We also include the firm’s 

average patent quality index, q , in the regression. This allows us to examine 

                                                                                                                                                                                           
includes net plant and equipment, inventories, investments in unconsolidated subsidiaries, and intangibles 
(other than R&D).   
26 Two points should be noted. First, the patent quality index used in these regressions is constructed with 
three indicators – claims, forward citations and backward citations – using the renormalized weights from 
Table 3. We do not use family size because it is only available for about 20 percent of patents. We 
checked robustness by running the regressions using only the subset with family data, and the qualitative 
results were similar. Second, both the raw and quality-adjusted patent stocks are computed using a 
depreciation rate of 0.15.    
27 In the drugs, electronics and mechanical fields, the estimated µ increased from the early period 1980-84 
to 1985-89 and then declined, while in other health and chemicals it rose throughout the sample period. 
For related evidence on the returns to R&D, see Hall (1993b).  
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whether cross-section differences in patent quality are valued by the stock market, 

in addition to any over time variations in patent quality.28 These between-firm 

differences account for a substantial part, about 40 percent, of the overall variance 

in the patent quality index in each technology field. 

As expected, the results show that the market value is positively related to 

the stock of patents held by the firm (before any quality adjustment). In each of the 

technology fields, when we use the quality-adjusted patent stock, we find that there 

is relatively little change in the estimated coefficient on the patent stock variable 

and virtually no improvement in the regression fit. Not surprisingly, the coefficient 

on average patent quality index, q , falls somewhat since some of the effect is 

being picked up by the new patent stock. This evidence indicates that variations 

over time in a firm’s patent quality (i.e., averaged over its patents) are mostly 

swamped by idiosyncratic variation and, as such, are not be well identified by 

investors. 

However, in four out of five technology areas, the stock market value is 

positively related to the mean quality at the firm level, given the stocks of capital 

and quality-adjusted patent counts (the exception is chemicals). This finding is 

robust – it also holds when we drop the year effects and we allow the relative 

shadow price µ to change over time. This result implies that investors have enough 

information to distinguish differences in mean patent quality across companies. 

The estimated effects of the cross-sectional differences in quality on market value 

are large, especially for drug and other health patents. For example, using the point 

estimates from the regression with Nstk and q , we find that increasing q for a firm 

from the 50th percentile to the 75th percentile in the distribution would increase its 

market value by 9.4 percent for drugs, 7.7 in other health, 2.5 in electronics and 1.3 
                                                           
28 This means that the market value in year t is a function of the firm’s mean quality index for patents 
applied for after t. This is reasonable if the market has enough cumulated information to estimate firm-
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for mechanical.  Improving the firm’s average patent quality index from the 50th to 

the 95th percentile would raise its market value by 20.2 percent for drugs, 19.6 in 

other health, 7.3 in electronics and 3.9 in mechanical. This strong empirical link 

between the firm-specific patent quality index and market value may be useful in 

developing techniques for valuing patent portfolios held by firms, for trading and 

other purposes.  

 

9.  Concluding Remarks 

 

In this paper we analyse the determinants of changes in measured research 

productivity (the patent/R&D ratio) using panel data on manufacturing firms in the 

U.S. for the period 1980-93. We focus on three factors: the level of demand, the 

quality of patents, and technological exhaustion. We first develop an index of 

patent ‘quality’ using detailed information on patents in the U.S. in seven 

technology fields during 1975-93. Using a factor model, we construct a minimum-

variance index based on four patent characteristics – the numbers of claims, 

forward citations, backward citations, and patent family size – and we demonstrate 

that using multiple indicators substantially reduces the measured variance in patent 

quality. Forward citations are the most important indicator for drug patents while 

the number of claims is the most important in the other six technology fields. 

Using multiple indicators reduces the variance in patent quality by between 20 and 

73 percent, which confirms that there is large information gain from exploiting 

detailed patent characteristics.  

We show that the patent quality index helps account for part of the time 

series variation in research productivity at the sector level, but the explanatory 

power differs across technology fields. At the micro-level, differences in research 

                                                                                                                                                                                           
specific quality.  
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productivity are negatively related to patent quality and the level of demand, as 

predicted by an optimizing model of R&D. We also find that cross-section 

differences in patent quality are strongly associated with the market valuation of 

firms, with an especially large effect in pharmaceuticals and other health. This 

suggests that the quality index may be useful in understanding variations in the 

stock market valuation of patent stocks, and for evaluating bundles of patents for 

cross licensing and patent pooling arrangements. 
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Table 1. Correlation Structure of Indicators  

 Claims Family Fwd5 Fwd610 

Family .103 
 

   

Fwd5 .138 
 

.098 
 

  

Fwd610 .115 
 

.099 
 

.390 
 

 

Bwd 
Cites 

.143 
 

.044 
 

.093 
 

.083 

 
Notes: Entries are correlation coefficients for the pooled sample. All are 
statistically significant at the one percent level. Variables are in logarithms.  
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Table 2.  Parameter Estimates for the One-Factor Model, By Technology 
Field 

 

 
Independent 

Variable 
(log) 

 
 

Drugs 

 
 

Biotech 

 
Other 
Health 

 
 

Chemicals 

 
 

Computers 

 
 

Electronic 

 
 

Mechanical 

 
Fwd5 

 

 
0.49 

(.043) 

 
0.29 

(.028) 

 
0.29 

(.013) 

 
0.18 

(.048) 

 
0.22 

(.012) 
(1975-85) 

 
 

 
0.19 

(.066) 
  

 
 

 
0.25 

(.028) 
0.32 

(.014) 
 

Claims 
 

0.30 
(.030) 

0.52 
(.042) 

0.48 
(.019) 

0.29 
(.066) 

0.52 
(.022) 

(1975-85) 
 

 

0.84 
(.20) 

   

0.54 
(.054) 
0.41 

(.016) 
 

Family 
 

0.12 
(.025) 

0.19 
(.028) 

0.16 
(.012) 

0.35 
(.077) 

0.14 
(.032) 

 
(1975-85) 

 

0.14 
(.060) 

   

0.17 
(.011) 

0.23 
(.013) 

 
Bwd Cites 

 
(1975-85) 

0.30 
(.037) 

0.37 
(.099) 

0.35 
(.030) 

0.23 
(.024) 
0.31 

(.014) 

0.11 
(.045) 

0.19 
(.021) 
0.29 

(.012) 

0.12 
(.028) 
0.28 

(.013) 
 

No. Obs. 
 

4,709 
 

453 
 

3,858 
 

28,106 
 

2,326 
 

39,070 
 

34,237 
 

1FM, χ2 (2) 
(p-value) 

 
12.8 

(.002) 
 

 
0.6 

(0.76) 

 
14.7 

(.001) 

 
91.2 

(<.001) 

 
0.7 

(.69) 

 
90.1 

(<.001) 

 
78.6 

(<.001) 
 

Generalized 
1FM, χ2 (1) 
(p-value) 

4.0 
(.045) 

 
 

7.6 
(.006) 

15.2 
(.005) 

 
 

47.8 
(<.001) 

 

0.7 
(.41) 

 
 

Sfwd 
 

0.28 
(.049) 

 
0.053 
(.037) 

 
0.17 

(.017) 

 
0.12 

(.011) 

 
0.04 
(.02) 

 
0.08 

(.018) 

 
0.07 

(.007) 
 

Sclm 

 
0.13 

(.027) 

 
0.82 
(.38) 

 
0.29 

(.066) 

 
0.37 

(.029) 

 
0.13 

(.059) 

 
0.51 
(.10) 

 
0.42 

(.035) 
 

Sfam 
 

0.01 
(.003) 

 
0.01 
(.01) 

 
0.056 
(.007) 

 
0.02 

(.003) 

 
0.13 

(.056) 

 
0.03 

(.004) 

 
0.02 

(.008) 
 

Sbwd 
 

0.10 
(.025) 

 
0.16 

(.085) 

 
0.17 

(.034) 

 
0.08 

(.016) 

 
0.02 

(.017) 

 
0.06 

(.013) 

 
0.02 

(.011) 
 
Notes:  Nationality and cohort dummies included. Estimated standard errors are in parentheses. Bold indicates 
statistical significance at the five percent level. The signal rate for indicator k (period 1986-93) is Sk =λk

2 /σ k
2 where 

the point estimate of λk is used. The approximate standard error is computed as 2λkσ (λk)/σ k
2.  χ2 (2) tests the over-

identifying restrictions in the one-factor model. χ2(1) tests the restriction in a ‘generalized’ one-factor model that 
allows non-zero covariance between measurement errors in forward citations and family size.  
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Table 3.  Weights in the Patent Quality Index  

 
 
% Weight 
on (log): 

 
Drugs 

 
Biotech 

 
Other 
Health 

 
Chemicals 

 
Computers 

 
Electronics 

 
Mechanical 

        
Claims 29.8       72.0 53.1 49.2 37.3 44.5 52.3
        
Fwd5 46.1       12.8 13.6 23.0 16.2 21.3 14.7
        
Bwd Cites  21.2       13.9 29.4 23.7 15.3 27.1 24.8
        
Family  2.9  1.2 3.9  4.1 31.2  7.1  8.3 

 
Notes:  Based on cohorts 1986-93. Weights are estimated values for Λ-1λ / ι' Λ-1 λ, where λ is the column vector 
factor loadings, Λ is the covariance matrix of the indicators, net of nationality and cohort effects, and ι a unit vector. 
Each weight corresponds to ∂E[q y]/∂yk , summed to one.  
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Table 4.  Information Content in Alternative Sets of Indicators:  

Percentage Reduction in Variance of Patent Quality 
 

 
Subset of 
Indicators 

 

 
Drugs 

 
Biotech

 
Other 
Health 

 
Chemicals 

 
Computers 

 
Electronics 

 
Mechanical 

Fwd5, Claims, 
Family, Bwd 

Cites 

 
42.1 

 
83.9 

 
55.0 

 
48.9 

 
28.8 

 
47.6 

 
53.5 

Drop Fwd5 21.6       82.3 52.5 43.1 26.3 40.9 50.7

Drop Claims 34.8       21.2 26.3 23.9 18.2 26.5 21.8

Drop Family 41.9       83.8 54.7 48.6 18.3 46.7 52.1

Drop Fwd5 and 
Family 

 
21.3 

 
82.2 

 
51.9 

 
42.3 

 
15.1 

 
39.4 

 
48.9 

 
Notes:  Computed as λ′ Λ-1 λ = Var(q)-Var(q| y), using estimated λ for cohorts 1986-93 and covariance matrix Λ, net 
of cohort effects, for the relevant set of indicators.  
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Table 5.  Changes in Patent Quality Index, by Percentile (percent) 

 
Percentile 

 

 
Drugs 

 
Chemicals

 
Electronics 

 
Mechanical 

Top 5% 24.5 27.0 19.7 16.0 
     

10% 21.3 24.3 20.1 16.7 
     

50% 23.2 21.6 21.9 19.7 
     

90% 27.1 24.1 25.3 23.0 
     

95% 27.9 24.9 25.9 23.8 
  

Notes: Each cell gives the mean percentage increase in the average quality for a 
randomly drawn (without replacement) sample of 787 patents per year in each 
technology field, 1975-93. 787 is the minimum number of patents in any year in 
any technology area.  Three technologies are excluded due to small numbers in the 
early years.  Similar patterns hold for sub-periods 1975-84 and 1984-93, although 
changes are smaller for the second period. 
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Table 6. Descriptive Statistics: Firm-Level Sample 

 
Median of: 

 
Drugs 

Other 
Health 

 
Chemicals 

 
Electronics 

 
Mechanical 

      
Sales  (1998 $m) 109.2 39.6 418.8 122.5 302.3 

      
R&D/Sales (%) 13.2 8.0 2.3 5.8 1.4 

      
Patents/R&D (per 
$m) 

0.27 0.59 0.58 0.46 0.54 

      
Number of firms 69 68 322 410 664 

 
Notes: Both sales and R&D data are deflated. The reported number of firms is the 
maximum available for any single variable. Actual sample sizes vary in the 
different regression analyses.  
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Table 7.  Research Productivity, Patent Quality and Market Demand         

 
 

  
Drugs 

 
Other Health 

 
Chemicals 

 
Electronics 

 
Mechanical 

 
Within-

Regression 

 
OLS 

 
IV 

 
OLS 

 
IV 

 
OLS 

 
IV 

 
OLS 

 
IV 

 
OLS 

` 
IV 

           
  q̂ 0.02 

(.085) 
0.46 
(.23) 

-0.18 
(.094) 

0.05 
(.37) 

-0.14 
(.06) 

-0.03 
(.14) 

-0.01 
(.05) 

-0.19 
(.17) 

 0.09 
(.045) 

0.26 
(.14) 

           
Log Sales -0.23 

(.05) 
-0.22 
(.05) 

-0.25 
(.06) 

-0.14 
(.07) 

0.068 
(.05) 

0.30 
(.07) 

-0.03 
(.04) 

0.01 
(.04) 

-0.08 
(.03) 

-0.08 
(.04) 

           
R2 0.12 0.12 0.07 0.04 0.02 0.03  0.02 0.02 0.014 0.003 
           

F-test 
H0: β(t) = β 

  0.91    0.85  1.48  2.64  1.80  

           
No. Obs. 460 385 394 291 1469 1170 1906 1461 2208 1681 

           
Between-

Regression 
          

  q̂ 0.71 
(.48) 

1.36 
(.95) 

-0.25 
(.51) 

0.97 
(1.42) 

0.02 
(.28) 

0.04 
(.50) 

-0.80 
(.22) 

-0.95 
(.53) 

-0.67 
(.20) 

-0.84 
(.41) 

           
Log Sales -0.14 

(.06) 
-0.16 
(.06) 

-0.38 
(.06) 

-0.37 
(.06) 

-0.33 
(.034) 

-0.31 
(.034) 

-0.32 
(.03) 

-0.31 
(.034) 

-0.39 
(.030) 

-0.37 
(.030)

           
R2 0.19 0.20 0.38 0.38 0.29 0.27 0.24 0.22 0.31 0.29 
           

No. Obs. 63 62 63 63 226 218 312 311 387 381 
 
Notes: OLS uses no instrument for q. IV uses lag q as the instrument for q − the R2 in the first-
stage regression varies from 0.12 to 0.24. ‘Within’ denotes the regression with fixed firm and 
year effects. Bold indicates statistical significance at the five percent level. The F-statistic tests 
the null hypothesis that there are no year effects (no technological exhaustion) in the OLS model. 
‘Between’ is the regression done on firm means of variables. 
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Table 8.  Stock Market Value and Patent Quality 
 

  
Drugs 

 
Other Health 

 
Chemicals 

 
Electronics 

 
Mechanical 

 
Nstk/C 

 
.070 

  
0.072 

  
.052 

  
.072 

  
.174 

 

 (.013)  (.012)  (.008)  (.006)  (.013)  

           

Vstk/C  .076  .067  .059  .069  .164 

  (.014)  (.011)  (.007)  (.006)  (.013) 

           
q  .302 

(.11) 
.242 
(.11) 

.479 
(.10) 

.422 
(.11) 

-.070 
(.028) 

-.082 
(.028) 

.137 
(.024) 

.119 
(.024) 

.074 
(.019) 

.058 
(.019) 

           

R2 .62 .63 .60 0.60 .21 .22 .50 .50 .28 .29 

           

No. Obs. 489 489 575 575 2360 2360 3209 3209 4731 4831 

 
Notes: Estimated by non-linear least squares, with year effects included. Bold 
indicates statistical significance at the five percent level. Nstk is the stock of 
patents, Vstk is the stock of quality-adjusted patents, C is capital stock, and q  is the 
mean value of the patent quality index for a firm. The quality index is computed 
using three indicators, without patent family size, with weights renormalized.  
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Figure 1:  R&D and Patenting
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Figure 2:  Pharmaceuticals 
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Figure 3: Other Health 
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Figure 4:  Chemicals
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Figure 5: Electronics
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Figure 6: Mechanical
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