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Abstract
In Part A of the present study, subtitled ¢ The Consumption Function as Solution of o
Boundary Value Problem’ Discussion Paper No. TE/96/297, STICERD, London School
of Economics, we formulated a Brownian model of accumulation and derived sufficient
conditions for optimality of a plan generated by a logarithmic consumption function,
1e arelation expressing log-consumption as a time-invariant, deterministic function
H(z) of log—capital z (both variables being measured in ‘intensive’ units). Writing
h(z) = H'(z), 8(z) = exp{H(z)—z}, the conditions require that the pair (h,8) satisfy a
certain non-linear, nor-autonomous (but asymptotically autonomous) system of o d e s
(F,G) of the form h’(z) = F(h,6,z), ¢ = Gfh,0) = (h—1)# for z € R, and that h(z)
and §(z) converge to certain limiting values (depending on parameters) as z - + co.
The present paper, which is self-contained mathematically, analyses this system and
shows that the resulting two-point boundary valuc problem has a (unique) solution for
cach range of parameter values considered. This solution may be characterised as the
connection between saddle points of the autonomous systems (F_m,G) and (F +m,G),
where F*w(h,ﬁ) = F(h,0,x0).
Key words: Consumption, capital accumulation, Brownian motion, optimisation,
ordinary differential equations, boundary value problems
AMS(MOS) subject classifications: 34B10, 49A05, 90A16, 93E20.
JEL subject classifications: D81, D90, E13, 041,
Abbreviated Title: Optimal Consumption as a Boundary Value Problem, Part B




INTRODUCTION TO PART B

As stated in the Abstract, this paper follows on from Foldes [1996] — hereinafter
‘Part A’ — comprising Sections 1 and 2 of our study The present Introduction
restates the boundary value problems (b.v.p 8) and certain assumptions formulated in
Part A, This is followed by Sections 3—4, which are devoted to analysis of these
problems and proof of the existence of solutions, with little further reference to the
economic and probabilistic background.

We consider the following non—linear, non—autonomous system S = (F,G) of
odes
(0.1) h/ = F(h,0,z) = bh?+ (2/c*)h[#n+m/b—;bo’~A] — 2[m—M]/bo?

§° = G(h,4,z) = (h—1)8

defined for z € ®, where h’ = dh(z)/dz, ¢ = dd(z)/dz . Hete b >0, 0> 0,0, m
are constants satisfying conditions stated below. Recall that z stands for log-capital
and h(z) = dH(z)/dz, 0(z) = exp{H(z)—z}, wheie H(z) is log-consumption (both
capital and consumption being measured in ‘intensive’ units). The functions A and M
are defined for z € § in terms of the ‘intensive’ production function % by
(02) Az) = y(®)/x, M(z)=19'(8), z=1Ix K>0,
and are (at least) C! with one—sided limits
(0.3) A(~00) = M(~00) = 9/(0) = ¢,  A(00) = M(o0) = ¢ (00) = 0.
Recall that ¢ is defined for x > 0, ¥(0) = 0, and is (at least) C2 with

P (%) > 0> ¢"(x) for 0 < X < co and limits

(0 4) 0 < ¢ < oo, P’ (00) = 0.
We further introduce the following constants:
(0 5) N = n+ (b-1)y//b
(0.6) g = n+ (b—1)(m+ibo?)/b
(0.7) Q = n—m/b +ibo? = q—m + }0?,

cf (1.15—16) In line with the statements of Theorems 2 and 3 of Part A, we adopt




throughout, without special mention, the following

STANDING ASSUMPTIONS

(0.8) If b>1,then N> 0 and {either n >0 or q > 0}.
(0 9) If b<1,then n > 0 and {either N> 0 or g > 0}.
(0.10) If b=1,then N=n=q>0.

The main object of this Part is to show that each of the b.v.p.s defined by the
statements of Theotems 2 and 3 has a (unique) solution. The following theorem is
based on these statements, but a more precise and elegant version will be given later.
THEOREM 4A (Existence of Solutions of b.v p )

In each of the following cases the system S = (F,G) defined by (0 1) has a solution
(h*,0*) = (h*(z),6*(z)) which is defined for all z ¢ ® and converges for z - zcc to
limits satisfying the following conditions:

‘Type I’ bv.ps (cf. Theorem 2): If b >0, n> 0 and N > 0, the limits are
(0.11) h*(+o00) =1, MH(+o0)=n

(0.12) h*(—0) =1, &(—oc)=N.

‘Type 0’ b.v p.s. (cf Theorem 3):

(i) f b>1, N>0 and g > 0> n, the limits are (0.12) and (h*(+00),0)
for some h*(+o0) satisfying
(0.13) 1/b < h¥*(400) ¢ 1.

({)If b<1, n>0 and g> 0> N, thelimits are (0.11) and (h*(—c0),0) for
some h*(—oo) satisfying
(0.14) 1/b > h*(-c0) > 1,

We call a solution of S which satisfies one of the sets of conditions of this theorem a
solution of ‘the’ (appropriate) b v.p. — of Type 1, 0(i) or 0(ii) — or simply a ‘star’
solution Taking into account the results of Part A, a proofthat a star solution exists
i8 a proof that the underlying model of accumulation admits an optimal log-consumption

function H(z), whete H'(2) = h(z) and #(z) = exp{H(z)—z} While our main aim will




be to prove the existence of star solutions, we shall also consider the properties of
solutions of S generally. Apart from any mathematical interest which this rather
unusual system of o.d.e s may possess, it is useful to have some insight into the

economic consequences of choosing the ‘wrong’ solution as the consumption function.
q g D




3. PHASE ANALYSIS
(i) Generalities.
The present Section gives a preliminary discussion of S followed by a detailed
discussion of certain auxiliary systems which define bounds for the motion of S;
further details about S are established in Section 4.

To begin with, a brief survey of some properties of § It is necessary to bear in
mind that the independent variable is not time but log-capital, but we shall never-
theless slip into much of the usual terminology of forward (z1) and backward (z])
motion and limits, stable/unstable or in/out curves which move towards/away from a
given point for the forward motion, etc We say that a solution of S is a pair of
functions (h(z),4(2)), with § € C2, satisfying (0 1) on some maximal interval
I = (z.,2.), and the corresponding curve (h(z),0(z); z€el) is called a solution path or
simply a path, (with analogous terminology for other systems introduced below). A
solution is called dounded on an interval if both h and # are bounded there, other-
wise it is unbounded We consider phase diagrams (or rather path diagrams) with ¢
on the horizontal axis and h on the vertical; thus we speak of motion to the left or
tight, up or down. Unless otherwise stated or implied, we consider S only in the open
half—plane {f> 0} = {(h,#): 6 > 0}, or possibly its closure {#» 0} (with perhaps a
vertical st1ip —e¢ < 6 < 0 when it is necessary to make sense of statements about phase
behaviour in full neighbourhoods of points on the vertical axis); the choice of space will
usually be clear from the context Plane sets are written with curly brackets, often
omitting the argument (h,d). For plane sets, ‘closed’, ‘open’, ‘boundary’ etc are defined
relative to #2, whereas ‘relatively closed’ etc are defined relative to {8 > 0} (For sets
in {# > 0}, ‘open’ and ‘relatively open’ are equivalent, but a relatively closed set may
not be closed in the plane ) The relative closure of a set ¢ is written [ ¢ 1. Often we
denote by 7= (h,4) a point in ®2 and by I = (h,4,2) = (m,2) a corresponding point

in ®3; (note the new use of , for “rosition’ )




Since the functions F and G are Ctin (h,6,z), a unique local solution through a
given point II = (7 o7 o) = (ho, Bo,zo) always exists; its position at z € I may be
written -w(Z;HO) = (h(z;Ho),B(Z;II o))‘ If we consider the solution only for z > Z,, O
only for z < Z, we refer to the forward or backward solution through Ho, and call
I, (or just 7 o 01 Z,) the start of the solution According to standard results, a
solution whose path stays bounded as z1 (z]) can be continued to z, = oo
(2. = —0c), sec Nemytskii and Stepanov [1960] T 121 Here we can do slightly better,
as follows:

PROPOSITION 1 If, for a given solution 7= (h,6) of S, h(z) stays bounded as 27
(z]), then the solution can be continued to z,= o0 (z.=—00).

ProOF Suppose that (h(z),4(z)): z€I) is a given solution through a point I, and
that |h(z)| <@ for z <z <z, If f,=0,then § = (h—1)¢ =0 always and there
is nothing to show. Let 6’0 > 0 and suppose that z, < co. Now #’ = (h—1)f# implies
oz) < 0, exp{e(z, - z,)} for z <z <z, Butthen f(z.) exists as a finite limit.
Applying the preceding inequality together with |h(z)] < a to the equation

h’ = F(h,0,%) it is found that h(z.) also exists as a finite limit, and the usual
continuation argument shows that the solution can be continued forward from
(h(z.),0(2.),2+), contrary to the assumption that z, < co. The argument for z | z_ is
analogous. || It will also appear later that, if h(z) becomes unbounded as z] (zl),
then z, < o0 (2.> —0).

A related question concerns the continuation of paths. It follows from the
equation ¢ = (h—1)# that the motion of $ is always to the left (4]) in the region
{h<1, 6>0}, always to the right (1) in the region {h>1, #>0}. Consequently, given a
solution of S through a point I = (h .4,z o) with 6 >0 and h # 1, we may take
f as path parameter, i e we may represent the path locally as the solution h = h(ﬂ;zo)
of the equation dh/d@ = F(h,,z(8))/(h—1)d, whete z(#) is the function inverse to

0(z;z o)‘ The usual continuation argument then shows that the representation can be




continued as 0| and as 07 solong as h—1 keeps the same (definite) sign and stays
fimite In particular, mo path can terminate in the interior of either of the regions
{h<l, >0} or {h>1, >0} as z1z. oras z | z..

Difficulties with the system S arise from its being non—linear, non-auto-
nomous, with no stationary point, incomplete (i e. finite escape levels z. or z. occur),
and unstable with respect to perturbation of initial values. This instability is present
in particular along paths which converge to one of the boundary values prescribed in
Theorem 4A; in fact, the system possesses a version of the ‘knife—edge’ property found
in certain deterministic models of economic growth. To set against these vices there
ate virtues. All solutions converge to limits, finite or infinite, at the endpoints of their
intervals of definition. The path map has some simplifying features Motion is always
totheleftif h <1, #> 0, to the rightif h > 1, # > 0 There are also order-preserving
properties: loosely speaking, if II l= (h <i> 03 ,zo) are distinct points, i = 0,1, an
inequality of the form {0 < h! <h?, 0 < #1 < £} is preserved along solutions through
these paths as z T (at least while both solutions remain defined with both co-ordinates
positive), while an inequality {0 < h! < h?, 0 < 6 < 61} is preserved as z | (with
the same proviso). Closely connected with these ordering properties, it is possible to
define autonomous systems which give simple upper and lower bounds for the motion of
§ (with more accurate bounds if only large |z| are considered) Most important, the
system is asymptotically autonomous for both z - oo and 2z - —o00; we begin our
detailed discussion with this last point

Referring to (0.1) and the definitions of the functions M and A, it is seen that
the term (2/02)[M(2)/b ~hA(z)] tends to zero as z - co and to (2/02)¢6[1/b—h] as
Z + —00, 50 that the function F(h,f,z) converges, uniformly on (h,#)—compacts of 2,
to the functions
(3.1) F (h,0) =bh?+ (2/0)h[f—n + m/b— bo? — 2m/bo?

(3.2) F_m(h,ﬁ) = bh? + (2/0?)h[# — N + (m—@b(’))/b — jbo?] — 2(m—¢6)/b02




as Z- oo and 2z - —co 1espectively, taking into account that N = n -+ (b—l)gbc’) /b
Since G = (h—1)¢ does not depend on 2, it follows that the system § = (F,G) is
asymptotically autonomous in the sense of Markus [1956], with limiting ‘autonomous
systems at *+ 0o’ defined by §_=(F_,G) and 5_, = (F__,G); see also Opial [1960]
Some simple but useful properties follow immediately; we state them for the forward
motion only.

PROPOSITION 2. (i) If the forward limit set! 1I” of a solution 7 of S is not empty,
then z,=co and II° is the union of paths of Sm‘ Consequently:

(i) If 7 converges to ¢ point 7 = (hb,ﬂ b), then that point must be a
stationary point of Sm.‘

(iii) If 7~ is a stationary point of S, and the variational equations of this
system based on 7 have characteristic values with negative real parts, then there is a
neighbourhood # of 7° and a number z o Such that every solution of S whose path
meets 4 at some z > Z o tonverges to T

(iv) If ¢ is an unbounded open region of the (h,4)—plane from which paths of S
and of Sm do not escape, and if all paths of Sm which enter % become unbounded,
then the same is true of paths of S.

These results allow information about solutions of S to be obtained from
corresponding information about the asymptotic systems, whose phase picture is
relatively simple Tn particular it will be found that, for each combination of para-
meters considered in Theorem 4A, each of the asymptotic systems has at most three
stationary points in the half—plane {# > 0}, one of which is a saddle while the others

are stable or unstable nodes.2 According to property (ii) above, a star solution must

LA point 7 = (h”,8") belongs to the forward (or ‘omega’) limit set if there is a

sequence (zx) such that h(zx)-h”, f(z) - 0~ as k- 0o. A solution which is
bounded for the forward motion obviously has a non—empty forward limit set.

2 There is a minor qualification in the cases 0 =n < q and 0 = N < q, where there is
a saddle-node bifurcation; see below, fn 4.




converge at each end to one of these points. It turns out that the co—ordinates of the
saddles, and only these, satisfy the prescribed conditions. The problem of proving that a
particular b.v p. has a solution is therefore equivalent to proving the ezistence of a sort
of saddle connection (but between saddles of the asymptotic systems, not of S)

This way of stating the matter suggests an analysis designed to show that there
is a pair of two—dimensional manifolds of integral curves of S, converging respectively
to the saddle points of §_(S__) as 2T (z |), which intersect transversely in a single
curve defining a star solution. This is essentially what we shall do, but in a way which
telies as much as possible on elementary methods using phase analysis in the plane.3

In addition to the systems S . (F :I:m’G)’ we shall need to consider certain
other auxiliary two—dimensional autonomous systems which will serve to define bounds
for the motion of S. The rest of this Section is concerned with these systems In order
to establish a unified notation we write
(33) F = I'(h,0) = bh2 + (2/02h(8— Q) — 2m/bo?

Thus a triple of parameters (b,Q,m) satisfying suitable conditions defines a system
S = (F,G), and we label parameters according to the systems to which they belong

Other parameters of importance are the numbers

(3.4) 0;= Q —4bo? + m/b, defined as the solution of F(1,4) = 0,
(3 5) Oyb =Q—o2+ m, defined as the solution of F(1/b,0) = 0,
(36) R = 2m/bo?, where R = —F(0,6) by definition.

We shall consider only systems S for which either 0, > 0, called Type 1 Systems, or

Oifp > 0> 0y, called Type 0 Systems. The relation

3 It is possible to imbed S in an autonomous three—dimensional system & in such a way
that the stationary points (in particular the saddles) of the asymptotic systems become
true stationary points (saddles) of & This approach yields results about phase
behaviour in neighbourhoods and about stable and unstable manifolds directly, and 1
hope to pursue it elsewhere. However it involves substantial preliminaries and extra
notation, and is not particularly helpful here since it does not avoid the phase analysis
needed to show that the stable and unstable manifolds at the relevant saddle points
intersect in a suitable way. L




(3.6a) Oyv— 0 = (b-1)(@/b+40%) = 02Ab-1)(1+R)

obtained from (4—6) is useful for determining whether a given set of parameter values
satisfies one of these conditions Note that, if b =1, then & = 0y > 0, so that only
Type 1 systems occur; sometimes we omit special discussion of this case for brevity.
Using (0.3-0.6) we obtain

(37) for F:Fm: Q=Q, m=m, #i=n, fypb=q, R = 2m/be?,

(38) for F=F :Q=Q+y,m= m-9/, 01=N, Oy =q,R = 2(m—y)/bo?.
A word here about classification and terminology We have said previously that a
bvp of Type1arisesif b >0 and both n > 0 and N > 0, ie. if both Sm and S_m
are Type 1 Systems. A bwvp of Type 0(i) arises if b>1, N> 0 and q>0>n, ie.
if S_m is Type 1 and S, is Type 0; again, a b.v.p of Type 0(ii) arisesif b< 1, n> 0
and q>02>N, ie if Sm is Type 1 and S_m is Type 0. Thus the Standing
Assumptions require that at least one of S_m and Sm be a Type 1 System Type 1

b v.p.s are those for which this holds for both systems; Type 0 bv.ps are those for
which only one of the systems is Type 0, and then the sign of b—1 defines the case
These remarks define the main criteria according to which both auxiliary systems and
b.v.p s will be classified: first as Type 1 or 0, then according to the sign of b—1,
(which affects the analysis of b.v p.s of both types) The sign of m then defines a
further criterion for individual systems, while for b.v.p s there is a classification
according to the signs of m and m — ¥ (yielding three cases if the borderline values
m=0 and m = 1/)(’) are left aside, which we shall sometimes do) This classification

is reflected in Figures 2—4, which are explained below.

(ii) Phase Contours and Stationary Points of Systems S = (F,G).
In the phase diagrams, arrows always relate to the forward motion. We begin by
examining the contours (level curves) of the functions G and F. Evidently the

contours of G = (h—1)@ are rectangular hyperbolae with asymptotes ¢ =0 and




h = 1; we shall not stop to draw these. In the half—plane {# > 0} we have §/ = G > 0

when h>1 and 8/ =G < 0 when h < 1. Further, since 8 =0 only along

{h =1} and {§ = 0}, any stationary point of (F,G) must lie on one of these lines.
Referring next to (3) and (6), we note that the equation F(h,f) = v, where 7is

a constant, may be rewritten as

(3.9) [+(6-Q)/bo?]2 — [(6-Q)/be?)2 — (R+2)/b = 0.

For +# R, this is the equation of a hyperbola with centre at (h = 0, = Q), axes

h = —{0-Q)/be? and f= Q, and asymptotes h = —2(0-Q)/bo? and h =0. The

hyperbola consists of two distinct curves, onein {h > 0} the otherin {h < 0}, which

we call the positive and negative contours of F at the level 7 and denote by F*(7)

and F(v) In case v = —R, the contours are the asymptotes. See Figure 1. It is clear

that the asymptotes define the boundaries of four domains, with contours at level

v> —R to the ‘north—east’ and ‘south-west’ and those for y < —R. to the

‘north—west’ and ‘south—east’. The slope s(h,f) = dh/dd along F = v (at a point

(h,0) different from the centre of the hyperbola) is given by

(3.9a) s(h,f) = —(8F/86)/(6F [ h) = =h/(bho?+6-Q).

We have O0F/0h = 0 along the first axis (leaving aside the centre}, so that the con-

tours have vertical slope there. Also F = —R along both asymptotes, so that in par-

ticular the motion on the horizontal axis is up/down according as R (or @) is —/+.
Contours for 7> —R have negative slope thioughout and both contours cross

every vertical line, so that the quadratic equation F(h,0) = 7 has two real solutions

h of opposing signs. For = —R, one solution is positive, one zero. For v < —R,

the two contours lie on opposite sides of a certain vertical open strip, so that no 1eal

solutions exist if the line {f = 0} lies in this strip; however, if F*(y) meets {0 > 0},

there are two distinct positive solutions. We denote the real solutions of F(h,0) =0

(when they exist) by h* and h-; thus

(3.10) both® = Q +[Q2 + oma?]t

10




For 4 = 0, these remarks yield the following consequences:
PROPOSITION 3. h*>0>h" ff R>0; h*>0=h" iff R=0;
h*>h->0 iff R <0 and F*0) meets {# > 0}.

Referring now to the definition (4) of 8, we note that, if #; > 0, the contour F+(0)
must cut {# =0} atapoint h*>1 Ifin addition R < 0, there is a second inter-
section at h- with h-> 0, otherwise h-< 0, and in either case h*> 1 > h- Again,
by (5),if 8yv > 0, then F*(0) must cut {#= 0} atsome h*> 1/b. Ifin addition
R < 0, there is a second intersection at h- with h-> 0, otherwise h-< 0, and in
cither case h*> 1/b > h- Thus the assumption that 0,V Oy, > 0 ensures that there
are always distinct real solutions h* and h- of F(h,0) = 0. Further inequalities which
are easily checked from diagrams are set out in the following
PROPOSITION 4 Distinct real solutions h* and h- of the equation F(h,0) = 0 exist in
all cases if #yV fyp > 0, with h* > 0 and sgn (h-) = sgn (-R).

If >0, then h*>1>h-

If #yp >0, then h*>1/b > h-~

I #,>0 and b> 1, then sgn (fyy) = sgn (1/b~h").

If >0 and b< 1, then sgn(8yy)=sgn (h*-1/b).

If fyp>0>0; and b>1, then 1>h*>1/b>h-

and h*=1 onlyif 6, =0.
o §yp,>0>40; and b< 1, then h*>1/b>h">1,
and h-=1 onlyif §=0.

These assertions apply in particular to F = Fm or F= F_m, with parameter values
as in {7—8) In these cases we write h* as h: or hfm

Since a stationary point of § must satisfy F = G = 0, (and we consider only
points with #> 0), it follows that Type 1 systems (those with #; > 0) have precisely
three such points, namely

(1:51): (H+a0)= (H_:O):

11




while Type 0 systems (those with 0y, > 0> #;) have only two, namely

(h*,0) and (h-0).

The results of the geometric discussion so far are illustrated in Figures 2, which show
both Type 1 and Type 0 systems with m < 0 and m > 0, distinguishing between
Type 0 systems with b > 1 and those with b < 1. (There is no Fig. 2(vi), because
by (6a) the conditions b <1, 8y, > 02 6;, m > 0 are inconsistent). It is clear
enough from the diagrams that in Type 1 systems the point (1,8;) is a saddle, (h*,0) is
an unstable node and (h-,0) is a stable node, but appropriate calculations are also given
below. Again,in Type 0 systems with b > 1, the point (h+,0) is a saddle and (h-,0) is
a stable node; while for b < 1, the point (0,h+) is an unstable node and (0,h-) is a
saddle.4 For each saddle point we have drawn in the ‘stable’ manifold (or curve) A4
(labelled T) and the ‘unstable’ manifold £ * (labelled g), except that in Type 0
systems one of the manifolds lies on the vertical axis; more of these manifolds later.

In the particular cases F = F g’ information about phase behaviour is also
shown in Figures 3—4. Fig. 3, comprising six diagrams, illustrates cases where both Sm
and S_UJ are of Type 1 (corresponding to Type 1 b.v p s), classified according to the
sign of b—1 and then according to the signs of m and m—f,b(’) Fig. 4 has the same
information for cases where either b > 1 and Sm isof Type 0 or b <1 and S_m is
of Type 0 (except that thete is no Fig. 4(vi), because the conditions b <1, N<0 < n,
q>0,m 2 ¢ areinconsistent; to see this, evaluate (6a) with the parameter values in
(8)) Each diagram shows (where space permits) the curves F_=0 and F__ =0

and the stable and unstable curves at saddle points of § and S__ (as well as other

4 Once again, there is a qualification, 1elating to cases with f#yp > 8; =0 Thereisa

saddle-node bifurcation at (1,8;) = (1,0), but the phase behaviour remains saddle~like
in the closed right half—plane and we treat the point as a saddle without special dis-

cussion. The stable node remains at (h-0) if b > 1, the unstable node at (h+*0) if
b < 1 Space does not allow a detailed discussion of this amusing case, but an example
is illustrated in Fig. 5.

12




information to be explained later).

The assertions made above on the basis of geometric arguments can of course be
checked and made more precise by calculation, but to save space and tedium we shall
only outline selected cases Thus to check the ezistence of real roots h* and h- in the
cases mentioned we first write F = F(h,6) in the alternative forms
= b(h—1)2 + (2/e2)(h—1)( — Q + bo?) + (2/02)(6-8,)

— b(h-1/b)? + (2/02)(b-1/b)(0— O + 02) + (2/ba?)(6-Dyyv).
If #;> 0, wesolve F(h,0) =0 in the first form to obtain
(3.13) bo(h* —1) = Q—ba? = [(Q — bo?)? + 2b028,]7,

and #, > 0 implies the existence of distinct real toots h*>1>h- I fyp >0 we

(3 11) F
(3.12) F

solve F(h,0) = 0 in the second form to cbtain
(3 14) bo?(B* —1/b) = Q— o2 = [(Q — 0?)? + 2020y )7,
and 8y > 0 implies the existence of distinct real roots h* > 1/b > h-
Turning to the characterisation of the stationary points, we write the Jacobian

matrix of S at an arbitrary point, using obvious notation for derivatives, as

Fun, Fol _  [(2/0%)(boh+6-Q) (2/c2)h
(3.15) Gn Gy / h—-1
so that the characteristic Toots are given by
(3.16) 2, = 2X,(h,6) = Fy+ Gy [(Fu— G2 + 4FyGu]? 5

For brevity we give details only for those points which define saddles Consider first

the point (1,8;) in case #; > 0 Here, using (4) and (6), we have

(317) Th=b+2m/be2=b+ R, Fy=2/02, Gn=10, Gy=0,
$0 that
(318) 23,(1,8) = b+ R 2[(b + R)2 + 8%,/0%), R =2m/bo?

Since @ > 0, the characteristic roots are real and of opposing sign, confirming that the

5 Note that we distinguish between the points h*and h- by superscripts, but between
characteristic roots at a given point by subscripts.
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point is a saddle. Let h = f(#) and h = g(0) denote the equations of the ‘stable’ (z 1)
and ‘unstable’ (z |) curves at (1,4,), considered as locel manifolds for the moment
The directions of ‘arrival’ and ‘departure’, i.e. the limits of [h(z)~1]/[0(z)—0] as z » >
and z - —o0, may be calculated from the linear variational equations about (1,6;) as
(3.19) (6)=M/0i<0, g (8)=2r/t>0
In particular, for F = Fm, we have #; = n, which was proposed as the limiting value
of &(z) as z ] oo whenever n >0 In this case the characteristic roots A (1,n) are
calculated with M = m —see (7). In the same way, for F = F__ we have #, =N,
which was proposed as the limiting value of #(z) as z | —oo whenever N > 0. In
this case A (1,N) are calculated with @ = m—’, see (8)

Turning to stationary points of (F,G) with 4= 0, we have, using (10),
(3.20) Fr = (2/0%)(bo?h-Q) = +(2/0)[Q2+2m07?,

Fo=(2/o%h, Gpn=0, Gy=h—1,

where h is h*or h- and the sign of the square root in the expression for Fy is
chosen accordingly ¢ Now (16) yields
(3.21) Ay(h,0) = FuvGy,  ALh,0) = FuaGy
If b>1 and fyp > 0> 0 weselect h* and obtain A, =Fy >0, A.=h*—1<0
by Prop. 4, confirming the saddle property In this case the unstable curve is on the
vertical axis. The stable curve may again be written locally as h = f(4) and the limit
of [h(z)—h*]/#(z) calculated from the linear variational equations about (h*,0) In
particular, if F = F_, we have 0/b=q 0=n, m=m, Q=Q =qg-m+jc? see
(7) and (0 7), and the values of h* = h* and A, are obtained from (10) and {20-21).

Since 1/b <h* <1 by Prop. 4, the point (h(;,U) satisfies the condition (0.13) for the

6 The root must be real because &* are real, but it can also be checked directly that
Q2 4+ 2mo? > 0 in case either # > 0 or 8y, >0 If m > 0, this is obvious If
m < 0, express Q in terms of & or fy1, using (3.4—5) and rearrange to represent

Q2 4+ 2mo? as the sum of perfect squares and a positive term.
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limit of an optimal consumption function (and this remains true if h* = 1) Writing
the stable curve as h ={ (f) we obtain
(3.22) £(0) = 2(1+A-)/o¥(A~A.), where A, = A (h*0)

Similarly, if b <1 and 8y >0 > #;, we select h- and obtain
\i=Fn<0, \,=h~—1>0 by Prop 4, again a saddle. This time the stable curve
is on the vertical axis and the unstable curve may be written locally as h = g(d). In
particular, if F = F__ wehave byp=q, §1=N, Q=Q+¢/, m=m—,
h-=h__. Since 1/b>h- > 1, the point (h- ,0) satisfies (014), (alsoif h: =1)
Writing the unstable curve as h =g__(f) we obtain
(3.23) g, (0) = 2(1+A)/o2(A—A), where A = A (b2 ,0)

If 8, =0, witheither b>1,h*=1, or b<1,h-=1, the point (1,0) is a
saddle—node but the preceding remarks apply with routine changes; see fn. 4

This discussion yields the following important result:

PROPOSITION 5 The points satisfying the boundary conditions at Z = oo and z = —00
prescribed by Theorem 4A are precisely the saddle points of Sm and S__ In
particular, the condition (0.13) cannot be satisfied by any h*(+co) other than h*,
and (0 14) cannot be satisfied by any h*(—co) other than h-

ProoF. A star solution must by definition be a solution of S defined on the whole of
® and converging to finite limits as z - oo According to Prop 2(ii) the limits must
be stationary points of Sw and S_m For Type 1 b.v.p.s the result is immediate because
(0 11) and (0.12) give the precise co-ordinates of the relevant saddle points. In the
case of Type 0 b.v.p.s the saddle points (h;,()) and (h_'m,O) satisfy (0.13) and (0 14)
respectively, and Prop. 4 shows that these are the only stationary points of Sm and

S__ in the prescribed intervals. (Once again, ‘saddle’ here includes ‘saddle—node’. ) ||
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(iii) Dynamics and Asymptotic Behaviour of Solutions of Systems S = (F,G).

We next note some properties of the phase behaviour of solutions of S, in particular
their limiting behaviour. Where the assertions are elementary or sufficiently obvious
trom the Figures we omit formal proofs. Thelxemarks about the choice of phase space,
solution of the initial value problem and continuation of solutions and paths made in
connection with S apply here also. An obvious additional feature is that the path

defined by a solution through a given point I, = ( z,) does not depend on the

o’go’
value of z_€(2.,2.)

In order to show that every path of S converges to a limit, finite or infinite, as
z 1 or Z |, wereview the directions of moiion within and between various phase
regions. (By a phase region we mean an open connected set of {# > 0} on which F and
G both have constant signs, the boundary consisting of arcsof F = 0 or G =0 or
both } The regions are shown in Figures 2, each with its pair of phase arrows. Cases
with m = 0, and those with b =1 or #; =0 are not depicted but unless stated offer
no significant exception to what follows. The only paths never entering any phase
region are the stationary points and the paths lying on the vertical axis; these obvious-
ly converge and so may be left aside. According to earlier discussion, no path can ter-
minate in the interior of a phase region. Within each phase region a path is monotone
in both co—ordinates; thus it is enough to check that each path is ultimately in one of
the regions as z T z, or z [7z.. Infact, a review of phase transitions yields more:
(a) A path which passes through a point on the boundary between two phase regions
immediately enters one of them (b) There is a one—way flow between regions as z 1,
also as z |. (c) A path which once leaves a tegion, as z | or as z |, cannot return to
it via a sequence of other regions. The existence of limits follows

As regards the vaelues of the limits, the possibilities in the case of bounded
solutions are few. (We again leave aside stationary solutions and those with §=0)Tfa

solution is bounded as z 7 (z |) then z,=o00 (z.=—00) —see Prop 1 The limit
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must be a stationary point, say (h,d), and for a forward (backward) limit it must
satisfy h <1 (h > 1) since otherwise the arrows point the wrong way. Thus in Type 1
systems the only possible finite forward limits are (1,8;) and (h-,0), the only
backward ones are (1,6;) and (h*,0) — see Figs. 2(i) and (ii). There aze no finite
backward limits in Type 0 systems with b > 1, but there are forward limits at (E*,o)
— see Figs 2(iii) and (iv). Similarly there are no finite forward limits in Type 0
systems with b < 1, but there are backward limits at (h*,0) — see Fig. 2(v).

As previously mentioned, the Figures are also classified according to the sign of
m. If @ > 0, forward motion on the axis {h = 0} is always downwazd, if ™ < 0 it is
upward, and if m = 0 the motion is along the axis, which acts as a barrier Algo, in
cases with m > 0, h* and h- have opposite signs, whereas with m < 0 they have the
same sign, in the latter case all finite limits of paths, forward or backward, have both
co—ordinates positive, (non—negative if m < 0).

To see some useful consequences of these remarks, consider the ‘invariant’ paths
at the saddle (1,0;) in Figs. 2(i) and (ii), representing Type 1 systems Tt has been
shown above that the stable manifold 4 ° can be represented locally by a function
h = f(4) with negative slope This manifold consists of two paths (in addition to the
saddle point) Tracing the left path A~ " backward as z 1, it is seen that 0| and
h T with no possible phase transitions, so the backward limit must be (h*,0) and
7= —o0. Tracing the right path A"} backward, onehas #7,h | aslongas h stays
positive, which it must do forever if m > 0 asin Fig. 2(ii); then the path limit is given
by h =0, # = o0, and again z.= —oco since h stays bounded If m < 0 asin Fig
2(i}), the path cannot stay in the domain {h > 0} forever but crosses at some 8 =0,
into {h < 0}, where it remains and continues moving to the right Now there aze two
possibilities, which will be discussed more fully below. One is that the path eventually
crosses the curve F-(0), after which the path limit is again (0,00), this time

approached {rom below, again with z.= —cc The other is that h | —co0, T co as
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z | Z.(with z. > —00, see below, and it turns out that this possibility is open only if

b > 1). Here we anticipate the result that in all these cases the representation

h = {(4) can be continued for all # € (0,00), (global stable manifold), and record that

f(6) > 0 forall 4 if m >0, but £(4) <0 for # greater than some 8. < oo if

M < 0. A further useful remark is that the curve 4~ = {h = T(0)} separates two

open ‘half—spaces’ within {4 > 0}, say

(3.24) %0 ={h>1(0}, F= ={h<Ii(OH)

Paths in the lower half—space % are bounded for the forward motion and converge to

(h~0) as z 1, with Z.= oo, while pathsin % > pass ultimately into the 1egion

{F>0, G>0} = {F>0,h>1} and so become unbounded (with z, < oo, see below).
Consider now the unstable manifold 4 °, which is represented locally by a

function h = g(¢) with positive slope. If the left branch AU is traced forward as

Z 1,1t is seen that #] and h | aslong as the path remains in {h > 0}, which goes on

forall >0 if m < 0; but if m > 0 the path must cross into {h < 0} at some

f=6.> 0 and then eventually pass into a region with F > 0, after which h increases

again while 1emaining negative In either case the path limitis (h-0) and 7, = .

As to the right path MR , this passes immediately into the region {F>0, G>0} and

eventually becomes unbounded with h ] oo, #1 0o (and z. < ). Once again, the

representation can be continued for all 4> 0 (global unstable manifold), with

g(#) >0 forall 4 if m <0 but g(é) <0 for # less thansome #. if m >0 In

particular, whatever M, one of the curves T and § always stays positive on {0 > 0}

(but both have this property only if m = 0). The curve 4 * = {h = g(§)} separates

two open half-spaces

(3.25) 7% ={h<g®} 2° ={h>g(h)}

in {# > 0}, with paths in the ‘upper’ half—space F° bounded for the backward

motion and converging to (h*,0) as z | —co, and paths in the lower’ half—space

% following one of the two possibilities indicated above for 4%, with §- oo
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anyway as %z | Z_ .

A similar, but rather simpler, analysis can be carried out in the remaining cases.
Suffice it to say that in cases with b > 1 and fyyp, > 0> #;, the stable manifold at
(R*,0) has only one branch lying in {# > 0}, which we denote by 4 . Its represen-
tation by h = f(#) can be continued for all # > 0, with a negative slope while h
1emains positive This goes on for all # >0 if m >0 asin Fig. 2(iv); but if m < 0
as in Fig 2(iii) then h becomes negative for 4 greater than some finite 9,, with
alternative behaviour thereafter as described above. Once again, all paths in G g0
to (h-,0) as z 17, = oo while pathsin % " become unbounded upward The
unstable manifold is on the vertical azis so that the function g is undefined, and we set
%°={0>0} Incase b <1land @y, > 0> 0 asin Fig 2(v), the stable manifold
at (h-0) has only one branch lying in {6 > 0}, which is denoted by A °. Tis repre-
sentation by h = g(4) can be continued for all &> 0, but this time the only admis-
sible possibility is that m < 0; thus the curve § has positive slope for all § and
becomes unbounded as z T, with h{ oo, #7 o0 (and %z, < 00). For z |, the paths
in 4 converge to (B*0) and thosein % to (0,00). Now the stable manifold is on
the vertical axis, the function £V 4s undefined, and we set %° ={0>0} 7

It remains to give a brief account of the asymptotic behaviour of unbounded
solutions of §. The main result needed below is that a path corresponding to such o

solution can always be continued as 1 co, more precisely that for a solution which is

7 Some pedantic distinctions concerning definitions should be stated once and for all.
The term ‘stable manifold’ denotes (unless the context indicates otherwise) only that
part of the manifold as usually defined which lies in {# > 0}; in particular, the saddle

point itself is included. However the notation A7 is reserved for the part of the

manifold lying in {6 > 0} and we write .4~ = {h = T(0)}, so that the function T is
‘properly’ defined only for 0 < # < oo Nevertheless we often write the limiting values

of T at #=o00 and #=0 as f(co) and (0), and when convenient treat I as
defined at these endpoints. Similarly for g and A Also, weset 8, = oo if

f(6) >0 forall >0, and 0.=0 if g(4) >0 forall §> 0. Analogous
conventions for other systems
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unbounded for the forward (backward) motion we have #(z} | oo on a final interval
as z 1 2z.(or z | 7). (However, the details are not needed for later proofs and it is
possible to skip to Prop 6). Consider first a solution (h,8) which is unbounded as z |
As the diagrams and previous discussion show, the corresponding path isin % ” and
we may assume that it is ultimately in the phase region {F>0, G>0}, say for
z,<2z <z, Inthisregion, h(z) and §(z) are always increasing. We first show that
Z, < co. Indeed, if we had z. = co, it would follow from
0'(z)/0(z) =h(z) -1 >h(z ) —1>0
that #(z) | oo, and hence from (0.1) that h’(z) > bh2?(z) for large enough %, say for
Z > 71 ; however the solution of the equation y’ = by2? with initial condition
y(2z1) = h(z,) explodes at some finite zy > z;, implying that h(%) also explodes at
some Z, £ Zy, contrary to assumption. So Z. < oo. From this it further follows
(Prop. 1) that h(z) is not bounded, so h{z) } co as z T Z,, and the (finite or
infinite) limit #z,) exists.
To investigate this limit further, it is convenient to introduce a new variable
{(z) = [h(z) - 1]/4(2)
defined for z_< z < z.. In the region considered, ((z)>0 and #(z) T Wiite
0(z,) =10, ((z,)=(, Taking ¢ as path parameter we have
gd¢/dg = 10 dr/dd—h + 1] = F/G - ¢,
and writing F as a function of h—1 asin (3 11), dividing by G = ' = (h—1)d = (6?
and simplifying we get
(326)  0d¢/d0 = (b-1)¢ + (2/o?)[1 - (Q-bo?)/0 + (6-8)/¢P
The term in square brackets is bounded, for 6> §_, by 1# 7, where 7 is a suitable

constant Now the equation

(321)  04¢/dd = (b-1)( + (2/oD)(L % )
with #> 0 has the solution
(3 28) ((6) = COvt + (2/oD)(1 % 9)/(1-b) i b#1,
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(329) () = C + (2/o2)(1 % )in 0 it b=1,

see Kamke [1943] p 311, eq 1.94, where C = C(7) is a constant to be determined
from the initial condition ((0,6? o).‘ Since this solution may be continued up to 4 = oo
for each 7, the same must be true of the solution of (26), so that #z,) = co. It
follows that 7 can be made arbitrarily small by choosing z o Close enough to z,,
hence h  and §  laige enough (along the given path) The asymptotic slope of the
path can now be calculated informally as follows For b < 1,let - 0o in (28),
followed by 7 | 0 (corresponding to §_ T o) to obtain ((z.) = 2/(1-b)s2 For

b = 1, divide both sides of (29) by in 4, let #- 00 and then 7] 0 to obtain
(O)/In0-2/c2 as 27 2Z,, so ((#)-00. For b>1 wehave ((f) =00 as - oo;
dividing both sides of (28) by ¢b-1 and letting 6- co one gets ¢/fb-1~ C, but no
limit of {/4v-! independent of the initial conditions is obtained.

Consider now solutions which are unbounded as z |. It is clear from the phase
diagrams (with the arrows reversed) that the corresponding paths are those in % °
and that the following types of asymptotic behaviour are possible:

(a) I m > 0, as in Figs. 2(ii) and (iv), there are paths which are ultimately in

70 {F>0, h>0}, and then the limiting behaviouras z | is #1 co, h | 0, hence
7= —00.

(b) Hm < 0, as in Figs. 2(i), (iii) and (v), there are paths which are ultimately
in % n {F<0, h<0}, and then the limiting behaviour as z | is 61 oo, h 10, hence
7= —0.

(¢) If i = 0, both the preceding possibilities are open, as well as 81 oo, h = 0,
Z.= —00
So much is fairly obvious and we omit formal proof The interesting question is
whether an additional possibility exists, namely:

(d) Some paths are ultimately in % n {F>0, h<0}, in which case h | —o0 and

01 oc asz | z. The diagrams suggest that, of the paths which are in this region at
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some Z, those with a relatively flat negative slope will in due course pass into
{F<0, h<0}, while those (if any) whose slope is sufficiently steep will rtemain in the
region as 2z | z_. We shall now make this argument more precise.

Suppose that a given solution passes through (2 ) = (h .0,z ) with

r,€%",F(h,0,)>0 and h <0 Thistime we introduce the variable

oz) = [1-0(z))/8(z),
defined for z_>z > z. On this interval, 5(z) > 0 and 6(z) 7 (but it is not clear in
advance whether z. is finite). Taking # as path parameter, we calculate 4dp/dd in
the same way as for #d(/dd above (paying attention to changes of sign) and arrive at
(3.30) fdn/dé = (b—1)n+ (2/c2)[-1 + (Q-ba2)/8 + (6-6,)/76?]
It can be checked as above that the solution of this equation can be continued as
81 #(z.) = oo. Now the asymptotic slope of the contour F-(0) as § increases is —2/bg?
—see (3 9a) and Figs. 1 and 2 — so that the path through (h_,6.) will pass out of the
region {F>0, h<0} if < 2/bo? ultimatelyas #71 (2 |). Suppose first that b <1.
If the path stays in the region, then n#f=1-h oo and n# 1 cc as #7 oo, so ulti-
mately #dn/df < —1/02, implying 7 < g-/ o’ « const , hence n< 2/bo? for large 4,
contrary to assumption. Se in this case the region is transient and Z.= — oo always.

Nowlet b> 1. Foreach #> @_, there is a number 5; = 7(§) such that the
points (h,6) = (1—0n,6) belong to the region {F>0,h<0} for all 5 > ny; (the condition
0> J_ ensures that the points also belong to %, cf. Fig. 2(ii)). Now choose 4, > B.
so large that the expression in square brackets on the right of (30) is in the interval
[2,0] whenever §> §_ and 72 2/bo? and then choose 5 > 7(f) v 4/(b—1)o2.
Then (h o 60) is in the region, and the value of #dn/d# at this point is at least
(b—1)7, — 4/0? which is positive Following the path through (h ,6.) as #7 itis
seen that, since n increases initially, the expression in square brackets in (30) remains
within [-2,0] and the inequality
(3 31) dn/dd > (b-1)p—4/0?> (b-1)n, —4/0? >0
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remains in force The path therefore remains in the region as 7 wncreases without
bound. Note further that the preceding inequalities imply

din n/din 6 = (0/n)dn/d6 > b—1—4/on > b-1—4[o?p > 0.
Wiiting ¢ = 4/0%, and integrating, one has 7> Db-ie  where D >0isa
constant. Reverting now to Z as the path parameter and using ¢’ = (h—1)8 and the
definition of 7, we have

—df/dz = (1-h)8 = f2p > D fbrte
hence, passing to —dz/df and integrating,

-z < A —DYb—e)t fb,
where A 1is another constant, and since ¢ —b < —1 the last expression T A as
81 oo It follows that z_> —oco Arguing informally as above, it is further seen that
the asymptotic path behaviour of # is analogous to that of { in the caseb > 1,ie
n(z) oo as z | z- and n/fbt~ C, where C depends on the initial conditions

To sum up: Paths passing through points of the region % n {F>0, h<0} as
Z | correspond to solutions of two types: those for which h remains bounded and
which pass out of the region (after which #- oo, h- 0 and z. = —co) and those for
which h, § and 7 = (1—h)/# become unbounded and which remain in the region up to
some Z.> —oc. If b< 1, only the first type occurs. If b > 1, it appears that both

possibilities are open, for either sign of m 8

The following proposition sets out properties of the functions f and g which

will be needed later:

8 Without going into further details, it seems clear that the two types lie on opposite
sides of some separating path, and in fact this path belongs to the sei remaining in

{F>0}, because the points of F-(0) defined by paths crossing from {F>0} to {F<0} as
z | form a relatively open subset of F(0).
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ProposITION 6 (Stable and unstable curves for three—parameter systems).

(i) ¥ 8, > 0, the system S = (F,G) has a saddle point at (1,;). The stable
and unstable manifolds at this point are represented by functions f and g defined
and continuous for 4 € (0,00), (with limits at §=0 and # = oo, all limits at =10
being finite).

f is positive and strictly decreasing on an interval [0,8,), with

(3.32) #,<o0 and [(8.) =0 in all cases;
(3.32a) f.=co iff m>0.
Thus f(oco) = +0 if 8, = oo; but [ isnegative on (@,00) if this interval is not
empty, and then either f(oc) = —0 or f(oo) = —co (only the former case arising if
b<1).

g is positive and strictly increasing on an interval (6. ,00), with g(o0) = oo,
and negative on (0,8.) if this interval is not empty. We have
(3.33) #.>0, g(8)>0 and 9--g(4) =0 in all cases,
(3 34) f.=0 iff m<0; g(0)=0iff m >0,

The following inequalities hold:
(3 35) bt = T{0) > T(8) = 1,
(3.36) h-=g(0) < g(6) =1
(i) If Byp>0> 8, b>1, then § has a saddle point at (h*0). The stable

manifold is represented by a function f defined and continuous for 4 € [0,00). The
properties of f and #, are as in (i) except that (35—36) are replaced by
(337) 1>h*=f(0)>1/b>h-

(iii) Tf @y >02 8, b <1, then § has a saddle point at (h-0). The
unstable manifold is represented by a function g defined and continuous for
f ¢ [0,00) The properties of g§ and f. are asin (i) except that only the case m <0,
#.=0 is admissible and (35—36) are 1eplaced by
(3.38) 1<h-=g0)<1/b<h*
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(iv) Five—parameter autonomous systems So far we have considered auxiliary auto-
nomous systems S = (F,G) where F is defined by three parameters (b, Q, m), see
(3—6) above. In order to set bounds for the motion of S it is also necessary to
consider autonomous systems with F defined by two formulas of the form (3), with
the same value of b but possibly different values of Q and ; one formula applies for
values of (h,d) above a certain line, which is either {h = 0} or {h = 1/b}, the other
below the same line, the values on the line being equal so that a continuous F is
defined overall. The values of §;, fi/1, and R are still uniquely defined since they
depend only on the values of F on the lines with h = 1, 1/b and 0, (provided that in
(4—6) one takes the appropriate values of m and Q) The definition of systems as
Type 1 or Type 0 therefore still makes sense, and all systems considered will be of one
of these types.

We shall need to consider pairs of inequalities, each pair defining an upper or
lower bound for F and hence a certain five—parameter system S. Some of the
inequalities will be global, applying for all values of z, some only for far right or far left
values TFor each inequality we shall tabulate values of Q and m which define F on
the part of the phase space for which that inequality holds The phase analysis of the
various systems is very similar to that of the three—parameter systems considered
above if the derivative discontinuity of F along one horizontal line is taken into
account. In particular, Props 3—4 apply. The number of cases to be considered is
rather large and various details will be omitted.

Upper and lower bounds for F(h,8,z) are obtained fiom the properties of A(z)
and M(z) — see (0.2—0.4) For brevity we write F = F(k,4,z), FA = FA(h,6),

V= Fv(h,ﬁ) etc Starting with inequalities and bounds which are valid for all z € §

m]}
m]

ond forhe® and #> 0, we have

(3.390) - F_—2¢//be? if h20 [Q=Q+ ¢, m
.add =
F if h<0 [Q=4Q, m

@
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(3 39b) Di=N+¢,/b=n+19,, Oyo=a+Y,

R = -FA(0,) = 2m/bo? = R_.
The expressions following the left curly brackets in (39a) define FA on the domains
{h>0} and {h<0}, while the quantities in square brackets are the values of ) and m to
be chosen in order to represent FA as a function F of the type defined in (3) on the
appropriate domain. It can be checked that FA is continuous on {h = 0}. The values
of #; and 8y in (39b) are calculated as in (4) and (5) from the values of FA along the
lines {h = 1} and {h = 1/b}. Thus FA, or equivalently the system SA = (FA,G), may
be regarded as defined by five parameters: b, and two values of Q and m When
necessary we write 8; = 83, Ryyp, = RA etc for the parameters defined in (39b), with
similar notation for other systems defined below The number 0} plays a special part
in what follows and s denoted by v.

In the same way, and omitting detailed explanations, we have

o [F ifhxi/p [@=0, M = m]
(3.40a) F<F'=y% . B
F_ ifh<l/b [Q=Q+ ¢y, m=m—1y]
(3 .40D) fi=nif b>1; ;=N if b<1l; 8yp=q;

R =—F(0,0) = 2(m—y!)/bo? = R__

According to our Standing Assumptions, we have N > 0 with nvq >0 if b>1
and n>0 with Nvq>0 if b<1 It followsthat 8} =v >0 sothat
SA = (FA,G) is always ¢ Type 1 system. On the other hand, sV = (FV,G) is of the
same Type (1 or 0) as S, if b> 1 and of the same Type as S_ if b< 1

The various possible combinations of SA and SV, classified according to the
Type of SV, the sign of b—1 and the signsof m and m — 1!)(’) are illustrated (apart
from certain borderline cases) in Figs. 3—4. Fig. 3 has Type 1 cases, Fig. 4 has Type 0.
In cach Figure, the first three diagrams relate to b > 1, the last three to b < 1,
taking in turn the cases m <0, 0 <m < ¢/ and m > ¢(’) (except that there is no

Fig. 4(vi)) Cases with b =1 may be assimilated to b < 1, Type 1 Cases with
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m=0 or m= 1 will be dealt with as we go along All diagrams are drawn with
g > 0, even where q < 0 is consistent with our text. 9 These reservations apart, the
diagrams exhaust the possibilities. Some remarks about the phase pictures follow.
The phase picture of St is similar to that of Type 1 systems S discussed
above, making allowance for the break at {h = 0} There is a saddle at (1,7), an
unstable node at a point (hA*, 0), with ha+ > (hu‘; v h_*_m), and a stable node at a point
(hA-, 0) with hA-< (hu; A h_'m).‘ At the saddle there is a stable manifold 44" repre-
sented by a continuous function h = {A(#) defined for & € (0,00), satisfying 1 = fA(v),
decreasing as long as fA(#) > 0 and with a left limit h4* = {A4(0). If m > 0, then
fA > 0 on the whole axis #> 0, but if m < 0 then fA =0 at some finite #4 and
thereafter remains negative and behaves in one of the ways described earlier as 7 0.
Again, there is an unstable manifold 4 AY represented by a continuous function

h = gh(f) defined for #€ (0,00), satisfying 1 = gh{v), increasing when ghA(d) > 0

with gh{co) = co and with a left limit gA(0) =hA~ If m > 0, then hA-=h-<0
and gh is negative on some initial interval (0,41) and positive on (#4,00); but if
m< 0 then hA-> 0 and gh is positive on the whole axis # > 0 Thus in each case

either fA or gh is positive on the whole azis, (but both are positive only if m = 0).

9 The main effect on Figs. 3—4 of setting q > 0 is as follows, Since 8yy = q for each of
Sm, S_m and SV, it follows from Prop 4 that, for each of these systems, 8y, > 0 imp-

lies h-< 1/b if b>1, h*> 1/b if b< 1 It then follows from the definition (3.40)
of PV thath' = h:m <1/bif b21, hVt = hu’; > 1/b if b< 1. In several cases,

the condition q > 0 follows from the Standing Assumptions and so does not impose
additional restrictions on the diagrams Thus, in Figs. 4, either Sm or S—m is of

Type 0, s0 g > 0 is assumed. In Figs. 3, both systems are of Type 1,ie n > 0 and
N>0Ifb=1thenq=n=N3>0 Ifb> I, choose the parameters for Sm given by

(3.7), and conclude from (3.6a) that q < 0 is inadmissible if m > —4bo?, asin Figs.
3(ii)—(iii). If b < 1, choose the parameters for S__ given by (3.8), and conclude from

(3 6a) that q < 0 is inadmissible if m < 1)/ — 4bo?. In other cases it can apparently

happen that ¢ < 0 and either = hu‘] >1/b if b>1,0r ht = hjm <1/bif b< 1
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Note also the bounds which SA defines for the motion S (and for every S) Since
F > FA, the motion is always upward for z | if FA > 0, in particular F(h,0) >0 forall
0 >0 when h > hA+ Further, the stable curve {h = M)} forms a barrier to down-
ward motion for S, i.e it can be crossed only from below asz T or from above asZ |,
(where ‘below’ and ‘above’ 1efer to the half—spaces defined by the curve). In the same
way, the unstable curve {h = gh(0)} can be crossed only from below as z T, from above
asz |

Consider now S’ = (FV,G), starting with b > 1, N > 0 and Sm of Type 1, so
that n > 0. The phase picture above the line {h = 1/b} is obviously the same as for
S ; thus there is a saddle at (1,n), with stable and unstable curves £ and gv which
coincide with fm and g, a8 long as they lie above {h = 1/b} Similarly, the unstable
node is defined by h't = h*, but for the stable node we have ' = h- only in case
h->1/b (ie in case q < 0), otherwise = h- < 1/b (seefn. 9).

The curve {¥ is defined for #> 0, it satisfies fv(n) =1 and (as a limit)
fV(O) = hv+, and it is decreasing as long as it is positive The behaviour of £/ below
the line {h = 1/b} is determined by F_ ; thusif m —¢g > 0, then fY'> 0 on the
whole axis, but if m — z,bc’) < 0 the curve becomes negative at some 9‘{, etc Again, gv
is defined for @ > 0, it satisfies gv(n) =1 and (as a limit) gv(U) =1"", itis
increasing as long as it is positive, and g'(0) > gh(#) for each 8. Tf m — ¥y >0,itis
found that h' < 0 so that g'() <0 on some interval (0,67) and positive there-
after; but if m — 1/)(’) <0, then gV >0 forall >0 Thus in each case either £ or
gv is positive on the whole azis (but both are positive only if m —¢_ = 0). Since
F < FV, the motion S is always downward for z T if FV <0 The stable curve
{h= (0)} can be crossed only from above as z T, and the unstable curve {h = g'(0)}
can be crossed only from below as Z |

Taking the phase pictures for SA and i together (Type 1, b > 1), it is seen

that fA(4) > fv( #) forall #e [0,00) (This follows, for example, because the saddle
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point of SV isin the lower half—space defined by fA, and FA < 0 implies that il
cannot cross fA from below) Consequently 9‘{5 gA | with a strict inequality if either
of these numbers is finite, i.e. if m < 'gb(’) The curves f and fA form the lower and
upper boundaries of a ‘tube’
(3 41) %" = {(h,0): 1'(6) < h < £A(8), §> 0},
an open plane set from which paths of S can exit as z T but not enter Similarly,
gh(6) < g'(6) for 0 € [0,00), so that gV < 9, with a strict inequality if either of these
numbers is positive, i.e. if m > 0. The curves gh and gV define a ‘tube’
(3.42) #9 = {(h,0): gA(0) <h <g'(d), 0> 0},
an open plane set from which paths of S can exit as z | but not enter. (Moreover,
any path of S which reaches the relative boundary of & > or 7 crosses immediately).
Systems with b > 1 and Sm of Type 0 are simpler and we shall be brief. Now
N>0>n and q> 0. The phase picture for S' above {h=1/b} is the same as for
S_, with a saddle at (h'¥,0) and h'* =h? € (1/b,1]. The (one-sided) stable curve
1V starts at f.V(O) =0T andis decreasing, coinciding with f as long as the latter
lies above {h = 1/b}, and its behaviour thereafter is the same as with Type 1 The
curves ' and fA form atube % with the properties mentioned for Type 1
However, the unstable curve now lies on the vertical azis and so fails to define a useful
bound for the motion SV; this is the main 1eason why we shall introduce alternative
bounds below. Since g > 0, the unstable node for SV lies below {h = 1/b}, and so
bV = h- (seefn. 9).
The discussion of cases with b <1 islargely symmetiical with that for b > 1.
No more need be said about SA If N > 0, sV is of Type 1 This time the saddle is
at (1,N), the stable node is at (h¥7,0) and both points satisfy h < 1/b (evenh < 1/b
if b < 1), so the interesting part of the phase map is the same as for S—m and we have
hV = h_'m <1/b. If g > 0, the unstable node is defined by nt = hc; > 1/b (see

fn 9), otherwise ht = h* <1 /b. The remarks about the curves £ and gv,
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including the definitions of ‘tubes’, continue to apply.

If b<1and ¢>0>N, S isof Type 0 The saddleis at (' ,0) with
n'" = h- €[1,1/b), and sois again in the region where the phase map is the same as
for S__. Since g >0 in this case, the unstable node is defined by BVt = he > 1/b
The unstable curve g‘Jr starts at g (0) = hV" and is increasing, coinciding with 8
while the latter lies below {h = 1/b} and becoming unbounded thereafter Also
RV = R_m, which for b <1 and S_m of Type 0 must be negative, so that only cases
with m — 7,&6 < 0 are admissible here We have gh < g"r and these curves form a tube

%Y as before. This time it is the stable curve which lies on the vertical azis.

Sharper bounds for F can be defined at for left or far right values of z. Given
any 6> 0, §< Yy, We can choose zd so far left that
(3 43) 0< ¢y —Az) <4y — M(z) < 6 < 9 for z € (—o0, 28],
and then, for these values of z and for he ® and #> 0, we have
F_—~2§/bo? if h>0 [Q=Q+y,, m=m—y +{
(344a)F>FAﬁ£{_m - ) > ©
F_— 26(1-bh)/be? if h<O0 [Q= Q+1,bo—é, m = m—¢0+6]
(3.44Db) =N+ 6/b, Oyn=q+ 4,
Rz —FA(0,0) = 2(m—¢, +6)/bo? = R__+ 28/bo?
Also,
F_ +26(bh—1)/ba? if 2> 1/b [Q = Q+4/-6, M = m—y) +0]
(3.45) F<FV6é{ - ) ) 0 0
F__ if h<1/b [Q=0Q+9y,, m=m-7y]
(3.45b) 8= N—§(b—1)/b if b>1; =N if b<1; yp=q;
B =~ Vo — / —_
R=-F (0,8) = 2(m—1,b0)/ba2 =R__ |
The resulting systems SA = (FA8,G) and S"° = (FV*,G) will be needed only
for cases with b > 1, and then for small 6 > 0 the phase pictures look roughly like
that for S_m, with saddle points slightly to the right and left of the saddle of S_m at

(1,N) and unstable curves gh® and gvé‘ slightly below and above g__ More
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precisely, comparison among the systems S4, SAS, S“m, SVé‘ shows that
(3.462) FA< FAS < F__ <Y
and that the values of f; decrease along the sequence — explicitly,
(3.46b) v=N+¢/b > N+6/b > N > N-4b-1)/b
Since all these numbers are positive for small 4, they define the positions of the saddle
points of the systems along {h=1} In particular, SA8 gnd SV(5 will be of Type 1 in all
cases considered Next, h:m <l< h:m because N > 0 (Prop.4), and in case q > 0
we also have h_‘m <1/b < h:m; the corresponding inequalities also hold with him re-
placed by has™ or by v Corresponding to g__(0) = b wehave gh%(0) = hAb-
and gva.(()) = hvg_, with ghd(0) <g (0) < gVé(O); also gA(0) < g48(0). Taking into
account (46a—b), it follows easily that gh < ghé < g_ ¢ gV(5 for f€ [0,00). Further,
we know that if m — 1/)(’) <0 thenR__<0Oand g _ is positive and increasing on
(0,00); and so for small § both RA® and R‘”s are negative and both g% and gVé‘
are positive and increasing on (0,00), On the other hand, if m — %, 2 0, then
R__>0 and g _ is positive only on an interval (#_,00) and is increasing there; and
so for small § both RA® and RW5 are > 0, while gA% and g‘“5 are positive only on
intervals (6A8,0c) and (B‘fé,oo) resp. and are increasing on these intervals. (The weak
inequalities allow for the case m = 'gb(’)) Clearly 9‘{53 f_< A8 and 9‘f6‘< gAS if one
of these numbers is positive, i.e. if m —¢/ >0 In any case, gh¥(oco) = g‘fé(oo) = oC.
The stable curves fA% and fva will not be of particular interest in cases with
b > 1 However, referring to the discussion of S4 and SV, we recall that f and {'
atre both positive on the whole axis (0,0c) in case m — %y 2 0, whereas for
m — ¢, < 0 the functions are positive only on intervals (0,64) and (0,9‘,’:) with
0< BY < f < co. Thus, in all cases with b > 1, one of the pairs of functions A, i

and ghd, gws is always positive on the whole azis for small 6. Henceforth it is assumed

without special mention that (43) and other properties requiring a small § are satisfied.
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6

Since A > f' and gh < ghd < g% it follows from

(3.46¢) P4 =v and fA(v)=gh(v)=1
that
(3.47) (1) < (1) < gh(v) < g"%(1)

We also know that, if b>1 and n> 0, sothat SV and SV5 are both of Type 1, then
fV(O) =1"" and gV5(0) = 1'% 1ie on opposite sides of {h=1}, hence
(3 48) (0) > £'(0) > 1 > g"%(0) > gh8(0)  if n > 0
On the other hand, if q > 0 > n, sothat S is of Type 0, then B‘{r/b = 0\1’}51) =q
implies £'(0) = n' s /b and gwj(O) AN 1/b (Prop. 4), hence
(3 49) £(0) > £(0) > 1/b > g"%0) > gh%(0) if q>0>n

Another point to note is that, since FA < F <« FV‘S for z < z3, the motion of §

')

as z | is then always downward when FAS > 0 and upward when F*'°< 0 Further,

for z < 28 the curve gh® can be crossed by a path of S only from above as z | and
gv'ﬁ can be crossed only from below. Thus the curves define a ‘tube’
(3.50) ¥ = {(n,0): gh%(0) < h < g"%8), 9> 0},
(or simply &%) from which paths of S can exit as z |, z < 28, but not enter. The
preceding statements are illustrated in Figs. 3—4.
Now consider far right values of z Given p>0,p < 7,0(’), one can choose zf so that
(3 51) 0<M(z)<A(z)<p< (8 for z € [zp,00),
and then, for these values of z and for he ® and #> 0, we have
F —2ph/e® if h>0 [Q=Q+p, @ =m+g]
F_ if h<0 [Q=Q, m=m] J
(3.52Db) fi=n+p, Byp=q+ p(b—1)/b,
R = —F4(0,0) = 2m/bo? = R,

(3 52a) F > Fho = {

Also,
F it h>1/b [Q=Q, m=m]J

(3 53a) F<F#=zl® )
Fm—i-2,o(1—bh)/ba2 if h<1/b [Q=Q+p, m = my]
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(3 53b) Bi=n if b>1; #y=n+ p(b-1)/b if b 1; Oyp=q;
R=-F'"7(0,0) = 2(m—p)/bo? =R_—2p/bo?

The resulting systems She = (FAe,G) and §'P = (F'P,G) will be needed only
for cases with b < 1, and then for small p > 0 the phase pictures look roughly like
that fof Sm: with saddle points slightly to the right and left of the saddle of §_ at
(1,n) and stable curves fie and V7 slightly above and below f__. More precisely,
comparison among the systems SA, SAe, Sm, SY7 shows that
(3 54a) FA<Fho<F_< B
and that the values of #; decrease along the sequence — explicitly,
(3.54b) v=1+¢ >n+p>n> n+p(b—1)/b.
Since all these numbers are positive for small g, they define the positions of the saddle
points along {h=1}. In particular, SAe and SV will be of Type 1 in all cases
considered. Next, h- <1< h; because n > 0 (Prop4), and in case q > 0 we also
have hu; <1l/b<h 5 the corresponding inequalities also hold with h: replaced by
nde® or by hY?* Corresponding to fm(O) = h* we have fAo(0) = hAe+ and
£9(0) = 1"PF, with f4(0) > £ (0) 2 £7(0); also f4(0) > f4e(0) Taking into
account (54a—b), it follows that fA > fAe>{ > 7 for fe[0,00). Further, we know
that if m >0 then R_>0 and f is positive and increasing on (0,00); and so for
small p both RAe and RP are positive and both fAe and 7 are positive and
decreasing on (0,c0). On the other hand, if m < 0, then Rm <0 and fw is positive
only on an interval (0,8,) and is decreasing there; and so for small p both RAe and
RYP are <0, while fAe and 7 are positive only on intervals (0,84¢) and (HY‘O ,00)
1esp. and are decreasing on these intervals. (Here the weak inequalities allow for
m = 0). Clearly 9‘1’0 <f,< fe<oo, and BY‘O < fhe if one of these numbers is finite,
ie if m<0 Inany case, fie(fie)= PPy = 0.

The unstable curves ghe and gv,o will not be of particular interest in cases

with b <1 However, we recall that gA and sg,\'r are both positive on the whole axis
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(0,00) in case m < 0, whereas for m > 0 the functions are positive only on intervals
(64,00) and (HY,OO) with 0< §” < 6A < 0o, Thus, in oll cases with b < 1, one of the
pairs of functions fhe, P and gh, gv is always positive on the whole azis for small p
Henceforth it is assumed without special mention that (51) and other properties
requiring a small p are satisfied

Clearly (46¢) remains in force for b < 1, and (47-9) remain valid if n, {5, f V,
gV&, gh® are replaced therein by N, fAe f o gv, gt Also, since Fhe < F < F'? for
z > z°, the motion of § as z 1 is then always upward when FAe >0 and downward
when FVP < 0. Further, for 2 » ze the curve fde can be crossed by a path of S only
from below as 2 |, and pr only from above. Thus the curves define o ‘tube’
(3.55) #"P = {(h,0): () < b < £ "P(8), 8> 0}

(or simply gP ) from which paths of S can ezit as z T, z > 7o, but not enter.

Collecting results from the pieceding discussion, and referring to Figs 3—4, we
state
PROPOSITION 7 (Stable and unstable curves for five—parameter systems)

(i)Let b>1,N>0 and nVq>0 andchoose 6> 0 asin (3.43)ff. The
functions fA, £ and gVé, ghd are defined and continuous for § € {0,00), (including
finite limits at # = 0). They satisfy
(3.56) o) > (), g'%0) > gh¥() for 8e[0,00)
and the inequalities (3.47—49).

The functions fA, V' are positive and strictly decreasing on intervals [0,84), [0,0\1),
and negative on intervals (6%,c0), (HY,oo) if these intervals are not empty. Limits at
8 = co are as in Prop. 6(i). We have

(3 57) 0< 6 <0h<oo and fV(HY) = fA(#4) = 0 in all cases;

(3.57a) HY = oo iff m 2 9; =00 iff m >0

)

The functions gv , gh8 are positive and strictly increasing on intervals (H‘fé,oo),
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(088,00), with gv's(oo) = gh¥(00) = 0o, and negative on (O,B\fé), (0,048) if these

intervals are not empty We have

(3.58) 0< B\fés A8 < 0o and oo gw( B‘fé) = §A8.gh8(gA8) = 0 in all cases;

(3.59) i
g4(d" =0 ift m> gl gAS(0AS) =0 iff m >y

=0 iff m <Y oA =0 iff m < ¢;

(i) Let b<1,n>0, NVq>0 andchoose g >0 asin (3.51)ff The
assertions under (i) remain valid if
(3.60) N, o, i, £, g8, g¥0 o, oY, gns, g%
are replaced by
(3 61) n, N, fhe, 2 g g7 one, 9VP o1, 4",
including replacements in (3 47—49), with the following exceptions: In place of (57a)
and (59) we have
(3 62) 0P = o iff m >0; fle=co iff m>0;
(3 63) 0" =0 iff m<y; fA=0iff m<O;

g'(0Y) =0 iff my ¢, gh(6h)=0 iff m20.

If q > 0>n, then only cases with m — gb(’) < 0 are admissible.

(iii) Condition (3.46¢) holds in all cases.
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4 EXISTENCE PROOFS
By virtue of Prop. 5, Theorem 4A can be restated as follows:
THeorEM 4B (Saddle Connection).
In all cases consistent with the Standing Assumptions, the system S = (I',G) defined
by (0 1) has one and only one solution (h*,6*) = (h*(z), #*(z); z € ) which converges
as Z - oo to the saddle point of St0 and as Z -+ —o0 to the saddle point of S_m.

We recall that the saddle point of S is at (1n) if n >0 (in particular, if
b < 1), and at (h(;,O) if b>1,q>0>n Thesaddle point of S__ isat (1,N) if
N > 0 (in particular, if b > 1), and at (h_'m,O) if b<1,q>0>N.

A solution (h,d) of S with ¢ > 0 which is defined on some interval 2 ,00)
and converges as % - co to the saddle point of Sm will be called a forward special
solution (f s 5.), similarly a solution defined on some (—00,z,] and converging as
z-—00 to the saddle point of §__is called a backward special solution (b.5.s.). Thus a
solution defined for all z € # is a star solution iff it is both a fs.s. and abss, and
Theorem 4 asserts the existence and uniqueness of such a solution The proof 1ests on
several Lemmas, some of which are also of independent interest. The details differ
according to the values of parameters, and sometimes we shall spell out only selected
cases. In particular, proofs for cases with b < 1 are similar to those for b > 1 but
usually slightly simpler, so we shall concentrate on the latter

In this Section, the following notation for subsets of {(h,f): # > 0} will be used:

(412) 0" = {h> 10}, AN = {h=(0)};
also, if fv( ) is defined —in particular,if b>1—
(4.1b) B ={h <10}, £ ={n=10}, ¥ =0 <h<iNG},

cf. (324) and (341) For brevity we write %", 3" rather than #2”, 2"° If fA
and f are replaced by fAe and £ —see (3.51) ff — we denote the corresponding
sets by %e, Ao, Be, J{Vp, %o, (omitting the superscript ). Again, we write
(4.2) “ = {h<ghf)}, A= {h=gAO)};
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also, if gv is defined — in particular, if b< 1~

(4.2) 2 ={0>g' (0}, £ ={h=g"0}, ¢ ={gh0) <h<g"(O)},
cf. (3.25) and (342) If gA and g' arereplaced by gAd and gvé' —see (3.43) ff —
we write %%, AAS BB J{V&, #8 The conventions stated in fn 7 apply.
ProposITION 8 (Bounds for Solutions).

Let (h,6) be a solution of S defined and finite for 2 € [Z,,2y], —00 < Zy < 7}, € o0,

(values at * oo, if relevant, being defined as limits).

(i) If h(z;) > 0 and h(zy) > 0, then h(z) >0 on [2,,2y)
\ (i) If &z,) <v and O(Zp) < v, then 6(z) < v on [#,,7y]
ProoF (i) If the assertion were false, there would be z, < 7z, < Zg< zp such that
h(z) passes from positive to non—positive values at z, as z T and from negative to
non—negative values at zg This implies
2[M(z,)}-m]/bo? = F[0,0(2,),2,] < 0 < F[0,8(z5),25] = 2[M(zg)—m]/bo?
hence M(z,) < M(zg), contrary to the fact that M(z) is strictly decreasing. (It is not

difficult to sharpen the assertion to ‘h(z) > 0 on [2,,zy]’, but we omit this ) ||

(ii) If the assertion were false, there would be z, < z, < Zg< Zp such that
(z) crosses the line {#= v} from left to right at z = z_ and from right to left at
z =z Thisimplies 0'(z,) = h(z,)-1 >0, #(z5) = h(zg)~1 <0, (taking into
account that F[1,»,2] > FA[1,1] = 0, so that the case h(zg)—1 = 0is ruled out) But
then h(z,) > 1 =fA(v) = A(4(z,)) = tM((zg)) > h(zg), and since no passage is
possible from {h > fA(f)} to {h < fA(f)} as z] we have a contradiction ||
COROLLARY 8. (i) Let (h*,6*) be a forward (backward) special solution. Then

h*(z) > 0 and 6%(z) < v eventually as z | (z}).

If h*(z_) >0 for some z_, then h*(z)> 0 forall z > z, (z<z)

If §%(z,) <v for some z_, then £*(z)< v for all z > z, (z<z,)

(ii) Let (h*,6*) be a star solution Then
h*(z) > 0 and 6*(z) <v forall ze}

37




Proor (i) A fss must satisfy h*(co) > 0 and #*(co) < v; similarly for a bss. with
oo teplaced by —oo. The assertions then follow from Prop. 8 (ii) This follows

because a star solution is both a fs.s. and ab.ss ||

ProrosITION § (Ordering Lemma).

Let Hg = (h<i>, g3, zo), i =0,1, be points with 6'}) > 0, (not necessarily
distinct, but with the same z_) Let i = 7i(z) = 7 z; II}} with components
hi(z), (z) denote the solution of S = (F,G) through II{. Similarly, let riv, 7id
denote the corresponding solutions of 5V = (FV,G) and Sh = (FAG)
(o) If ht<hQ and 0 < 6L < 63, then, on any interval of the form z, <z < Z < 0,

(i) hiz) <ho(z) and #Yz) < 6(z),

(i) hi(z) < hov(z) and 64z) < §ov(z),

(iii) h%(z) > hi&(z) and 6°(z) > 015(z),
provided that the following hold: in each line both solutions exist on [z ,z]; for at least
one of the solutions, the h—coordinate remains positive on this interval in case (i),
non—negative in cases (i) and (iii); and, in case (i), the points I} are distinct

If p and ze are chosen asin (3.51) ff and z_ > ze, then 7'A, 7Ov may be re-
placed throughout by rtde, 70ve, defined as the solutions of SAe, VP respectively.
(5 I hi<hl and 0< g9 < 41, then, on any interval of the form
Z,> 7> 7 > —00,

(i) hiz) < h(z) and O4z)> 0°(z),

(ii) ho(z) > htv(z) and 6°(z) < Ow(z),

(iii) hYz) < hoA(z) and 64z) > 0°4(z),
provided that the following hold: in each line both solutions exist on [z Z,]; for at least
one of the solutions, the h—co-ordinate remains positive on this interval in case (i),
non—negative in cases (ii) and (iii); and, in case (i), the points II{ are distinct.

If § and z8 are chosen asin (343) ff. and z oS 78 then A 70v may be
3 gvd

replaced throughout by =148, 70v&  defined as the solutions of SA® respectively
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ProoF (a) (i). Suppose first that hy >h!>0 and 6 > >0 Then h%(z) > hi(z)
for z in a right neighbourhood of z_, and since (d/ dz)(In 4° — In 01) = h0 —h! it
follows that #%(z) > #1(2z) in this neighbourhood; mozeover, the latter inequality
persists as long as h®(z) > h(z) for increasing # Ifsome Z ¢ (zo,i) were reached
with h = h0(%) = h{Z) > 0, then (for variables evaluated at Z) we should have
(d/dz)(h9—ht) = F(h,00,2)-F(h,0,Z) = (2/o2)h(8—01) > 0, so that in fact the
inequality h® > h! would persist, contrary to assumption Now suppose that
hg=h1>0 and 63> 41> 0 Then (d/dz)(ho—ht)> 0 for z to the right of 7
and the rest of the argument proceeds as before. ||

(@) (ii) Suppose initially that h >h!>0 and ) > 6! > 0. Then it
follows as before that hov(z) > h¥(z) for z to theright of z_, and aslong as this
inequality persists it follows that 69v(z) > §4(z) also. If some Z € (2 ,z) were
reached with h = hov(Z) = h{{(Z) > 0, then we should have, at Z,
(4.3) (d/dz)(hov~ht) = Fv(h,09v,2)—F(h,04,Z) > F(h,00v,2)—F(h,0L2) > 0,
because F' > F and 8F/80= (2/02)h > 0, so that once again the incquality
ho > h! would persist This last assertion remains true even if h = hov(Z) = hi(Z) = 0,
since only the second strict inequality in (3) need be replaced by a weak one.
Supposing now that hg = hé >0 and Hg > 9<1> > 0, the preceding argument with
z =7 replaced by z = z_ shows that hJ(z) > hl(z) in aright neighbourhood of z_,
and the rest of the argument proceeds as before. ||
The proofs of the remaining assertions under {a), and those under (), are analogous.
REMARKS: (1) The requirement that one of the h—coordinates in each line remain
positive (or non—negative in cases (ii) and (iii)) seems to be essential.

(2) Part (@) of the Lemma is essentially a version of a theorem of Kamke
[1932] T 6 or [1943] A 23.2 on what are now called ‘co-operative’ systems, see Hirsch
[1984], Smith [1988] and [1995] for surveys Briefly, the system S = (F,G) is ‘co—
operative’ at z if the off—diagonal elements of the Jacobian matrix are positive, which

here means that 9F/80 = (2/c2)h > 0 and 0G/oh = § > 0. It is however more
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efficient 1o give a direct proof for the present model.

In general, the inequalities (o) (i-ii) in Prop. 9 cannot be extended to limits as
z- 00 even if both solutions in question are defined on [z j,00), nor can (/) (i-ii) be
extended to limits as z » —oc. For example, Prop 2(iii) shows that the stable node of
S, attracts solutions of S starting (for large enough z <>) in a whole neighbourhood of
points 7 Nevertheless, such an extension is sometimes possible in the case of special
solutions. Rather than set out the relevant comparisons between limsts at this stage, it
is convenient to state some of the results in terms of comparisons between starts of

solutions converging to saddle points of asymptotic systems:

ProposrTioN 10 (Uniqueness Lemma for Special Starts)

Let II{ = (hg, 03, zo), i =0,1, be points with 61 >0, and either h) >0 or
bt>0 AsinProp 9, let 7i(z) and 7iv(z) denote the solutions of S = (F,G} and
sV = (FV,G) through 153

(@) (i) I the II} are distinct, and if 79(z) and 7'(2) aze defined on [z ,00)
and both converge to the saddle point of Sm, or

(i) if b>1 andif 7Y(z)and 70¥(z) are defined on [z ,00) and both con-
verge to the saddle point of §_ (which for b > 1 is also the saddle point of sY), then
(62 — 91)(h2 —h1) < 0.
(8) (i) H the I1{ are distinct, and if both 7%(z) and 7'(z) are defined on
(—o0,z] and both converge to the saddle point of §__, or
(i) if b <1 and both r!(z) and 7°%(2) are defined on (—o0,z ] and both con-
verge to the saddle point of S_m (which for b <1 is also the saddle point of SV), then
(60 —61)(hg —hl) > 0.
ProoF. (a) (i) Suppose, contrary to hypothesis, that h! < hg, 0< @< and
hy >0 By Prop. 8(i), wehave h®(z) >0 on (2,00), and then, according to
Prop 9(i), the inequalities h!(z) <hd(z), 6'(z) < 8°(z) hold on (2 ,00). Since hi(z)

and ho(z) go to the same positive limit, both are eventually positive for large z, and

40




we may as well assume from the outset that 0 < hi(z) < h%(z) and 0 < §(z) < 6%(z)
on [z ,00).

Suppose first that both solutions converge to (1,n) with n > 0 Then
#(z)/04z) -~ 1, In[6%(z)/64z)] » 0. On the other hand, #(z,)/ 04z,) > 1, and since
din 8/dz = h~1 it follows from ho(z) > hi(z) that In 0¢(z)—in 64z) increases on
[2,,,00), leading to contradiction.

Now suppose that g > 0> n and that both sclutions converge to (h;),o) For
atbitrary z > z o 30 application of the mean value theorem to the difference
F(z)-FYz), where Fi(z) = F(hi(z),0(z),2), gives, in abridged notation,

(44a) (d/dz)(h® —ht) = FO—Ft = (ho—h1)F, + (40— 1)Fy ;

here Fy = dF/oh, Fy = 0F/00, and the superscript 7 indicates that the derivatives
are evaluated at some point

(44b) (im,0n) = ((1-n)ht7n0), (1-n)0iknd0)), 0 < n = 7(z) < 1, hi=hi(z), fizfi(z)
Now Fg=(2/0?)hn > 0, and

Fy = 2bh + (2/02)[0 — Q — A(2)] = (2/0?)[bo?h? — Q] = (2/02)[Q2 + 2ma]? > 0
as 7= 00 by the definition of h*, see (3.7), (3 10) and fn.6 On dividing (4a) by
h%(z)-hYz) and recalling that #° —#1 > 0 and h* —ht> 0 for Z, < % < 00, we obtain

(d/dz)in(h? 1) > Fy -+ (2/oH)[both* = Q] > 0, z- oo,

Thus ho-ht is positive and increasing for lazge z, contrary to the assumption that
h?—hi- 0| The proof of (#) (i) is analogous.

(o) (ii)) We proceed as before, assuming the assertion to be false and replacing
70 by #tv, but without the assumption that the starts are distinct. The argument up
to and including the proof that both solutions cannot converge to (1,n) then proceeds
as before. Now suppose that q > 0> n and that both solutions converge to (h;,o).‘
For b > 1, this implies that both h! by hiv are > 1/b for large z Recall that in
the region {h > 1/b} we have F' = F_,see (3 40a), and that

F(h,0,2) =F_(h,6) + (2/0?)[M/b—hA], see(01)and (31)

Writing F1(z) =T _(h(z),0(2),2), similarly F0v(z), the first equation in (4a) is
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replaced by
(d/dz)(hov-ht) = Flv—F1—(2/0%)[M/b—hlA].
The term —(2/02)[M/b — h!A] is positive for large z since A > M and h!> 1/b, and
so can be dropped in the 1est of the proof, which proceeds as before with F(n in place of
F || A similar argument works for g (ii), allowing for changes of direction and sign.
COROLLARY 10 1. For given z_ and §_> 0, there is at most one h o 2 0 defining a
start of a £5.5 , and if there is one such h o 2 0 then it is the only one of either sign.
Again, there is for given Z, and h >0 at most one f > 0 defining a start of a
fs.s. Similarly for bss.
These results follow immediately from Prop. 10(a)(i) and (5)(i). They will

guarantee the uniqueness of star solutions
COROLLARY 10.2. ()(i) For b > 1, a pathof S which passes through a point of
[2"] cannot converge to the saddle point of S, a8 Z-00.

(&) For b>1 and §, z8 chosen as in (3 43) ff, a path of S which passes through
a point of [ #%] at some z, < z8 cannot converge to the saddle point of S§_, as%-—00.

(a)(ii) For b<1 and p, ze chosen asin (3.51) ff, a path of S which passes through
a point of [ Ze] at some Z, > 22 cannot converge to the saddle point of S_ 28200,

(B)(ii) For b< 1, apathof S which passes through a point of [ #°] cannot
converge to the saddle point of S_m as z - —00.
PROOF. (a)(i) Let 7!(z) again be a solution of S which at some z o Passes through a
point (h},01) € [2°] = B U A""; then hl<1'(6)). Setting hi¥= £/(61) and
607 = 0! defines the start of a solution %% of ¥ which does converge to the saddle
point of Scﬂ as Z- oo and whose path is part or all of A V> Since F < FV and
A% is an invariant set for ', the inequality hi(z) < £[04(z)] persists for
Z € (2, c0). We may further assume that hi(z) > 0 for large z (since otherwise 7t
cannot go to the saddle point of Sm anyway), and so assume wlog that hé > 0; but then
the assertion follows from Prop. 10(a)(i). | The proof of (§)(ii) is analogous, with £’
replaced by g", ht<£/(81) by hi> g¥(8Y) etc.
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As to (@)(ii), note that (1,n) is exterior to Ze¢, so that the assertion follows
directly from the fact that a path once in [ Z¢] at some 2z o 2 Z0 cannot leave that set

as Z T; in this case Prop. 10 need not be invoked. Similarly for (5)(i}. ||

PROPOSITION 11 (Convergence Lemma),
Every solution of S = (F,G) which is bounded for the forward (backward) motion
converges to a finite limit as z » oo (z » —oco) More precisely:

(a)(i) For b > 1, a solution of S becomes unbounded as z | iff its path is
everin %° Otherwise it converges as z - 0o to the stable node of Sm iff its path is
ultimately in ﬂb, and to the saddle point of Sm iff its path lies entirely in % >
(These statements also apply for b< 1 if N> 0)

(A)(i) For b > 1, and 4, 20 chosen as in (3 43) ff, a solution starting at z_ < z8
becomes unbounded as z | iff its path is ever in %8. Otherwise it converges as Z -+ —o0
to the unstable node of S__m iff its path is ultimately in Z?%, and to the saddle point of
S_m iff its path remains in #9.

(e)(il) For b<1 and p, ze chosen as in (3.51) ff, a solution starting at z_ > ze
becomes unbounded as z T iff its path is ever in #¢ Otherwise it converges as z - oo
to the stable node of Sm iff its path is ultimately in Z¢, and to the saddle point of Sm
iff its path remains in &e

(6)(ii} For b < 1, a solution becomes unbounded as z | iff its path is ever in
%", Otherwise it converges as Z » —oo to the unstable node of S—(n iff its path is
ultimately in ﬁq, and to the saddle point of S—m iff its path lies entirely in % <
(These statements also apply for b> 1 if n > 0.)

REMARK Solutions of S which are unbounded as z -z, (Z-2Z.) also converge, the
possible limits being those identified in Section 3 for solutions of S_ (S__) This can
be proved by ‘comparison’ arguments like those used for Props 9 and 10, but since
such solutions cannot solve a b v.p we shall not go into details.

Proor. For solutions with 6#(z) = 0 at some (and therefore all) z the Proposition is

43




obvious, and we assume 6(z) > 0 without special mention.

Let 7= n(z) = (h(z),4(z): Z<2<z,) be an arbitrary solution and let
M, =(r2,) with 7 = (h oJ,) be a point through which the solution passes.

(e)(i) Forward Motion, b > 1. Referring to (4.1 a—b), we note that the sets de-
fined there partition the half-plane {# > 0)}. Of these scts, %° is an unbounded
region from which paths of S and Scn cannot escape as z T and (as shown eailier) all
paths of SCIJ which enter this region become unbounded. According to Prop. 2(iv), the
same is true of paths of S. Any path which reaches #A” passes immediately into %°
Also, any path which reaches 4 ve passes immediately into 2" and cannot escape as
%z 7 Thus a path is ultimately in one of %D, 2" or 7

If a given solution 7 never enters %, it is bounded for z » Z,. Indeed, the
path is bounded above and to the right by the graph of fA; and if h(z) assumes
negative values they are bounded because of the term bh2 in F and the fact that 6(z)
is then decreasing — see Figs 3—4. Thus z, = 0o, and the forward limit set [1” is not
empty and is contained in {(h,#): h < fA(), # > 0}. We wish to characterise this set.

There are three possibilities a priori concerning the ultimate path behaviour:

(1) f(z) is non—decreasing and h(z) > 1 for all z large enough, say for z > Z,

(1) #(z) is non—increasing and h(z) < 1 for all 7 large enough, say for z > zZ,

(1) #(z) is not (weakly) monotonic and h{z)—1 does not have constant definite sign
for large z

In case (1), 6(z) T some 6, and since the path cannot terminate in the interior
of {h> 1}, and by assumption does not pass into %" or into {h < 1}, we must have
 <wv and h(z)-1; but then (l,ﬁm) must be a stationary point of S, by
Prop 2(ii), which is possible only if 8 =n20 If n<0,case (1) cannot occur for
bounded solutions.

In case (11), f(2) | some § , and since the path cannot terminate in the interior
of {h < 1} and does not leave this set we have either a limit (1,n) with n > 0, or

§ =0 Consider the latter case Any point of " must be of the form (h,0) with
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h < 1, and for such a point there must be a sequence #y T oo with h(zx)~h Conse
quently, if there are two points in 11, say with h="h, and h= hﬁ, h, < hg, then
all h in the interval [h,hg] must also define points (E,E)m) of T"; thus II” has the
form I x {0}, where I is an interval bounded above by 1. On the other hand, IT” must
be the union of complete paths of Sm by Prop. 2(ii) Now, the paths of Sm lying on
the vertical axis are as follows: the stationary points (hu’;,D) and (hD;,O), and the
intervals I. = {(h,0): h < h-}, Lo = {(h,0): h-<h<h*} and I, = {(h,0): h> h+}
It is impossible for the whole of I. to define limit points because h(z) is bounded
below Also, I, may be left aside since it is not bounded above by 1. Further, if
n>0,then h*>1,s0 (hu‘;,O) and Iy do not satisfy the stated bound; thus in this
case II” consists of the single point (hu;,O), the stable node of Sm, and this point is
the required limit. Now suppose n € 0, so that h; < 1. It is impossible for every point
of Ip to be a limit point of the solution because F_(h,0) <0 for he (h-,h*), and
since FoF_ uniformly on (h,f)-compacts it follows that, for ¢ > 0 small enough,
there is Z(e) such that F(h(z),48(z),2) < —¢ for he (h-+eh*—e) and z > z(e), s0
that eventually the interval (hu;-f— E,h;—-f) can be traversed only in the downward direc-
tion. Thus if n < 0 the only possible limit points are (hu;,O) and (h;,O), the stable
node and saddle point of Sm, and one of these must be the required limit.

Consider now case (111) There must be a sequence (zx) such that, for each
k=12,.,wehave h(z)-1>0 on (Zy-1,22), h(z)—1 <0 on (Zux,Zs%.), and
moreover h(z)—1 does not vanish identically on any of these intervals or on any neigh-
bourhood of the zy. Note that £(z) is non-decreasing on each (Zsx-1,Zk), non-in-
creasing on each (Zgx,%2x.1) Writing F(z) = F(h(z),4(z),z) and &z) = A(z) — M(z)/b,
it follows from (0.1) that if h(z)} = 1 then F(z) has the same sign as #(z) —n — §(z).
Now F(Zyx-) > 0> F(z2), and since §(z) -0 as z - 0o we have #(Zsx-1)-n and
H(za) - n. It then follows from the monotonicity of #(z) on each interval that
#(z) - n as z - oo Consequently the forward limit set must have the form {(h,n): hel}

where I is an interval, and this set must be a union of complete paths of Sm. If
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n > 0, this is possible only if the set reduces to the singleton (1,n) If n =0, an
argument like that given in case (11) yields the same conclusion; (in fact we must have
h*=1). If n <0, case (1r) cannot occur.

So far we have shown that, for b > 1, a path of S becomes unbounded if it is
ever in %D, otherwise it is in @~ or " for large z and converges either to the
stable node or to the saddle point of Sm. If a path is ever in 2", then according to
Cor 10 2(a)(i), it cannot converge to the saddle point of 5, and so converges to the
stable node of Sw.‘ Also, as noted earlier —see (3 41) — paths may leave but not
enter " as z T, so that if a path converges to the saddle point of Sm it must be in
#” forall z¢d Obviously each of the three ocurzences of ‘if’ in this paragraph may
be replaced by “ff’ || A slightly modified proof appliesif b<1 and N > 0.

(B)(i) Backward Motion, b > 1. It is tempting to imitate the argument for the

v and

forward motion, replacing the functions fA, £ and sets ?Jb, Je?p, %" with gh g
%4, Lﬁ’q, %< This works well enough if n > 0, butif q > 0 > n the function gV is
undefined and the argument fails. In order to have a unified argument we choose &
and z8 asin (3.43) ff, hence define SA% and SVé, consider the backward motion only
for z < Z, < z8 and work with the functions ghf, g"r'r5 and sets %%, 28 &9

The proof procedure is then more or less analogous with that for the forward
motion For any solution which is defined at zd the path passes ultimately into one of
ud, B8 or €O If the path enters %8, it becomes unbounded {(and it is not hard to see
that it ultimately enters %) Contrariwise, the path stays bounded as z | if it never
enters %% (and hence never enters %"). Indeed, such a path is bounded below and to
the right by the graph of g4; and if h(z) assumes values > 1 they are bounded,
because then #(z) is decreasing as z | and h(z) is decreasing as long as the path is
in {FA > 0} — see Figs 34

Restricting attention now to bounded backward solutions, there are again three
possibilities regarding ultimate path behaviour: (1) #(z) is non—decreasing and

h(z)<1 as z |. (11) #z) is non—increasing and h{z) > 1 as z | (u1) #(z)is not
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(weakly) monotonic However the analysis is simpler than in the forward case because,

vé .
need be considered, see above,

with N > 0, only Type 1 systems S_m, SA% and S
(3.46) ff 1t is shown as before that, in case (1), the backward limit set reduces to the
single point {1,N), the saddle point of S_m. In case (11) there are two possible limits,
namely (1,N) and the unstable node of 5__ at (h*_,0). In case (ur), the argument
is again similar to that in the forward case. Note that, when h(z) = 1, F(2z) has the
same sign as

#z) - n.— A(z) + M(z)/b = 0(z) — N + (#,-A(2)) — (¥,-M(2))/,
and then, since A(z) and M(z) tend to ¢| as Zz - —oo, we find first that #(z) - N

and then that the only limit point is (1,N).

It then remains to note that, by Cor. 10 2(f)(i), a path of S which is ever in
2% for 7z <z cannot converge to the saddle point of S__ and so must go to the
unstable node. Finally paths may enter but not leave #% as z [, leading to the
conclusion that the paths which go to the saddle are precisely those which arein #9%
for z <zb. ||

(ckef)(ii) Let b < 1. The arguments are similar to those for b > 1 and will

not be set out in detail. Loosely specaking, the backward argument for b< 1 is
symmetrical with the forward argument for b > 1, with gh, gv, %", 2%, #°
replacing fA, £ 9", 2", #° and the limits (1,N), (h_'m,O) and (hjm,O) replacing
(1,n), (h;,()) and (h-,0) However the details regarding characterisation of bounded
solutions, direction of motion and solutions of F(1,0,2) = 0 are similar to those for
the backward argument for b > 1. Again, the forward argument for b <1 is
symmetrical with the backward argument for b > 1 in that the function £ is
undefined if q > 0 > N, so that we consider the forward motion only for z > Z, 220
and work with the functions fAe, P and sets we, Feo, #e; but most details are
similar to those for the forward motion with b > 1, with the simplification that for

n > 0 only Type 1 systems S_, SA¢ and SYP need be considered, see (3.54) ff|
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COROLLARY 11. (@) Let (h*,0*) be a forward special solution. Then
(i) h*(z) < fA[f*(z)] < hA+ forall z
(i) b*(z) > £'[#*(z)] forall z if N >0, in particular,ifb > 1
(iii) If b< 1, and p, ze are chosen asin (3.51) ff, then
191 6*(2)] < h*(z) < fAq[f¥(z)] for z > 70
() Let (h*,8*) be a backward special solution. Then
(i) h*(z) > gh[#*(z)] forall z.
(ii) h*(z) < g'[#*(z)] forall z if n > 0, in particular,ifb< 1
(i) If b> 1, and &, z® are chosen as in (3 43) ff, then
gM[0*(z)] < h*(z) < g'O0%(z)] for all z <
REMAREK  This Corollary is just a restatement of points established previously It yields
some bounds for a star solution in addition to those stated in Corollary 8. In parti-

cular, such a solution must lie in the compact {0 <h < hA+, 0< 8< v}

We turn now to the main Lemmas on which Theorem 4A depends.
ProposrTion 12 (Existence Lemma for Special Starts, b > 1).
(@) For each fixed z_ € 8, and each f=0_ >0, thereis at least one h=h_ such

that (h z,) is the start of a forward special solution. The values of 4 for which

RN
there is a positive h  with this property form an interval (0,8,), where 4, = 9+(z°) .
For 4 in this interval, h  is unique and the function h = (8,2 ), or simply
h = {(#), is continuous, strictly decreasing and satisfies
(4.5) 8(6) > f(6) > £'(6) Also
(4.5a) 0< HY <f,<0<ox and f(4,) =0 in all cases;

g, = oo if ngbé; f,< o if 05m<¢(’); f, <eco if m<DO.
(8) For eachfixed §>0 and 28 =1z chosen asin (3.43) ff, and each f= 0§ >0,
there is at least one h =h_ such that (h LR/ <>) is the start of a backward special
solution. The values of 90 for which there is a positive h o with this property form an

interval (f.,00), where §.= 0(z_) For 6_ in thisinterval, h is unique and the
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function h = g8 o0 <>), or simply h = g(4), is continuous, strictly increasing with
g{oo) = oo and satisfies
(46) gh(0) < g(0) < £7(0)  Also
(4.6a) 0¢< gve <f6.< 058 and #.g(d)=0 inall cases;

.>0 if m> ¢6; .20 if m= qbc’); f.=0 if m < 9/

g(0) =0 if m> 4, g(f)>0if m<
ProoF. (o) We fix z, throughout this proof and consider only the forward motion, for
z >z, defined by S Often we omit Z, from the notation, also the superscript »
from the symbols in (1). For given 2z > 2 o We denote by S, =S, the transformation

m, w72 ,), where 7 = (h_,0), n(z)= (h(z),0(z)),

whenever this is defined, (i e. for z less than the value z.(7,2 ) of z. for the solution
starting at (wo,zo); bear in mind here that a solution whose path enters % stays there
up to explosion at z,, while for other solutions z, = o0). Restricting S, to &, let
(4.7)  Wu(z) = {r € ¥: 5,7 € % for some (e(z 2]}, WP(z) = {m €¥: S,r_ €2}

We(z) = {r c€:S,m e [¢]} ={r e [6]: S €[]}
(where Wu(z) = Wm(z;zo) etc) The replacement of ¥ by [ #] in the last equality
above is permissible because relative boundary points of ¥ are mapped into points of
% or # Of course, & is the union of the three sets in (7). We note that Wu(z) is
open Indeed, % is open, thereforesois S,1% = % U4t U Wu(z), a union of dis-
joint sets, and since % UAv = [ %] is closed the assertion follows. Similarly Wb(z)
is open. Obviously Wu(z) and Wb(z) are disjoint, and in view of the one-way passage
across boundaries these sets are not empty; (more details Jater). On the other hand,
We(z) = S, 1[ €] s telatively closed, connected and non—empty because [ €] has
these properties. Now, if welet 2z  (still keeping z  fixed) it follows from the one-
way passage across boundaries that the open, disjoint sets Wu(z) and Wb(z) grow,
hence converge to open, disjoint limit sets WU = W;(z <>) and Wg = Wg(z <,,).‘ The
sets We(z) decrease to a relatively closed, connected limit set W¢ = W¢e(z ), (and

this set also is not empty since it has the form % \{W; u Wg} with %, Wt and WP
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all open, connected and non-empty and Wy, Wg disjoint)

Consider now the sections of these various sets at a fixed 90 > 0 We have
€(0,) = (10 ,),£4(4,)), an open interval of positive length For given z, the section
Wu(z,ﬁo) isopenin ® (as the section of an open set), and it is contained in the open
interval #(0 ). It further follows from F > FA and the continuity of the various

functions that a solution starting at (h z,) with h € #(f) will pass into %

LR
before z if h  is close enough to A(4,), so Wu(z;f ) contains an interval of the
form (h(z),£4(4)), where ht(z) = hv(z;6,z ). Similarly Wb(2;4 ) is open in ® and
contains an interval (fV( g,),h(z)), and Wu(z;4 ) and Wb(z;0 ) are disjoint. Since
(48) We(z;0,) = (0,)\ {Wu(z;0,) U Wh(z;0,)}

this set must be closed in # and non—empty Letting z | oo, it follows fiom the mono-
tonicity of the various convergences that, for each of the sets Wu(z), Wb(z), We(z)
the limit of the section at 6 is the section at f of the limit In particular, Wu(z;4,)
and Wo(z;0 ) increase to sets Wu(4,) and Wg( f,) which are disjoint and open in %
and in #(f,) with upper and lower endpoints fA(6, ) and £Y( 0.) of #(8,) respectively,
$0 W;(é’o) is a non—empty, closed set in £ and in i?‘(ﬂo).‘ By Prop. 11{a)(i), a point

I, =(h,0,z,) with h_ € W;(ﬂo;zo) 15 the start of a forward special solution, so we

o’go’
have shown that for each (’90520) there is at least one such start.

If, for fixed 90, there is one start of a forward special solution with h 20,
then according to Cor 10.1 this h_ is unique. Since fV( §) < h < fA(#) for h € €(F),
this will be the case at least for = 4§ , in the interval (0, HY) where £’ is positive,
and here we may write h _ as a function h={(f,z ) =1(6). We consider f first as a
function on a closed interval [#,6s] with 0 < 4, < fa < HY, and note that on this
interval the graph of the function is W; n {6 < #< &}, which is a closed plane set.
The function is therefore continuous on the interval and, letting f; | 0, 62 1 9‘,{ , 18
seen to be continuous on (0,6“,{)‘ Obviously the function is posifive on this interval,
and the fact that it is decreasing is a consequence of Prop. 10(a)(i).

If m> Ve then GY = #h = oo by (357a),s0 f is defined on (0,4,) with
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8, = 6 = o0, and 1(co) = 0 by (3.57) since fA > > 1V, in this case, the proofis
complete. Suppose that m < ¢ and BY < oo0. It remains true that W;(z <>) is the
graph of a continuous simple curve, say of the form f(h,4,z <>) = 0, with at least one
solution h for each 4> 0. This follows (for example) from the facts that every
forward special solution eventually enters the strip {0 < < HY}, and that the map S,
defines for each z >z a homeomorphism from W;(zo) to We(z). Explicitly: if
[0a,00] is a closed, finite sub—interval of [6Y,00), then for large enough z we have
Wg(zo) N{f < O} = SZ"I[W;(Z) N {8, < B}] forsome 0 < 8, < By < 6", so that the
set on the lefi of the equality is the homeomorphic image of a segment of a continuous,
decreasing curve. Further, Prop. 10{a)(i) with Cor. 10.1 ensures that values of # for
which W;(z 0) contains only negative values of h are not succeeded by greater values
of # with positive h; thus the values of § for which W¢ (z,) contains precisely one

h > 0 form an interval 0 < ¢ < 6, and the continuous, positive decreasing function f
can be extended to this interval. Since fA>f>f on the interval, it follows that

g <e,< Hﬁ Moreover {{6,) = 0; indeed, we have either 8, = oo and then the asser-
tion follows as above, or 8, < co and then it follows from continuity and monotonicity
of f Finally, it follows from (3.57a) that §, < co if m < 0, but it seems that in general
both possibilities are open if 0 {m < 1/)(’).” Note that the preceding argument is stated
in a way which avoids the need to distinguish between Type 1 and Type 0 systems.

(8) The main part of the proof is similar. Briefly, we consider only solutions
defined for z < 2 o= 78 The forward motion S° is replaced by the backward motion
§° ®=¢" isreplaced by #¥% and similarly for # and %, the locus of special starts
W; is replaced by ng etc, and the roles of fV, 9‘}:, fA fA  are taken over by gAS,
GAS, gw, G‘fé The proof then follows much the same lines up to the point where it is
established that We_ can be represented, at least on (#A800), by a continuous, posi-
tive, increasing function g with gt < g < gvé‘? hence g(oc) = oo. {Minor changes
are needed to allow for differences between properties of ' and gAs H‘f and A8 etc

resulting from Props. 6 and 7).
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In the last paragraph of the proof, the roles of the inequalities involving m — gb(’)
are interchanged. More precisely, if m < ¢, then H‘fé = A =0 and
gVﬁ(O) > gh8(0) > 0 by (3.58—59), so that g is defined on (0,00) with a limit
g(0) > 0; in this case, the proof is complete. If m > 47, then 0 < ﬂ‘fé‘ < A% and
gvé( B‘fé) = gh8(94%) = 0 by (3.58-59) The graph of W¢_ is again a continuous
simple curve, say g(h,8,28) = 0 with at least one h foreach #> 0, and the
representation h = g(#) with g > 0 can be extended to a maximal interval (f.,00)
satisfying 0 < 9‘{6 < §.< 04 and g(8.) =0 The case m = ¢/ needs separate
consideration and one apparently has only 0 = & <0 < 028 and g(d) =0.]|
Proposirioy 13 (Existence Lemma for Special Starts, b < 1).
(a) For each fixed p >0 and ze =2z chosen asin (351)ff,and cach 4= >0,
there is at least one h = h _ such that (h .0 .z ) is the start of a forward special
solution. The values of 8 o for which there is a positive h o with this property form
aninterval (0,0,), where 4, = 0,(2 <>)‘. For ¢ in this interval, h is unique and the

function h = f(4 7 <>), or simply h = f(§), is continuous, strictly decreasing and

satisfies
(4.9) P00} < 1(6) < fhe(d). Also
(4.9a) 0< Bng g,< 0de< oo and f(4,) =0 in all cases;

f,=00 if m>0, #, oo f m=0; #,<o00 if m<O
(8) For each fixed z_€ R, and each f= 90 >0, thereis at least one h=h_ such
that (h,6 .2 <>) is the start of a backward special solution. The values of Bo for
which there is a positive h o with this property form an interval (4.,00), where
.= 10.(z,) For §  in this interval, h_ is unique and the function h = g(8,,2,), or
simply h = g(f), is continuous, strictly increasing and satisfies
(4 10) gh(f) < g(h) < g(6). Also
(4 10a) 0« 9‘f5 g.< oA and f#.-g(d) =0, in all cases;

f.>0 it m>¢c’); g.>0 it 0<m5¢6; §.=0if m<0O

g(0) =0 if m>y/; g(0)20if 0<m<y; g(d)>0 ifm<0
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Proor. This is analogous to the proof of Prop 12 and will not be set out in detail.
The best symmetry is obtained if the backward and forward proofs for b <1 follow
the forward and backward proofs for b > 1 respectively. Thus the main part of the
proof of Prop. 13(f) is like that of 12(«), replacing S* by SY, #” by € etc, the
1oles of fV, B‘f, A 0A being taken over by gh, o4, gV, v (with minor changes taking
into account Props 6 and 7) In the last paragraph of the proof, the distinction
between cases with m > gb(’), m < qb(’) is replaced by a distinction between m < 0,
m>0 (If m<O0,then O = 9" = 0 and the proof is completed with 4. =0
immediately, taking into account Prop. 7; butif m > 0 an extension argument is
needed )

Again, the main part of the proof of 13(a) is like that of 12(4), with S” con-
sidered only for z > zeo, #% etc replaced by #¢ etc, and the roles of ghd, A3, gVﬁ,
9\56 taken over by VP , HYP , fAe, #ho. TIn the last paragraph, the distinctions among
cases with m < ¢/, m > 10(’) and m = ¢/ are replaced by m >0, m < ¢, m = 0. (If
m > 0, then BYP = fAe = oo, and one gets §, = oo immediately, otherwise an extension

argument is needed; the ‘borderline’ case m = 0 needs special consideration) |

PROOF OF THEOREM 4
This can now be completed fairly trivially Let b > 1, choose 6 and z_ = z? agin
(343) ff and define f, 4,, g, §_ asin Prop. 12. Suppose first that m 2 ¢/ In this
case, Prop 12(a), eqs (5—5a), yield 4, = oo, f(cc) =0, with ]| on (0,00); also
f(v) < fA(») using (346¢c). On the other hand, eqs (6—6a) yield 8.2 0, g(f) =0
with g1 on (f_,00), also g(r) > gh8(v) > gh{r) =1 using (3 46¢), hence . < v
It follows that

f(0)>g(6)=0, () <g(f) for v< < o0,
and since f| and g1 thereis precisely one intersection of the curves in the interval
(f,00) This intersection defines a point (h*,0*) satisfying
(4.11) h* = f(*) = g(6*) > 0,
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and clearly 6. < #* < v This point is the start of both a forward and a backward
special solution and so is a star solution. It is the only point with these properties,
since for @< #_ any point (h,#) which is the start of a b s.s. has h < 0 while any point
which is the start of a fs.s has h > 0. This completes the proof for m > @b(’)

Now let m < 3/ Here (5-5a)yield 4, < oo, f{8,) =0 with £ | on (0,8}
On the other hand, (6-6a) yield 4.=0, g(8.) >0 with g1 on (0,0¢), also
g(v) > gMv) =1 Now (3.48-9) together with g{0) < gV'S(O) and £7(0) < £(0) yields
g(0) < 1(0) in all cases Also g(#,) > 0 = £(0,), so that there is precisely one inter-
section of the curves f and g in the interval (0,4,), defining a point (h*,#*) which
satisfies (11). (Moreover 6* < v as before; if 6, < v this is obvious, and if v < 8, it
follows from f(v) < fA(v) = 1 < gh¥(v) < g(v) as before.) Once again this point is the
start of both a fss and a b.s.s; and it is the only such point, since for > 4, a
point which is the start of a f5s. has h < 0, while a point which is the start of a b s s.
has h > 0.

If b<1,wechoose p and z =z asin (3.51) ff. and try to imitate the
preceding argument with f, 4,, g, f. as in Prop. 13 and other replacements as in
(3 60—61); for brevity, we shall merely note some additional minor changes. We now
have f(#,) =0 in all cases by Prop. 13, .If m 2 ¢, Prop 13 further yields 4, = oo,
6.>0,g(0)=0, and the proof is like that for b > 1, m > 9. If m<0, Prop 13
vields 6, < oo, 0.=0, g(#.) > 0, and the proof is like that for b> 1, m < ¢ In
particular, the inequality g(0) < £(0) now follows from (3 48—49) with the substi-
tutions (3 60—61) together with g(0) < g7(0), £'°(0) < {(0). Finally, if 0 < m < (8
Prop. 13 yields #, = o0, 8.2 0, g(#) > 0and #.-g(#) =0 It is then necessary to
distinguish between cases with §_> 0, g(¢) = 0 and those with .= 0, g(#) > 0; in

the former case, the proof is as for m > ¢/, in the latter as for m < 0.
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Figure 2(i): 3—Parameter System, Type 1

9;>0, m<0, h*>1>h >0
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Figure 2(ii): 3—Parameter System, Type 1

6,>0, m>0, i*>1>0>N
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Figure 2(iii): 3—Parameter System, Type 0
0,,>0>0;, b>1,m<0,1>h">1/b>h >0
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Figure 2(iv): 3—Parameter System, Type O

6,,>0>0, b>1,m>0,1>h">1/b>0>h"
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Figure 2(v): 3—Parameter System, Type 0

6,,>0>8, b< 1, m<0,h™>1/b>h >1
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Figure 3(i): 5-Parameter System, Type 1

N>n>0,b>1,m<0<y
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Figure 3(i1): 5-Parameter System, Type 1

N>n>0,b>1,0<m<\p0’
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Figure 3(iii): 5-Parameter System, Type 1

N>n>0,b>1,0<qf(;<m
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Figure 3(iv): 5—Parameter System, Type 1

n>N>0,b<1,m<0<q;('}
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Figure 3(v): 5—Parameter System, Type 1

n>N>0,b<1,0<m<\|1(’)
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Figure 3(vi): 5—Parameter System, Type 1

n>N>0,b<1,0<1p(’)<m
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Figure 4(i): 5—Parameter System, Type 0

N>0>n,q>0,b>1, m<O<y
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Figure 4(ii): 5—Parameter System, Type O

N>0>n,q>0,b>1, 0<m<y,
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Figure 4(iii): 5—Parameter System, Type 0
N>0>n,q>0,b> 1,0<\p(;<m
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Figure 4(iv): 5~Parameter System, Type O
n>0>N,q>0,b<1, m<0<1p(')
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Figure 4(v): 5~Parameter System, Type 0

n>0>N,g>0,b<l, 0<m<y]
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Figure 5: 3—Parameter System, Saddle—Node at (1,0)
6,=0,b>1, R=2m/bc?>0
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