Sonia Livingstone, Ellen Helsper
Balancing opportunities and risks in teenagers' use of the internet: the role of online skills and internet self-efficacy
Article (Accepted version)
(Refereed)

Original citation:
DOI: 10.1177/1461444809342697
© 2010 SAGE

This version available at: http://eprints.lse.ac.uk/35373/

Available in LSE Research Online: March 2013

LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research Online website.

This document is the author’s final accepted version of the journal article. There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.
Balancing opportunities and risks in teenagers’ use of the internet: The role of online skills and internet self-efficacy

Abstract

Many hopes exist regarding the opportunities that the internet can offer to young people as well as fears about the risks it may bring. Informed by research on media literacy, this article examines the role of selected measures of internet literacy in relation to teenagers’ online experiences. Data from a national survey of teenagers in the UK (N=789) are analyzed to examine, first, the demographic factors that influence skills in using the internet and then, the main focus of the study, to ask whether these skills make a difference to online opportunities and online risks. Consistent with research on the digital divide, path analysis showed a direct influence of age and socioeconomic status on young people’s access, a direct influence of age and access on their use of online opportunities, and a direct influence of gender on online risks. The importance of online skills was evident insofar as online access, use and skills were found to mediate relations between demographic variables and young people’s experience of online opportunities and risks. Further, an unexpected, positive relationship between online opportunities and risks was found, with implications for policy interventions aimed at reducing the risks of internet use.

Keywords

Internet, teenagers, skills, literacy, online risks and opportunities
Introduction

The many hopes and fears regarding the opportunities that the internet can offer to children and young people, along with its attendant risks, have attracted considerable attention (Buckingham, 2004; Kaiser Family Foundation, 2005; Wolak, Mitchell and Finkelhor, 2006). The result is a series of pressing questions for policy makers, regulators, industry and the public about whether, in practice, young people are taking up these opportunities, whether some are benefiting more than others, and which factors might facilitate the beneficial uses of the internet in an equitable manner.

These opportunities are widely judged to include learning, communication, participation, creativity, expression and entertainment – a heterogeneous set of activities for which there is considerable optimism and public/private sector provision (Jackson et al., 2007; Livingstone, 2004; Norris, 2001). Equally pressing, however, are the questions regarding whether young people are encountering risks online, whether some are particularly at risk, and which factors might mitigate against the risks of internet use. These risks, also encompassing a heterogeneous set of intended and unintended experiences, include encountering pornographic, self-harm, violent, racist or hateful contents online, inappropriate or potentially harmful contact via grooming or harassment, and, attracting recent attention, problematic conduct among peers such as bullying, ‘happy slapping’ or privacy invasions of one kind or another (Liau, Khoo and Ang, 2005; Livingstone and Haddon, 2008; Ybarra, 2004).

To be sure, there is considerable scope for interpretation and contestation – both conceptually and between adults and children – regarding the allocation of specific activities to the category of opportunities or risks. Nonetheless, it appears widely assumed that these categories are to be conceptualised as mutual opposites, with academic, policy and popular discourses asserting that, for example, increasing opportunities will distract children from exploring risky activities, or that policy should aim to reduce risks and increase opportunities, or that children’s desire to evade adult-approved activities will lead them towards online risk-taking.

In the main, take up of opportunities has been the focus of the digital divide or, more recently, digital exclusion debate, where inequalities in the nature and benefits of internet use has attracted particular attention (Norris, 2001; Van Dijk 2005). In a parallel and often unrelated research literature, an examination of the nature and incidence of online risks has sought to identify vulnerable or ‘at risk’ youth and the conditions and consequences of potentially harmful experiences (Berson and Berson, 2005; Mitchell, Finkelhor and Wolak, 2003). Both traditions up till now have concentrated on demographic factors – age, gender, socioeconomic status, and others – but recently, both are turning their attention to questions of and whether online skills, competences or other socio-psychological factors may influence the range of opportunities taken up or risks encountered (Durndell and Haag, 2002; Eastin and LaRose, 2000; Leu et al., 2004).

Crucially, it is increasingly recognised that these skills are also unevenly distributed. In other words, although young people are often in the vanguard when it comes to using, and to developing new uses for, the internet, compared with many adults (Dutton, di Gennaro and Millwood Hargrave, 2005; Livingstone and Helsper, 2007b;
Ofcom, 2006), there is good reason to question the popular assumption that children and young people are ‘cyber-experts’. It seems that they do not always find online contents and services easy to access and use in a manner that both meets their needs and avoids the attendant risks. For example, many young people have yet to learn adequate techniques for accessing and searching content, and their critical and creative skills remain rudimentary and often little practiced (Facer and Furlong, 2001; Hargittai, 2002; Pew, 2004, although see Pew, 2007).

In this article, we specifically seek to examine the experience of opportunities and risks in the same study, in order to ask whether those with more online skills take up more opportunities and, further, avoid more risks (see Livingstone and Helsper, 2007a, for a study of the role of other socio-psychological factors). The skills and competences required for effective internet use are increasingly theorized in terms of literacy, often by drawing on and adapting to new circumstances the long tradition of research on media literacy and media education (Buckingham, 2004; Potter, 2004; Tyner, 1998; Warnick, 2002). Some take as their starting point the attempt to identify the basic skills and techniques required to go online, while others focus on the end point - an ambitious specification of the interpretive and critical abilities required of online experts. In the present analysis, we draw theoretically from the concise and widely-adopted definition of media literacy developed in a key conference a decade ago, namely that media literacy is the ability to access, analyze, evaluate and create messages in a variety of forms (Christ and Potter, 1998).

Thus we define internet literacy as a multidimensional construct that encompasses the abilities to access, analyze, evaluate, and create online content. These abilities, we suggest, have substantial continuities with older forms of literacy, but the discontinuities are likely to occasion more difficulty for users (for example, knowing how to access and search online content is very different from finding a book in a library or a program on television). These four components together constitute a skills-based approach to media literacy, with each supporting the others as part of a non-linear, dynamic learning process. It is expected that gaining the skills to access content aids the analysis of content produced professionally by others; that critical skills encourage the user to create their own content; and that experience of content creation facilitates further access to content tools and techniques, and so forth (Buckingham, 2005).

The advantage of a skills-based definition of internet literacy is that it offers a viable research strategy, postponing for present purposes the important intellectual, semiotic and political debates over the relation between literacy as an individual skill and a social or societal approach to literacy (see Livingstone, 2004; Snyder 2001; Warnick, 2002). It also opens the way for researchers to tackle the difficult task of measuring internet literacy in terms of constitutive skills, for even this is not easy (Hargittai, 2005; Hobbs and Frost, 2003; Stanley, 2003). Qualitative work reveals the forms of internet literacy at stake in varying social contexts of use (Bakardjieva, 2005; Ribak, 2001; Valkenburg and Soeters, 2001; Van Rompaey, Roe and Struys, 2002), while surveys examine the distribution and, in part, the consequences of such expertise (Kaiser Family Foundation, 2005; Lenhart, 2005). There is ongoing research developing measures for the specific skills involved, these permitting reliable differentiation among internet users (e.g., Potosky, 2002; Spitzberg, 2006; Torkedeh and Van Dyke; 2002; Yang and Lester, 2003). Developing skills both draws on and
encourages confidence in using the internet: Eastin and LaRose (2000) have applied the concept of ‘self-efficacy’ to the internet, since work on self-efficacy in educational contexts (Bandura and Locke, 2003; Bandura et al., 2001) shows that belief in one’s own skills can be as important to academic achievement as one’s actual skills.

Understanding the nature (e.g. dimensions or aspects of skills and competences), antecedents (e.g. domestic context, conditions of access) and consequences (e.g. range or sophistication of uses) of internet literacy is complex and still developing. Hence we begin simply by examining two commonly discussed measures of the access dimension of internet literacy: first, a measure of online (access-related) skills and, second, a global measure of internet self-efficacy. Conducted as part of a multi-purpose survey of teenagers’ online usage, our aim is to explore any links among demographic, skill/self-efficacy, opportunity and risk variables as a contribution to the broader understanding of the role of internet literacy in mediating the consequences of internet use.

Research Questions

This article reports on the analysis of a national survey of 1511 children and young people aged 9-19 years old in the UK where, in 2004, three quarters of households with children in the UK had domestic internet access, and 98% of 9-19 year olds had used the internet (92% at school, 75% at home and 64% elsewhere; Livingstone and Bober, 2005). Focusing on the data for teenagers (12-17 years, N=789), we examine two research questions: (1) Do online skills and self-efficacy facilitate the take up of the range of online opportunities available? (2) Do online skills and self-efficacy reduce the breadth of risks experienced online? Additionally, since demographic and household factors are also likely to influence teenagers’ opportunities and risks online, the relations been these factors and those of skill, self-efficacy, opportunities and risks are also systematically examined.

Recent research has identified a number of relations among these different contextual factors, providing grounding for the present analysis. This shows, first, that three traditional measures of inequality - age, gender, socioeconomic status (SES) – influence access, use and online skills. Thus, boys and older children gain earlier/better access to computers and the internet (Durndell and Haag, 2002) and use it more and are more skilled online (Facer et al., 2001; Livingstone and Helsper, 2007b – although for adults, age and skills are negatively correlated; Fallows, 2005). SES also affects the adoption and use of new technologies (Calvert et al., 2005; Norris, 2001). Second, and obviously, access is a prerequisite for use and for the development of online skills; more importantly, it is widely assumed, though less often demonstrated, that better quality access (e.g. more access locations, fast connectivity, more powerful machine, etc) facilitates greater use and, perhaps, further skill or self-efficacy (e.g. encouraging confidence, exploration and learning; Facer and Furlong, 2001).

Note here that the argument that access, in and of itself, enables greater online opportunities is, of course, at the heart of policy interventions designed to provide hardware and connectivity for children who are otherwise disadvantaged; though note too that these interventions rarely discuss the implications for the experience of risk. It is likely that access to a broader range of access locations relates to more
unsupervised access and thus more independent use of the internet (Helsper 2007). Therefore a larger number of access locations is likely to be related to higher skill levels and to a broader use of the internet in terms of both opportunities and risks. Further, as hinted in the foregoing, the literature assumes a positive and mutual association between use and various measures of literacy, though we only find evidence supporting this assumption for adults (Dutton, Di Gennaro and Millwood-Hargrave 2005; Pew 2004) and in relation to television rather than internet (Mangleburg and Bristol, 1998); moreover, Kraut, Kiesler, Boneva and Shklovski (2006) found no evidence that ‘mere’ use brings about internet literacy among children.

There is evidence that demographic factors directly influence young people’s experience of online opportunities and risks. Older children, it seems, both take up more opportunities (educational, civic, communication, creative, etc; Livingstone and Bober, 2004) and encounter more risks (possibly because they are more adventurous, less obedient, or less supervised; Berson and Berson, 2005; Mitchell, Finkelhor and Wolak, 2003). Although there is little evidence regarding gender differences in opportunities (Subrahmanyam et al., 2001; though see Helsper 2007), it does seem that boys take more risks online (Jackson et al., 2001; Weiser 2000, although see Mitchell et al., 2003). Last, there is evidence that those from higher SES homes not only have better internet access but also that they take up a greater range of opportunities online (Kaiser Family Foundation, 2005; Livingstone and Helsper, 2007b), not least because these same children are those more likely to use the internet. Though as yet there is little or no evidence linking SES and risk.

Where does internet literacy fit in to the explanation of the consequences of use – both opportunities and risks? Though only examined here in terms of basic online skills and self-efficacy, for practical reasons concerning available measures and the limits of survey administration, it may be supposed that beginners who are inexperienced in the skills required to access online contents and services are missing out on the benefits that the internet can offer. More advanced users, by contrast, are expected to have the skills and confidence required to access and benefit from these opportunities (Facer et al., 2001). As regards the risks, more skilled users are also expected to know how to avoid the risks or problems of the internet (Berson and Berson, 2005; Machill et al., 2004; Spitzberg, 2006), while those who encounter problems may be said to lack internet literacy. It is this rationale that results in policy makers targeting most safety information at beginners (Internet Crime Forum, 2000).

Clearly, there is some – more or less convincing – evidence to link most of the factors traditionally used to measure the antecedents and consequences of children and young people’s internet use. Because research projects commonly include just a few of these variables, it is hard to grasp the overall pattern of interrelationships; it is also hard to identify any indirect effects or yet more complex paths of influence, the focus generally being on the direct effects of one variable on another. To address the complexity of internet use, we propose a sequentially-ordered structural model, as shown in the path diagram (Figure 1).
In this path diagram, arrows leading from the exogenous (or predictor) variables to the endogenous (or predicted) variables represent the relationships between them (Bollen, 1989; Kline, 2005), with the sign (+ or -) indicating whether the relationship is a positive or negative one. Thus, the demographic variables are here assumed to be causally prior to variables measuring internet access and use. Similarly, it is proposed that access precedes internet use and literacy. However, no causal priority can be asserted between use and literacy as each is likely to influence the other. Last it is hypothesized that the breadth of opportunities and risks experienced by teenagers on the internet will be accounted for by a combination of these variables. In addition to these direct relations, mediated relations consist of an indirect link between two variables, depending on an intermediate variable. For example, the model proposes that demographic variables have both a direct influence on internet literacy and also an indirect effect via their effect on access. The reasoning is that older children are likely to have greater online skills but that, in addition, older teenagers have greater access and that greater access leads to higher internet literacy and to more unsupervised use (i.e. to more opportunities and risks). Given the paucity of relevant research, no a priori relation is postulated for the relation between opportunities and risks.

Method

A national survey was conducted via an in-home, face to face interview with 1511 children and young people aged 9-19, using Random Location sampling across the UK between January and March 2004. Following the design and piloting of the survey questionnaire by the research team, fieldwork was carried out by a reputable market research company using computer-assisted personal interviewing. Informed consent was obtained from all respondents and their parents. Sensitive questions (e.g.
relating to viewing pornographic or hate websites, or meeting people online) were contained in a self-completion section to ensure privacy (from researcher and parent).

In the analyses that follow, only responses from the 12 to 17 year olds who use the internet at least once per week are included (N=789), as only for these teenagers were all variables measured. The sample comprised 49% girls and 51% boys, with an average age of 14 years (s.d. = 1.75). The household SES, measured using standard UK market research categories (Reynolds, 1990), was 30% AB (upper/middle class), 26% C1 (lower middle class), 21% C2 (skilled working class) and 24% DE (unskilled working class/not working). Other measures employed were as follows.

Access. This was measured in two ways. Access locations (total out of 10) summed the number of locations the respondent had ever used to access the internet (computer at school/college, computer/laptop at home, computer laptop in someone else's house, computer in public library, computer in an internet café or kiosk, computer at parent's work, computer in your own work place, digital television at home, mobile/WAP phone, and games console at home). Years of access was calculated by subtracting the age when they first gained access from their present age.

Use. This was measured in two ways. Frequency was a scale ranging from 8 (uses more than once day) through 5 (uses once a month) to 1 (never uses) on which respondents rated their frequency of internet use. Time online was a composite measure based on the respondent’s judgment of how much time (options: 1=none, 2=about ten minutes, 3=about half an hour, 4=about an hour, 5=between one and two hours, 6=between two and three hours or 7=more than three hours) they spent online on an average weekday and weekend day.

Internet literacy. This was measured in two ways. Skills (total out of 7, Cronbach’s α=0.70) summed the specific activities the respondent claimed to be good at (options – finding the information you need on the web, setting up an email account, sending an instant message, downloading and saving an MP3 (music) file, setting up a filter for junk mail or pop up adverts, getting rid of a virus on your computer, and fixing a problem by yourself when something goes wrong). Self-efficacy was a 4-point scale (Eastin and LaRose, 2000) on which respondents self-rated their online skill as beginner, average, advanced, or expert.

Opportunities. A composite measure which summed the total number of opportunities that each respondent had taken up online (total out of 30, α= 0.76). To cover the range of young people’s online activities, response items were drawn from research and opinion surveys of internet use (e.g. Dutton et al., 2005; Kaiser Family Foundation, 2005; Ofcom, 2006; Pew, 2004). For the full list of items, see Table 1.

Risks. A composite measure which summed the total number of risks that each respondent had encountered online (total out of 15, α = 0.74). Designed to cover the range of risks occasioning public concern, response items were drawn from research and opinion surveys (e.g. the European SAFT survey, see Larsson, 2003, and the American Youth Internet Safety Survey, see Mitchell et al., 2003). For the full list of items, see Table 2.

Table 1
Take Up Of Online Opportunities

<table>
<thead>
<tr>
<th>Item (Do you/have you…?)</th>
<th>%</th>
<th>Item (Do you/have you…?)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do work for school/college</td>
<td>97</td>
<td>Use a chat room</td>
<td>24</td>
</tr>
<tr>
<td>Look for info on other things</td>
<td>95</td>
<td>Vote for something/ someone</td>
<td>23</td>
</tr>
<tr>
<td>Send/receive emails</td>
<td>77</td>
<td>Look for info on computers</td>
<td>23</td>
</tr>
<tr>
<td>Play games</td>
<td>75</td>
<td>Visited websites about protecting the environment</td>
<td>22</td>
</tr>
<tr>
<td>Use instant messaging</td>
<td>64</td>
<td>Look for news</td>
<td>22</td>
</tr>
<tr>
<td>Download music</td>
<td>49</td>
<td>Contribute to a message board</td>
<td>19</td>
</tr>
<tr>
<td>Do a quiz</td>
<td>46</td>
<td>Send pictures or stories</td>
<td>19</td>
</tr>
<tr>
<td>Look for cinema /theatre/ concert listings</td>
<td>41</td>
<td>Visited websites about human rights/gay rights/children's rights</td>
<td>16</td>
</tr>
<tr>
<td>Tried to set up a webpage?</td>
<td>41</td>
<td>Visited a Government website</td>
<td>16</td>
</tr>
<tr>
<td>Look for info on careers/ further education</td>
<td>39</td>
<td>Look at other people's personal homepages</td>
<td>14</td>
</tr>
<tr>
<td>Look for products or shop</td>
<td>36</td>
<td>Visited websites about improving the conditions at school</td>
<td>13</td>
</tr>
<tr>
<td>Do something that someone else has asked you to do</td>
<td>34</td>
<td>Offer advice to others</td>
<td>10</td>
</tr>
<tr>
<td>Watch/download video clips</td>
<td>30</td>
<td>Fill in a form about yourself</td>
<td>9</td>
</tr>
<tr>
<td>Send an email or text message to a site</td>
<td>27</td>
<td>Sign a petition</td>
<td>9</td>
</tr>
<tr>
<td>Visited websites about a charity/organization that helps people</td>
<td>25</td>
<td>Plan a trip</td>
<td>8</td>
</tr>
</tbody>
</table>

Average number of opportunities: 10

Base: UK 12-17 year olds who use the internet at least once a week (N=789).

Experience Of Online Risks

<table>
<thead>
<tr>
<th>Item (Do you/have you…?)</th>
<th>%</th>
<th>Item (Do you/have you …?)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Give info about yourself to be able to win a prize on the internet</td>
<td>72</td>
<td>Visited a site with violent or gruesome pictures on purpose</td>
<td>14</td>
</tr>
<tr>
<td>Give info about yourself to another person that you have not met face to face</td>
<td>46</td>
<td>Ended up accidentally on a site that was hostile or hateful to a group of people</td>
<td>10</td>
</tr>
<tr>
<td>Seen pop-up adverts for a porn site while doing something else</td>
<td>44</td>
<td>Been sent porn from someone you know</td>
<td>9</td>
</tr>
<tr>
<td>Ended up on a porn site accidentally when looking for something else</td>
<td>41</td>
<td>Visited a porn site on purpose</td>
<td>9</td>
</tr>
<tr>
<td>Know someone that you only talk to online using email, IM or chat</td>
<td>36</td>
<td>Met anyone face to face that you first met on the internet</td>
<td>9</td>
</tr>
<tr>
<td>Someone ever said nasty or hurtful things to you</td>
<td>33</td>
<td>Been sent porn from someone met online</td>
<td>3</td>
</tr>
<tr>
<td>Received pornographic junk mail by email/instant messaging</td>
<td>28</td>
<td>Visited hostile or hateful site on purpose</td>
<td>3</td>
</tr>
<tr>
<td>Ended up accidentally on a site with violent or gruesome pictures</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average number of risks: 4

Base: UK 12-17 year olds who use the internet at least once a week (N=789).
Results

Table 3 shows the means and standard deviations for all measures, and the Pearson product-moment correlation coefficients among them. The tables show that the average number of opportunities taken up by those who use the internet at least weekly is 10 out of the 30 asked about in the survey, while the average number of different risks encountered by 12-17 year olds who use the internet at least weekly is nearly 4 out of the 15 asked about in the survey. As the incidence of each item shows, not all opportunities or risks are equally common.
Table 3

Correlation Matrix for Key Variables

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gender (X=1.50, SD=0.50)</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Age (X=14.39, SD=1.75)</td>
<td>0.02</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. SES (X=2.55, SD=1.15)</td>
<td>0.06</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Access locations (X=3.19, SD=1.47)</td>
<td>-0.08*</td>
<td>0.13**</td>
<td>0.24**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Years online (X=3.66, SD=1.82)</td>
<td>-0.09*</td>
<td>0.34**</td>
<td>0.09*</td>
<td>0.16</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Frequency of use (X=3.54, SD=0.50)</td>
<td>-0.05*</td>
<td>0.15**</td>
<td>0.04**</td>
<td>0.19**</td>
<td>0.10*</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Time online per day (X=3.92, SD=1.51)</td>
<td>-0.03</td>
<td>0.20**</td>
<td>0.08**</td>
<td>0.29**</td>
<td>0.15**</td>
<td>0.42**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Online skills (X=3.01, SD=1.88)</td>
<td>-0.05</td>
<td>0.27**</td>
<td>0.14**</td>
<td>0.44**</td>
<td>0.21**</td>
<td>0.36**</td>
<td>0.43**</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Internet self-efficacy(X=2.41, SD=0.64)</td>
<td>-0.05</td>
<td>0.12**</td>
<td>0.08*</td>
<td>0.20**</td>
<td>0.19**</td>
<td>0.30**</td>
<td>0.32**</td>
<td>0.48**</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>10. Opportunities online (X=10.15, SD=4.60)</td>
<td>0.01</td>
<td>0.29**</td>
<td>0.15**</td>
<td>0.44**</td>
<td>0.22**</td>
<td>0.34**</td>
<td>0.40**</td>
<td>0.58**</td>
<td>0.33**</td>
<td>1.00</td>
</tr>
<tr>
<td>11. Risks online (X=3.91, SD=2.78)</td>
<td>-0.15**</td>
<td>0.26**</td>
<td>0.08*</td>
<td>0.36**</td>
<td>0.19**</td>
<td>0.24**</td>
<td>0.32**</td>
<td>0.47**</td>
<td>0.24**</td>
<td>0.55**</td>
</tr>
</tbody>
</table>

Note. Responses based on 12-17 year olds who use the internet at least once a week (N=789). * p<0.05 ** p
Correlations among all variables in the hypothesized model (Figure 1) reveal systematic relations among demographic variables, internet access and use, online skills and self-efficacy, and online opportunities and risks.

Specifically, the statistically significant correlations confirm research findings regarding differential access and use of the internet depending on demographics (see Livingstone and Helsper, 2007b). Older teenagers, boys, and those from higher SES households have greater access to the internet (measured by number of access locations and years online). Further, SES affects amount of use, with middle class teenagers using the internet more frequently and for longer on an average day; similar findings hold for age, with older teens using the internet more. However, boys do not differ from girls in amount of use (measured by frequency of use and time spent online on an average day). As regards online skills and self-efficacy, these were positively associated with age and SES, as expected; again gender differences were not significant.

In terms of opportunities, older and middle class teenagers took up more online opportunities, though there were no gender differences. Meanwhile, for online risks, older teens and boys were shown to encounter more risks as too, unexpectedly, did middle class compared with working class teenagers.

Complicating matters, these different measures were themselves interrelated. Thus, internet access was positively associated with internet literacy, and internet use. Internet use was also positively associated with internet literacy and with online opportunities and risk. Furthermore, internet literacy was positively related to online opportunities. Unexpectedly, however, internet literacy was positively associated with online risks. This suggests that the greater the young person’s online skills and self-efficacy, the more - rather than the fewer - risks they encounter online. Last, and also unexpectedly, online risks and opportunities were themselves positively correlated – indeed, this is the highest correlation in the table.

Path analysis
Correlations do not indicate whether relationships between variables are direct or indirect. Path analysis assesses the relative importance of direct and indirect causal paths to the dependent variable(s). Thus it can determine whether the model shown in Figure 1 can explain the pattern of correlations shown in Table 3. The statistical program AMOS5 was used to test the hypothesized path model, using the variables in Table 3.

The final path model ($\chi^2(24)=61.26, p=0.00$), shown in Figure 2 and Table 4, was constructed from a base model in which variables were related to other variables based on the sequence as modelled in Figure 1.

Given the relative lack of prior literature on the relation between opportunities and risks, we had not initially hypothesized any directional relationship between them. However, based on the simple correlations showing that skills, self-efficacy, years and time online are all more strongly correlated with opportunities than with risks, together with statistical analyses showing that the relationship with skills and expertise was stronger for the direction from opportunities to risks than vice versa, a path was added from opportunities to risks. Consistent with this, we note that the published literature provides little rationale for supposing that seeking risks might
lead to opportunities (hence we did not directly test this direction), while the reverse
direction which we find to be strongly present) is more plausible, following the
argument that it is more likely that opportunities are causally prior to risks. That is,
young people need to be online and do a variety of things online before they
encounter risks.

Non significant paths were then fixed to zero. The model fit was considered
acceptable based on the following indicators for complex models: RMSEA values of
lower than 0.05 (with a confidence interval in its entirety under 0.10), and a CFI value
higher than 0.9 (Kline, 2005). The order of the variables and the direction of the
connections among them in the model were based on the theory and hypotheses
presented earlier. Note that not all variables influence each other to an equal extent
and that some influence each other only indirectly through other variables (see Figure
2 and Table 4). We examine the findings for each variable in turn, working from the
left hand side of the model to the right hand side (our main focus).

Figure 2

Path Model for Online Opportunities and Risks

Base: UK 12-17 year olds who use the internet at least once a week (N=789).
Note I: X2(24)=61.26, p=0.00, RMSEA=0.04 (confidence interval 0.03 to 0.06); CFI=0.98.
Note II: For clarity, covariances were estimated between use, between literacy and
between access variables, but omitted from the figure (see Table 4).
Note III: For clarity, non-significant paths that were fixed to zero were omitted from
the figure.
Table 4
Path Coefficients for Figure 2

<table>
<thead>
<tr>
<th>Predictor variable</th>
<th>Predicted variable</th>
<th>b</th>
<th>S.E.</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Years online</td>
<td>-0.26</td>
<td>0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>Gender</td>
<td>Online risks</td>
<td>-0.80</td>
<td>0.16</td>
<td>**</td>
</tr>
<tr>
<td>Age</td>
<td>Years online</td>
<td>0.34</td>
<td>0.04</td>
<td>**</td>
</tr>
<tr>
<td>Age</td>
<td>Access locations</td>
<td>0.09</td>
<td>0.03</td>
<td>**</td>
</tr>
<tr>
<td>Age</td>
<td>Time online</td>
<td>0.08</td>
<td>0.03</td>
<td>**</td>
</tr>
<tr>
<td>Age</td>
<td>Skills</td>
<td>0.15</td>
<td>0.03</td>
<td>**</td>
</tr>
<tr>
<td>Age</td>
<td>Online opportunities</td>
<td>0.34</td>
<td>0.07</td>
<td>**</td>
</tr>
<tr>
<td>SES</td>
<td>Access locations</td>
<td>0.31</td>
<td>0.04</td>
<td>**</td>
</tr>
<tr>
<td>SES</td>
<td>Years online</td>
<td>0.12</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Access locations</td>
<td>Skills</td>
<td>0.56</td>
<td>0.04</td>
<td>**</td>
</tr>
<tr>
<td>Access locations</td>
<td>Self-efficacy</td>
<td>0.10</td>
<td>0.02</td>
<td>**</td>
</tr>
<tr>
<td>Access locations</td>
<td>Frequency of use</td>
<td>0.13</td>
<td>0.02</td>
<td>**</td>
</tr>
<tr>
<td>Access locations</td>
<td>Time online</td>
<td>0.37</td>
<td>0.04</td>
<td>**</td>
</tr>
<tr>
<td>Access locations</td>
<td>Online opportunities</td>
<td>0.66</td>
<td>0.10</td>
<td>**</td>
</tr>
<tr>
<td>Access locations</td>
<td>Online risks</td>
<td>0.14</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Years online</td>
<td>Self-efficacy</td>
<td>0.07</td>
<td>0.01</td>
<td>**</td>
</tr>
<tr>
<td>Years online</td>
<td>Skills</td>
<td>0.14</td>
<td>0.04</td>
<td>**</td>
</tr>
<tr>
<td>Years online</td>
<td>Frequency of use</td>
<td>0.04</td>
<td>0.01</td>
<td>**</td>
</tr>
<tr>
<td>Years online</td>
<td>Time online</td>
<td>0.07</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Frequency of use</td>
<td>Online opportunities</td>
<td>0.89</td>
<td>0.22</td>
<td>**</td>
</tr>
<tr>
<td>Skills</td>
<td>Online opportunities</td>
<td>0.90</td>
<td>0.08</td>
<td>**</td>
</tr>
<tr>
<td>Time online</td>
<td>Online opportunities</td>
<td>0.35</td>
<td>0.10</td>
<td>**</td>
</tr>
<tr>
<td>Time online</td>
<td>Online risks</td>
<td>0.13</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>Online opportunities</td>
<td>Online risks</td>
<td>0.30</td>
<td>0.02</td>
<td>**</td>
</tr>
</tbody>
</table>

Covariances

<table>
<thead>
<tr>
<th>Covariances</th>
<th>b</th>
<th>S.E.</th>
<th>p</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access locations</td>
<td>--></td>
<td>Years online</td>
<td>0.31</td>
<td>0.09</td>
</tr>
<tr>
<td>Online skills</td>
<td>--></td>
<td>Self-efficacy</td>
<td>0.56</td>
<td>0.04</td>
</tr>
<tr>
<td>Online skills</td>
<td>--></td>
<td>Frequency of use</td>
<td>0.60</td>
<td>0.05</td>
</tr>
<tr>
<td>Time online</td>
<td>--></td>
<td>Self-efficacy</td>
<td>0.32</td>
<td>0.04</td>
</tr>
<tr>
<td>Time online</td>
<td>--></td>
<td>Frequency of use</td>
<td>0.50</td>
<td>0.04</td>
</tr>
<tr>
<td>Time online</td>
<td>--></td>
<td>Online skills</td>
<td>1.06</td>
<td>0.10</td>
</tr>
<tr>
<td>Frequency of use</td>
<td>--></td>
<td>Self-efficacy</td>
<td>0.17</td>
<td>0.02</td>
</tr>
</tbody>
</table>

*p<0.05 **p<0.01

Note: The following non-significant paths were fixed to zero and omitted from the table:

- Gender → Access locations; Skills; Self-efficacy; Time Online; Frequency of use; Opportunities.
- Age → Self-efficacy; Opportunities.
- SES → Skills; Self-efficacy; Time Online; Frequency of use; Risks; Opportunities.
- Years online → Opportunities; Risks.
- Skills → Risks.
Self-efficacy → Opportunities; Risks
Frequency of use → Risks.

Age. Age has a direct positive influence on access and use: older teenagers have better quality of access and use the internet longer. They also have better online skills (but not self-efficacy). Age also has a direct influence on teenagers’ online opportunities, over and above the beneficial influence of better access, use and skills. There is no direct influence of age on online risks. The indirect paths, all significant at p<.05 according to the Sobel test (Sobel, 1982) are also noteworthy. The extent to which older teens are more skilled online and use the internet for longer stretches of time is mediated by quality of access. Thus teenagers with poorer access have lower confidence in their skills and use the internet for shorter periods of time than those of their peers with better access. Further, since older teenagers have better access they tend to be more internet literate than younger teenagers. In addition to a direct influence of age on opportunities, there is an indirect influence of age on opportunities as mediated by access, use and skills. This suggests a virtuous circle of benefits gained both by older children and, comparing within age, by those with better access. Although these variables do not directly predict risks, since opportunities and risks are positively related, the positive effect of age on opportunities is accompanied by a greater likelihood of risky encounters.

Gender. As with age, the correlation matrix showed gender to be associated with several measures of quality of access, use and literacy. However, in the path analysis, the only direct effect of gender is on risky encounters: boys more than girls encounter online risks. There is no direct effect of gender on opportunities taken up (although the type of opportunities varies; Livingstone and Helsper, 2007b), and there was only one direct effect on the years they have used the internet; boys have been online for longer. However, there are no direct effects of gender on access, frequency of use or skills/efficacy. This offers little support for popular idea that girls are less interested, confident or skilled online. Indeed, we conclude that there are few gender differences in the online experience, with the notable exception of online risks; this seems largely accounted for by boys encountering more pornography (Table 2).

Socioeconomic status. With the exception of a direct influence of SES on access, the path analysis showed that the effects of SES on the other variables in the correlation matrix are all indirect. The various benefits of higher SES on teenagers’ use, literacy, and opportunities are, therefore, indirectly (and crucially) mediated by access. Those who differ in SES but have equivalent access do not differ in skills/self-efficacy. Conversely, those similar in SES who differ in access also differ in skills/self-efficacy. This is not to say that there is no SES gap overall in the population, but that access is the determining factor (rather than, say, other factors associated with SES such as parental education or disposable time spent with children).

Access. Quality of access (access locations and years online) is positively related to both amount of use and literacy. Thus, over and above the direct effects of age and SES, teenagers with better access (especially, more access locations) make more use of the internet and gain more online skills and self-efficacy. The number of access locations, but not the number of years online, also has a significant direct influence on the take up of online opportunities and risks (except indirectly, through the relation with online opportunities; see below). Whether this is the effect of ‘mere’ access, or
whether those with more access also benefit from other forms of support associated with access (better resourced schools, more community support, more expert friends, more independent, unsupervised access etc), cannot be established here. Last, although more years online does not result in more opportunities in and of itself, this is associated with greater online skills and self-efficacy and so has an indirect relationship with online opportunities.

Use. Time online per day and frequency of use both increase the opportunities taken up. Although time spent online is directly (and positively) related to risks, frequency of use it not. It seems that the link between use and risks is largely indirect: thus, use \(\rightarrow \) opportunities, and opportunities \(\rightarrow \) risks. Additionally, the relationship between use and opportunities is indirect, mediated by that between use and skills. In other words, those who use the internet more and are high in skills take up more opportunities than those who use it an equivalent amount but are lower in skills (note that risks are not mediated by use in this way).

Internet literacy. The two literacy variables are strongly related to each other, yet they work differently in the path analysis. Online skills (a self-assessment of specific skills) have a positive influence on online opportunities (and so an indirect influence on risks). Self-efficacy (a global self-assessment of skills and self-confidence) has no direct influence on either opportunities or risks.

Opportunities and risks. The path analysis shows that the strong correlation between online opportunities and risks is positive: the more opportunities a teenager takes up, the more risks she or he is likely to encounter. Thus, online opportunities appear to encourage teens to do more on the internet, and this may result in more risk, deliberately or inadvertently. Since boys’ base level of risks encountered is higher than that of girls (c.f. boys’ risk-seeking behaviour; Slater, 2003), but their base level of opportunities does not differ, the eventual uptake of opportunities is equivalent for boys and girls.

Discussion and Conclusions

This article has found that teenagers are benefiting from a fair range of online opportunities, though there are still some they miss out on, hinting at considerable scope to encourage the depth and breadth of their online opportunities. Consistent with previous evidence, it was found that older and middle class teenagers are benefiting from a broader range of opportunities than are younger children and those from a working class background. It is particularly noteworthy that the experience of online opportunities and risks – so often researched and discussed quite separately, as if unrelated, while frequently discussed in policy circles as if mutually opposed - was instead found to be strongly positively related. In short, the findings show that those who take up more opportunities encounter more risks and vice versa. Further, those groups inclined to gain more opportunities (older, middle class, boys) also encounter more risks (compared with younger, working class teens and girls).

Our analysis has examined potential mediators of these relationships between demographics and outcomes, as modelled in Figure 1. The emergent picture (Figure 2) reveals the importance of indirect or mediated relations as well as direct relations among the variables. Thus the above summary must be qualified in important ways. Age directly influences opportunities, but it only indirectly influences risks: older
teenagers do more things online because they are older, but the reason they encounter more risks online is not because they are older but because they tend to have better access, use the internet more and/or have greater online skills, and it is this that leads them to seek a wider range of online opportunities. Socioeconomic status has no direct influence on either opportunities or risks, but only influences access, this resulting in inequalities that have indirect but significant consequences. The policy implication here is intriguing: while middle class parents often provide better access for their children, for those middle and working class children with equivalent access, there are few or no further, direct effects of SES on use, literacy or opportunities. Enhancing quality of access (i.e. more sites of access) for less privileged teenagers could, therefore, reduce the digital divide that exists at present among young people.

The gender divide that existed for computers (Durndell and Haag, 2002; McIlroy et al., 2001) does not appear to carry over to the internet, though boys – irrespective of access or skills - tend to encounter more risks, especially pornography (Valkenburg and Souters, 2001; Valkenburg and Peter, 2006). This is a direct relation, unmediated by boys having better access or skills or confidence online (which they do not). This invites future research on other gender-linked factors such as the social norms that encourage boys and prevent girls engaging in risky activities, or the peer pressure that encourages boys to look at pornography.

The present analysis of mediating factors shows that a simple framework linking online activities to demographic factors is insufficient in explaining the observed variation in teenagers’ experiences of the internet. Further, the tendency in research to study either opportunities or risks, often as part of quite separate research literatures, misses the important connection between the desirable and risky outcomes of internet use. In short, a more complex model is required to account for teenagers’ online experiences, with access, use and literacy all playing a role in mediating between demographic factors and opportunities/risks.

While the digital divide literature has recognized the mediating role of access and, more recently, use, this article has especially focused on the potential role of internet literacy, drawing on the framework developed for research on media literacy. The present examination of at least some aspects of internet literacy (capturing some of the online skills required, as well as the confidence needed to self-identify as a competent user) shows that online skills make a positive contribution to online opportunities; they also mediate between demographic factors and access, and between access and opportunities. In other words, while demographics and access have a direct and beneficial influence on opportunities, being more skilled helps too. This suggests that, in addition to interventions designed to equalize access, interventions targeted at increasing specific skills will also enhance the take up of online opportunities. This offers support to the growing policy demand for teachers, educational providers and even the industry, child welfare and other organizations to establish and expand digital literacy programmes so as to increase children’s internet related competences and thereby benefit from the opportunities.

Contrary to the literature (Eastin and LaRose, 2000), self-efficacy did not mediate this relationship. This may have been because self-efficacy was subject to a social desirability bias, or because just a single response measure was used, or because confidence among teenagers is not strongly related to actual ability. The composite measure of Skills, although also based on self-report, indexed concrete skills and
techniques not especially important to self-identity; hence it may be less vulnerable to self-report biases and so provide a better measure of young people's online skills. In future research, an approach based on the measurement of skills may prove more effective than a global self-efficacy measure (see also Hargittai, 2005), although Bandura’s multiple indicator of self-efficacy developed for educational contexts might help to fine-tune the measurement of self-efficacy (Bandura et al., 2001).

Online skills are themselves influenced directly by age: irrespective of access or use, older teenagers are more skilled and so take up more opportunities. This suggests that, although some online skills are internet-specific, other aspects of these skills are likely to draw on social and technical knowledge acquired in other contexts. As suggested in the introduction, internet literacy may draw on media literacy (e.g. skills derived from experience with print, critical knowledge, or technical expertise). Indeed, how the different forms of literacy interact and support each other is a key question for future research, given today’s complex and convergent media and information environment.

Few studies to date have sought the ‘big picture’ in identifying the multiple and interrelated influences on young people’s internet use. Particularly, research on media or internet literacy has focused more on matters of definition and measurement than on examining the antecedents and consequences of internet literacy. While parsimony might suggest that demographic factors are sufficient to account for the online opportunities and risks experienced by teenagers, the present analysis showed that internet literacy plays a key role in mediating the online experience and should, therefore, be included in future research on access, use, opportunities and risks online.

In conclusion, it is not the case that those who benefit from more opportunities are more likely to avoid online risks, nor that those with greater internet literacy have found a way to avoid the risks as they pursue the opportunities. Taking up online opportunities proving, for many teenagers, an experience associated with some degree of risk. The strong, positive association between opportunities and risks points up the dilemma that parents and regulators face. Increasing opportunities increases the risks. Restricting internet use so as to reduce the risks is also likely to restrict the opportunities. It appears that, as with print literacy and other skills (social skills, practical skills), an increase in skills cannot ensure that the activities thereby enabled are socially approved ones. Learning to read, or to make friends, may result in approved reading or approved friends, or quite the contrary; similarly, online skills (and internet literacy conceived more broadly) enables young people to take up new online opportunities and, thereby, encounter more risks.

Since the range of risks investigated in this study includes both intentional and unintentional exposure to problematic content or contact, we suggest that further research is needed to clarify the nature of risks that are positively, rather than negatively, related to online skills. We note, further, that the definition of risks and opportunities here largely accords with ‘approved’ definitions, particularly as employed in policy debates: to teenagers, some of the activities here classified as risks are often seen rather as opportunities (e.g. making new friends online, giving out personal information, even seeing pornography, for some).

A next step for research, surely, would be to develop a more subtle account of online opportunities and risks, either better distinguishing them or acknowledging their inevitable overlap, as suggested here. Last, we note that as yet, clear findings
regarding the tangible benefits or actual harms consequent upon the experience of these youthful opportunities and risky activities remain elusive. Much research, as in this article, has been concerned to explore the conditions and correlates associated with these activities, as these are amenable to exploration via self-report methods (whether surveys or interviews). Possibly by employing longitudinal or observational methods, the next challenge for research in this field will need to tackle the consequences – whether beneficial or harmful – of such activities.
In random location sampling, interviewers have little choice in selection of respondent. Respondents are drawn from a small set of homogenous streets selected with probability proportional to the population after stratification by their post-code characteristics and region.

Percentages were weighted to data in BMRB’s Target Group Index and Youth surveys. The weighting efficiency was 91%. Raw sample sizes and SEM analyses are based on unweighted data.

A confirmatory factor analysis was conducted to check that the skills items were distinct from the items used to assess online opportunities and risks. The three factor solution showed a better fit than a one factor factor model ($\chi^2D(3)=545.40$, $p<.001$). The measures used for opportunities and skills pointed to distinct underlying factors ($\chi^2D(1)=166.05$, $p<.001$), indicating the treatment of skills, risk and opportunities as separate scales was justified.

These risk assessments are based on the children’s survey. When parents were surveyed, reported levels of risk encountered by children were lower; parents may be unaware of their children’s activities or they may define risk differently (Livingstone and Bober, 2005).

These averages mask some variation in the particular activities online: compared with boys, girls were more likely to visit civic sites, use email and get careers and educational information, while boys were more likely to download music and video, play games, shop, look for news or information on computers, and make a website. Also, compared with younger teens, older teens were more likely to do a range of interactive activities, visit civic sites, use instant messaging and email, shop or look for information for leisure and for careers, and look for news; playing games was the only activity undertaken more by younger than older teens. Socioeconomic status made a difference in several ways. Middle class teenagers were more likely to contribute to message boards, vote or sign a petition online, to visit civic sites, to use instant messaging, shopping, looking for leisure information and news. Working class teenagers were only more likely to use chat rooms (see Livingstone, Bober, & Helsper 2005).

Specifically, for online risks, boys are more likely to encounter online pornography, both accidentally and on purpose, and more likely to seek out violent or gruesome content. Although boys are more likely to give out personal information online, girls are more likely to have been bullied online. Most risks are also more commonly encountered by older than younger teens, this including content, contact and privacy risks. SES makes less difference here, though middle class teens are more likely to encounter pornographic or hate content accidentally (see Livingstone, Bober, & Helsper 2005).

In other words, more than one model fits the data, but this is the simplest fitting model which significantly explains the relationships between all the variables and in which all individual relationships are significant.
The relationship between gender and risks could not be omitted because the model would not fit statistically without it. The inclusion of the relationship between gender and opportunities was not necessary to reach good model fit. The relationships between gender and skills, use, and access were not significant in explaining online opportunities and risks (though they were themselves interrelated). Thus, in explaining why teenagers experience risks and opportunities, the relationship between gender and these intermediating variables does not contribute significantly to model fit.
References

Livingstone, S. and E. J. Helsper (2007a) ‘Taking Risks When Communicating on The Internet: The Role of Offline Social-Psychological Factors in Young

