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Friendliness and Sympathy in Logic†

David Makinson

Abstract. We define and examine a notion of logical friendliness, which is
a broadening of the familiar notion of classical consequence. The concept is
studied first in its simplest form, and then in a syntax-independent version,
which we call sympathy. We also draw attention to the surprising number of
familiar notions and operations with which it makes contact, providing a new
light in which they may be seen.

1. Friendliness

1.1. Rationale, Definition, Notation

Recall the definition of classical consequence in propositional logic. Let A be any
set of formulae, and x any individual formula. Then x is said to be a classical
consequence of A, written A � x, iff for every valuation v on all letters of the
language, if v(A) = 1 then v(x) = 1.

Trivially, the only letters that count here are those occurring in A or in x.
So the definition may be rephrased as: A � x iff for every partial valuation v on
E(A,x), if v(A) = 1 then v(x) = 1. Equivalently again, A � x iff for every partial
valuation v on E(A), if v(A) = 1 then v+(x) = 1 for every extension v+ to E(A, x).

Expressed in this last way, classical consequence is a ∀∀ concept. It is natural
to ask: what does the corresponding ∀∃ concept look like, and how does it behave?
This simple question, born of no more than curiosity, is the starting point of our
investigation.

The definition is straightforward:

† This paper revises and extends the version that appeared in the first edition of Logica Uni-
versalis. Specifically, it adds several new sections (1.8-1.10, 3.5-3.6, and all of part 2) as well as
additional material in other sections (notably the axiomatization of friendliness in 1.5, a much
stronger version of compactness in 1.6, more information about interpolant formulae in 1.7 and
3.5, and counterexamples to proof by exhaustion and to compactness for sympathy in 3.2). The
present version also appeared as part of a festschrift for Dov Gabbay, see [Makinson 2005a].
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• We say that A is friendly to x and write A |≈ x, iff every partial valuation v
on E(A) with v(A) = 1 may be extended to a partial valuation v+ on E(A, x)
with v+(x) = 1.

• Equivalently: iff for every partial valuation v on E(A) with v(A) = 1 there
is a partial valuation w on E(x) agreeing with v on letters in E(A) ∩ E(x),
with w(x) = 1.

• Equivalently: iff for every valuation v on the set E of all elementary letters
of the language with v(A) = 1 there is a valuation w (on all letters) agreeing
with v on letters in E(A), with w(x) = 1.

The notation used in these definitions is fairly straightforward, but we state it
explicitly for reference. We use lower case a, b, . . ., x, y, . . ., to range over formulae
of classical propositional logic. It will be convenient to include the zero-ary falsum
⊥ among the primitive connectives. Sets of formulae are denoted by upper case
letters A, B, . . ., X, Y, . . ., reserving L for the set of all formulae, E for the set of
all elementary letters, and F, G, . . . for subsets of the elementary letters. For any
formula a, we write E(a) to mean the set of all elementary letters occurring in
a. Similarly for sets A of formulae. For any set A of formulae, LA stands for the
sub-language generated by E(A), i.e. the set of all formulae y with E(y) ⊆ E(A).
Thus LA = LE(A).

Classical consequence is written as � when treated as a relation, Cn when
viewed as an operation. The relation of classical equivalence is written 	�. When
we speak of a valuation, we always mean a Boolean valuation, i.e. a function
into {0,1} defined on the entire set E of elementary letters of the language and
extended to cover all formulae in the usual way. A partial valuation is a restriction
of a valuation to a subset of E.

To lighten notation, we follow the common convention of usually writing A, x
for A ∪ {x}. A � B is short for ‘A � b for all b ∈ B’. Also, v(A) = 1 is short for
‘v(a) = 1 for all a ∈ A’, while v(A) = 0 is short for ‘v(a) = 0 for some a ∈ A’.

1.2. Remarks on the Definition

Of the three equivalent ways of defining friendliness, we will usually be working
with the first. Thus throughout the paper (except for the appendix) we will be
talking about partial valuations rather than full ones. In this context, it is essential
to keep in mind some fine distinctions, which are easy to overlook because they
are without much significance for classical consequence.

• E(a) is the set of all elementary letters actually occurring in a, rather than
the least set of letters needed to get a formula classically equivalent to a. For
example, if a = p∧ (q∨¬q) then E(a) is {p, q}, not {p}. We will look at least
letter-sets and a corresponding notion of sympathy later, in section 3.

• When we speak of a partial valuation v on a set F of elementary letters, we
mean one with exactly F as domain. Any valuation on a proper superset F+

of F , agreeing with v over F , will be called an extension of v.
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It will sometimes shorten formulations to apply the notion of friendliness to
partial valuations themselves. Let F be any set of elementary letters, and let v be
any partial valuation on F . Let x be any formula. We say that v is friendly to
x iff it may be extended to a partial valuation v+ on F ∪ E(x) with v+(x) = 1.
Clearly, whenever a partial valuation is friendly to a formula then so too are all
its restrictions. In other words, whenever a partial valuation is not friendly to a
formula, none of its extensions are friendly to it. The first definition of A |≈ x may
thus be expressed concisely as follows:

• A |≈ x iff every partial valuation v on E(A) with v(A) = 1 is friendly to x.

Similar definitions of friendliness may be made for first-order logic, speaking
of (partial) models rather than partial valuations. It should be noted, however,
that in the first-order case there are several ways of understanding the notion of
an extension of a model, which give rise to variant concepts of friendliness. On the
one hand, we could require that when we extend a partial model the domain of
discourse must remain fixed, as well as the interpretations into it of the already
given predicate letters; in the literature this is usually called an ‘expansion’. On
the other hand, we may allow the domain to increase. In this case we have sub-
options to choose from, according to whether we keep the interpretations of the
already given predicate letters fixed, or allow them to flow out into the enlarged
domain in some way.

But for simplicity, in this paper we will remain within the propositional con-
text. We will not discuss the question of what would be the most interesting way
of generalizing the definition of friendliness to the first-order context. Nor, apart
from some passing negative observations, will we tabulate which among our results
for the propositional context carry over to which among the first-order notions.

In section 2 we discuss links between the notion of friendliness and several
other operations and concepts in the literature. Readers of a historical bent may
prefer to start there and return, but we begin by clarifying the behaviour of the
friendliness relation itself.

1.3. Properties that Fail

At first sight, the relation of friendliness seems to be hopelessly ill behaved. It fails
many familiar features of classical consequence. In particular:

• It is not closed under substitution for elementary letters. Example: p |≈ p∧ q
where p, q are (here and always) distinct elementary letters, but p �|≈ p ∧ ¬p.

• It fails monotony and left strengthening. Example: p |≈ p ∧ q, but {p,¬q} �|≈
p ∧ q and similarly p ∧ ¬q �|≈ p ∧ q.

• It fails cautious monotony and cautious left strengthening. Example: p |≈ q
and p |≈ ¬q, but {p, q} �|≈ ¬q and likewise p ∧ q �|≈ ¬q.

• It fails left classical equivalence. Example: p |≈ p ∧ q but p ∧ (q ∨ ¬q)�|≈p ∧ q.
• It fails conjunction in the conclusion. Example: p |≈ q, p |≈ ¬q, but p �|≈ q∧¬q.
• For essentially the same reason, it fails a general form of cumulative transi-

tivity. Example: p |≈ q, p |≈ ¬q, and p ∧ q ∧ ¬q |≈ ¬p, but p �|≈ ¬p.
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• It fails plain transitivity. Example: p |≈ q, q |≈ ¬p, but p �|≈ ¬p.
• It fails disjunction in the premisses. Example: p |≈ p ↔ q, q |≈ p ↔ q, but

p ∨ q �|≈ p ↔ q.

Nevertheless, friendliness does have positive properties including ‘local’ ver-
sions of some of the above, which we now describe.

1.4. Relationship of Friendliness to Classical Consequence

We begin by clarifying the relation of friendliness to classical consequence.
Supraclassicality. Whenever A � x then A |≈ x. Briefly: �⊆ |≈

Verification. Immediate from the definition of |≈. �

The inclusion is proper; for example, when p, q are distinct elementary letters
then p |≈ q but not p � q. Friendliness is not the trivial relation over the language;
for example, when a is a tautology and x a contradiction, a �|≈ x. For a less extreme
example, p ∨ q �|≈ p ∧ q where p, q are distinct elementary letters.

However, there are special cases where friendliness collapses into classical
consequence, and others where it collapses into non-consequence of the negation.
First Reduction case. Whenever E(x) ⊆ E(A) then A |≈ x iff A � x.

Verification. Right to left is given unconditionally by supraclassicality, so we need
only show left to right. Suppose E(x) ⊆ E(A) and A |≈ x. Let v be any partial
valuation on E(A) with v(A) = 1. We need to show that v+(x) = 1 for every
extension v+ of v to E(A, x). Since A |≈ x, v+(x) = 1 for some extension v+ of v
to E(A, x). But since E(x) ⊆ E(A), E(A, x) = E(A), so the unique extension of v
to E(A, x) is v itself. Thus v(x) = 1 and indeed v+(x) = 1 for every extension v+

of v to E(A, x). �

Second Reduction Case. Suppose A is consistent and for each elementary letter
p ∈ E(A), either A � p or A � ¬p. Then A |≈ x iff A � ¬x.

Verification. Under the hypotheses, suppose first that A |≈ x. Since A is consistent,
there is some partial valuation v on E(A) with v(A) = 1. Choose any one such
v. Since A |≈ x, we have v+(x) = 1 for some extension v+ of v to E(A, x). Thus
v+(¬x) = 0 while v+(A) = 1, so A � ¬x.

For the converse, suppose A � ¬x. Then there a partial valuation v on E(A)
with v(A) = 1 that can be extended to a partial valuation v+ on E(A, x) with
v+(x) = 1. Since either A � p or A � ¬p, for each elementary letter p ∈ E(A), v is
the only partial valuation on E(A) with v(A) = 1. Hence every partial valuation
w on E(A) with w(A) = 1 can be extended to a partial valuation w+ on E(A, x)
with w+(x) = 1. �

We also have the following important characterization of friendliness in terms
of classical consistency.
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Characterization in terms of consistency. A |≈ x iff every set B of formulae in LA

that is consistent with A, is consistent with x.

Verification. Suppose first that A |≈ x. Let B be any set of formulae in LA that
is consistent with A. Then there is a partial valuation v on E(A) with v(A) =
1, v(B) = 1. From the supposition, v may be extended to a partial valuation v+

on E(A, x) with v+(x) = 1. Since v+ extends v and v(B) = 1 we have v+(B) = 1.
Hence B is consistent with x, as desired.

For the converse, suppose that A �|≈ x. Then there is a partial valuation v on
E(A) with v(A) = 1, such that v+(x) = 0 for every extension v+ of v to E(A, x).
Put B to be the state-description (set of literals) in LA that corresponds to v; in
the limiting case that E(A) = ∅ put B = {�}.

We complete the verification by showing that B is consistent with A but not
consistent with x. The former is immediate from the fact that v(A) = 1 and by
construction also v(B) = 1. For the latter, we observe that by construction, v
is the only partial valuation on E(B) = E(A) with v(B) = 1, and by hypothesis
v+(x) = 0 for every extension v+ of v to E(A, x). Thus there is no partial valuation
w on E(B, x) = E(A, x) with w(B) = 1 and w(x) = 1. In other words, B is
inconsistent with x. �

This characterization can be refined. Our first refinement says, in effect, that
in the characterization individual formulae c can do all the work of sets B of
formulae.
First Refinement. A |≈ x iff A � c for every c ∈ LA with x � c.

Verification. Suppose first A |≈ x. Applying the characterization from left to right,
we have that every formula in LA that is consistent with A, is consistent with x.
Contrapositively, whenever c ∈ LA and x � c then A � c.

In the other direction, suppose A �|≈ x. Applying the characterization from
right to left, there is a set B of formulae in LA that is consistent with A, but is
not consistent with x. Since B is not consistent with x, compactness tells us that
is has a finite subset C that is not consistent with x. Then x � c, where c = ¬∧C.
But A � c, since A is consistent with B and so with its subset C. �

A second refinement will be useful for proving compactness for friendliness.
In effect, in the characterization it suffices to consider only formulae c ∈ LA ∩Lx,
i.e. with E(c) ⊆ E(A) ∩ E(x).
Second Refinement. A |≈ x iff A � c for every c ∈ LA ∩ Lx with x � c.

Verification. Left to right is immediate from the first corollary. For the converse,
suppose A �|≈ x. Then by the first corollary, there is a d ∈ LA with x � d but A � d.
Since x � d, classical interpolation tells us that there is a c ∈ Ld ∩ Lx ⊆ LA ∩ Lx

with x � c � d. Since c � d and A � d we have A � c as desired. �
We note in passing that in the first-order context, if we define friendliness in

terms of expansions (see section 1.2), then the second reduction case, the character-
ization in terms of consistency, and its two refinements, all fail in their right-to-left
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part. A single example serves for the three. Consider the language L with just one
unary predicate letter P (no equality symbol, no individual constants), and put
Γ = Cn(∀x(Px)) to be the complete and consistent theory in that language. Let ϕ
be the formula ∃x∃y(Rxy∧¬Ryx), containing the additional letter R not available
in L. On the one hand Γ � ¬ϕ; also every set Δ of formulae in L that is consistent
with Γ, is consistent with ϕ. On the other hand, there is a model that satisfies
Γ which has no expansion satisfying ϕ. Take any model with a singleton domain
interpreting P as the whole domain. This satisfies Γ, but it cannot be expanded
to a model satisfying Γ,ϕ, which would require two elements in the domain.

1.5. Closure Properties of Friendliness

We now see which among the familiar properties of classical consequence remain
for friendliness. We begin with two that carry over without restriction.
Right weakening. Whenever A |≈ x � y then A |≈ y.

Verification. Immediate from the definition of |≈. �

It follows from this, of course, that the relation is syntax-independent in its
right argument, i.e. satisfies right classical equivalence: whenever x 	� y then
A |≈ x iff A |≈ y. This contrasts with the already noted syntax-dependence on the
left.
Singleton cumulative transitivity. Whenever A |≈ x and A, x |≈ y then A |≈ y.

Verification. Suppose A |≈ x and A,x |≈ y. Let v be any partial valuation on E(A)
with v(A) = 1. By the first hypothesis, v may be extended to a partial valuation
v+ on E(A, x) with v+(x) = 1, so also v+(A, x) = 1. By the second hypothesis,
v+ may be extended to a partial valuation v++ on E(A, x, y) with v++(y) = 1.
Restrict v++ to E(A, y), call it v++−. Then v++− is still an extension of v with
domain E(A), and v++−(y) = 1. �

We now formulate some properties that carry over in a restricted form only.
The following are straightforward; compactness and interpolation are subtler and
will be discussed in the following sections.
Local left strengthening. Suppose E(B) ⊆ E(A). Then B � A |≈ x implies B |≈ x.

Verification. Suppose B � A |≈ x. Consider any partial valuation v on E(B) with
v(B) = 1; we need to show that v is friendly to x. Extend v to any partial valuation
v+ on E(A) ⊇ E(B). Then v+(B) = v(B) = 1, and so since B � A we have v+(A)
= 1. Since A |≈ x, there is an extension v++ of v+ to E(A, x) with v++(x) = 1.
Restrict v++ to E(B, x), call it v++−. Then clearly v++−(x) = v++(x) = 1. But
v++− is still an extension of v with domain E(B). Hence v is friendly to x, as
desired. �
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Local left equivalence. Suppose E(B) ⊆ E(A). Then A |≈ x and A 	� B together
imply B |≈ x.

Verification. When A 	� B then B � A so we can apply local left strengthening.
�

Local monotony. Suppose E(B) ⊆ E(A). If A |≈ x and A ⊆ B then B |≈ x.

Verification. When A ⊆ B then B � A; apply local left strengthening. �

Local disjunction in the premisses. Suppose E(b2) ⊆ E(A,b1) and E(b1) ⊆ E(A, b2).
Then A, b1 |≈ x and A, b2 |≈ x together imply A, b1 ∨ b2 |≈ x.

Verification. Suppose A, b1 ∨ b2 �|≈ x. Then there is a partial valuation v on
E(A, b1 ∨ b2) with v(A, b1 ∨ b2) = 1 that is not friendly to x. By the hypotheses,
E(A, b1 ∨ b2) = E(A, b1) = E(A, b2). Since v(A, b1 ∨ b2) = 1 either v(A, b1) = 1 or
v(A, b2) = 1. Hence either v is a partial valuation on E(A, b1) with v(A, b1) = 1 but
not friendly to x, or similarly with b2. That is, either A, b1 �|≈ x or A, b2 �|≈ x. �

Proof by exhaustion. A, b |≈ x and A,¬b |≈ x together imply A |≈ x.

Verification. Clearly E(¬b) = E(b) ⊆ E(A, b) and conversely E(b) = E(¬b) ⊆
E(A,¬b) so we may apply local disjunction in the premisses to get A, b ∨ ¬b |≈ x.
Clearly also E(A) ⊆ E(A, b ∨ ¬b) and also A � (A, b ∨ ¬b) |≈ x, so we may apply
local left strengthening to get A |≈ x as desired. �

The properties obtained so far lead to another characterization. In a broad
sense of the term, it can be seen as an axiomatization of the relation of friendliness,
modulo classical consequence. ‘A broad sense’, since the right-hand side of the third
condition is not closed under substitution.

Observation. Friendliness is the least relation R between sets of formulae and
individual formulae that satisfies the following three conditions:

1. � ⊆ R,
2. 〈A, x〉 ∈ R whenever 〈A ∪ {b}, x〉 ∈ R and 〈A ∪ {¬b}, x〉 ∈ R,
3. 〈A, x〉 ∈ R whenever A � ¬x and for each elementary letter p ∈ E(A), either

A � p or A � ¬p.

Verification. First observe that the total relation between sets of formulae and
individual formulae satisfies these three conditions, and so there is at least one
such relation. Further, the intersection of any non-empty set of such relations is
itself such a relation (despite the negative term A � ¬x in the third condition,
which negates classical consequence rather than the relation R). Thus there is a
unique least such relation R, call it R0.

We already know that |≈ satisfies all three conditions (supraclassicality, proof
by exhaustion, second reduction case). Thus R0 ⊆ |≈.

For the converse, suppose 〈A, x〉 /∈ R0; we need to show that A �|≈ x. Let
p1, . . ., pn be all the elementary letters in E(A). Define sets A0, . . ., An by setting
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A0 = A and putting Ai+1 = Ai ∪ {pi+1} if 〈Ai ∪ {pi+1}, x〉 /∈ R0 and otherwise
Ai+1 = Ai ∪ {¬pi+1}. By hypothesis, 〈A0, x〉 /∈ R0 and an easy induction using
condition (2) gives us 〈An, x〉 /∈ R0. But for each elementary letter p ∈ E(A),
either An � p or An � ¬p, so condition (3) tells us that An � ¬x. Also, since
〈An, x〉 /∈ R0, condition (1) tells us that An is consistent, so there is at least one
partial valuation v on E(An) = E(A) with v(An) = 1. Since An � ¬x, we have
v+(x) = 0 for every extension v+ of v to E(A, x), so A �|≈ x as desired. �

1.6. Compactness

In the context of friendliness, some care must be taken with the formulation of
compactness. When the property is formulated in exactly the same way as in
classical logic, it tells us very little. For suppose A |≈ x. Then:

• On the one hand, in the limiting case that x is inconsistent the definition of
|≈ implies that A must also be inconsistent, so by classical compactness there
is a finite inconsistent subset B ⊆ A, so that by the definition of |≈ again,
B |≈ x.

• On the other hand, in the principal case that x is consistent, we have imme-
diately that ∅ |≈ x. This leaves us hungry, for while the empty set is certainly
finite we would like something more substantial.

This motivates the following strengthened formulation. Bearing in mind that
friendliness does not satisfy monotony, it is quite strong.
Compactness. Let A be a non-empty set with A |≈ x. Then there is a finite subset
B ⊆ A such that C |≈ x for every C with B ⊆ C ⊆ A.

Proof. Suppose A |≈ x. By the second refinement of the characterization of friend-
liness in terms of consistency, whenever c ∈ LA ∩ Lx and x � c then A � c. Hence
by compactness for classical consequence, for every c ∈ LA ∩ Lx with x � c there
is a finite subset Bc ⊆ A with Bc � c. Since x is an individual formula, there are
only finitely many c ∈ LA ∩Lx ⊆ Lx up to classical equivalence. Taking the finite
union of the corresponding sets Bc, we conclude that there is a finite subset B ⊆ A
such that B � c for every c ∈ LA ∩ Lx with x � c.

Now let C be any set with B ⊆ C ⊆ A. We need to show that C |≈ x. Since
B ⊆ C, monotony for classical consequence gives us C � c for every c ∈ LA ∩ Lx

with x � c. Also, since C ⊆ A, we have LC ⊆ LA and so C � c for every c ∈
LC ∩Lx with x � c. Applying again the second refinement of the characterization
of friendliness, we have C |≈ x as desired. �

1.7. Interpolation

As in the case of compactness, interpolation for friendliness is trivial when formu-
lated in the way customary in classical logic. For suppose A |≈ x; we want to show
that there is a formula b with E(b) ⊆ E(A) ∩ E(x) such that both A |≈ b and
b |≈ x. On the one hand, if A is inconsistent, we can put b = ⊥ giving us A � b � x
so A |≈ b |≈ x. On the other hand, if A is consistent then since A |≈ x, x must also
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be consistent, so we can put b = �, so that A � b and thus A |≈ b, and also b |≈ x
using the consistency of x.

The following formulation strengthens the property by guaranteeing that in
suitable conditions, b can be chosen more informatively.
Interpolation. Whenever A |≈ x there is a finite set F ⊆ E(A)∩E(x) of elementary
letters such that for every finite set G of elementary letters with F ⊆ G ⊆ E(A)
there is a formula b with the following properties:

1. E(b) = G
2. A |≈ b (indeed A � b)
3. b |≈ x
4. b is consistent, provided A is consistent
5. b is not a tautology, provided there is a non-tautology y ∈ LA ∩ Lx with

A � y.

Remark. Before giving the proof, we note that the rather odd proviso in property
(5) cannot be weakened to, say: A and x are not tautologous. Example: A =
p∨q, x = q∨r. Then A |≈ x, but the only formulae b with E(b) ⊆ E(A)∩E(x) = {q}
and both A |≈ b and b |≈ x are the tautologies containing at most the letter q.

Proof. Suppose A |≈ x. Since x is a single formula, E(x) is finite, and thus so too
is E(A) ∩ E(x). Hence, up to classical equivalence, there is a strongest formula a
with E(a) ⊆ E(A) ∩ E(x) and A � a. Take any such a and put F = E(a), which
is clearly finite. Let G be any finite set of letters with F ⊆ G ⊆ E(A). Form b by
conjoining with a the disjunctions q ∨ ¬q for the finitely many letters q in G \ F .
We claim that b fulfils all requirements.

Property (1) is immediate by construction. Also by construction A � a 	� b
and so by supraclassicality, A |≈ b, giving (2). For property (4), if A is consistent
then since A � b, b is also consistent. For (5), suppose there is a non-tautology
y ∈ LA ∩ Lx with A � y. Then by its construction, a is not a tautology, and so
since a 	� b, b is not a tautology.

It remains to show (3). Suppose b �|≈ x; we derive a contradiction. Since b �|≈ x
there is a partial valuation v on E(b) = G ⊆ E(A) with v(b) = 1, which is not
friendly to x, i.e. such that v+(x) = 0 for every extension v+ of v to E(b, x). Fix
such a v for the remainder of the proof.

Write k for the state-description formula in Lb that corresponds to v. Then
clearly v(k) = 1 and also k � ¬x. Put b∗ = b ∧ ¬k. We show that b∗ is a formula
in LA with A � b∗ and b � b∗, thus contradicting the construction of b.

For b∗ ∈ LA: This is immediate since both b,¬k ∈ LA.
For b � b∗: It suffices to show b � ¬k, i.e. that k � ¬b. We have by its

construction that k � b; and since v(k) = 1, k is satisfiable, so b � ¬k as desired.
For A � b∗ : Since A � b it suffices to show A � ¬k. As a preliminary

observation, we show that there is no extension w of v to E(A) with w(A) = 1.
For let w be such an extension. Since by hypothesis A |≈ x, there is an extension
w+ of w to E(A, x) with w+(x) = 1. Clearly, w+ is also an extension of v to
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E(A, x). Now restrict w+ to E(b, x), which is possible since E(b) ⊆ E(A) so that
E(b, x) ⊆ E(A, x), and call it w+−. Clearly w+−(x) = 1 and also w+− is still
an extension of v, which has domain E(b). But this contradicts the fact that v is
not friendly to x. This completes the preliminary step of showing that there is no
extension w of v to E(A) with w(A) = 1.

Now let w be any partial valuation on E(A) ⊇ E(b) = E(k) with w(¬k) =
0, i.e. w(k) = 1. It remains to show that w(A) = 0. Restrict w to E(k) = E(b)
= domain(v), call it w−. Clearly w−(k) = 1. Hence by the construction of k as a
state-description in Lb corresponding to v, w− = v. Thus w is an extension of v
to E(A). So by the preliminary observation, w(A) = 0 as desired. �

1.8. Friendliness as an Operation

Up to now, we have treated friendliness as a relation between formulae (or sets of
formulae) on the left and formulae on the right. But just as in the case of classical
consequence and well-known nonmonotonic consequences, we can consider it as an
operation, taking sets of formulae to sets of formulae, by defining Fr(A) = {x :
A |≈ x}.

However, this may not be a very useful perspective for friendliness, in contrast
to the situation for the usual nonmonotonic consequence relations. The reason is
that friendliness is much further from being a closure relation. It fails monotony
but also, as we have seen in section 1.3, it fails both conjunction in the conclusion
and general cumulative transitivity. Expressed as an operation, it also fails idem-
potence (the same counterexample can be used as for cumulative transitivity).
These properties are all satisfied by the usual nonmonotonic consequence relations
(see e.g. Makinson 2005), and their absence makes the operational notation much
less convenient to use.

So, in this section we examine just one question regarding the operational
version: when do we have Fr(A) = Fr(B) for sets A, B of formulae?

Observation. Fr(A) = Fr(B) iff either A 	� B and E(A) = E(B) or else A, B are
both contradictions.

Verification. In one direction, suppose RHS. We want to show Fr(A) = Fr(B). In
the limiting case that A,B are both contradictions, we have Fr(A) = L = Fr(B)
vacuously from the definition of friendliness. So consider the principal case that
A 	� B and E(A) = E(B). Then Fr(A) = Fr(B) by two applications of local left
equivalence (section 1.5).

For the other direction, suppose Fr(A) = Fr(B). Suppose that A, B are not
both contradictions. We need to show that E(A) = E(B) and A 	� B.

First, we observe that neither of A,B is a contradiction. For suppose A, say,
is a contradiction. Then A � ⊥ and so by supraclassicality of friendliness, A |≈ ⊥
and so since Fr(A) = Fr(B) we have B |≈ ⊥, so B is a contradiction.

Next, we show E(A) = E(B). It suffices to show E(A) ⊆ E(B); the converse
is similar. Suppose p ∈ E(A) but p /∈ E(B); we derive a contradiction. Since
p /∈ E(B) clearly B |≈ p and also B |≈ ¬p. Since Fr(A) = Fr(B), this gives us
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A |≈ p and also A |≈ ¬p. Since p ∈ E(A), the first reduction case for friendliness
tells us that A � p and also A � ¬p so that A is inconsistent, contradicting what
has been shown.

Finally, we show A 	� B. It suffices to show A � B; the converse is similar.
Take any b ∈ B. we need to show A � b. Now B � b so by supraclassicality B |≈ b
so since Fr(A) = Fr(B) we have A |≈ b. Since E(A) = E(B) and b ∈ B we have
E(b) ⊆ E(A) so by the first reduction case for friendliness, A � b as desired, and
the proof is complete. �

1.9. Joint Friendliness: Two Notions

For classical consequence, we have followed the common convention of writing
A � B to mean that A � b for all b ∈ B. For friendliness, it is tempting to write
A |≈ B analogously. But care is needed, for there is an important distinction that
does not arise in the classical case. We must distinguish between two relationships:

• A |≈∀∀∃ B: for every partial valuation v on E(A) with v(A) = 1 and every
b ∈ B, there is an extension v+ of v to E(A, b) with v+(b) = 1.

• A |≈∀∃∀ B: For every partial valuation v on E(A) with v(A) = 1 there is an
extension v+ of v to E(A, B) with v+(B) = 1, i.e. with v+(b) = 1 for every
b ∈ B.

The former says the same as A |≈ b for all b ∈ B. But the latter says more.
For classical consequence, where conjunction in the conclusion is satisfied, no such
distinction arose. We call |≈∀∀∃ weak joint friendliness, |≈∀∃∀ strong. When we
refer to joint friendliness (sections 2.2 and 3.4), we will specify clearly which is
intended.

1.10. Internalizing the Relation

It is natural to ask whether we can internalize the relation of friendliness as a
conditional connective of the object language.

It can be done quite trivially by adding an iterable two-place connective �
to the object language and adding to the familiar Boolean rules the following one.
To bring the formulation as close as possible to standard ones for propositional
connectives, we state it with v,w,u understood as full valuations, i.e. defined on
the set E of all elementary letters.

v(a � x) = 1 iff for every full valuation w with w(a) = 1 there is a full
valuation u that agrees with w on all elementary letters in E(a) and such that
u(x) = 1.

The same effect can be achieved by means of indexed unary modal operators.
Consider a language with operators �a and ♦a for all formulae a. This is a little
unusual, as the set of connectives is not fixed in advance, but is defined inductively
along with the formulae in which they occur; but that is not a problem. We read
these connectives by the following rules:

v(�ax) = 1 iff for every valuation w that agrees with v on all elementary
letters in E(a), we have w(x) = 1.
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v(♦ax) = 1 iff for some valuation w that agrees with v on all elementary
letters in E(a), we have w(x) = 1.

We may then identify plain � and ♦ as �� and ♦� (or equivalently �⊥ and
♦⊥), giving us the familiar evaluation rules:

v(�x) = v(��x) = v(�⊥x) = 1 iff w(x) = 1 for every valuation w.
v(♦x) = v(♦�x) = v(♦⊥x) = 1 iff w(x) = 1 for some valuation w.
With this equipment, we may represent a |≈ x in the object language by the

formula �(a → ♦ax). Given the rules given above for evaluating indexed modal
operators, this formula will satisfy the same evaluation condition that we gave for
the trivial internalization. It will come out as true under one valuation iff it does
so under all valuations, and that iff the relation a |≈ x holds.

However, it should be understood that when we internalize the relation of
friendliness (whether directly or via indexed modal operators) the resulting system
is rather unusual. The set of all valid formulae (defined as those formulae that are
true under every valuation) is not closed under substitution, for the very same
reason as the relation of friendliness was not so closed. The same example can be
used to illustrate the failure. On the one hand, the formula (p → ♦p(p∧q) is valid,
while its substitution instance (p → ♦p(p ∧ ¬p) is not.

Thus while internalization is perfectly possible, the propositional system that
it gives us is unlike most modal and other non-classical propositional logics, for
which the set of valid formulae is closed under substitution. In the author’s view,
this difference is not a disqualification — see e.g the discussion in Makinson (2005).
But it not clear that internalization provides any insights that are not already
available when friendliness is treated as a relation between formulae.

2. Links with Familiar Notions

Friendliness has many friends: several other notions familiar from the literature
are connected with it. Roughly speaking, the links are of two main kinds.

• Certain well-known operations from the history of logic, distant and recent,
can be seen as instances of friendliness.

• There are also more general conceptual links, notably with Ramsey eliminabil-
ity and related notions that have been studied in the context of first-order
logic.

We begin with some instances of friendliness.

2.1. Forgetting Letters from Formulae

Consider any formula a and any subset F of its elementary letters, i.e. F ⊆ E(a).
Let σ1, . . ., σk be the k = 2n substitutions of ⊥,� for the n letters in F . Following
Weber (1987) and later papers such as Lin and Reiter (1994) and Lang, Liberatore,
Marquis (2003), we may define fF (a), the result of forgetting the letters in F
from a, as σ1(a) ∨ . . . ∨ σk(a). Equivalently, in recursive form, f∅(a) = a, and
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fF,q(a) = σ⊥(fF (a)) ∨ σ�(fF (a)), where the functions σ⊥ and σ� substitute ⊥,�
for the letter q.

As is well known, a � fF (a). The converse fails, i.e. fF (a) � a; for example
fF (p) = ⊥ ∨ � � p. However, fF (a) is easily shown to be the strongest formula b
in the language generated by E(a) \ F such that a � b.

In fact, the notion goes back to Boole, whose focus was however rather differ-
ent. From his point of view, the central logical relation was equality, coresponding
to classical equivalence. Accordingly, the most important fact for him about what
we now call forgetting was the equality that he introduced under the name of
‘development’ in Boole (1847): a 	� (¬p ∧ σ⊥(a)) ∨ (p ∧ σ�(a)). The consequence
a � σ⊥(a) ∨ σ�(a) = fa(a) is however implicit (in dual form) in the discussion of
the ‘elimination’ of a term in an equation, in Boole (1854).

Observation. fF (a) |≈ a.

Verification. Let v be any partial valuation on E(fF (a)) = E(a) \ F and suppose
v(fF (a)) = 1. Then v(σi(a)) = 1 for some i ≤ k. Extend v to v+ on E(a) by
putting v+(q) = 0,1 according as σi(q)) = ⊥,� for each q ∈ F . Then clearly by
induction on length of formulae, v+(a) = v(σi(a)) = 1 and we are done. �

2.2. Ejective Substitution

It is natural to ask whether this observation can be extended to a more general
result linking friendliness and substitution. It cannot cover all substitutions, for
we do not always have σ(a) |≈ a, even when σ is a one-one correspondence on
letters. Consider for example the formula a = p ∧ ¬q and the substitution σ
that simply interchanges the two letters, putting σ(p) = q and σ(q) = p so that
σ(a) = q ∧ ¬p �|≈ a = p ∧ ¬q (witness the only partial valuation that makes the
premiss true).

Nevertheless, we do have a positive result for a certain class of substitutions.
Let σ be any substitution on the set E of all elementary letters, and let A be
any set of formulae. We call σ ejective for A iff for every letter p ∈ E(A), either
σ(p) = p or p /∈ E(σ(A)).

Observation. Let a be any formula, and let σ be any substitution that is ejective
for a. Then σ(a) |≈ a. More generally, when A is a set of formulae and σ is ejective
for A then σ(A) |≈∀∃∀ A.

Verification. The notation |≈∀∃∀ for strong joint friendliness is explained in section
1.9. Consider any partial valuation v on E(σ(A)) with v(σ(A)) = 1. We extend v to
v+ on E(σ(A), A) by putting v+(q) = v(σ(q)) for each letter q in E(A) \E(σ(A)).
We want to show that v+(A) = v(σ(A)) = 1. It suffices to show by induction that
for every subformula b of any formula in A, v+(b) = v(σ(b)).

For the basis, if b is a letter p then either σ(p) = p or p /∈ E(σ(A)). In
the former case p ∈ E(σ(A)), so v(p) is defined, so since v+ extends v we have
v+(p) = v(p) = v(σ(p)) as desired. In the latter case, p ∈ E(A) \E(σ(A)), so that
v+(p) = v(σ(p)) by definition.
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The induction step is then routine using the definitions of a substitution and
of a Boolean valuation. �

This observation covers the ‘friendly forgetfulness’ property fF (a) |≈ a as a
special case. For when a function σ substitutes ⊥,� for some of the elementary
letters in a (and is the identity on all other letters) then it is ejective for a. Indeed,
it is ejective tout court, in the stronger sense that for every letter p, either σ(p) = p
or p /∈ E(σ(L)) = E(σ(E)). Thus we have fF (a) = σ1(a) ∨ . . . ∨ σk(a) where each
substitution σi is ejective, so that each σi(a) |≈ a. But E(σi(a)) = E(a) \ F =
E(σj(a)) for all i, j ≤ k and so we may apply local disjunction in the premisses
(section 1.5) putting A = ∅ to conclude that σ1(a) ∨ . . . ∨ σk(a) |≈ a as desired.

2.3. Identifying Letters

The above observation has a further corollary. By an identification of letters we
mean a substitution σ on E into E such that for every letter p, either σ(p) = p
or p �= σ(q) for all letters q. Equivalently: such that whenever p = σ(q) for some
letter q then σ(p) = p. Equivalently: such that for some partition of E and some
choice function γ on that partition, σ(p) = γ(|p|).
Corollary. σ(A) |≈∀∃∀ A for any identification σ of letters. In particular, when a is
an individual formula and σ is an identification of letters, then σ(a) |≈ a.

Verification. By the observation in section 2.2, it suffices to observe that every
identification of letters is ejective tout court, and so ejective for A. Let σ be any
identification of letters. Suppose p ∈ E(A) and σ(p) �= p. Since σ is an identification
of letters, this gives us p �= σ(q) for all letters q. Since σ takes E into E this implies
that p /∈ E(σ(E)) = E(σ(L)). �

2.4. Existential Quantification

The concept of forgetting can also be expressed in the language of quantified
Boolean formulae. Put gF (a) = ∃p1. . .∃pn(a) where F = {p1, . . . , pn}. Then under
the standard semantics for quantified Boolean formulae, gF (a) has exactly the same
truth conditions as fF (a). So, with the notion of friendliness suitably enlarged to
cover such formulae (rather than just unquantified Boolean formulae, as in this
paper), we can say that gF (a) is friendly to a.

More generally, it is clear that in any language admitting existential quanti-
fiers over a syntactic category of items, the existential quantification ∃i1. . .∃in(a)
over selected variables from that category will, under a natural enlargement of the
notion, be friendly to a.

However, it should also be observed that the forgetting function fF (a), its
quantified Boolean analogue gF (a), and existentialization ∃i1. . .∃in(a) all have a
more intimate relation to their argument a than mere friendliness. For we have not
only fF (a) |≈ a, gF (a) |≈ a, ∃i1. . .∃in(a) |≈ a but also the classical consequences
in the reverse direction: a � fF (a), a � gF (a), a � ∃i1. . .∃in(a)(a). This contrasts
with the fact that for friendliness in general we may have b |≈ a without a � b:
witness the example p |≈ q but q � p where p, q are distinct elementary letters.
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2.5. Skolemization

The process of Skolemization of a formula of first-order logic manifests friendliness
in a very special way. Taking for example the formula α = ∀x∃y(Rxy), we can in-
troduce a function letter f and consider both the formula sk(α) = ∀x(Rxf(x)) and
its existential quantification ∃f(sk(α)) = ∃f∀x(Rxf(x)). These formulae belong
respectively to first-order logic with function letters, and second-order logic.

As Skolem observed, we have sk(α) � α in first-order logic, and also α 	�
∃f(sk(α)) in second-order logic (assuming the axiom of choice in our metalan-
guage). The equivalence between α and ∃f(sk(α)) means that the relation between
these two is much tighter than for plain existentialization.

While sk(α) � α, the converse fails: α � sk(α). But we do have α |≈ sk(α)
where |≈ is the friendliness in the first-order context, understood in terms of ex-
pansions (section 1.2). For every (partial) model interpreting the predicate letter
R in a domain, if that model satisfies α then it has an expansion also interpreting
the function letter f in the same domain that satisfies sk(α).

Here again there is an especially close relationship. As is well known, a and
sk(α) are equivalent for logical truth, i.e. a is true in all first-order models iff sk(α)
is. This does not hold for friendliness in general. In our base territory of classical
propositional logic, p ∨ ¬p |≈ q but the left is a tautology while the right is not.

As is well known, the passage from α to sk(α) also contrasts with existential-
ization in this regard. For example ∃x(∃x(Px) → Px) is friendly to ∃x(Px) → Px,
but the left is a logical truth while the right is not.

2.6. Ramsey Eliminability

As well as the above particular instances of friendliness, there are also more general
connections with concepts that have arisen elsewhere. Of these, the closest is with
Ramsey eliminability of a predicate or other term in a theory.

This notion takes its origin in the philosophy of science, and more specifically
in discussions concerning the relation between the observational and theoretical
components of empirical scientific theories. It was first sketched in rough terms by
F. P. Ramsey in notes of 1929, published in the posthumous collection Ramsey
(1931, chapter ‘Theories’). It was taken up and given its name by Sneed (1971,
chapter 3); and subsequently discussed in a number of books and papers including
van Benthem (1978) and Rantala (1991). All of these are expressed in the context
of first-order languages.

Formulations differ in subtle but significant respects. What they all have in
common is that every model of one set Γ of (first-order) formulae should be capable
of expansion to a model of a larger set Δ that possibly contains further letters
(individual constants, predicates, or function signs). We recall that by an expansion
of a model is meant another model with the same domain, same interpretations of
the letters that were interpreted in the first model, plus interpretations of whatever
new letters are concerned.
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Where the formulations differ is in what Γ and Δ are taken to be; which
of them is taken to be an arbitrary set of formulae while the other is taken as a
function of it. The story is as follows.

• For Rantala (1991, pages 150–151): Γ is taken to be an arbitrary set of first-
order formulae, and Δ is put as Γ ∪ {ϕ} where ϕ is a (likewise first-order)
formula. Rantala focusses on the case that this formula has just one new
letter beyond those occurring in Γ, thought of as a candidate for reduction;
however the definition is meaningful without that restriction. The concept is
envisaged as expressing a property of the new letter(s) in ϕ modulo the set
Γ ∪ {ϕ}, rather than a relation between Γ and Δ = Γ ∪ {ϕ}.

• By contrast, for van Benthem (1978, page 325), it is Δ that is is taken to be
an arbitrary set of first-order formulae, while Γ is taken to be Cn(Δ) ∩ L0,
where L0 is an arbitrarily chosen sublanguage of the language L of Δ. Again,
the concept is envisaged as expressing a property of the omitted letter set in
L \ L0 modulo the formula set Δ.

Typically, L0 will be made up of all the letters in L except for one, which
is thought of as a candidate for reduction. In that case, we have exactly a notion
introduced by de Bouvère (1959, chapter II.2). He used the failure of this property
of the omitted letter (say, a predicate P ) modulo a theory Δ, as a method for
showing that P is not explicitly definable in Δ. This contrasts with the better-
known technique going back to Padoa (1901), which proceeds by showing that
some model of Γ can be expanded in two distinct ways to a model of Δ. Unlike de
Bouvère’s method, that of Padoa is complete for the task, as shown in a celebrated
theorem of Beth (1956).

As is well known, the formulations of Rantala and van Benthem are not
equivalent. On the one hand, when Δ = Γ∪{ϕ} and L0 is the language of Γ, then
Γ ⊆ Cn(Δ)∩L0. Hence, if every model of Γ can be expanded to a model of Δ, then
every model of Cn(Δ) ∩ L0 can too. In other words, Ramsey eliminability in the
sense of Rantala implies the same in the sense of van Benthem. But in general, Γ
may be a proper subset of Cn(Δ)∩L0. So it may happen that whilst every model
of Cn(Δ) ∩ L0 can be expanded to one of Δ, there is some model of Γ (but not
satisfying Cn(Δ)∩L0) that cannot be so expanded. Thus Ramsey eliminability in
the sense of van Benthem does not imply the same in the sense of Rantala. Specific
examples have been given in the literature.

To compare these two concepts with friendliness as studied in this paper, we
extract the purely propositional content, and write it in the notation that we have
been using. We write LE(B)\F for the language generated by the letters that are
in E(B) \ F .

• From Rantala: The letters in E(x) \ E(A) are Ramsey eliminable from a set
A, x of formulae iff every partial valuation v on E(A) with v(A) = 1 can be
extended to a partial valuation v+ on E(A, x) with v+(A, x) = 1.

• From van Benthem: Consider any set B of formulae and any set F of elemen-
tary letters with F ⊆ E(B). The letters in F are Ramsey eliminable from B
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iff every partial valuation v on E(B) \ F with v(Cn(B) ∩ LE(B)\F ) = 1 can
be extended to a partial valuation v+ on E(B) with v+(B) = 1.

Of these, the Rantala-style concept is equivalent to friendliness of A to x, as
defined and studied in this paper.

Observation. Let A be any set of propositional formulae and x a propositional
formula. Then A is friendly to x iff the letters in E(x)\E(A) are Ramsey eliminable
from A, x in the sense of Rantala.

Verification. The only difference between the definition of friendliness and the
propositional reduction of Rantala’s version of Ramsey eliminability is that whereas
the former requires the extension v+ to satisfy x, the latter requires it to satisfy
A, x. But these are equivalent when v+ extends v and v(A) = 1. �

We have already remarked that even in the first-order context, the formu-
lation of van Benthem is weaker than that of Rantala. Indeed, it is very much
weaker since, as is well-known, every finite model of Cn(Δ)∩L0 can be expanded
to a model of Δ. In the purely propositional context, it becomes so much weaker
that it always holds, as we now show.

Observation. Let B be any set of propositional formulae and F ⊆ E(B) any subset
of its elementary letters. Then the letters in F are Ramsey eliminable from B in
the sense of van Benthem.

Proof. We need to show that every partial valuation v on E(B)\F with v(Cn(B)∩
LE(B)\F ) = 1 can be extended to a partial valuation v+ on E(B) with v+(B) = 1.

Let v be a partial valuation on E(B) \ F with v(Cn(B) ∩ LE(B)\F ) = 1.
Suppose for reductio ad absurdum that v cannot be extended to a partial valuation
v+ on E(B) with v+(B) = 1. Let S be the state-description corresponding to v,
i.e. the set of all literals in LE(B)\F that are true under v. In the limiting case that
F = E(B) so that E(B) \ F = ∅, put S = {�}.

We note first that S ∪B is inconsistent. Reason: For any partial valuation w
on E(S ∪B) = E(B) with w(S ∪B) = 1 we have w(S) = 1 so w must must agree
with v over F , so w is an extension of v to E(B). Also w(B) = 1, contrary to the
supposition.

Since S ∪ B is inconsistent, compactness tells us that there is a formula s
that is the conjunction of finitely many elements of S, such that ¬s ∈ Cn(B).
But also by construction, ¬s ∈ LE(B)\F . Hence ¬s ∈ Cn(B) ∩ LE(B)\F and so by
hypothesis v(¬s) = 1, contradicting the fact that by the construction of S we have
v(s) = 1. �

This argument is along much the same lines as that for the characterization
of friendliness in terms of consistency in section 1.4. Like that characterization,
it does not carry over to first-order contexts; indeed, the counterexample given in
section 1.4 also serves here.
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Corollary. De Bouvère’s method can never be used in purely propositional logic as
a way of showing that an elementary letter is not explicitly definable given a set
A of propositional formulae.

Verification. Apply the observation with F chosen to be a singleton subset of
E(B). �
2.7. Leśniewski’s Criterion of Conservativity

Friendliness is also closely related to the criterion of conservativity (alias non-
creativity) in the theory of definition.

In lectures of the early 1920s, Leśniewski articulated two criteria that we
usually want definitions to satisfy: eliminability and conservativity. A published
account was given in Leśniewski (1931), with an easily accessible exposition in
Suppes (1957, chapter 8). It is conservativity that connects with friendliness. The
concept is usually formulated in the context of first-order logic. To clarify the link
with friendliness, we again extract the purely propositional content.

Let A be any set of propositional formulae and let x be a formula. A,x is said
to be a conservative extension of A iff Cn(A, x) ∩ LA ⊆ Cn(A), i.e. iff A � c for
every c ∈ LA such that A, x � c.

Observation. In the propositional context: A |≈ x iff A,x is a conservative extension
of A.

Proof. We already know from the first refinement of the characterization of friend-
liness in terms of consistency, in section 1.4, that A |≈ x iff (1) A � c for every
c ∈ LA with x � c. So we need only show the equivalence of this with (2) A � c
for every c ∈ LA with A, x � c.

One direction is immediate: by the monotony of classical consequence, (2)
clearly implies (1). For the converse, suppose (1). Suppose c ∈ LA and A, x � c;
we need to show A � c. Since A, x � c compactness tells us that a, x � c where a
is the conjunction of some finite subset of A, and so also x � a → c. Clearly since
c ∈ LA we also have a → c ∈ LA So we may apply (1) to get A � a → c, and so
since A � a we have A � c as desired. �

Corollary. On the level of propositional logic: A, x is a conservative extension of
A iff the letters in E(x) \ E(A) are Ramsey eliminable from A, x in the sense of
Rantala.

Verification. By the observation just established, A, x is a conservative extension
of A iff A |≈ x. By the first observation of section 2.6, A |≈ x iff the letters in
E(x) \ E(A) are Ramsey eliminable from A, x in the sense of Rantala. �

Again this corollary is known to fail in the first-order context, where only the
right-to-left half holds. An equivalence does hold, but it is between the left and a
weaker version of the right: Γ,ϕ is a conservative extension of Γ iff every model of
Γ is elementary equivalent to (i.e. satisfies the same first-order formulae as) some
model of Γ that can be expanded to a model of Γ, ϕ.
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2.8. Information-Preserving Paraconsistent Consequence

A less intimate connection with friendliness can be found in the construction of a
certain paraconsistent consequence relation, effected in Pietruszczak (2004). This
relation, which is a subrelation of classical consequence, is defined by Pietruszczak
using a notion of preservation of information. But he also gives it an alternative
characterization (his theorem 6.1) that makes contact with friendliness, or more
precisely, with its syntax-independent counterpart sympathy, which we will define
below in section 3.1.

Specifically, Pietruszczak’s relation of information-preserving consequence
holds between a formula a and a formula x iff four conditions hold: a classically
entails x; a is classically consistent; x is not a tautology; and a further condition,
formulated in terms of valuations, also holds. This further condition is not given
a name, but is exactly the relation of sympathy, holding in the reverse direction
from x to a.

Thus, roughly speaking, the syntax-independent version of friendliness has
been used as one of the ingredients to construct a certain kind of paraconsistent
subrelation of classical consequence. We have, in other words, an application of
the relation.

The present author would comment, however, that the paraconsistent conse-
quence so defined has a rather mixed bag of properties. As well as failing certain
consequences that the paraconsistent logician desperately seeks to avoid (e.g. im-
plication from a∧¬a to any proposition whatsoever, and from any proposition to
x ∨ ¬x), and failing others that some are willing to lose in order to achieve this
(e.g. from a to a ∨ x for any x) the relation fails certain other properties that few
paraconsistent logicians would be happy to see depart.

One of these is closure of the consequence relation under uniform substitution
(of arbitrary formulae for elementary letters). Others are implication from p∧ q to
any of p∨q, p ↔ q, p → q, q → p, and likewise from p ↔ q to either of p → q, q → p.
Verification of all these failures is straightforward: none of the right formulae is
friendly to the left one.

2.9. Coupled Semantic Decomposition Trees

Finally, we mention a connection with the theory of semantic decomposition trees
(alias semantic tableaux) in classical logic. Developed by Beth, Hintikka and oth-
ers, these trees entered the arena of textbooks with Jeffrey [1967]. Designed to
test formulae for satisfiablility, the trees can of course be used to test an inference
for invalidity by checking the satisfiability of the set (or conjunction) consisting of
the premisses and negation of the conclusion. But Jeffrey also suggested another
technique for the purpose, which he called ‘coupled trees’.

Roughly speaking, he constructed a (signed) tree for the premisses, and an-
other one for the conclusion. If every open branch of the former tree contains all
the signed elementary letters (alias literals) that occur on some open branch of
the latter one, then the inference is valid. However, as Jeffrey noted, the converse
is not true without qualification. This is due to the possible absence of elementary
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letters in branches of the first tree, as for the inference from p to q ∨ ¬q, likewise
from p to (p ∧ q) ∨ (p ∧ ¬q). For this reason, he introduced an additional rule
allowing the introduction of new elementary letters (by branching to an arbitrary
formula and to its negation) when constructing a tree.

In the revised version of the textbook, published in 1981, Jeffrey omitted
the technique of ‘coupled trees’ altogether, presumably because of the inelegance
of the additional rule. In the meantime, Dunn [1976] showed that it could be
adapted neatly to the so-called first-degree entailments of relevance logics. One
simply requires that every branch (even closed) of the former tree contains all the
signed elementary letters that occur on some branch (even closed) of the latter
tree. This characterizes first-degree entailment without the need for any additional
rules.

We remark that the technique of ‘coupled trees’ is even more naturally suited
to determining whether a set A of formulae is friendly to another formula x.
Construct the two (signed) trees as before. Call two branches compatible iff they
do not contain any elementary letter with opposite signs. To test whether A is
friendly to x, we simply check whether every open branch of the tree for A is
compatible with some open branch of the tree for x. This characterizes friendliness
without additional rules. We omit the straightforward verification.

3. From Friendliness to Sympathy

3.1. Definitions

We now consider a normalized version of friendliness that is syntax-
independent on the left as well as on the right.

It is well known that for any finite set A of Boolean formulae, there is a
unique least set F of elementary letters such that A is classically equivalent to
some set of formulae in the language generated by F .

Although this is usually stated and proven for finite sets A only, it also holds
for infinite ones. More specifically, let A be any set of formulae:

• Put E!(A) to be the set of all letters p that are essential for A, in the sense
that there are two valuations v, w, on the set E of all elementary letters of
the language, that agree on all letters other than p but disagree in the value
they give to A. Clearly E!(A) ⊆ E(A).

• Put A∗ to be the set of all formulae x with both A � x and E(x) ⊆ E!(A).
Clearly E(A∗) = E!(A).

Clearly, whenever A 	� B then E!(A) = E!(B) and also A∗ = B∗. Moreover,
as we show in the Appendix:

Least letter-set theorem. A 	� A∗, and for every set B of formulae with A 	�
B, E(A∗) ⊆ E(B).



Friendliness and Sympathy 21

We say that a set A of formulae is sympathetic to x and write A |∼ x, iff
A∗ |≈ x. This notion can be seen as a normalized version of friendliness, making
it syntax-independent in the left argument.

Unrestricted left classical equivalence for |∼. Whenever A 	� B, then A |∼ x iff
B |∼ x.

Verification. Whenever A 	� B then as noted A∗ = B∗, so A∗ |≈ x iff B∗ |≈ x,
i.e. A |∼ x iff B |∼ x. �

From the least letter-set theorem we have immediately the following useful
criterion for membership in E!(A).
Criterion for membership in E!(A). Let p be any elementary letter. Then p ∈
E!(A) iff p ∈ E(B) for every set B of formulae with B 	� A.

We also have the following four criteria for sympathy.
Criteria for sympathy. Each of the following is equivalent to A |∼ x:
(a) B |≈ x for every B with A 	� B and E(B) = E!(A)
(b) A∗ |≈ x
(c) B |≈ x for some B with A 	� B and E(B) = E!(A)
(d) B |≈ x for some B with A 	� B.

Verification. A |∼ x is defined as (b), and immediately (a) ⇒ (b) ⇒ (c) ⇒
(d). So we need only show (d) ⇒ (a). Suppose B |≈ x for some B with A 	� B.
Let A 	� C and E(C) = E!(A). We need to show C |≈ x. Let v be any partial
valuation on E(C) with v(C) = 1. We need to find an extension v+ of v to E(C, x)
with v+(x) = 1. Since E(C) = E!(A) = E(A∗) ⊆ E(B) by the least letter-set
theorem, we may fix an arbitrary extension w of v to E(B). Since C 	� A 	� B,
we have w(B) = 1. Since B |≈ x there is an extension w+ of w to E(B, x) with
w+(x) = 1. Then w+ is an extension of v to E(B, x). Since E(C) ⊆ E(B) we also
have E(C, x) ⊆ E(B, x), so we may restrict w+ to E(C, x), call it w+−. Clearly
w+− is still an extension of v and also w+−(x) = w+(x) = 1, so we may put
v+ = w+− and it has the desired properties. �

Corollary: broadening. Whenever A |≈ x then A |∼ x.

Verification. By criterion (d). �

Evidently, the inclusion converse to broadening fails. Example: p∧(q∨¬q)�|≈p∧
q but (p ∧ (q ∨ ¬q)) |∼ p ∧ q since (p ∧ (q ∨ ¬q)) 	� p |≈ p ∧ q.

3.2. Property Failures for Sympathy: Inherited and New

All of the property failures that we bulleted for |≈ in section 1.3 are also failures
for |∼. We can take the same counterexamples and observe that for each premiss a,
E!(a) = E(a). On the other hand and perhaps surprisingly, there are two important
properties that succeeded for |≈ but fail for |∼ : local disjunction in the premisses
and compactness.
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The following example, due to Pavlos Peppas (personal communication) il-
lustrates the failure of local disjunction in the premisses.
Counterexample to local disjunction in the premisses. Put a = p ∨ r,
b1 = p∧q, b2 = ¬q, and x = ¬q∨¬r. Then E(b2) ⊆ E(a, b1); E(b1) ⊆ E(a, b2); a, b1 |
∼ x; a, b2 |∼ x; but a, b1 ∨ b2 |�∼ x.

Verification. Clearly E(b2) ⊆ E(a, b1) and indeed E!(b2) ⊆ E!(a, b1). Also E(b1) ⊆
E(a, b2) and indeed E!(b1) ⊆ E!(a, b2). Also a, b1 |∼ x since {a, b1} 	� b1 |≈ x,
applying criterion (d) for sympathy. Also a ∧ b2 � x so that a ∧ b2 |≈ x and thus
a, b2 |∼ x. But a, (b1 ∨ b2) |�∼ x.

To check the last, note that a∧(b1∨b2) = (p∨r)∧((p∧q)∨¬q) 	� p∨(r∧¬q)
so that E!(a, (b1 ∨ b2)) = {p, q, r}. So by criterion (a) for sympathy, it suffices to
check that p ∨ (r ∧ ¬q) �|≈ ¬q ∨ ¬r. Since every letter on the right already occurs
on the left, it suffices to show p ∨ (r ∧ ¬q) � ¬q ∨ ¬r by the reduction case for
friendliness (section 1.4). But this is clear putting v(p) = v(q) = v(r) = 1. �

By suitably tweaking this example, we can turn it into one that illustrates
the failure, for sympathy, of the closely related rule of proof by exhaustion.
Counterexample to proof by exhaustion. Put a = p ∨ ¬q ∨ r,
b = p ∧ q; x = ¬q ∨ ¬r. Then a, b |∼ x; a,¬b |∼ x; but a |�∼ x.

Verification. Similar to that of the preceding example, but we give the details.
Again we have a, b |∼ x since {a, b} 	� b |≈ x, applying criterion (d) for sympathy.
Also a,¬b |∼ x since a,¬b � x. But a |�∼ x since E!(a) = {p, q, r}, so by criterion
(a) for sympathy, it suffices to check that p∨¬q∨r �|≈ ¬q∨¬r. Since every letter on
the right already occurs on the left, it suffices to show p∨¬q ∨ r � ¬q ∨¬r by the
reduction case for friendliness. But this is clear putting v(p) = v(q) = v(r) = 1. �

The next example illustrates the failure of compactness for sympathy. Con-
sider a language with countably many elementary letters q, p1, p2, . . ..
Counterexample to compactness. Put A to be the set of all formulae an that are
of the form (p1 ∧ . . .∧ pn)∨ q for odd n ≥ 1, or of the form (p1 ∧ . . .∧ pn)∨¬q for
even n ≥ 1. Then A |∼ q but B |�∼ q for every finite non-empty subset B ⊆ A.

Verification. To show A |∼ q it suffices, by criterion (d) for sympathy, to find an
X 	� A with X |≈ q. Putting X = {pi : i ≥ 0} we clearly have the former, and
since q does not occur in any formula in X we also have the latter.

Now let B be any finite non-empty subset of A. To complete the verification
of the example, we need to show that B |�∼ q, i.e. that B∗ �|≈ q.

First, we show that q is essential to B. Consider the largest n such that
an ∈ B; this exists because B is finite and non-empty. We examine the case that
n is odd, so that an = (p1 ∧ . . . ∧ pn) ∨ q; the case for even n is similar. Put
v(pi) = w(pi) = 1 for all i < n, v(pn) = w(pn) = 0, and v(q) = 1 while w(q) = 0.
Then w(an) = 0 so that w(B) = 0. On the other hand, v(an) = 1 (since v(q) = 1)
and also v(ai) = 1 for all i < n (since pn does not occur in any such ai) so that
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v(B) = 1. Since v, w agree on all pi for all i ≤ n while disagreeing on B, this shows
that q is essential to B, as desired.

We can now show that B∗ |�≈ q. Put u(pi) = 1 for all i ≤ n and u(q) = 0.
Then u(ai) = 1 for all i ≤ n so that u(B) = 1 and hence B � q; so since B 	� B∗

we have B∗
� q. But since q is essential to B, q occurs in B∗. So by the first

reduction case of section 1.4, since B∗
� q we have finally B∗ �|≈ q completing the

verification of the example. �

3.3. Property Successes for Sympathy

Apart from disjunction in the premisses and compactness, all of the other proper-
ties that we noted as satisfied by friendliness also hold for sympathy. We consider
them one by one. Whenever possible, we derive the property for |∼ from the one
for |≈, rather than argue from scratch. Most of the verifications are straightfor-
ward; only singleton cumulative transitivity is rather tricky, needing some lemmas
on least letter-sets.
Supraclassicality for |∼. Whenever A � x then A |∼ x.

Verification. Suppose A � x. Then A |≈ x by supraclassicality for |≈, so A |∼ x
by broadening. �

Reduction case for |∼. Whenever E(x) ⊆ E!(A) then A |∼ x iff A � x.

Verification. Right to left is given by supraclassicality. For the converse, suppose
E(x) ⊆ E!(A). Suppose A |∼ x. By definition, A∗ |≈ x. Recalling that E!(A) =
E(A∗) so that E(x) ⊆ E(A∗), the reduction case for friendliness tells us A∗ � x.
Since A 	� A∗ we have A � x as desired. �

Characterization of |∼ in terms of consistency. A |∼ x iff every set of formulae
in LE!(A) that is consistent with A, is consistent with x.

Verification. By definition, A |∼ x iff A∗ |≈ x. Applying the corresponding con-
sistency characterization of |≈ and the fact that A∗ 	� A, the desired equivalence
follows. �

Right weakening for |∼. Whenever A |∼ x � y then A |∼ y

Verification. From the definition of |∼ and right weakening for |≈. �

This implies right classical equivalence for sympathy: whenever x 	� y then
A |∼ x iff A |∼ y. The relation |∼ is thus syntax-independent on both left and
right.
Local left strengthening for |∼. Suppose E!(B) ⊆ E!(A). If B � A |∼ x then
B |∼ x.

Verification. Immediate from the corresponding property of |≈, the definition of
|∼ , and the fact that A∗ 	� A. �
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Local monotony for |∼. Suppose E!(B) ⊆ E!(A). If A |∼ x and A ⊆ B then
B |∼ x.

Verification. If A ⊆ B then B � A. �
Note that in these two ‘local’ properties, the locality condition concerns

E!(A), E!(B) rather than E(A), E(B).

3.4. Singleton Cumulative Transitivity for Sympathy

We have postponed consideration of singleton cumulative transitivity because its
proof requires two lemmas about least letter-sets.

Lemma. E!(A, B) ⊆ E!(A) ∪ E!(B) ⊆ E!(A) ∪ E(B).

Verification. The right inclusion is immediate from E!(B) ⊆ E(B). For the left in-
clusion, suppose p ∈ E!(A, B). Then there are partial valuations v0, v1 on E(A, B)
that agree on all letters in this domain other than p, with v0(A, B) = 0 and
v1(A, B) = 1. Since v0(A, B) = 0, either v0(A) = 0 or v0(B) = 0.

Suppose the former; the argument for the latter is similar. Restrict v0, v1 to
E(A), call them v−0 , v−1 . Then v−0 (A) = 0 whilst v−1 (A) = 1, but v−0 , v−1 agree on all
letters in their common domain other than p. Hence p ∈ E!(A) ⊆ E!(A) ∪ E!(B)
as desired. �

Lemma. If A |≈ x then E!(A) ⊆ E!(A, x). Indeed, more generally: If A |≈∀∃∀ B
then E!(A) ⊆ E!(A, B).

Verification. Suppose A |≈∀∃∀ B (defined in section 1.9) and p ∈ E!(A). From the
latter, there are partial valuations v0, v1 on E(A) that agree on all letters in this
domain other than p, with v0(A) = 0 and v1(A) = 1. Since A |≈∀∃∀ B, v1 can be
extended to a valuation v+

1 on E(A, B) with v+
1 (B) = 1, so v+

1 (A, B) = 1. Now
extend v0 to E(A, B) by putting v+

0 (q) = v+
1 (q) for every letter q ∈ E(A, B)\E(A).

Then clearly v+
0 , v+

1 agree on all letters in their common domain except p, and
disagree on A, B since v+

1 (A, B) = 1 while v+
0 (A, B) = 0 since v0(A) = 0. Hence

p ∈ E!(A, B) as desired. �
Singleton cumulative transitivity for |∼. Whenever A |∼ x and A, x |∼ y then
A |∼ y.

Proof. Suppose A |∼ x and A, x |∼ y. From the hypotheses we have A∗ |≈ x
and (A, x)∗ |≈ y. We need to show A∗ |≈ y.

Let v be any partial valuation on E(A∗) = E!(A) with v(A∗) = 1. We need
to find an extension w of v to E(A∗, y) = E!(A) ∪ E(y) with w(y) = 1.

Since A∗ |≈ x and v(A∗) = 1, v can be extended to a v+ on E(A∗, x) =
E!(A) ∪ E(x) with v+(x) = 1. By the first lemma, we may restrict v+ to the
subset E!(A, x) of its domain, call it v+−. By the second lemma, since A∗ |≈ x we
have E(A∗) = E!(A) ⊆ E!(A, x), so v+− is an extension of v. Also, v+−((A, x)∗) =
v+((A, x)∗) = v+(A∗, x). Also v+(A∗) = v(A∗) = 1 and v+(x) = 1. Putting this
together, v+(A∗, x) = 1 so v+−((A, x)∗) = 1.
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Hence, since (A, x)∗ |≈ y, v+− may be extended from E!(A, x) to a valuation
v+−+ on E!(A, x) ∪ E(y) with v+−+(y) = 1. Since v+− is an extension of v it
follows that v+−+ is also an extension of v. Finally, restrict v+−+ to E!(A)∪E(y),
which by the second lemma again is a subset of E!(A, x) ∪ E(y); call it v+−+−.
This is still an extension of v, defined on E!(A), and also v+−+−(y) is well defined
with v+−+−(y) = v+−+(y) = 1. Put w = v+−+− and the proof is complete. �

3.5. Interpolation for Sympathy

An interpolation property for sympathy follows readily from its counterpart for
friendliness. We need to be careful, however, about where we can write A, versus
A∗, in the formulation.
Interpolation for |∼. Whenever A |∼ x there is a finite set F ⊆ E(A∗) ∩ E(x) ⊆
E(A) ∩ E(x) of elementary letters, such that for every finite set G of elementary
letters with F ⊆ G ⊆ E(A∗) there is a formula b with the following properties:

1. E(b) = G
2. A |∼ b (indeed A � b)
3. b |∼ x
4. b is consistent, provided A is consistent
5. b is not a tautology, provided there is a non-tautology y ∈ LA ∩ Lx with

A � y.

Proof. Suppose A |∼ x. By definition, A∗ |≈ x. So by interpolation for friendliness,
we have the above but with A∗ in place of A in properties (2), (4), (5). Since
A 	� A∗ we also have (2), (4) for A. It remains to check condition (5).

Suppose there is a non-tautology y ∈ LA ∩ Lx with A � y. We need to find
a non-tautology z ∈ LA∗ ∩ Lx with A∗ � z. Consider the 2k formulae that can be
obtained from y by substituting �,⊥ for the k letters (k ≥ 0) in E(y) that are
not in E(A∗). Since y is not a tautology, at least one of these 2k formulae is not a
tautology; choose one as z. Clearly z ∈ LA∗ ∩ Lx. Also, since A � y and A 	� A∗

we have A∗ � y and so since the substitution producing z is the identity on A∗ we
have A∗ � z and the verification is complete. �

3.6. Further Remarks on the Concept of an Essential Letter

Karl Schlechta (personal communication) has observed that it is possible to gen-
eralize the notion of an essential letter, making it relative to an arbitrary set of
valuations rather than to a set of formulae. In detail: let W be an arbitrary set
of valuations. We say that a letter p is essential to W iff there are two valuations
that agree on all letters other than p, but one in and the other outside W .

As is often the case when we pass to arbitrary sets of valuations in place
of sets of formulae (which correspond to definable sets of valuations), we get an
equivalent notion in the finite case, but a more general one in the infinite case with
loss of some properties. Without following this through systematically, we give one
example. When dealing with sets of formulae, we have the following:
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Observation. Let A be any set of formulae. Then A is contingent (neither a tau-
tology nor a contradiction) iff at least one of its elementary letters is essential to
it.

Verification. Right to left is immediate from the definition of an essential letter.
For the converse, suppose that A contingent. Then there are two partial valuations
v, w on E(A), with v(A) = 1 and w(A) = 0. From the latter, there is a formula
a ∈ A with w(a) = 0. Let vw be the partial valuation on E(A) defined by putting
vw(p) = w(p) for all letters in E(a), and vw(p) = v(p) for all other letters. Then
v, vw disagree on only finitely many letters, and we have v(A) = 1 while vw(a) = 0
so that vw(A) = 0.

Since v, wv disagree on only finitely many letters, there is a finite chain
v1, . . ., vn of partial valuations on E(a) beginning with v1 = v and ending with
vn = vw, each disagreeing with its predecessor on just one letter. Take the last
vk in the chain with vk(A) = 1. Then k < n and vk+1(A) = 0. Thus vk, vk+1 are
partial valuations on E(A) that agree on all letters except one, but give A different
values, so that letter is essential to A. �

This argument goes through no matter what the cardinality of the set of the
elementary letters, and independently of whether they can be well ordered. But
the observation fails for its counterpart in terms of sets of valuations, even for a
countable language.

The counterpart says: Let W be any subset of the set of all valuations; then
W is proper and non-empty iff at least elementary letter is essential to it. Right
to left does hold: if at least one letter is essential to W , then immediately from
the definition W is neither empty nor the set of all valuations. But left to right
fails. Example: put W to be the set of all valuations that make only finitely many
elementary letters true. This is neither empty nor the set of all valuations. But
when a valuation is in W , so is every valuation that differs from it at exactly one
letter.

4. Open Questions

4.1. Specific Problems

• Can we give an axiomatic characterization of friendliness (or for sympathy)
that is more traditional in style than the one at the end of section 1.5?

• What is the most interesting way of defining friendliness in a first-order con-
text, and which of its properties carry over?

• Which properties of the notion of an essential letter carry over when that
notion is understood modulo an arbitrary set of valuations, as in section 3.6,
rather than modulo a set of formulae?
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4.2. Open-Ended Questions

• How much of the theory of friendliness remains if we generalize from the
classical two-valued context to a many-valued one?

• Is it helpful to characterize friendliness and sympathy using appropriate
three-valued possible worlds structures, with a relation between possible
worlds representing the extension of one partial valuation by another?

• Are there any interesting connections between the theory of friendliness and
possible-worlds semantics for intuitionistic logic?

5. Appendix

5.1. Proof of Least Letter-Set Theorem

As remarked in the text, proofs of the least letter-set theorem usually cover only
the finite case. Perhaps the most elegant such proof, given for example by Parikh
(1999), uses interpolation for classical logic. We recall it briefly.

Let A be any finite set of Boolean formulae. Since A is finite, E(A) is also
finite, so there is at least one minimal subset F ⊆ E(A) with the property that
A is classically equivalent to some set of formulae in the language generated by
F . So we need only show that F is unique. Let G be any other such minimal
set of letters. Then there are sets B, C of formulae in LF , LG respectively with
B 	� A 	� C so B � C so by interpolation for classical logic there is a set X of
formulae in LF∩G with B � X � C so A � B � X � C � A so A 	� X . But since
F , G were both minimal, it follows that F = F ∩ G = G and we are done.

Unfortunately, this elegant argument is not available in the infinite case, as
we cannot assume that there is a minimal F with the property. We give a different
proof covering the infinite as well as the finite case. We have not been able to
ascertain whether such a proof already occurs in the literature.

We recall from section 3.1 the definitions that will be needed.

• E!(A) is the set of all letters p that are essential for A, in the sense that there
are two valuations v, w, on the set E of all elementary letters of the language,
that agree on all letters other than p but disagree in the value they give to
A. Clearly E!(A) ⊆ E(A), and whenever A 	� B then E!(A) = E!(B).

• A∗ is the set of all formulae x with both A � x and E(x) ⊆ E!(A). Clearly
E(A∗) = E!(A). Clearly, whenever A 	� B then A∗ = B∗.

Clearly, it would be equivalent to formulate the definition of E!(A) in terms
of partial valuations on E(A) rather than full valuations on the entire set E of
elementary letters, but working with full valuations here streamlines the argument.

We proceed via a lemma. Roughly speaking, it says that letters that are
individually inessential to a set of formulae, are also jointly so.

Lemma. Let v, w be any two valuations on E that agree on E!(A). Then v(A) = 1
iff w(A) = 1.
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Proof. First we use induction to show that the lemma holds whenever v, w disagree
on only finitely many letters. Then we use this to show that it holds when they
disagree on infinitely many letters.

For the basis of the induction put n = 0, i.e. suppose that v, w disagree on
no letters. Then v = w and we are done. For the induction step, suppose that
the lemma holds whenever two valuations disagree on just n letters. Suppose v,w
disagree on just n+1 letters p1, . . ., pn, pn+1. Let w′ be a valuation that is just like
w except that w′(pn+1) = v(pn+1). Then w′ disagrees with v on just n letters,
and so by the induction hypothesis v(A) = 1 iff w′(A) = 1. But also w′ disagrees
with w on just the one letter pn+1. Since v, w agree on E!(A) while disagreeing
on pn+1 we know that pn+1 /∈ E!(A), i.e. pn+1 is not essential for A. Hence since
w, w′ agree on every letter other than pn+1 we have by the definition of essential
letters that w(A) = 1 iff w′(A) = 1. Putting these together, v(A) = 1 iff w(A) = 1
as desired. This completes the induction.

Now suppose that v, w are any two valuations on L that agree on E!(A) but
differ on infinitely many letters. We want to show that v(A) = 1 iff w(A) = 1.
Suppose otherwise; we obtain a contradiction. Then either v(A) = 1 while w(A) =
0, or w(A) = 1 while v(A) = 0. Consider the former; the latter case is similar.

Since w(A) = 0, we have w(a) = 0 for some a ∈ A. Let vw be the valuation
like v except for the letters in a, where it is like w. Then vw disagrees with v on
just finitely many letters. Moreover, none of those letters are in E!(A). For suppose
vw(p) �= v(p). Then the letter p occurs in a, so vw(p) = w(p) so w(p) �= v(p) and
thus p /∈ E!(A) by the supposition that v, w agree on E!(A). Hence the finite part
of the lemma gives us v(A) = 1 iff vw(A) = 1. By supposition, v(A) = 1 so we
have vw(A) = 1. Since a ∈ A this gives vw(a) = 1. But w(a) = 0 and by the
construction of vw we have vw(a) = w(a). Hence vw(a) = 0 giving us the desired
contradiction. �

Least letter-set theorem. A 	� A∗, and for every set B of formulae with A 	�
B, E(A∗) ⊆ E(B).

Proof. We need to show (1) E!(A) ⊆ E(B) for every B with A 	� B, and (2)
A 	� A∗.

For (1), suppose A 	� B, p ∈ E!(A), but p /∈ E(B); we obtain a contradiction.
The diagram illustrates the argument that follows.

v(A) �= w(A)
= =
v(B) = w(B)

Since p ∈ E!(A) there are valuations v,w on L with v(q) = w(q) for all
letters q with q �= p, but v(A) �= w(A) (top row). Since p /∈ E(B) this implies
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v(B) = w(B) (bottom row). But since A 	� B we have both v(A) = v(B) and
w(A) = w(B) (side columns), giving a contradiction.

For (2), by construction, we have A � A∗. Suppose A∗
� A; we derive a

contradiction. Since A∗
� A there is a valuation v with v(A∗) = 1 and v(A) = 0,

i.e. v(a) = 0 for some a ∈ A. Let S be the set of all literals ±q with q ∈ E(A∗)
such that v(±q) = 1. Then clearly S � A∗. We break the argument into two cases,
deriving a contradiction in each.
Case 1. Suppose S is inconsistent with A. Then by classical compactness, some
finite subset Sf ⊆ S is inconsistent with A. Hence A � ¬ ∧ Sf . Since all letters
in ¬ ∧ Sf are in E(A∗) it follows that ¬ ∧ Sf ∈ A∗, so since v(A∗) = 1 we have
v(¬ ∧ Sf ) = 1. But by the construction of S we also have v(∧Sf ) = 1, giving us
the desired contradiction.
Case 2. Suppose S is consistent with A. Then there is a valuation w with w(S) =
w(A) = 1. Since w(S) = 1 it follows that w agrees with v on all letters in E(A∗).
So the lemma tells us that v(A) = 1 iff w(A) = 1. So since w(A) = 1 we have
v(A) = 1. Since a ∈ A, this gives v(a) = 1, contradicting v(a) = 0 and completing
the proof of (2). �
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