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Completeness Theorems, Representation Theorems: Wieathe Difference?
David Makinson
Abstract

Most areas of logic can be approached either secadiptor syntactically. Typically,
the approaches are linked through a completenespogsentation theorem. The two
kinds of theorem serve a similar purpose, yet tladse seems to be some residual
distinction between them. In what respects do thiffgr, and how important are the
differences? Can we have one without the other?dieuss these questions, with
examples from a variety of different logical sysgem

1. Introduction: Syntax versus Semantics

Usually, the first serious course that a studekegan logic will introduce classical
propositional and predicate calculi. The class ngathat there are two ways of
approaching such systems: semantic (alias modeadrdtie) or syntactic (alias
axiomatic, postulational). Typically, the two areade to work like chopsticks. The
teacher takes one of the two presentations asnabfise. The other is then introduced
and the two are linked by means of a completenesgrém that establishes their
equivalence. This theorem is often the culminapaont of the course.

The decision which of the two presentations tottasabasic is very much a matter of
personal preference, influenced by philosophicatspectives and pedagogical
experience. In the case of classical propositidogic it is customary to begin
semantically with the definition of a tautology,datihen show how this coincides with
an approach in terms of axioms (or axiom schemad)darivation rules. On the other
hand, in the case of intuitionistic propositioragik, it is more common to proceed in
the reverse direction, first indicating how one htiguestion certain of the axioms of
the classical system, then forming a reduced axdetmand finally showing how the
resulting set of derivable formulae may be charamtd semantically, say in terms of
relational model structures or a suitable familyatffebras. Of course, there are also
maverick authors who do the reverse in each case.

As time goes on, the student also learns that tencktion between ‘semantic’ and
‘syntactic’ is not set in stone. There are predemta such as that of semantic
decomposition trees (alias semantic tableaux) witah be seen as somewhere
between the two. Notwithstanding their semantic @athere is something syntactic
about these trees, and indeed it is possible to thm@ccount into Gentzen sequent
systems on the one hand — a flagship of the syotleet — and into truth-tables on
the other. Moreover, when taught completeness pramfe learns that even such a
paradigmatically semantic object as a classicaliatan can be identified with a
syntactic item, namely a set of formulae that i$l4vehaved with respect to each of



the propositional connectives, and also learnsttieaset of tautologies coincides with
the intersection of all such sets.

Most logicians have come to accept that the distincbetween semantic and
syntactic approaches is one of perspective andetv@nce more than of metaphysics.
Roughly speaking, a semantic approach is seen r&desing the relationship of
formulae of the system to objects ‘outside’ it (g¢lge two classical truth-values or, in
the first-order context, elements of a domain a&fcdurse and relations over the
domain), while syntactic accounts consider formutaetheir own terms’, working
with e.g. sets, sequences, rules, and trees madd theem, without appealing to
external items like truth-values. But this is urgleod as an intuitive guide rather than
a rigorous separation, and items of one kind as® alsed as mathematically
indistinguishable substitutes for those of the nthe

More important than what the objects of the twodkirof the approachre, is the
manner in which they anesed Thus, a syntactic approach will usually put fordva
inductive definitions of its key notions such ag et of all logical truths, while a
semantic approach will usually define the sameomgtias the intersection of a family
of inductively defined sets (those formulae trudemeach valuation).

What about the distinction between completenessremesentation theorems? Here
too it would be wrong to proceed doctrinally. Itniere a matter of articulating how
these notions have come to be used by logiciansnattiematicians and isolating
typical differences. Nor need the exercise end itp & formal definitions. Contrary
to a widely held view, the search for a formal degion corresponding in all points
with current usage can be an endless pursuit vitiingshing returns. A well known
example is the attempt by epistemologists to cansta formal account of what
constitutes knowledge, as contrasted with beliehatMwe need is clarification of
essentials; rough insight can be more useful tbendus formal definition.

We will begin by considering well-known examples aimpleteness theorems in
classical and related logics, and compare them \agbBociated representation
theorems. This leads to an approximate articulatiosifferences. We will then go on
to look at some less widely known examples wheesdbntrast presents itself in a
rather different light. We take these examples frone theories of ‘logical
friendliness’ and of uncertain inference.

The discussion will not lead us to cut-and-driefiniiiions of either completeness or
representation theorems. But it will provide ushw#ome elementary distinctions,
basic insights, and an appreciation of some ofitfierent things that can be going on
under these two names.

2. Three Perspectives: Logical Equivalence, Logicd8lruth, Logical Consequence

Monuments of nature or of man such as Mount FujherSydney Opera House can
be looked at from many directions. The engraver udak immortalized a hundred

views of Mount Fuji, and photographers have semétdousand facets of the Opera
House. Logic too can be looked at from many anglesr the last century and a half
there have been changes in the perspective chosen.



From 1847, the date of publication of George Bal@bneeringThe Mathematical
Analysis of Logicwe can distinguish between three epochs, focgssitention in
three places. For Boole himself and many of hisessors in the second half of the
nineteenth century, centre court is occupiedelyations If we translate from an
algebraic context to a more conventionally logmaé, we can say that these logicians
gave prime attention to a relation between promrst formulae:the relation of
classical equivalence

In 1879, with the publication of FregeBegriffsschrift this perspective changed
radically. The relation of equivalence became sdapn cameras were directed
instead at a distinguished set of formultdes set of all logically true formuladhis
perspective became more and more popular, flowdigim®ugh much of the twentieth
century, and is still standard in most texts ofddgr students of mathematics.

But already in the 1920s and 1930s a third pergmeatas being developed by Tarski
and Gentzen. They returned to a relation betweenuiae, but a different on¢he
relation of classical consequenckhis angle was further developed by the so-called
Polish school of logic after the Second World WBRaor many logicians today
(including the present author) it provides the numstvenient thread to follow.

Of course, for classical logic and some of its hbaurs, all three of these notions —
the relation of logical equivalence, the set ofidagtruths, and the relation of logical
consequence — are easily inter-definable. But tleeeother contexts in which the
account in terms of a distinguished set of formugaenable to register the subtleties
of either of the two relational ones, and indeedaih happen in some cases that the
account in terms of equivalence cannot reconstth#easymmetries of consequence.
From the point of view of universal logic, the appch in terms of consequence
appears to be the most fine-grained. In the ptedisoussion of completeness versus
representation theorems, we will usually formutade remarks in terms of it.

3. The Classical Case: Representation for Boolearigebras, Completeness for
Classical Logic

In the theory of Boolean algebras, the represamtdtieorem can take several forms.
One tells us that every Boolean algebra is isomorgoha field of sets; another tells us
that every Boolean algebra is isomorphic to a géiah of a direct product of copies
of the two-element Boolean algebra. These theordss from the work of Stone,
Birkhoff and others in the 1930s.

In classical propositional logic the most commomnfolation of the completeness
theorem tells us that every tautology (i.e. formulee under all suitably well-behaved
valuations into the set of the two truth-valuesjigivable in an appropriate axiom
system (i.e. may be obtained by repeated applitatal chosen derivation rules to
selected formulae serving as axioms). This ressit dates back to the early twentieth
century. When stated in terms of consequence, aienss likewise tells us that for
any propositional formulaa,x, if a tautologically implies< then the pairg,x) may be
obtained from chosen pairs serving as axioms byateg applications of chosen
derivation rules.



It has for long been recognized that these arengagimilar things, one in the
language of the algebraist and the other in thguage of the logician. Indeed, certain
differences are merely incidental, without sigrafice. Boolean algebras are usually
defined as structures satisfying certain equatiagle the above formulations of the
completeness theorem use a distinguished set afufae, or the non-symmetric
relation of consequence over them. But it is peifepossible to define Boolean
algebras as algebraic structures with a unit elésesfying certain conditions, or in
terms a partial ordering corresponding to logiacaisequence. Likewise, as we have
already mentioned, it is possible to formulate silzed logic and in particular its
completeness theorem in terms of an equivalenagior| corresponding to the
equations of Boolean algebras. So that is not atantive difference.

One of the first to study systematically the intencection between completeness and
representation was Helena Rasiowa in her celebraddme of 1963, The
Mathematics of Metamathematioso-authored with Roman Sikorski. Another was
Paul Halmos in the papers collected in Algebraic Logicof 1962 (see also the
reminiscences in his autobiography of 1985). Ay tinelependently pointed out, the
formulae of classical logic can be seen as fornairgpolean algebra under a suitably
defined equivalence relation, and this turns oubdcthe free Boolean algebra on a
countable set of generators. The logician’s vatuatiare in effect homomorphisms
from the free Boolean algebra into the two-elemene, and the completeness
theorem thus comes out as an immediate consequanttee second of the two
representation theorems mentioned above. In thig, wantral parts of classical
propositional logic may be seen as fragments ofasentomprehensive theory of
Boolean algebras.

From this example, one may hazard the followingyloportraits of completeness and
representation theorems.

* A completeness theorem for a formal language stditas a semantically
defined set of expressions (or relation betweemjhaf a formal language is
included in one that is presented syntacticallypidglly, the latter set is
defined inductively, as the closure of an exgiaifiven list (‘faxioms’) under
explicitly given Horn rules (‘derivation rules’)nlgeneral, such a theorem is
of interest only if we already have the conversauision (soundness), which
usually is proven by a straightforward inductioattnides on the back of the
definition of the syntactically presented set.

» A representation theorem for a class of mathemagtocactures (e.g. algebras)
states that every structure in that class is ispimorto some structure in a
distinguished proper subclass. Typically, the safglof structures is in some
sense more ‘concrete’ than the class as a whokeafselds of sets compared
to Boolean algebras in general (or even more dbliethe groups of
transformations that figure in representation teets of group theory).

Several contrasts emerge from these portraits.hénfirst place, a completeness
theorem relates a language to a structure or faroilystructures, while a
representation theorem relates a family of strestdo one of its proper subfamilies.
For this reason, a completeness theorem belondsgio, while a representation
theorem belongs to mathematics, even though iheaea direct implications for logic.



Moreover, representation theorems appear to be pwserful, in general, than the
corresponding completeness theorems. In the clds0text, at least, the latter may
be obtained as a corollary of the former, but theneo visible way of proceeding in
the reverse direction.

Finally, in a representation theorem the definitmithe distinguished subclass of
structures is free to take a wider variety of forttman is customary for the notion of
derivability. While the latter is usually requiréal be inductive, and the induction is
often expressed using Horn conditions, there isuah constraint on the definition of
the distinguished subclass of structures in a sgotation theorem.

This picture holds up well for a number of othemamples. Essentially the same
pattern emerges in modal logic, irrespective of tivbe on the semantic side, we are
looking at Boolean algebras with operators, topicklgstructures, or relational
frames in the style of Kripke. It also shows itselfsome well-known subsystems of
classical logic, such as intuitionistic logic (agarespective of whether the semantics
is algebraic or relational) and for various systeshparaconsistent (alias relevance)
logics. In this way, something along the lines lut tpicture has become part of the
folklore.

But there are also contexts where parts of thauatio not fit so well. In the next
section we recall an example of a completenessréheavhere the definition of
derivability is quite unusual in form, though stédl Horn rule, and where no
underlying representation theorem appears to bidahl@a Then we give an example
of a representation theorem that links formulaehvgtructures and so is already
situated on the logical rather than the purely mathtical level. Moreover, in that
example the representation theorem is significardt difficult to prove while a
directly corresponding completeness theorem igatrand uninteresting.

4. Friendliness: Completeness without Visible Repeentation

The concept of friendliness was introduced in Makim (2005a) with a more detailed
account following in Makinson (2005b). It is a rid& between formulae of classical
logic that generalizes, in a natural way, the stathéhotion of classical consequence.

Recall the definition of classical consequencerwppsitional logic. LeA be any set
of formulae, andx any individual formula. Therx is said to be a classical
consequence oA, written A |= x, iff for every valuationv on all letters of the
language, i(A) = 1 (shorthand fov(a) = 1 for alla [0 A) thenv(x) = 1.

Trivially, the only elementary letters (alias pregimnal variables) that count here are
those occurring i\ or in x. Write E(A) for the set of elementary letters that occur in
A; likewise E(x) for those occurring irx, andE(Ax) for those occurring iA{x}.
Then the definition of classical consequence mayepérased as follows |= x iff

for every partial valuation on E(A), if v(A) = 1 thenv’(x) = 1 for every extension’

to E(A.X).

Expressed in this last way, classical consequenaélil concept. Friendliness is just
the correspondingll] one. We say thaA is friendly to x and writeA [ x iff every



partial valuatiorv on E(A) with v(A) = 1 may be extended to a partial valuatibon
E(AX) with v'(x) = 1.

Evidently, this definition is just as semantic aghat of classical consequence itself.
Can it be given a syntactic characterization?

A little reflection indicates that if it can, thgrdactic conditions will have to be rather
different from those to which we are accustomedlikgnits [0 counterpart, the
relation of friendliness is not closed under umfosubstitution of arbitrary formulae
for elementary letters (briefly: substitution). Fartrivial counter-example observe
thatp = plg wherep,q are distinct elementary letters, whgd=/ p[;~ p obtained by
substitutingp for g. Consequently, the relation cannot be charactiigetaking an
explicit set of expressions that is closed undésstution, and closing it under rules
that are also closed under substitution, as wenddassical logic and many of its
neighbours.

However, it turns out that we can do the job infillowing way. On the one hand,
friendliness satisfies the following three rules:

(1) WheneveA |=x thenA | x

(2) WheneveA{ b} |= x andA{-b} |= x thenA | x

(3) WheneveA |=/-x and for each elementary letief] E(A), eitherA |=p or A
|=-p, thenA |= x.

Conversely, friendliness is the least relatisroyer classical formulae that satisfies
these three rules. Despite the negative antecedehe last condition, such a least
relation exists, and is the intersection of alatieins satisfying the three conditions.

Of the three conditions, the second is a typicatnHuale, closed under substitution
and paradigmatically syntactic. The first can bgarded as semantic or syntactic as
we like, according as we give classical consequarsgmantic or syntactic reading.

The third rule is the most interesting. As far be telation is concerned, it is a
Horn rule: its negative antecedent concerns ordyrdlation of classical consequence,
not friendliness (and so better called a ‘side-dion rather than an antecedent or
premise). But it has an internal complexity thahas customary: its formulation uses
(in the metalanguage) negation, universal quaatific and disjunction). Moreover,
the set of all ordered paird,k) such that the rule guarantees thgt x, is not closed
under substitution. Finally, the rule is computagtly ghastly, and if a similar rule is
used in a first-order version of friendliness, il wot even be semi-decidable.

Can we call this characterization of friendlinessanpleteness theorem? In the
author’s view, that would be a natural and legitenaay of speaking. To be sure, one
might hope for a simpler third rule, and perhaps oan be found. We would then
have two completeness theorems, one in some setise than the other.

Is there any interesting representation theorem uinderlying this completeness
theorem? The main candidates appear to be theasthnepresentation theorems for



Boolean algebras, mentioned above, but it is diffito see any natural way of
obtaining the completeness theorem for friendlirfiems them.

Thus, this example departs from the standard mciartwo ways: we have a
completeness theorem but apparently no underly@pgesentation theorem, and one
of the rules generating the syntactic notion ofivddaility is more unwieldy than is
customary.

5. A Celebrated Representation Theorem with a Trival Completeness
Counterpart

There are also contexts where one can prove an riamioand non-trivial
representation theorem, but where the corresponchingpleteness theorem is quite
trivial and degenerate.

This kind of situation arises for several kindslajic that have been studied in the
last quarter century, notably the logic of belidiange in the style of AGM
(Alchourron, Gardenfors, Makinson 1985), and logi€sincertain inference, whether
qualitative (alias nonmonotonic logic) or quantitat (probabilistic consequence
relations). We will illustrate the phenomenon waithe of the best-known examples —
the qualitative logic of uncertain inference forieteld in terms of preferential models
in the manner of KLM (Kraus, Lehmann and Magido®2Qp

Syntactically, we are looking at relations |~ beiweformulae of classical
propositional logic that satisfy a certain smallection of Horn rules, i.e. rules of the
form: whenever a|~ x and... a |~ %, then b |~ yHere,n > 0 and then antecedents
of the rule are possibly supplemented by side-d¢mrdi involving classical

consequence but not mentioning |~.

To be precise, KLM consider the following family bforn rules. The second and
third rules use side-conditions; in the third etffe means classical equivalence.

al~a (Reflexivity )

whenevem |~x andx |-y, thena |~y (Right Weakening)
wheneveia |~x and a=|F b, thenb |~x (Left Classical Equivalence)
whenevem |~x anda |~y, thenallx |~y  (Cautious Monotony)
whenevem |~x andb |~ X, thenallb |~x  (Disjunction in théPremises)
whenevema |~x anda |~y, thena |~xly  (Conjunction in Conclusion).

These rules do not define a unique consequencéoreldRather, they define an
infinite family of such relations, all of which amupraclassical in the sense that
(considered as relations, i.e. as sets of ordeedd)pthey include the relation of
classical consequence. The KLM representation é&meotells us: A relation |~
between formulae of classical propositional logitsgies the KLM postulates iff it is
generated from some preferential structure by meaB8fioham’'s minimality rule.

Here, apreferential structureis a triple §<,A), where S is any non-empty set
(heuristically, of 'states' or ‘'worlds'y is any relation ovelS (typically, at least
irreflexive and transitive, but these constraints ot necessary for the theorem), and
A is a 'labelling function’, which associates withch states [1 S a classical valuation



A(s), also writtenvs, on formulae into the two-element set {0,1}. Tosere
satisfaction of Cautious Monotony, it is assumedpad of the definition that the
structure is stoppered (alias smooth) in the straefor every formula, if v{(a) = 1
then eithes is itself minimal among the statewvith v(a) = 1, or there is a stag<'s
that is minimal among those states.

When §<,A) is a preferential structure then it generate®msequence relation |~
between formulae of classical propositional logic3hoham's minimality rulea |~ x
iff vs(X) = 1 for everys [ S such that is minimal among the statésvith v(a) = 1.
Such a relation is calledpeferential consequence relation

It is straightforward to verify that every prefetiah consequence relation satisfies all
of the KLM rules. The representation theorem, wealletells us the converse: every
relation between classical formulae satisfyingadlthe KLM rules is a preferential
consequence relation. This result is justly celigrait is a significant fact with a far
from trivial proof.

Interestingly, it already goes a little beyond kived of representation theorem that we
saw for classical logic. There is no talk of isoptasm here. The relation |~itselfa
preferential consequence relation; in other woitdsan itself be generatdtbm some
preferential structure using Shoham'’s rule.

Also of interest is that the representation theodems not belong to some underlying
algebraic or purely model-theoretic level, as ie thassical and modal cases. It is
about relations |~ between classical formulae,iartdus very much a result of logic
itself.

To be sure, Karl Schlechta (2004) has subsequshtyn that we can dig deeper,
and see the KLM representation theorem as a refteof another one that functions
on a purely mathematical level, to the effect teegry structure of a certain kind

(defined in terms of selection functions) may baegated from a structure of another
kind (defined in terms of relations). We thus h&we representation theorems, one
deeper than the other. But it remains standarefer to the KLM result itself as a

representation theorem, despite its explicit camoeith expressions of a formal

language.

Is there a completeness theorem correspondingisorépresentation theorem? In
particular, can we show that an expresserj~ x is derivable from the KLM
postulates iff it holds in every preferential mdtiel

The answer to this last question is positive, burtaily true and of no interest. For
classical consequence is itself a preferential @gmsnce relation (take to be the
empty relation in the definition of a preferentmbdel), and by the first of the KLM
postulates it is the least one. &8¢~ x holds in every preferential model #f |= x.
Likewise,a |~x is derivable from the KLM postulates df|= x.

What is happening? Essentially, it appears to leeftliowing. The representation
theorem quantifies over relations |~. It tells hat tfor every suclelation, it satisfies

the KLM postulates iff it is generated by some prehtial model. On the other hand,
the completeness theorem distributes the quantfier relations to each side of the



equivalence after adding an initial quantificatmrer pairs of formulae. It states that
for any pair §,x) of formulae, ,X) is in everyrelation satisfying the KLM postulates
iff it is in everyrelation that is generated by some preferentialehod

Similarly in the classical case. The representatimorem for Boolean algebras says
that a structure is a Boolean algebra iff it ismsophic to a subalgebra of a direct
product of copies of the two-element Boolean algelbrom this it follows that an
arbitrary equation is valid iall Boolean algebras iff it is valid iall such subdirect
products. And the latter holds iff it is valid inet two-element algebra itself — which is
just the classical completeness theorem. Here agaiare distributing the quantifier
through the equivalence and adding an initial géiaation, this time over equations.

Distributing a universal quantification to each esidf an equivalence evidently
weakens it:[0x(¢) - Ox(P) is weaker thanx(¢ - ). This is why completeness
theorems are generally weaker than their represemtaounterparts. And in some
cases, such as that of preferential consequeneedisitribution of the quantifier
washes out everything of interest.

Such loss in the wash also occurs in the contegtaifabilistic consequence relations
(see Hawthorne and Makinson, to appear) as welfoassome other kinds of
gualitative consequence relations for uncertaisorig. It likewise takes place for
belief revision under the AGM paradigm, as candmnsoy applying the translation of
Géardenfors and Makinson (1991). In each of theses;aand for the same underlying
reason, we have a trivial completeness theoremhichwboth left and right collapse
into classical consequence.

6. Completeness of the KLM Postulates over the Donmaof Horn Rules

However, it would be misleading to leave the questiof completeness for
preferential consequence with only this negativeseokation. For, although
completeness for expressions of the faanj~ x is trivial, we can also formulate
another completeness result, this time more sigamfi It concerns a wider class of
expressions, namely Horn rules. These, we reaalrdes of the formwhenever a

|~ % and... @& |~ %, then b |~ ywheren > 0, and then antecedents of the Horn rule are
possibly accompanied by side-conditions involvitagsical consequence but not |~.

First, we look at the syntactic side. Consider angh Horn rulevhenevera; |~ x
and ... & |~ % then b |~ yand any seH of Horn rules (each possibly with side
conditions involving classical consequence onlyg ¥dy that the former terivable
from the latter iff, roughly speaking, its consequean be obtained from its
antecedents and the rulesHnby iterated detachments. To be precise, iff thera
finite tree whose root is labelled wikh|~y, each of whose leaves is labelled with one
of a; |[~Xy,..., @ |~ X, (or with a fact about classical consequence,niesof the rules
in H make use of side-conditions) and such that eachledad is labelled by (an
instance of) the consequent of one of the Horrsriléd and has its parents labelled
by the (corresponding instance of) the anteced@nmtside conditions) of the same
Horn rule.

This definition is rather tedious when written aat full, but an easy result of
universal logic (and of logic programming) tells tlsat it is equivalent to the



following more succinct one. The Horn rvidnenever; |~ x and... @ |~ %, then b |~
y is derivable from the séi of Horn rules iff it is satisfied by the leastatbn (i.e.
the intersection of all relations) satisfying alles inH.

When formulated over the domain of Horn rules, tmnpleteness theorem for
preferential consequence can be stated as folldwdorn rule whenevera; |~ x
and... & |~ %, then b |~ yis derivable from the KLM postulates wheneveratds in

all preferential models. This result follows immatgily from the KLM representation
theorem. Since statemenss |~ x are themselves Horn rules (with = 0) this
completeness theorem covers the previous one @&a@ak case. But whereas the
special case is trivial (left and right hand sideBapsing into classical consequence)
the more general version is not.

One lesson that we can learn from this exampldas whenever we formulate a
completeness theorem, we should always be ca@ipecify the set of expressions
to which it applies. Variation in the set of exmiess envisaged can have major
consequences.

7. Representation for Pivotal-Valuation Consequence

We take this opportunity to present a solution te@esentation problem that was left
open in the author'®ridges from Classical to Nonmonotonic Lagit concerns a
family of consequence relations that are supraicias$ut still monotonic; the family
may be seen as a bridge between classical consequemd the preferential
consequence relations of Kraus, Lehmann and Magidor

These consequence relations are defined semawytina#l very simple manner; the
problem is to give them a syntactic characterizatieetV be the set of all classical
valuations on propositional formulae into {0,1},calet W be any subset &f. For any
set A of formulae and individual formua we say thaix is a pivotal-valuation
consequencef A moduloW and writeA |=w X, iff v(x) = 1 for every valuation 0 W
with v(A) = 1.

Classical consequence is evidently a pivotal-vadnatonsequence (the cagé=\V),
and the total relation is also one (case= [1). The problem is: What syntactic
conditions characterize the family of all pivotalvration consequence relationsy |=
forwiv?

For the more restricted family of pivotal-valuatioonsequence relationsywhereW

is a definable subset df(i.e. there is a sét of formulae such that/ is the set of all
valuations satisfyindg=), the answer is straightforward: these relatiores jast the
compact supraclassical closure relations satisfyhmgy rule of Disjunction in the
Premises (alias OR). This result appears to haea part of the folklore for some
time, but the first formal statement and proof ttint author knows of is Rott (2001)
section 4.4 observation 5; there is a direct antp& proof in Makinson (2005c)
chapter 2.

But when we drop the assumption thatis definable, compactness can fail. The

remaining conditions (supraclasical closure retasatisfying OR) continue to hold,
but they are not sufficient to ensure represeniadi® pivotal-valuation consequence
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relations - an example establishing this was giwrerSchlechta (1992). We may
therefore ask: Is there a condition that we can tadthat of being a supraclassical
closure relation satisfying Disjunction in the Prses, that does the job?

There is indeed one, though it is far from beirtgaan condition, and one might even
hesitate to describe it as fully syntactic. It Viiest formulated by Makinson (1994) as
part of an analysis of Schlechta’'s example mentdasgove. We call it th€apping
condition It requires that wheneve |/~ x then there is a maxiconsistent 8&t0J A

with A" = {y: A" |-y} andx 0 A". We can express it more elegantly in the language
of consequence operations. Writi@gA) for {y : A |~y}, it requires that whenevex

00 C(A) then there is a maxiconsistent A&t] A with x 0 A" = C(A").

That this Capping condition provides a represemdineorem was in effect shown by
Ben-Naim (2005, also 2006 Proposition 55), in deatroundabout way. We give a
direct proof, using the language of operations.

Theorem The pivotal-valuation consequence operationsjase the supraclassical
closure operations that satisfy the rule of Disfiorcin the Premises and also the
Capping condition.

Proof. Left-to-right: LetW be any set of valuations, wi@n, the pivotal consequence
operation that it determines. We need to showitlestisfies the listed conditions, of
which the interesting one is Capping. Suppo&eCny(A). Then by the definition of
pivotal-valuation consequence there is a valuatiahW with w(A) = 1,w(x) = 0. Put
A’ to be the characteristic setwfi.e. A" = {y: w(y) = 1}. We claim that it has the
desired properties. Clearly is a maxiconsistent set, and simg@) = 1,w(x) = 0, we
haveA" O A, x 0 A". To show thatA” = Cny(A"), suppose [0 A"; we need to show
thatz O Cnw(A"). SinceA™ = {y: w(y) = 1} we havew(z) = 0 whilew(A") = 1, so
sincew 0 Wwe havez 0 Cny(A") as desired.

For the converse, | be any supraclassical closure relation satisfydi®) and the
Capping condition. PWV to be the family of all valuations that are characteristic
functions of maxiconsistent sexssuch thatX = C(X). We claim thatC = Cn, i.e.
C(B) = Cnw(B) for every set oB of formulae.

To showC(B) O Cny(B), suppose that [1 C(B). Letw be any characteristic function
of a maxiconsistent st such thaiX = C(X), and suppose(B) = 1. We need to show
thatw(z) = 1. Sincew(B) = 1 andX is the characteristic set of B [0 X so sinceC is
by hypothesis a closure operation and so monot@{B) [0 C(X) = X, so sincez [
C(B) we havez I X sow(z) = 1 as desired.

To showCny(B) [0 C(B), suppose that [0 C(B); we need to show that[] Cny(B),
i.e. we need to find & O W with w(B) = 1 butw(z) = 0. By the definition oW, it
suffices to find a maxiconsistent sétwith B [1 X = C(X) andz O X. But this given by
the hypothesis tha satisfies the Capping condition, and the proobimglete.
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