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PARALLEL INTERPOLATION, SPLITTING, AND RELEVANCE IN

BELIEF CHANGE

GEORGE KOUROUSIAS AND DAVID MAKINSON

Abstract. The splitting theorem says that any set of formulae has a finest representation as a family

of letter-disjoint sets. Parikh formulated this for classical propositional logic, proved it in the finite case,

used it to formulate a criterion for relevance in belief change, and showed that AGM partial meet revision

can fail the criterion. In this paper we make three further contributions. We begin by establishing a new

version of the well-known interpolation theorem, which we call parallel interpolation, use it to prove the

splitting theorem in the infinite case, and show how AGM belief change operations may be modified, if

desired, so as to ensure satisfaction of Parikh’s relevance criterion.

Notational preliminaries. We use lower case a, b, . . . , x, y, . . . , to range over for-
mulaeof classical propositional logic. To facilitate smooth formulation of properties
such as interpolation, we include the zero-ary falsum ⊥ among the primitive con-
nectives. Sets of formulae are denoted by upper case letters A,B, . . . , X,Y, . . . ,
reserving L for the set of all formulae, E for the set of all elementary letters (alias
propositional variables) and F,G, . . . for subsets of the elementary letters. For any
formula a, we write E(a) to mean the set of all elementary letters occurring in a;
similarly for setsA of formulae. For any setA of formulae,L(A) stands for the sub-
language generated byE(A), i.e., the set of all formulae x withE(x) ⊆ E(A). Thus
immediately L(A) = L(E(A)), and also E(A) ⊆ E(B) iff L(A) ⊆ L(B). Note that
since the zero-ary⊥ is a primitive connective, L(∅) is not empty, containing both⊥
and ¬⊥.
Classical consequence is written as ⊢ when treated as a relation over 2L × L, Cn
when viewed as an operation on 2L into itself. The relation of classical equivalence
is written ⊣⊢.
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the Chinese Academy of Sciences in Guiyang, China in May 2006. Thanks for hospitality are due to
Professors Toby Walsh and Norman Foo at NICTA, Jeff Paris at MIMS, Karl Schlechta in Marseille,
and Zhang Mingyi in Guiyang. Special thanks to Georg Gottlob for his simplified proof of parallel
interpolation, and to Jan Krajicek and an anonymous referee for helpful comments.

c© 0000, Association for Symbolic Logic

0022-4812/00/0000-0000/$00.00

1



2 G. KOUROUSIAS AND D. MAKINSON

To lighten notation,we follow the common convention of writingA, x forA∪{x}.
A ⊢ B is short for: A ⊢ b for all b ∈ B. Also, v(A) = 1 is short for: v(a) = 1 for
all a ∈ A, while v(A) = 0 abbreviates: v(a) = 0 for some a ∈ A.

§1. Standard versus parallel interpolation. The interpolation theorem(alsoknown
as Craig’s Lemma—see Craig [4, 5], or textbook presentations such as Hodges [7])
tells us, in the case of classical propositional logic, that whenever A ⊢ x there is a
formula b such that E(b) ⊆ E(A) ∩E(x) and A ⊢ b ⊢ x. Equivalently given com-
pactness: wheneverA ⊢ x there is a setB of formulae such thatE(B) ⊆ E(A)∩E(x)
and A ⊢ B ⊢ x. Equivalently again given both compactness and monotony: when-
ever A ⊢ x then Cn(A) ∩ L(A) ∩ L(x) ⊢ x.
Now consider the case that A =

⋃
{Ai}i∈I where the sets E(Ai ) of elementary

letters are pairwise disjoint. Any set A has this form for singleton I , but the
interesting case is when I has more than one element. Suppose

⋃
{Ai}i∈I ⊢ x. We

know from interpolation that there is a formula b such that E(b) ⊆ E(A) ∩ E(x)
and

⋃
{Ai}i∈I = A ⊢ b ⊢ x. But since the sets Ai do not separately imply x,

interpolation does not tell us immediately whether we may treat the Ai in parallel,
i.e., whether we can find formulae bi such that each E(bi) ⊆ E(Ai )∩E(x), Ai ⊢ bi ,
and {bi}i∈I ⊢ x, as illustrated for the case |I | = 2 in Figure 1 below.
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Figure 1. Parallel interpolation: case |I | = 2

Theorem 1.1. LetA =
⋃
{Ai}i∈I where the letter sets E(Ai ) are pairwise disjoint,

and suppose
⋃
{Ai}i∈I ⊢ x. Then there are formulae bi such that each E(bi) ⊆

E(Ai ) ∩ E(x), Ai ⊢ bi , and {bi}i∈I ⊢ x.

Remarks on the Proof. (a) The requirement that the letter sets are disjoint is
essential. (b) It is possible to give a direct proof of the theorem, but simpler to
derive it by iterating standard interpolation as in the following argument due to
Georg Gottlob (personal communication).

Proof of Theorem 1.1. By the compactness of classical consequence, when the
union of a family of sets Ai implies a formula x, then there is a finite subfamily of
finite subsets of theAi , the conjunction of whose elements implies x. It thus suffices
to prove the theorem for finite I and each Ai a singleton {ai}.
Suppose a1 ∧ a2 ∧ . . . ∧ an ⊢ x. Then a1 ⊢ (a2 ∧ . . . ∧ an → x) and by standard
interpolation there is a formula b1 with a1 ⊢ b1 ⊢ (a2 ∧ . . . ∧ an → x) and E(b1) ⊆
E(a1) ∩ E(a2 ∧ . . . ∧ an → x). But E(a1) ∩ E(a2 ∧ . . . ∧ an → x) = E(a1) ∩
(E(a2) ∪ . . . ∪ E(an) ∪ E(x)) = E(a1) ∩ E(x) since the sets E(ai ) are pairwise
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disjoint, so that E(b1) ⊆ E(a1) ∩ E(x). Since b1 ⊢ (a2 ∧ . . . ∧ an → x) we have
b1 ∧ a2 ∧ . . .∧ an ⊢ x and the sets E(b1), E(a2), . . ., E(an) are pairwise disjoint. We
may therefore repeat the procedure for a2, obtaining a suitable interpolant b2, and so
onwith n applications of standard interpolation to obtain finally b1∧b2∧. . .∧bn ⊢ x
where each ai ⊢ bi and each E(bi) ⊆ E(ai) ∩ E(x). ⊣

§2. Application to obtain least splitting theorem in infinite case. We now extend
Parikh’s finest splitting theorem to the infinite case, using parallel interpolation in
the proof. We begin by recalling the definitions. Let K be any set of formulae.

Definition 2.1 (Splitting). Let E = {Ei}i∈I be any partition of the set E of all
elementary letters of the language. Extending the definition of Parikh [9] to the case
that E is infinite, we say that E is a splitting of K iff there is a family {Bi}i∈I with
each E(Bi ) ⊆ Ei such that

⋃
{Bi}i∈I ⊣⊢ K .

The idea of the definition may be illustrated by the following diagram.

( )L

1B 2B

1( )L E 2( )L E

{ }
i
B K

( )L K

Figure 2. Splitting: outline diagram for case |I | = 2

Definition 2.2 (Fineness of a partition). Following customary terminology, we
say that a partition E = {Ei}i∈I of E is at least as fine as another partition F of E,
and we write E 6 F, iff every cell of F is the union of cells of E. Equivalently, iff
RE ⊆ RF, where RE resp. RF is the equivalence relation over E associated with E
resp. F.

Parikh [9] showed that when E is finite, then every set K of formulae has a
unique finest splitting. In this section we extend his result to the infinite case, using
a streamlined proof with parallel interpolation.
We begin with a convenient characterization of splitting. In effect, it permits us
to focus more on individual formulae in K and less on K itself, making it easier to
show that a given partition is a splitting.

Lemma 2.3. Let E = {Ei}i∈I be a partition of the set of elementary letters. ThenE
splits K iff for every x ∈ K there are formulae b1, . . . , bn and sets E1, . . . , En ∈ E
(the integer n depending on the choice of x) such that:

(1) Each E(bi) ⊆ Ei (i 6 n)
(2) K ⊢ bi for each i 6 n
(3) {bi}i6n ⊢ x.

Proof of Lemma 2.3. SupposeE = {Ei}i∈I is a partition of the set of elementary
letters and E splits K . Then there is a family {Bi}i∈I of sets of formulae with each
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E(Bi ) ⊆ Ei and
⋃
{Bi}i∈I ⊣⊢ K . Take any x ∈ K . Then

⋃
{Bi}i∈I ⊢ x so

by compactness there are formulae b1, . . . , bn and B1, . . . , Bn ∈ {Bi}i∈I such that
{bi}i6n ⊢ x and each bi(i 6 n) is the conjunction of finitely many elements of Bi .

From the former, (3) is satisfied. From the latter we have immediately that both
E(bi) ⊆ E(Bi ) ⊆ Ei so that (1) holds, and K ⊢

⋃
{Bi}i∈I ⊢ bi so that (2) also

holds.
Conversely, suppose E = {Ei}i∈I is a partition of the set E of elementary letters
that satisfies the condition of the lemma; we need to show that E splits K . For each
i ∈ I put Bi to be the set of all formulae b with K ⊢ b and E(b) ⊆ Ei . Then
K ⊢ Bi and E(Bi ) ⊆ Ei for each i ∈ I . To complete the proof we need only show
that {Bi}i∈I ⊣⊢ K . Since K ⊢ Bi for each Bi , we haveK ⊢

⋃
{Bi}i∈I . Conversely,

let x ∈ K ; we need to show
⋃
{Bi}i∈I ⊢ x. Choose any b1, . . . , bn and E1, . . . , En

satisfying (1), (2), (3); their existence is guaranteed by our supposition. By (1)
and (2) we have each bi ∈ Bi(i 6 n), so each bi ∈ B1 ∪ · · · ∪Bn ⊆

⋃
{Bi}i∈I giving

us
⋃
{Bi}i∈I ⊢ x by (3) as desired. ⊣

Theorem 2.4. Every set K of formulae has a unique finest splitting.

Proof of Theorem 2.4. Let E be the partition of the elementary letters that is the
infimum of the family E of all partitions that split K . It suffices to show that E also
splits K . Let x ∈ K . By Lemma 2.3, it suffices to find formulae b1, . . . , bn and sets
E1, . . . , En ∈ E (the integer n depending on the choice of x) satisfying conditions
(1), (2), (3) of the Lemma.
Since x is a single formula, it contains only finitely many elementary letters.
Hence there is a partition F ∈ E such that no partition in E that is finer than F
separates any two elementary letters in E(x) that are not already separated by F.
Since F ∈ E , we know by Lemma 2.3 that there are formulae a1, . . . , an and sets
F1, . . . , Fn ∈ F such that:

(a1) Each E(ai) ⊆ Fi (i 6 n)
(a2) K ⊢ ai for each i 6 n
(a3) {ai}i6n ⊢ x.

Recalling that the cells F ∈ F are disjoint, and conjoining the ai when their
letters come from the same cell in F, we may assume without loss of generality that
in addition:

(a0) The letter sets E(ai ) are disjoint (i 6 n).

Applying parallel interpolation to (a3), (a0) we get formulae b1, . . . , bn with:

(b1) Each E(bi) ⊆ E(ai) ∩ E(x) ⊆ Fi ∩ E(x) (i 6 n), using also (a1)
(b2) ai ⊢ bi for each i 6 n
(b3) {bi}i6n ⊢ x.

It remains to check that the properties (1)–(3) of Lemma 2.3 are satisfied. Prop-
erty (3) is just (b3). Property (2) is immediate from (b2)with (a2). For property (1),
consider any i 6 n. By (b1) we have E(bi) ⊆ Fi ∩ E(x). Since E(bi) ⊆ E(x),
the infimum partition E does not separate any two elementary letters in bi that are
not already separated by F. But since also E(bi) ⊆ Fi , no distinct letters in bi are
separated by F. Hence there is an Ei ∈ E with E(bi) ⊆ Ei and we are done. ⊣
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§3. Parikh’s relevance criterion. Parikh has applied the finest splitting theorem
to the logic of belief revision, specifically to formulate a criterion of relevance in
belief change.
Suppose we begin with a belief setK (it does not matter for what follows whether
or not it is closed under classical consequence), and wish to revise it by introducing
a formula x, which in the principal case is inconsistent with K . As is well known,
Alchourrón, Gärdenfors and Makinson [1] introduced regularity conditions that
such a process may plausibly be taken to satisfy (for arbitrary fixedK), and showed
that those conditions are characterized by a specific kind of construction known as
partial meet revision.
However, as Parikh [9] observed, revisions effected in this manner may discard
more than perhaps they should, by eliminating from K items that are in a certain
sense irrelevant to the inconsistency of K with x. The definition of relevance is
formulated in terms of finest splitting, as follows.

Definition 3.1 (Irrelevant formulae). Let K be any consistent set of formulae,
with x a formula that is a candidate for contracting fromK or integrating intoK by
a process of revision. Let E = {Ei}i∈I be the unique finest splitting of K . We say
that a formula a is irrelevant to the contraction or revision of K by x (briefly: a is
irrelevant to x moduloK) iff there is no cell Ei ∈ E such that each ofEi ∩E(a) and
Ei ∩E(x) is non-empty. Equivalently, iff

⋃
{Ej}j∈J ∩E(a) = ∅, where {Ej}j∈J is

the subfamily of cells in E that share some elementary letter with E(x).

The following diagram illustrates what is meant in the case that |I | = 4 and
|J | = 2.

( )E a
1
E

2
E

3
E

4
E

( )E x

Figure 3. Example of irrelevance

We note that this concept is preserved under classical equivalence in the argu-
ment K . That is, if K , K ′ are classically equivalent, then they have the same finest
splitting and so a is irrelevant to x modulo K iff it is so modulo K ′. Note too that
the relation of irrelevance (and thus also its complement, relevance) is symmetric
in the variables a and x.
The relevance criterion may be put as follows: whenever an element a of K is
irrelevant to x modulo K , then it remains an element of the result of contracting
or revising K by x. As Parikh observed, AGM partial meet revision can fail this
criterion, and the same can happen for contraction. We give a simple example for
contraction.
Let p, q be two distinct elementary letters, and put K = Cn(p, q). Then there
is an AGM partial meet contraction (in fact, a maxichoice contraction) that puts
K − p to be Cn(p ↔ q), thus eliminating not only p but also q from K . However,
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the letter q is irrelevant to p modulo K . This is because the representation of K by
{p, q} puts E1 = {p}, E2 = {q}, and neither of these two sets contains both of the
letters p and q.
The example is robust in the sense that it goes through even if we work with belief
bases rather than belief sets already closed under consequence; such robustness is
indeed guaranteed by the fact, already noted, that relevance is preserved between
classically equivalent belief sets. Put K0 = {p ↔ q, q}, so that Cn(K0) = K above.
Then one of the AGM maxichoice base contractions puts K0 − p to be {p ↔ q},
which eliminates q. However, the letter q is irrelevant to pmoduloK0 because there
is another representation of K0 as {p, q}, which puts E1 = {p}, E2 = {q}, and
neither of these two sets contains both of the letters p and q.
Parikh and collaborators have studied the problem of modifying the notion of
partial meet revision so as to ensure that it satisfies the relevance criterion. They
have done so syntactically, i.e., by examining what further postulates may be added
to the standard ones of AGM to ensure respect of relevance. This work was carried
out in Parikh [9], Chopra, Georgatos and Parikh [2], Chopra and Parikh [3],
Peppas, Chopra and Foo [10]. However one may also approach the situation from
a more semantic angle, asking how we might modify the definitions of partial meet
contraction and revision so as to ensure that they respect relevance. That is our
purpose in the next section; but before doing so we comment on the criterion itself.
Is AGM’s failure to satisfy Parikh’s relevance criterion really a shortcoming? In
our view, this question does not have a simple answer: violation of this kind of
relevance may be undesirable in some contexts but perfectly acceptable in others,
depending on the epistemic policy guiding the contraction.
Consider the same example as above, where we are contracting the letter p
from the closed belief set K = Cn(p, q), or from its base K0 = {p ↔ q, q}.
If we are working with the base, we may perhaps regard it as supplying us with
epistemic information, namely that its elements are particularly important items
that deserve to be protected more than other items not appearing in it. But even
so, the base gives us no information to discriminate between its elements. In the
example K0 = {p ↔ q, q}, we are not told explicitly that the elementary letter q
deserves protection more than the biconditional p ↔ q. Indeed, we may wish to
allow for the possibility that the latter is more deeply entrenched, less vulnerable,
than the former. In that case, when we discard p we will jettison the letter q and
keep the biconditional, regardless of the fact that q is irrelevant to p modulo K in
the sense that Parikh has defined.
On the other hand, there may be occasions in which we wish to treat elementary
letters as the only carriers of epistemic significance. In our view, this policy is difficult
to justify in theoretical terms, but it sometimes appears to be adopted in contexts
of artificial intelligence for reasons of computational convenience. Under such a
policy, compound formulae such as the biconditional p ↔ q are of no epistemic
significance, and when changing a belief set we would want to minimize change in
the status of elementary letters and preserve relevance in the sense of Parikh.
In any case, it remains an interesting question whether the AGM partial meet
operations may elegantly be modified so as to ensure that relevance is satisfied. Our
answer in the next section is positive.
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§4. Normalized partial meet operations. If we regard the finest splitting of a belief
set as providing us with a canonical form for it, then instead of applying an AGM
contraction or revision operation directly to K , we may first of all massage K into
its canonical form K ′ and apply an AGM operation to K ′. It turns out that with
this simple manipulation, giving us what may be called normalized belief change
operations, relevance is respected. We do not need to add any further conditions
to the AGM postulates, provided contraction or revision is applied to the canonical
form K ′ of the belief set K rather than directly to K itself.
Note that irrespective of whether or notK is closed under classical consequence,
i.e., whetherK = Cn(K), its canonical formK ′ is not in general so closed. In other
words, contraction and revision on K ′ are what are commonly called belief base
operations.
We begin by considering contraction and obtain the corresponding result for
revision as a corollary. We writeK −x for any partial meet contraction,1 andK ∗x
for the corresponding partial meet revision.

Theorem 4.1. Let K be any consistent set of formulae. Let E = {Ei}i∈I be the
unique finest splitting of K , with {Bi}i∈I a family such that K ′ =

⋃
{Bi}i∈I ⊣⊢ K

and E(Bi ) ⊆ Ei for each i ∈ I . Let x be any formula, and K
′ − x a partial meet

contraction of x from K ′. Then, whenever a ∈ K ′ is irrelevant to x (modulo K ′), we
have a ∈ K ′ − x.

In other words, partial meet contraction applied to the finest splitting of a con-
sistent belief set respects relevance, in the sense that it never eliminates any formula
to which the discarded formula is irrelevant. In the statement of the theorem, the
prime should not be overlooked: the essential feature of the contraction is that it is
carried out on K ′ =

⋃
{Bi}i∈I rather than on K .

At the suggestion of a referee, before giving a formal proof of Theorem 4.1 we
explain in rough terms how the preliminary passage from K to K ′ prevents the
elimination of irrelevant formulae, despite the classical equivalence of K and K ′.
When K ′ − x is the result of a partial meet contraction of x from K ′ then it is
the intersection of some family of maximal x-nonimplying subsets of K ′. But if
there is no cell Ei of the splitting that contains letters from both x and a formula
a ∈ K ′, then the addition of a to any x-nonimplying subset of K ′ will leave it x-
nonimplying, so that a must be in all themaximal x-nonimplying subsets ofK ′, and
so in K ′ − x. Thus in our trivial example where K = Cn(p,q) while K ′ = {p, q}, q
is not in all the maximal p-nonimplying subsets of the former, but is in the (unique)
maximal p-nonimplying subset of the latter.

Proof of Theorem 4.1. Suppose a ∈ K ′ but a /∈ K ′ − x while a is irrelevant to
x (modulo K ′); we derive a contradiction. Let {Ej}j∈J be the subfamily of cells

in E that share some elementary letter with E(x). By the irrelevance,
⋃
{Ej}j∈J ∩

1Partial meet contraction in brief: K − x =
T
ã(K⊥x) where ã is a selection function that singles

out the class of the ‘most important’ maximal subsets of K that do not imply x. Partial meet revision
may be defined using the Levi identity, i.e., puttingK ∗ x = Cn((K −¬x)∪ {x}), or, if we are working
with sets K not closed under classical consequence, simply K ∗ x = (K − ¬x) ∪ {x}. Partial meet
contraction has a central role in theory change and is the core of the AGM paradigm of belief revision.
Much of its power is in its generality and properties; but the selection functions make it computationally
demanding. For more details see the classic paper Alchourrón, Gärdenfors and Makinson [1] or more
recent textbook presentations such as Hansson [6] and Rott [11].
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E(a) = ∅. Since a /∈ K ′ − x, we have by the definition of partial meet contraction
that a /∈ A for some set A that maximally satisfies the conditions that K ′ − x ⊆
A ⊆ K ′ and A 0 x (i.e., A satisfies those conditions and is not a proper subset of
any set satisfying them). Since a ∈ K ′ but a /∈ A the maximality of A gives us
A ∪ {a} ⊢ x. Put K1 =

⋃
{Bj}j∈J and K2 =

⋃
{Bi}i∈I\J . Then since A ⊆ K ′ =

⋃
{Bi}i∈I = K1 ∪K2 we have (A∩K1)∪ (A ∩K2)∪ {a} = A∩ (K1 ∪K2)∪ {a} =
A ∪ {a} ⊢ x. Hence by compactness, {b1, . . . , bm} ∪ {c1, . . . , cn} ∪ {a} ⊢ x where
b1, . . ., bm are elements of A ∩ K1 and c1, . . . , cn are elements of A ∩ K2. Thus:
{b1, . . . , bm} ∪ {¬x} ⊢ ¬(c1 ∧ · · · ∧ cn ∧ a).
We claim that the left and right sides have no letters in common. For by construc-
tion all letters occurring in formulae on the left are in

⋃
{Ej}j∈J while no letters

occurring in formulae on the right are in
⋃
{Ej}j∈J .

Since left and right have no letters in common, either the left side is inconsistent
or the right side is a tautology. If the left side is inconsistent, {b1, . . ., bm} ⊢ x
so since b1, . . ., bm ∈ A we have A ⊢ x contradicting A 0 x. If the right side is
a tautology, {c1, . . ., cn, a} is inconsistent so since all its elements are in K ′, K ′ is
inconsistent and thus K is inconsistent, contrary to hypothesis. ⊣

We obtain as corollary the corresponding property of partial meet revision: in-
putting a formula for revision does not dislodge any elements of the belief set to
which it is irrelevant.

Corollary 4.2. Suppose the same conditions as for Theorem 4.1, with K ′ ∗ x
a partial meet revision of K ′ by input x. Then, whenever a ∈ K ′ is irrelevant to x
(modulo K ′), we have a ∈ K ′ ∗ x. In brief: partial meet revision applied to the finest
splitting of a consistent belief set respects relevance.

Proof. By the definition of revision from contraction using the Levi identity,
K ′ − ¬x ⊆ K ′ ∗ x. Since E(x) = E(¬x) the preceding theorem tells us that
a ∈ K ′ − ¬x, and we are done. ⊣

§5. Open questions. Theorem 4.1 guarantees that any AGM normalized con-
traction operation, i.e., defined on a set K ′ in canonical form, respects relevance in
Parikh’s sense. But it does not give us any guidance on which contraction operation
on K ′ we might wish to choose if we are already given a specific contraction opera-
tion on K . So we may ask whether there is any natural way of choosing the former
so that it departs as little as possible in its values from the latter. In particular:

• Is there any distinguished way of choosing a selection function ã ′ associated
with K ′, given ã associated with K? Can this be done so that it preserves
properties of the selection function such as relationality and transitive re-
lationality? On the syntactic level, can we ensure that the supplementary
contraction postulates (K-7) and (K-8) are preserved?

The concepts and results of this paper have been formulated in the context of
classical propositional logic. Inspection of the proofs makes it clear that they all
carry over to the classical first-order context, with ‘elementary letters’ understood
as elementary predicate and function symbols. This leaves open the following
question:
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• How far can the results be established for subclassical (e.g., intuitionistic)
consequence relations or supraclassical ones (e.g., preferential consequence
relations or the relation of ‘logical friendliness’ of Makinson [8])?
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