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JAMES HAWTHORNE The Quantitative/Qualitative
DAVID MAKINSON Watershed for
Rules of Uncertain Inference

Abstract. We chart the ways in which closure properties of consequence relations
for uncertain inference take on different forms according to whether the relations are
generated in a quantitative or a qualitative manner. Among the main themes are: the
identification of watershed conditions between probabilistically and qualitatively sound
rules; failsafe and classicality transforms of qualitatively sound rules; non-Horn conditions
satisfied by probabilistic consequence; representation and completeness problems; and
threshold-sensitive conditions such as ‘preface’ and ‘lottery’ rules.

Keywords: nonmonotonic logic, uncertain inference, consequence relations, Horn rules,
conditional probabilities, probabilistic thresholds.

1. Introduction

Broadly speaking, there are two ways of approaching the formal analysis
of uncertain reasoning: quantitatively, using in particular probability rela-
tionships, or by means of qualitative criteria. As is widely recognized, the
consequence relations that are generated in these two ways behave quite
differently.

To be sure, because of the much greater mathematical richness of the real
interval [0,1] compared to the two-element set {0,1}, it is possible to simulate
the qualitative approach within variant forms of the quantitative one. This
can be done, for example, by admitting infinitesimal values for probability
functions, using sequences of standard probability functions approaching
unity as a limit, or generalizing to so-called ‘possibility functions’ (see, e.g.,
Lehmann and Magidor [13], Dubois and Prade [6]). It can also be done
using always-defined (e.g. Popper) functions for conditional probability (e.g.
Hawthorne [8]), or by working with sums of improbabilities of premises (e.g.
Adams [2]).

Moreover, even within the qualitative sphere there is quite a lot of vari-
ation in the properties of consequence relations, according to the particular
mode of generation. As is well known, default-assumption constructions tend
to be the best behaved. Default-valuation constructions using preferential
models are almost as well behaved, and indeed equally so in the finite case.
Finally, default-rule constructions are notorious for their irregular behavior,
including loss of both disjunction in the premises and cautious monotony.
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For an overview of such variations see, e.g., Makinson [16], with more details
in Makinson [15].

Nevertheless, if we focus on the Horn conditions that are typical of
qualitative ways of generating consequence relations, we can identify them
with those validated by stoppered (alias smooth) preferential models, i.e.,
those derivable from the well-known family P of closure conditions isolated
by Kraus, Lehmann and Magidor [10] and recalled below. This family is
generally regarded as forming an ‘industry standard’ for qualitative non-
monotonic inference.

In contrast, the consequence relations defined using standard probability
functions, conditionalization, and thresholds, are much less regular in their
behavior, validating relatively few closure conditions. Indeed, only three of
the usual six rules constituting the family P are sound in unqualified form
for probabilistic inference.

The purpose of this paper is to look closely at the gap between the infer-
ence rules that are sound under the qualitative and quantitative approaches.
The organization is as follows.

e Part I investigates threshold-independent rules for probabilistic conse-
quence. In particular:

— In section 2 we recall the qualitative notion of consequence in terms
of stoppered preferential models, and the corresponding family P of
closure conditions; likewise the notion of probabilistic consequence
and the family O of closure conditions sound for probabilistic conse-
quence.

— Section 3 discusses the notions of the failsafe and classicality trans-
forms of qualitatively sound Horn rules.

— Section 4 shows the special role of the rule AND as a watershed con-
dition between qualitatively sound and probabilistically sound rules.
It also shows the equivalence of a wide range of systems in their
application to a restricted class of Horn rules.

— Section 5 is devoted to problems of completeness and representation
for probabilistically sound families of rules.

— Section 6 examines the special role of the rule ROR (which is closely
related to conditional excluded middle) as a watershed condition for
non-Horn rules for systems that extend O.

e Part II turns to threshold-sensitive rules. Specifically:
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— Section 7 examines threshold-sensitive Horn rules, notably the ‘pref-
ace’ rules introduced by Hawthorne [8].

— Section 8 generalizes the threshold-sensitive Horn rules described in
section 7.

— Section 9 investigates threshold-sensitive non-Horn rules, consider-
ing such non-Horn conditions as the ‘lottery’ rules introduced by
Hawthorne [8], and generalizing them.

— Finally, section 10 gathers together a number of open problems that
were raised in the text.

Part I. Qualitative Rules versus Threshold-Independent
Probabilistic Rules

2. Qualitative and Probabilistic Consequence Relations, and
the Families P and O

By a consequence relation we mean a relation |~ between classical proposi-
tional formulae. No specific formal conditions are required of it to merit the
name, but the relation is understood as intended to represent some notion
of inferability, certain or uncertain, between propositions.

The most widely used qualitative notion of uncertain consequence is that
formulated by Kraus, Lehmann and Magidor [10] in terms of stoppered (alias
smooth) preferential models.

Definition 2.1. A preferential model is a structure (S,<,}=) where S is an
arbitrary set (whose elements are called states), < is a transitive, irreflex-
ive relation over S (called the preference relation), and = is a satisfaction
relation between states on the left and propositional formulae on the right,
well-behaved with respect to the classical connectives: s | a Abiff s E a
and s = b and so on for the other connectives. (Intuitively, = specifies which
formulae are true in the state s.)

The preferential model is called stoppered (alias smooth) iff whenever a
state s satisfies a formula @ then either s is minimal under < among the
states satisfying a or else there is a state s’ < s that is minimal under <
among the states satisfying a.

Every stoppered preferential model (S,<,=) determines a preferential
consequence relation |~ by the rule: a |~ z iff s satisfies = for every state
s € S that is minimal among those satisfying a.
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For further background, see either Kraus, Lehmann and Magidor [10], or
a textbook presentation such as that in chapter 3 of Makinson [16].

Probabilistic consequence relations are defined in an entirely different
manner. Let p be any finitely additive probability function in the standard
sense, i.e. any function on the set of all classical propositional formulae into
the real interval [0,1] satisfying the Kolmogorov postulates. Let a be any
propositional formula with p(a) # 0. We write p, for the conditionalization
of p on a, i.e. for the probability function defined by the standard equation
pa(z) = plaAx)/p(a).* Probabilistic consequence relations are then defined
as follows.

Definition 2.2. Let p be any probability function, and let ¢ be any real num-
ber in the interval [0,1]. The pair p,t generates a probabilistic consequence
relation |, (briefly ‘" when no ambiguity is possible) by the rule: a |~ «
iff either p(a) = 0 or pg(x) > t. The parameter ¢ is called the threshold
associated with p for the relation |~.

The behavior of the qualitatively defined consequence operations is very
well understood since the seminal work of Kraus, Lehmann and Magidor,
briefly KLM, [10], who showed that the class of consequence relations gen-
erated by stoppered preferential models may be characterized by a set of
syntactic conditions. This result is known as the KLM representation the-
orem. The syntactic conditions used are all closure conditions, alias Horn
rules with finitely many premises, i.e. conditions of the form: whenever
ap p z1 and ... and a, p~ x, then b |~ y, where n > 0, possibly with
side-conditions b1 - y1, ..., by F ym where = is classical consequence.

Whenever we speak simply of Horn rules in sections 1 through 4, we will
always mean ones with finitely many premises. Infinite-premise Horn rules
will not appear until section 5 (Corollary 5.2), and from then onwards we
will distinguish them explicitly.

Definition 2.3. The family P is made up of the following closure conditions
on a consequence relation:

*The reasons for using the notation p, rather than the more common one p(z|a) are
explained in Makinson [16] chapter 5. However nothing in the paper depends on this
notational preference. We are using standard (unconditional) probability functions, and
defining conditional probability by the usual ratio condition p.(z) = p(a A z)/p(a), so
that p, is undefined when p(a) = 0. We note, however, that most of our results continue
to hold when probability is defined as a two-place function defined on all argument pairs
satisfying the Popper postulates (see, e.g., Hawthorne [8]).
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a ~ a (REFLEX: reflexivity)

Whenever a |~ z and z F y, then a |~ y (RW: right weakening)
Whenever a |~ z and a 4k b, then b |~ z (LCE: left classical equivalence)
Whenever a |~ 2 Ay, then a Az |~y (VCM: very cautious monotony)

Whenever a |~ z and b |~ z, then a Vb |~ x (OR: disjunction in the
premises)

Whenever a ~ z and a p~ y, then a |~ x Ay (AND: conjunction in
conclusion).

Here - is classical equivalence. Clearly, given the rule right weakening,
reflexivity is equivalent to the rule called supraclassicality, to which we will
often appeal in derivations.

Whenever a b x, then a |~ x (SUP: supraclassicality)

Reflexivity is clearly a zero-premise rule. We also treat supraclassicality
as a zero-premise rule, in the sense that it has no premise containing |~; the
proviso a F x is regarded as a side-condition. By the same token, Rw and
LCE are regarded as one-premise rules with side-conditions. In the literature
LCE, left classical equivalence, is often called LLE, left logical equivalence.

To be precise, KLM [10] formulated the family P with one difference:
instead of VOM (very cautious monotony) they used the rule:

Whenever a |~ z and a |~ y, then a Az |~ y (CM: cautious monotony).

Clearly, in the presence of RW, CM implies vCM; and conversely, with
AND available, vCM implies ¢CM. So the two are interchangeable in family
P. But for weaker systems without AND this is not so. The presentation of
P using veMm will prove helpful as we probe some characteristic differences
between P and a weaker family of rules for probabilistic inference.

The well-known condition of cumulative transitivity (cT), alias cuT de-
serves separate consideration. It is a converse of cautious monotony:

Whenever a |~ z and aAx |~ y, then a |~ y (CT: cumulative transitivity).
As noted by KLM [10], this is derivable in P. For suppose a |~ z and

aNz | y. Then,a Az | -z Vy (RW). Also, a A -z |~ -z Vy (SUP). Hence
(aANz)V(aN—zx) |~ —2xVy (OR), so a |~ =z Vy (LCE). Putting this together
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with a ~  and applying AND gives a |~ (-2 V y) A x and so by RW again,
apy.

Which of these closure conditions are satisfied when consequence is un-
derstood probabilistically as in Definition 2.2 above? We recall the following
well-known facts.

Observation 2.1. Probabilistic consequence relations satisfy the conditions
REFLEX, LCE, RW.

Observation 2.2. Probabilistic consequence relations do not always satisfy
the conditions AND, OR. Nor do they always satisfy the derived rules cMm,
CT. Indeed, more strongly: for each one of these conditions and for every
threshold ¢ such that 0 < ¢t < 1, there is a probability function p that violates
that condition.

Another family of closure conditions, specifically tailored for probabilistic
consequence, was introduced by Hawthorne [8], c.f. also Hawthorne [9].

Definition 2.4. The family O of closure conditions on a consequence relation
is made up of REFLEX, RW, LCE, VCM and the following weakened versions
of OR, AND:f

Whenever a Ab |~ x and a A —b |~ x, then a |~ x (WOR, i.e. weak OR)

Whenever a |~ x and a A —y |~ y, then a |~ x Ay (WAND, i.e. weak AND).

WOR is immediately derivable in family P using LCE, since a is classically
equivalent to (a Ab) V (a A —b). In the context of the other rules of O, wor
is equivalent to the following rule, which is more directly comparable to OR:

Whenever a |~ z, b )~ z and F =(a A b), then (aVb) |~ x (XOR: exclusive
OR).

TAs defined in Hawthorne [8] and [9], O contains one more rule which may either be
stated as “for some a and z, a |¥ " or as “T |¥ L”. This rule eliminates only one trivial
consequence relation — the one where for all a and z, a |~ z. It is a non-Horn rule, and
makes no difference to our treatment here, so we omit it in this paper. Hawthorne’s [8]
rules for O also differ from those given here in another minor respect. There the pair
of rules ‘if a |~ z then a |~ a A 2’ (called “Weak And” there, and referred to below as
“Antecedence”) and ‘if a |~ x and —y |~ y then a | y Az’ (called “Conjunctive Certainty”
there) are employed in place of the rule WAND presented here and in Hawthorne [9]. Given
REFLEX, RW, LCE, and VCM (which are common to both presentations), this pair of rules
is interderivable with WAND.
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The equivalence is easy to verify. First suppose WOR, and suppose the
antecedent of XOR. Then from a |~ = by LCE, (a V b) Aa |~ z. Also the
supposition - —(a A b) implies that b =+ (a V b) A —a, so from b |~ = we get
(aVb)A—a f~ z by LCE. Thus, (aVb) |~ & by WOR. For the converse suppose
XOR, and suppose the antecedent of WOR. Then (a Ab) V (a A —b) |~ x by
XOR, 80 a |~ x by LCE.

WAND is also derivable in family P: supposing a |~ x and a A —y |~ y, by
SUP we have a A y |~ y, so using WOR we get a |~ y, and thus from AND we
have a |~ z A y. We will look more closely at the rather unusual condition
a A =y p~ y in the next section (Observation 3.1).

Hawthorne [8] observed that the rules in family O are sound for prob-
abilistic consequence relations when the probability functions employed are
Popper functions. They are also clearly sound for standard probability func-
tions.

Observation 2.3. (Hawthorne [8], [9]). Probabilistic consequence relations
satisfy all the conditions in family O.

For the convenience of the reader we gather the verification of this and
some other known results in the appendix, along with many of the more
routine verifications of new results.

Combining this with the preceding observations we see that O is indeed
properly weaker than P.

Observation 2.3 raises important problems of completeness and represen-
tation. Is O Horn complete for probabilistic consequence? In other words,
is each Horn rule that is sound for all probabilistic consequence relations
derivable from the conditions in O7? Is there a representation theorem for
probabilistic consequence in terms of O, in the sense that every consequence
relation satisfying all rules in O is determined by some pair p,t where p is a
(standard) probability function and ¢ is a threshold?

These problems are not the same: while a positive answer for represen-
tation immediately implies a positive answer for Horn completeness (and
indeed for completeness with respect to broader classes of syntactic condi-
tions), the converse need not hold. We will examine these rather subtle
problems in section 5. For the present we give the following result on the
relation between probabilistic and qualitative soundness. Despite its basic
nature, we have not been able to find a proof, or even a statement of it in
the literature.

Observation 2.4. Every Horn rule that is probabilistically sound (i.e. holds
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for all probabilistic consequence relations) is qualitatively sound (i.e. holds
for all consequence relations generated by a stoppered preferential model).

Remark. Recall that in sections 1 through 4 we are using the term ‘Horn
rule’ to mean ‘finite-premise Horn rule’. In Corollary 5.2 we will see that
Observation 2.4 fails for countable-premise Horn rules.

PRrROOF. Consider any instance of a Horn rule, with premises a; |~ z1, ...,
an p~ x, and conclusion b |~ y, possibly with side-conditions. Suppose that
this instance fails in some stoppered preferential model. We want to show
that it is not probabilistically sound.

To simplify the argument that follows, we may assume without loss of
generality that the only elementary letters in the language are those occur-
ring in ay, X1, ..., Gn, Ty, b, y and in the side-conditions, plus fresh letters
added in a way to ensure that the preferential model may be chosen to be
injective (i.e. distinct states are labeled by distinct Boolean valuations) with-
out disturbing the failure of the rule instance. Details for this are given in
chapter 3 of Makinson [16]. Since the preferential model is injective, we may
simply identify states with Boolean valuations on the elementary letters.

Since the rule instance fails, there is a minimal b-valuation that is not a
y-valuation, while for every ¢ with 1 < i < n, every minimal a;-valuation is
an z;-valuation. We choose one minimal b-valuation that is not a y-valuation
and call it vg. Without loss of generality, we may assume that the premises
a; I~ x; are listed in a convenient order: for some m with 0 < m < n we
have (1) for all ¢ with 1 <4 < m there is a minimal a;-valuation less than
vo, (2) for all ¢ with m < i < n there is no minimal a;-valuation less than
V0.

For each ¢ with 1 < ¢ < m, we choose one such minimal a;-valuation,
calling it v;. With each valuation vy, v1, ..., v, we associate the unique
state-description sg, s1, ..., Sm on the elementary letters that it satisfies.
We define a function p on all state descriptions in those letters by putting
p(si) = 1/m+1 for 0 < i < m while p(s) = 0 for all other state descriptions.
Then p can be extended uniquely to a probability function on all formulae
generated by the elementary letters, which for simplicity we also call p.
Choose as threshold ¢t = 1/m+1. To complete the proof we need only check
the following:

(1) p(b Ay)/p(b) <t.

(2) For each ¢ with 1 < ¢ < n, either p(a;) = 0 or p(a; A z;)/p(a;) > t.

For (1): Since vo(b) = 1 we have so = b so p(b) > p(sg) = 1/m+1 > 0.
On the other hand, none of v1,..., v, satisfies b, since each such v; < vg
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and vy is by construction a minimal valuation satisfying b. Since also vy(y)
= 0, we have v;(bAy) = 0 for all i with 0 < i < m, so p(bAy) = 0 and thus
p(bAy)/p(b) =0 <t as desired.

For (2): Choose any i with 1 < i < n. We break the argument into two
cases.

Case 1. Suppose ¢ > m. Note that in this case we cannot have both
vo(a;) = 1 and vg(z;) = 0. For since a; |~ x; holds in the preferential model,
that would imply that vy is not a minimal a;-state, so by stoppering there
would be an a;-state less than vg, so that ¢ < m contradicting the conditions
of the case. Thus the following two subcases are exhaustive.

Subcase 1.1. vo(a;) = 1 = vo(x;). Then vo(a; A x;) = 1 and so p(a;) # 0
and p(a; A x;) > 1/m~+1, so p(a; A x;)/p(a;) > 1/m+1 =t as desired.

Subcase 1.2. vo(a;) = 0. Then sg t/ a;. It also follows from the conditions
of Case 1 that there is no minimal a;-valuation that is less than vg, so a; is
not true under any of v1,..., v,,. Thus none of the state-descriptions sg, s1,
..., $m classically implies a;, so p(a;) = 0 as desired.

Case 2. Suppose ¢ < m. Then by construction v; is a minimal a;-
valuation, so v;(a;) = 1 and so p(a;) # 0; also, since the premise a; ~ x;
holds in the preferential model we have v;(z;) = 1, so vi(a; A z;) = 1 so
pla; Ax;) > 1/m+1, so p(a; A z;)/p(a;) > 1/m+1 =t as needed. |

Corollary 2.5. Every probabilistically sound Horn rule is derivable from
family P.

PROOF. Stated more fully, the corollary says: every probabilistically sound
(finite-premise) Horn rule is satisfied by every consequence relation that
satisfies all rules in family P. This is immediate from Observation 2.4 and
the KLM representation theorem for P. [

3. Failsafe and Classicality Transforms of Closure Conditions

The passage from AND to WAND in the definition of the family O deserves
further comment. One of the two premises of AND, a |~ y, is replaced
by what we will call its failsafe version, a A =y p~ y. As we have already
remarked, given the other rules in O, this transformation strengthens the
premise of the rule: a |~ y follows immediately from a A =y |~ y by SuP,
WOR, and LCE. The transformation thus weakens the rule itself.

The present section examines closely failsafe and related conditions; some
readers may prefer to follow the main line of argument in sections 4 and 5,
and return to this section as background for section 6.



10 James Hawthorne, David Makinson

Intuitively, while a |~ y expresses the notion that a provides good reason
for y, the stronger a A =y |~ y may be understood as saying that a provides
certain reason for y. We can be more specific if we think in terms of the two
kinds of model.

e Qualitatively, in terms of preferential models, a A =y |~ y says that the
model contains no minimal (a A —y)-states; so for stoppered preferential
models it says that the model has no (a A —y)-states at all, i.e. all of
the states of the model satisfying a also satisfy y (see Makinson [16] for
background).

e Quantitatively, for |~ defined with probability function p and threshold
t as parameters as in Definition 2.2 above: a A =y |~ y holds iff either ¢
=0or plaN—y) =0, ie. iff either t = 0 or p(a Ay) = p(a), i.e. iff either
t =0orp(a) =0orp.(y) = 1.

The failsafe condition a A =y |~ y may be given several formulations that are
equivalent modulo the family O of rules (c.f. Bochman [4] chapter 6).

Observation 3.1. In O the following are all equivalent: (1) a A =y vy, (2)
aN-y L, (3) aN-y | zforall z, (4) (a Ab) A -y |~y for all b, (5)
aAb |y for all b.

PRrROOF. We cycle around the five. Suppose (1): then by LCE, (aA—y) A=y |~
y, and clearly also by suP, a A =y |~ =y, so by WAND aA—y |~ =y Ay, giving
by RW a A =y |~ L, i.e. (2). Suppose (2): then by RW, a A —y |~ z for
all z, i.e. (3). Suppose (3): then in particular a A =y |~ b Ay, so by vem
(a A —=y) Ab |~ y and thus by LCE (a A b) A =y |~ y. Suppose (4): since by
SUP we have (a Ab) Ay |~ y, we may apply WOR and LCE to get a Ab |~ y.
Suppose (5): then instantiating —y for b, we have a A =y |~ y and the cycle
is complete. [

It is convenient to introduce a special sign for the relation = of certain
reason, defined by putting a | y iff a A =y |~ y. From Observation 3.1 we
see that in the context of O, K has two distinct monotonicity properties.
On the one hand (using the passage from (1) to (5) in Observation 3.1)
whenever certain reason holds, good reason holds monotonically: a = y
implies a A b |~ y for all b. On the other hand (using the passage from (1)
to (4) in the Observation) the relation of certain reason is itself monotonic:
a = y implies a A b e y for all b.

As well as being monotone, the relations ke satisfy all rules in P so long
as |~ satisfies all rules in O, as may be verified easily. Thus, if we define the
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canonical compact extension of | to arbitrary sets of formulae on the left in
the natural way (putting A R z iff a | = for some conjunction a of finitely
many elements of A) it becomes a compact supraclassical closure relation
satisfying disjunction in the premises, and so by Theorem 2.2 of Makinson
[16] may be represented as a pivotal consequence relation. That is:

Observation 3.2. Let |~ be any consequence relation satisfying all rules in O,
and let [ be its failsafe counterpart. Then there is a set K of formulae such
for all A, x, we have A | z iff AU K F x, where - is classical consequence.

The notion of the failsafe version of a condition reveals an interesting
connection between the family P and the family O. Take any Horn rule. We
define its failsafe transforms as follows. If the rule has zero or one premise,
it is its own failsafe transform. If it has two or more premises, a; |~ x1,
...y Gy~ xy, we define its failsafe transforms to be the n rules obtained by
replacing one of the premises a; |~ z; by its failsafe version a; R z; (i.e.
a; A\ —x; p~ ;). As we will be applying this notion to the family P in this
section, we need here only consider cases where n < 2; in sections 6 and 7
we will need to consider cases where n > 2.

Write FS(P) for the family of failsafe transforms of rules in P. Thus
FS(P) consists of the rules: REFLEX, RW, LCE, VCM, FS(OR) (i.e. whenever
ap xand bA -z vz, then a Vb |~ x), and FS(AND) (i.e. whenever a |~
and a A—y |~ y, then a ~ z Ay). Strictly speaking, each of AND, OR has two
failsafe transforms; but as the source rules are symmetric the two transforms
are equivalent (given LCE and RW), so we need only bother with one for each.

Observation 3.3 Every rule in FS(P) is derivable from family O. But not
conversely: WOR is not derivable from FS(P). Indeed, WOR is not derivable by
adding failsafe transformations of any Horn rules with two or more premises
to REFLEX, RW, LCE, VCM.

PrOOF. For the positive part, since FS(AND) is just WAND, we need only
show that FS(OR) is derivable from family O. Suppose a |~ x and bA—x |~ .
We need to derive a V b |~ z using only rules in family O. By Observation
3.1 (1) to (5) the second supposition gives us bA—a f~ z. Hence by XOR (see
discussion just after definition 2.4) and LCE we have a V b |~ x as desired.
For the negative part, we can define a property that holds for REFLEX,
RW, LCE, VCM and all failsafe transformations of Horn rules with two or more
premises, and is preserved under chaining, but which fails for the rule WOR.
An interesting feature of this property is that it is essentially quantitative,
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although the rules that it separates are purely qualitative. Details are given
in the appendix. [

While a failsafe relation a ke y (i.e. a A—y |~ y) is stronger than its plain
counterpart a |~ y, it is still weaker than the classical consequence relation
a b y. Given a F y, we have a A =y |~ y immediately by the monotony
of classical consequence and sUP. Thus we get an even weaker version of a
Horn rule if we replace a |~ y by a F y in one of the premises (thus also
changing its status from premise to side-condition). In the case of AND this
replacement produces the rule: whenever a |~ z and a by then a |~ x A y.

This idea is mooted by Kyburg, Teng, and Wheeler [12], but we can go
further. We get another connection, this time between the family P and a
family weaker than O that has appeared in the literature on several occasions
under various names.

Burgess [5] introduced a system that he called ‘basic subjunctive condi-
tional logic’, and proved a completeness theorem for it in terms of Lewis’
structures for counterfactual conditionals. It was further discussed (in an
equivalent form) by van Benthem [18], Adams [1], and Bochman [4] chap-
ter 6. We use Bochman’s formulation and his name for it, B. It consists
of the rules REFLEX, RW, LCE, VCM (shared with O and P), together with
the further rules of ‘deduction’ (whenever a A b |~ x then a |~ b — x) and
‘antecedence’ (whenever a |~ x then a |~ a A x).

Take any Horn rule. We define its classicality transforms as follows. If
it has two or more premises, a; |~ x1, ..., an p~ Z, they are the n rules
obtained by replacing one of the premises a; |~ x; by its classical counterpart
a; F x;. As before, if the rule has zero or one premise, it is its own classicality
transform.

Write cL(P) for the family of classicality transforms of rules in P, again
ignoring the copies arising from symmetry. Thus CL(P) consists of the rules:
REFLEX, RW, LCE, VCM, CL(OR) (i.e. whenever a |~ x and b F z then
aVb v x), and CL(AND) (i.e. whenever a |~ 2 and a b y then a |~ x A y).

Clearly all rules in CcL(P), and likewise all rules in B, have at most one
premise, and they are all derivable from family O.

Observation 3.4. CL(P) is equivalent to family B.

PRrROOF. We need to show that the rules of deduction and antecedence are
derivable from family cL(P), and that CL(OR) and CL(AND) are derivable
from family B.
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For deduction, suppose a A b |~ . We need to derive a |~ b — x using
only rules in family cL(P). By Rw on the supposition, a Ab |~ b — x. Also
(a A=b) b — z, so by CL(OR) we have (a Ab)V (a A—b) |~ b — z, and thus
by (LCE), a |~ b — x as desired.

For antecedence, suppose a |~ x. We need to derive a |~ a A z using only
rules in family cL(P). Trivially, a F a so by CL(AND) we have immediately
a~ a Az as desired.

Conversely, for CL(OR), suppose a |~ = and b - z. We need to derive
a Vb |~ x using only rules in family B. By LCE on the first supposition we
have (a VvV b) A (aV —b) |~ z so by the rule of deduction a Vb |~ (aV —b) — z
and thus (RW) a Vb ~ bV 2. But since b = we have bV z  z and so (RW
again) a V b |~ z as desired.

For cL(AND), suppose a |~ z and a - y. We need to derive a |~ xAy using
only rules in family B. By the first supposition antecedence gives a |~ a A
so by the second supposition and applying RW, a |~ x Ay as desired. [

We will mention the family B again in Observation 4.3, but we are much
more interested in family O, since it is stronger than B and we are interested
in determining the strongest family of probabilistically sound rules.

4. The Powers of AND, OR, CM, CT Modulo O

Of the closure conditions that are qualitatively sound but not quantitatively
S0, AND appears intuitively to play a special role. The purpose of this section
is to make this intuition precise and confirm it. Gathering positive results
from Hawthorne [8], Adams [2], and Bochman [4], and adding negative ones
where appropriate, we obtain the following picture.

Observation 4.1. Modulo the rules in O, the rules OrR, CT, CM, AND stand
in the relationships indicated by Figure 1.

PrOOF. The implications from AND were noted by Hawthorne [8]; the con-
verse implication from {CM, CT} to AND by Adams [2]; the same implications
along with that from {CcM, OR} to AND by Bochman [4], where the impli-
cation from CT to OR is also shown. For the reader’s convenience, we recall
these verifications (some in variant form) in the appendix (Observations 4.1.1
through 4.1.5).

Given the positive implications, it remains to show only the following
three non-implications: from CT to AND, from CM to AND, from OR to CT.
All others, e.g. from CM to CT, ensue immediately.
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AND <> {CM, OR} <> {CM, CT} <> P

Figure 1. Figure for Observation 4.1

The easy non-implication from CT to AND is noted by Bochman [4] (Ex-
ample 6.7.1), and is shown in the appendix. The remaining two are as
follows.

Observation 4.1.6. AND is not derivable from OU{cM}.

Verification. 1t is surprisingly tricky to find a model illustrating this. The
simplest one that we have found satisfying OU{cM} but not AND is built
over the eight-element Boolean algebra. For simplicity, we identify the eight-
element Boolean algebra with the power set of {1,2,3} so that also the
Boolean relation <, interpreting classical consequence F, coincides with the
subset relation over {1,2,3}. To reduce tedious notation, we write subsets
without braces or commas; for example {1,2} is written as 12, and 1 < a Az
means {1} <aAz,ie {1} Canx.

We define a relation |~ over this algebra as follows: a |~ z iff either a < z
or else (both 1 < a Az and either a # 123 or x # 1). In other words: a |~ x
iff either a < x or else one of the following six conditions holds: a = 123 and
r=12,a=123andz =13, a=12and x =13, a =13 and z = 12, a =
12 and x = 1, a = 13 and x = 1. Note that this list does not include a =
123 and = = 1; the relation is not transitive.

The construction may be visualized with Figure 2. Without the arrow-
heads, we have the Hasse diagram for the Boolean relation <; the arrowheads
indicate the supplements.

In the appendix we verify that this model has the properties claimed.

Observation 4.1.7. CT is not derivable from OU{OR}.

Verification. The eight-element model used for the preceding Observation
fails OR, and so cannot be used for the task. It is possible to construct a
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123

12 23
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Figure 2. Figure for Observation 4.1.6

variant eight-element model that does work, but the following argument is
less tedious.

By a valuation we mean a Boolean valuation defined on all elementary
letters of the language. We say that valuations v, v’ are almost identical,
and write v’ =1 v, iff they differ on at most one elementary letter. Let |~ be
the consequence relation defined by putting a |~ x iff for every valuation v,
if v(a) = 1 then there is a valuation v =1 v with v'(a A z) = 1. We claim
that this relation satisfies all rules in OU{OR} but fails CT.

For the failure of CT, take three distinct elementary letters p, ¢, r and
note that p v g, pAgpAgAT, but pl pAgAr.

On the other hand, REFLEX, RW, LCE trivially succeed. It remains to
verify OR, VCM, WAND.

For Or (and thus also WOR), suppose a |~ x and b |~ x, and suppose
also v(a VvV b) = 1. Then either v(a) = 1 or v(b) = 1. In each case, there is a
v/ =1 v with v'((aVb) Azx) = 1.

For vcwM, suppose a |~ z Ay, and suppose also v(a A ) = 1. Then v(a)
= 1so thereis a v/ =1 v with 1 =v'(a A (xAy)) = v'((a Ax) Ay) as needed.

For WAND, suppose a |~ = and a A =y |~ y. First observe that a F y: for
if w(a) = 1 while w(y) = 0 then w(a A —y) = 1 so by the second supposition
there is a w’ =1 w with w'((a A =y) A y) = 1, which is impossible. Now
suppose v(a) = 1. Then by the first supposition there is a v =; v with
v'(a Ax) =1, so since a Iy, we have v'(a A (z Ay) = 1 as needed. u
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We end this section with a result on Horn rules of a special kind: those
with at most one premise and, more generally, finite-premise Horn rules
whose premises have pairwise inconsistent antecedents. The general point
we shall make is that a broad range of quantitative and qualitative contexts,
both semantic and syntactic, identify the same privileged family of these
rules.

Observation 4.3. Consider any finite-premise Horn rule, from premises a; |~
x; (for i < n) to conclusion b |~ y such that the antecedents a; of the
premises are pairwise inconsistent. Then the following seven conditions are
equivalent:

(1) It is probabilistically sound.

(2a) It is qualitatively sound (i.e. sound in all stoppered preferential
models).

2b) It is sound in all linear preferential models containing at most two
p g
states.

(3) It satisfies Adams’ truth-table test.

(4a) It is derivable from family BU{wOR}, indeed when n < 1, from B
alone.

(4b) It is derivable from family O.
(4c) It is derivable from family P.

We first explain the meaning of clause (3), relate the various clauses
to results in the literature, establish a lemma, and finally give the proof.
Probabilistic soundness, soundness in preferential models, the families P
and O, and the rule WOR  are all defined in section 2 above; the family B
defined in section 3. Adams’ truth-table test, formulated in his paper [1],
is the following: There is some subset I C {1,..,n} such that both b A -y F
Vier(a; A =x;) and Vier(a; A x;) F b Ay. Here we use the convention that
the disjunction (resp. conjunction) of the empty set of formulae is L (resp.
—1). With this reading, when n = 0 the test reduces to b+ y. For n = 1,
it reduces to: Either bty or botha — x+b — y and a A x - b Ay, where
a p~ x is the sole premise and b |~ y is the conclusion of the rule. Using just
classical logic, this may in turn be simplified a little: Either b F y or both
—akFb—-yandaAxFbAy.

A paraphrase provided by Adams helps give the test an intuitive mean-
ing: For some subset of the premises of the Horn rule we have both (1)
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falsification of the conclusion classically implies falsification of at least one
premise in the subset, and (2) fulfilment (alias verification) of at least one
premise in the subset classically implies fulfilment of the conclusion. Adams
[1] also claims the equivalence of (1), (3) and (4a) (the last in terms of a
system trivially equivalent to B). However, in the judgement of the present
authors, the proof of equivalence sketched in section D of the appendix of
the paper contains a serious gap.

Earlier, van Benthem ([18], Theorem 10.3) showed that in the even more
restrictive case of at most one-premise Horn rules, derivability from (a cer-
tain family equivalent to) P implies derivability from the weaker family B.
His argument makes use of disjunctive normal forms and Lewis models for
counterfactual conditionals. Bochman ([4], Corollary 7.5.6) obtained the
same result via more general results for B.

The following lemma about linear preferential models with at most two
elements will facilitate the proof of the implication (2b) = (3).

Lemma 4.2. Consider any finite-premise Horn rule, from premises a; ~ x;
(for i < m > 1) to conclusion b |~ y, such that the antecedents a; of
the premises are pairwise inconsistent. Suppose that the rule fails in some
linear preferential model with at most two elements. If b A =y b Vi< (a;),
then every Horn rule formed by adding another premise a,, |~ x;,, with a,
inconsistent with each a; (i < m) also fails in some linear preferential model
with at most two elements.

PROOF. (Proof of Lemma 4.2.) By the supposition, there is a linear prefer-
ential model of at most two states in which the a; |~ z; (i < m) hold but
b |~ y fails, so in this model there is a valuation v that is a minimal b-state
but is not a y-state, while every minimal a;-state (i < m) of the model is an
x;-state. Using the supposition b A =y F Vi (a;) it follows that v(ag) = 1
for some k < m, so by the pairwise inconsistency assumption, v(a;) = 0 for
all i < m, i # k. Now consider the addition of a premise a,, |~ x,, with a,,
inconsistent with each a; (i < m). Then also v(a,,) = 0. We split into three
cases.

Case 1. Suppose that v is the only state in the preferential model. Then
am P~ ZTm holds in the model since v(ay,) = 0, and thus the enlarged Horn
rule fails in the model, as desired.

Case 2. Suppose that there is a second state w that does not satisfy ay,.
Then a,, |~ x,, holds in the model since a,, fails in both states, and again
the enlarged Horn rule fails in the model.

Case 3. Suppose that the second state w does satisfy a,,. Since a,, is
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inconsistent with each a; (i < m) we have w(ar) = 0, so v is a minimal
ax-state and so also v(xg) = 1. Form a one-state linear preferential model
by dropping w, leaving v. Now a,, |~ x,, holds in this model since v(a,)
= 0. Also the a; |~ z; (i < m) continue to hold, because the only a; that v
satisfies is aj and we know that v(xy) = 1. Since also v(b) = 1 while v(y) =
0 we conclude that the enlarged Horn rule fails in this one-state preferential
model, as desired. ]

PROOF. Proof of Observation 4.3.

The proof begins with the equivalence (2a) < (4c), then shows how to
cycle around the first six conditions: (1) = (2a) = (2b) = (3) = (4a) =
(4b) = (1).

The equivalence (2a) < (4c) in fact holds for rules of any kind, Horn or
otherwise with any number of premises (and without the pairwise inconsis-
tency assumption), as follows immediately from the representation theorem
of Kraus, Lehmann and Magidor [10] (see section 2 above and section 6
below). The implication (2a) = (2b) clearly also holds without any restric-
tions.

Two further implications in the cycle hold for Horn rules with any num-
ber (finite or infinite) of premises: (4a) = (4b) follows from the fact that
that WOR and every rule in B are derivable in family O as noted in section
3, and (4b) = (1) follows from Observation 2.3. The implication (1) = (2a)
holds for Horn rules with any finite number of premises, by Observation 2.4.
None of these implications need the pairwise inconsistency assumption.

It remains to show (2b) = (3) and (3) = (4a), both of which do need
the pairwise inconsistency assumption. We begin with the easier one, (3) =
(4a).

Suppose that a finite-premise Horn rule from premises a; |~ x; (i < n)
to conclusion b |~ y satisfies (3); suppose moreover that the a; are pairwise
inconsistent. Now, suppose that a; |~ z; holds for all i < n. We need to
derive b |~ y using only rules from family B if the rule contains no more
than one premise (i.e. if n < 1), and using only rules from BU{wWOR} if it
contains more than one premise (i.e. if n > 1).

In the case n = 0 we have by (3) that b - y so immediately b |~ y by
SuP. Suppose n > 1. Since each a; |~ x; (i < n), we can apply the rule
of antecedence (in B) to get a; |~ a; A x; for each i < n, and thus for all
ieI C{l,.n}. By (3), Vier(a; N x;) = b Ay so that a; Ax; = b Ay for
each i € I, so we can use RW to get each a; |~ b A y. In the case that n
= 1 we thus already have V;cr(a;) |~ b A y; in the case n > 1 the pairwise
inconsistency of the a; allows multiple applications of XOR (which follows
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from WOR - see the remarks following Definition 2.4) to get the same. Hence
by VCM Vier(a;) Ab |~ y, so by LCE and the rule of deduction (in B) we have
b~ Vier(a;) — y. On the other hand, also by (3), bA -~y F Vier(a; A —x;) so
bA—y = Vier(a;); contraposing and transforming we have —=V;ecr(a;) - b — y.
This (together with y - b — y) yields Vier(a;) — y - b — y. Hence, from
b~ Vier(a;)) — y, by RW we have b |~ b — y. Applying antecedence again
to this, b v b A (b — y) and thus finally b |~ y (by Rw) as desired. This
completes the verification of (3) = (4a).

It remains to show (2b) = (3). Suppose that a finite-premise Horn rule
from premises a; |~ z; (i < n) to conclusion b |~ y satisfies (2b); suppose
moreover that the a; are pairwise inconsistent. We need to show that the
rule satisfies Adams’ truth-table test. The crucial first step is to choose a
suitable I C {1,..,n}: we take it to be any minimal subset of {1,..,n} such
that the rule from premises a; |~ z; (¢ € I) to conclusion b |~ y satisfies (2b).
Clearly such a minimal set exists, and to simplify notation without loss of
generality we may suppose that I = {1,..,m} where 0 < m < n. We call the
corresponding rule, with premises a; |~ x; (1 < m) and conclusion b |~ y the
manimal rule.

First, we verify b A =y - Vi<m(a; A —x;), which is the first part of the
truth-table test. Suppose otherwise. Then there is a Boolean valuation v
with v(b) = 1, v(y) = 0, and v(a; — x;) = 1 for all i < m. Consider the
one-element linear preferential model whose only state is v. Then a; |~ ;
holds in this model for all i < m, while b |~ y fails in it, contrary to the
construction of the minimal rule.

Next we show the second half of Adams’ truth-table test, i.e. that
Vic<m(ai A x;) = b Ay. Suppose otherwise; we get a contradiction. By the
supposition there is a Boolean valuation v with v(bAy) = 0 and v(a; Ax;) =
1 for some j < m. Without loss of generality, we simplify notation by taking
Jj =m, so v(am A zy) = 1. By the pairwise inconsistency assumption, since
v(am) = 1 we have v(a;) = 0 for all ¢ < m. We split into two cases.

Case 1. Suppose v(b) = 1. Then since v(b A y) = 0 we have v(y) = 0.
Take the linear preferential model whose sole state is v. Then b |~ y fails,
am |~ T succeeds since v(am, A ) = 1, and also a; |~ x; (all i < m) since
v(a;) = 0 for all i < m. Thus the minimal rule fails condition (2b) contrary
to its construction.

Case 2: Suppose v(b) = 0. Since the set {1,..,m} is minimal in the
sense specified and the a; (i < m) are pairwise inconsistent, we may apply
Lemma 4.2 to conclude b A =y I/ Vi< (a;). Hence there is a valuation w
with w(b) = 1, w(y) = 0 and w(a;) = 0 for all i < m. Take the two-element
linear preferential model whose bottom state is labeled with v, and whose
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top state is labeled with w. Since w(b) = 1, w(y) = 0, and v(b) = 0, we
know that b |~ y fails. Also, since v(am, A o) = 1 and v is bottom state,
we have a, |~ zp,. By the pairwise inconsistency assumption, v(a;) = 0 for
all i < m. But also w(a;) = 0 for all i < m, so vacuously a; |~ x; for all
i < m. Putting these together, a; |~ x; for all i < m, and the minimal rule
fails condition (2b) contrary to its construction. |

Corollary 4.4. The set of all probabilistically sound finite-premise Horn rules
with pairwise inconsistent antecedents to their premises is decidable.

PRroOF. Clearly, each of the equivalent conditions (2b) and (3) provides a
decision procedure. ]

5. Problems of Representation and Completeness

Is there a representation theorem for probabilistic consequence in terms of
O, in the sense that every consequence relation satisfying all rules in O is
determined by some pair p,t where p is a (standard) probability function and
t is a threshold? We begin with a very general negative result concerning
representation, and then discuss the problem of completeness.

In earlier sections we have been simply writing ‘Horn rule’ to mean “Horn
rule with finitely many premises”. We will now explicitly say “finite premise
Horn rule” when we intend this, as we will be dealing with both countable-
premise and finite-premise Horn rules.

Observation 5.1. Probabilistic consequence is not representable in terms
of any family of probabilistically sound finite-premise Horn rules. That is,
given any family of probabilistically sound finite-premise Horn rules, there
is a consequence relation |~ that satisfies all of these rules but is not a
probabilistic consequence relation — i.e. |~ cannot be generated by any pair
p, t consisting of a probability function p and a threshold ¢. Moreover, such
a |~ may always be chosen as the consequence relation determined by some
linear stoppered preferential model.

Note that from the first part of the theorem it follows that neither the
family O, nor any extension of it by further probabilistically sound finite-
premise Horn rules, gives us a representation theorem. From the second part
it follows, for example, that the addition of the non-Horn (negative premise)
rule of negation rationality (from a |~ z and a Ab ¢ = to a A =b |~ z),
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which is sound for probabilistic consequence and also for linear stoppered
preferential models, still does not get us a representation theorem.

PRrOOF. Consider any family of rules of the kind described. We construct
in Figure 3 a stoppered preferential model that satisfies it, but which is not
determined by any probability function p and threshold t.

e o: r,q(i<o)

o NIl Gl Gn—q; (N<I<®)

o 2:—rqiLqn—q 2<i<o)

o Lirgn—gq (1<i<o)
Figure 3. Figure for Observation 5.1

Here the propositional language has elementary letters r, q1, g2, ... (to
avoid confusion we use ‘p’ only for probability functions). The states of
the preferential model are 1, 2, ..., w with the natural order. Each state is
labeled in the diagram by the literals (elementary letters and their negations)
that it satisfies. Clearly this model is both linear and stoppered.

Let |~ be the consequence relation determined by this linear stoppered
preferential model. Since all the finite-premise Horn rules in the family are
by hypothesis probabilistically sound, we know from Observation 2.4. that
~ satisfies them. It remains to be shown that |~ is not a probabilistic
consequence relation for any choice of probability function p and threshold
t. To prepare for that, we note some features of |~.

Puta=r7ra, =g AN@AN. N (1 <i<w)and z; = a; A 2gip1 =
@1 A @A .. Agi A —giv1 (1 <i < w). Then we have the following:

1. a pt L (since w is a minimal a-state).
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2. alva;forall 1 <i<w (sincew is the unique least a-state and all g; are
true at w).

3. a; v z; for all 1 < i < w (since the unique least a;-state is ¢ and z; is
true at 7).

Moreover, a; A aj F —(z; A xj) for each distinct ¢ and j (since the z; are
pairwise inconsistent — because whenever ¢ < j, z; has —¢g;11 as a conjunct
whereas x; has ¢j+1 as a conjunct). Recalling the relation ke of certain
reasoning, defined from |~ in section 3, we thus have:

4. a; Naj R —(x; A xj) for each distinct i and j.

Now take any probability function p and any threshold t € [0,1]. Let pp,;
be the probabilistic consequence relation determined by (p,t). To complete
the proof we show that |~,; cannot simultaneously have all of properties (1)
through (4) no matter how the formulae a, a;, x; are chosen. Suppose that
rpt does satisfy (1) through (4): we derive a contradiction.

By the remarks preceding Observation 3.1, point (4) implies that for each
distinct ¢ and j, p(a; Ax; Aaj Ax;) = 0ort =0. But (1) implies that ¢ >
0. So, for each distinct ¢ and j, p(a; A z; Aaj Axj) = 0.

Also by (1), p(a) # 0, so p(a) - 2 > 0. Hence there is an integer n >
1 with 1/n < p(a) -t so n-p(a) - t> > 1. By (2), each p(a A a;)/p(a) >t
so pla N a;) > p(a) -t so a fortiori p(a;) > p(a) -t > 0. So by (3) each
pla; Axy)/pla;) >t so pla; Az;) > pla;) -t > p(a)-t2. Hence using (from the
previous paragraph) the fact that p((a; A z;) A (a; A xj)) = 0, p(V{a; A 2
1< i < n}) = Sgin<i<ny plai Azi) > n-p(a)-t* > 1 which is impossible. m

The argument used to prove this theorem also yields an incompleteness
result for infinite-premise Horn rules. This contrasts with the positive result
for finite-premise Horn rules in Observation 2.4.

Corollary 5.2. There is a countable-premise Horn rule that is probabilis-
tically sound but which is not derivable from any family of finite-premise
Horn rules, even when the latter is supplemented by a set of rules (Horn
or non-Horn, with finitely or infinitely many premises) that are sound in all
linear stoppered preferential models.

PrROOF. We can build a suitable Horn rule out of conditions (1) through
(4). Tt is the following ‘Archimedean rule’: whenever a |~ a; and a; |~ z;
for all 1 <i < w, and a; A a; R —(x; A x;) for each distinct 7 and j, then
alpe L. |
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It remains an open question whether O is complete for finite-premise
probabilistically sound Horn rules. It is likewise an open question whether
a representation theorem can be established for family O plus negation ra-
tionality plus the ‘Archimedean rule’.

6. From Probabilistic to Stronger Qualitative Systems with
non-Horn Rules

A central theme of this paper is to identify rules that mark a watershed
between logics for probabilistically defined consequence relations and those
defined qualitatively. We saw (Observation 2.4) that every finite-premise
Horn rule that is quantitatively sound is qualitatively so in the sense given
by the Kraus-Lehmann-Magidor family P, and (Observation 4.1) that the
rule AND acts as a watershed, sufficing to pass from the former to the latter.

As is well known, family P is not the strongest possible system of quali-
tative consequence. A stronger one is family R (for ‘rational consequence’),
determined by the class of all ranked stoppered preferential models; and an
even stronger one is family S (after Robert Stalnaker, [17]), determined by
the class of all linear stoppered preferential models. This prompts the ques-
tion: How do these families look from a probabilistic perspective? This is
the subject of the present section. We will give definitions and results, but
omit most of the fairly straightforward verifications.

We note first of all that, in contrast with the situation for Horn rules,
there is a (finite-premise) non-Horn rule that is probabilistically sound but
not qualitatively so (i.e. not true in all stoppered preferential models). This
is the rule of negation rationality, NR, already mentioned in passing in section
5.

Whenever a |~ z, then a Ab |~z or a A —b |~z (NR).

Its failure in some stoppered preferential models is well-known (see, e.g., Fre-
und [7] or the overview in Makinson [15]), while its probabilistic soundness
is easily checked as follows.

Observation 6.1. NR is probabilistically sound.

PROOF. Suppose a |~ z, i.e. either p(a) = 0 or po(z) > t. If p(a Ab) =
0, then a Ab |~ z and we are done; and similarly if p(a A =b) = 0. So
suppose p(a Ab) > 0 and p(a A =b) > 0. Then p(a) > 0, so t < pu(z) =
Parb(2) - Pa (D) +Pap-b(x)-pa(—b). Hence it is not possible for both pyapy(z) < ¢
and paa-p(x) < t to hold. So either a Ab |~ x or a A —b |~ x. |
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On the other hand, it’s also well known that NR is derivable in the qual-
itatively motivated systems R and S (see, e.g., the overview in Makinson
[15]). We briefly recall the definitions and basic properties of systems R and
S here.

e Syntactically, R consists of the conditions in P together with the rule of
rational monotony (RM):

whenever a |~ z, then a |~ =bor a A b |~ z (RM).
In the context of P this rule implies negation rationality (NR).

e Semantically, R is determined by the class of ranked stoppered preferen-
tial models (see, e.g., Kraus, Lehmann, Magidor [10], and Lehmann and
Magidor [13]).

e Syntactically, S consists of the conditions in P together with the rule
right or (ROR):

whenever a ~ z V y, then a |~ z or a |~ y (ROR).

In the context of P this rule is equivalent to the rule of conditional
excluded middle (CEM):

ap xoral -x (CEM).

It should be noted, however that in the context of systems such as O
that lack AND, ROR is stronger than CEM.

e Semantically, S is determined by the class of all linear stoppered prefer-
ential models (see, e.g., Bezzazi, Makinson, Perez [3]), and thus implies
rational monotony (RM). S is equivalent to a family proposed by Stal-
naker [17] for the logic of counterfactual conditionals.

S is about as strong a system as one could ever want in a nonmonotonic
logic. Indeed, for most purposes weaker families such as R and even P seem
more appropriate.

Note that in contrast with negation rationality (NR), neither rational
monotony (RM) nor right or (ROR) is probabilistically sound. Thus, our in-
terest in probabilistically sound families suggests the following development.
Just as the strengthened qualitatively sound families R and S are gotten by
supplementing qualitatively sound P with the non-Horn rules RM and ROR,
respectively, it is natural to supplement O with the non-Horn rule NR to get
a strengthened family of probabilistically sound rules.

Definition 6.1. The family Q of conditions on a consequence relation is made
up of O together with NR (negation rationality): i.e., Q = OU{NR}.
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Indeed, we can characterize more precisely just how S and R outrun Q.
In doing so it will prove useful to consider an additional rule, PREF(1), which
will reappear below, in part II, on rules for threshold-sensitive probabilistic
consequence.

PREF(1): Whenever a |~ z and a |~ —z, then a |~ L.

Although this rule is not probabilistically sound in general, it is sound
for all probability functions p and thresholds ¢ > 1/2. It is clearly implied
by AND (with RW) — but in the context of O it is weaker than AND.

Observation 6.2. R = PU{RM} = OU{AND, RM} = OU{PREF(1), RM}.

Observation 6.3. S = PU{ROR} = OU{AND, ROR} = OU{PREF(1), ROR} =
(O—{wAND})U{PREF(1), ROR}.

In each case the first equality is just the definition of the system, the
second is immediate from Observation 4.1, and the remainder are not difficult
to verify. We omit the details. We also clearly have:

Observation 6.4. S is strictly stronger than R, which is strictly stronger
than the probabilistically sound family Q.

In the light of Observations 6.2-6.4 we can say that the Horn rule PREF(1)
and non-Horn rule RM, taken together, provide a bridge from probabilistic
consequence to a strong form of qualitative consequence (the so-called ‘ratio-
nal’ consequence relations), while PREF(1) and non-Horn rule ROR similarly
provide a bridge to the very strong linear (or Stalnaker) consequence.

The difference between families R and S will assume further significance
in part II of this paper, where we will define a hierarchy of rules that are
probabilistically sound at various thresholds. S implies all of them while R
implies none.

Part II. Threshold-Sensitive Rules

In this part we extend the results of Part I by investigating families of
threshold-sensitive probabilistically sound rules. We begin by examining
threshold-sensitive (finite-premise) Horn rules that may be added to family
O. We obtain for each ¢ in [0,1] a family O(¢) that is the strongest system
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of this kind that we know of. We then work with threshold-sensitive non-
Horn rules, examining those that may be added to Q = OU{NR}, likewise
obtaining a strongest known such system Q(t).

7. Threshold-Sensitive Horn Rules: the Preface Rules

The probabilistically sound closure principles we have treated thus far are
probabilistically sound at each possible threshold level . We now investigate
additional rules that are probabilistically sound only when values of the
threshold t are sufficiently high, or lie within some specific range of values.
Among these are the ‘preface’ and ‘lottery’ rules studied by Hawthorne [8]
and [9]. These rules are closely connected to the well-known lottery and
preface paradoxes.

The lottery paradoz, formulated by Kyburg [11], observes that if a fair
lottery has a large number n of tickets, then, for each ticket, it is highly
probable that it will not win, and thus rational to believe that it will not do
so. At the same time, it is certain that some ticket among the n will win,
and so rational to believe this too. But these n+1 beliefs are inconsistent.

The preface paradoz, formulated by Makinson [14], is similar in struc-
ture except that it makes no reference to probabilities. An author of a book
making a large number n of assertions may have checked and rechecked each
of them individually, and be confident of each that it is correct. But experi-
ence in these matters teaches that inevitably there will be errors somewhere
among the n assertions, and the preface may acknowledge this. But, again,
these n+1 assertions are inconsistent.

Each of these epistemological puzzles suggests a series of rules that apply
to some interesting families of consequence relations. In this section and the
next we consider some (finite-premise) Horn rules motivated by the pref-
ace paradox. Then in section 9 we examine (finite-premise) non-Horn rules
suggested by the lottery paradox.

To introduce the preface rules let’s return to the rule AND: conjunction
in the conclusion. This tells us that whenever a |~ z; and a |~ z2 then
a v x1 A x2. Applying it twice along with Rw tells us:

Whenever a |~ 21 and a |~ 22 and a |~ —(x1 A z2) then a |~ L.
Equivalently (again given RW):

Whenever a |~ 21 and a v 22 and a |~ =(x1 A z2) then a |~ y for all y.
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Since this rule follows from AND and Rw, it is sound on the qualitative
approach. Probabilistically it can fail when the threshold parameter ¢t <
2/3, while it is easy to show that it holds whenever ¢ > 2/3.

Generalizing from n = 2 to arbitrary n > 1, we may formulate an infinite
series of rules defined as follows:

PREF(n): Whenever a |~ z1, ..., a |~ z, and a |~ =(z1A...Azy,), then

ap L.

We call these preface rules, because we may read z1, ..., x, as the n
assertions in the body of the book —(xz1A...Ax,) as the statement in the
preface, and a as the total background knowledge authorizing them. The
rule PREF(n) says, in effect, that if our background beliefs give us good
reason to believe each of the n assertions in the body of the text considered
separately, and also provide good reason to believe that at least one of them
fails, then they give us good reason to believe anything at all. The rule
may thus be seen as corresponding to the injunction: “Don’t tolerate any
belief that is in conflict with the conjunction of any sufficiently small set
of propositions, each of which it individually supports”, where “small” is
measured by the parameter n, conflict and support are both expressed in
terms of |~, and the conclusion a |~ L provides a criterion for not tolerating
the belief a.

We now investigate the behavior of these rules, and of some others related
to them, from the qualitative and quantitative perspectives. The remarks
that follow draw from, reorganize, and add to those in Hawthorne [8] and
[9]. To keep track of remarks, the reader should refer to the figure for
Observation 7.3, which gathers them together.

Clearly PREF(2) is the rule mentioned above: whenever a |~ z; and
a p~ zo and a v —(z1 A x2) then a |~ L. PREF(1), mentioned near the end
of section 6, says that whenever a |~ = and a |~ —z then a |~ L. For each
n > 1, PREF(n+1) implies PREF(n): put x,4+1 = ,, and apply Rw.

The rules PREF(n) are all qualitatively sound: each is derivable from
family P by applying AND n+1 times and then Rw. Distinguishing between
them for different values of n is thus of no qualitative interest. On the other
hand, their quantitative status depends critically on the threshold chosen
in the definition of probabilistic consequence. PREF(n) is probabilistically
sound for sufficiently high values of ¢ (given any fixed n > 0) and likewise
for sufficiently low values of n (given fixed ¢ > 0.5). Observation 7.2 will
provide a precise statement and proof of this claim.

Alongside the series PREF(n), consider a series of classicality transforms
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CL-PREF(n) for n > 1, where the snake in the last premise becomes a gate.

CL-PREF(n): Whenever a |~ z1, ..., a |~ z, and a b =(z1A...Axy,), then

ap L.

Intuitively, each rule CL-PREF(n) tells us that if our background beliefs
give us good reason to believe each of the assertions in the body of the text
considered separately, but are at the same time logically inconsistent with
those assertions considered together, then they give us good reason to believe
anything at all.

Again, for each n > 1, CL-PREF(n+1) implies CL-PREF(n), by putting
Tp41 = Tp. 1t is also clear that (since a F y implies a |~ y, by SUP), PREF(n)
implies CL-PREF(n). But we can show more.

Observation 7.1. Given the rules in family O, PREF(n) is equivalent to
CL-PREF(n+1).

PRrROOF. Clearly, CL-PREF(n+1) implies PREF(n): simply take z,41 =
—(z1A...Azy,). For the converse, suppose PREF(n) holds, and suppose a |~ x1,
ey @ P Xy a2 Tpy1 and a B (1A ATy A 241). We want to show using
rules in O that a |~ L. Since a |~ xp41 by supposition and a A —a |~ a by
sup, we have by WAND that a |~ aAzy,+1. And since a - (21 A AT AZpt1),
by classical logic a A 41 F =(21A...Azy,). So RW applied to a |~ a A Ty
gives a |~ —(x1A...Azy). Now apply PREF(n) to get a |~ L, as desired. m

It follows that each CL-PREF(n+1) is qualitatively sound, i.e. derivable
from family P. CL-PREF(n+1) is also probabilistically sound for all probabil-
ity functions p and all thresholds ¢t > n/n+1, although for each ¢ < n/n+1
there is a p for which it fails (for a full proof, see Observation 7.2.) The
limiting-case rule CL-PREF(1) follows from O alone; so CL-PREF(1) is both
qualitatively sound and probabilistically sound for all thresholds ¢ > 0.

In addition to the classicality transforms, we may consider the failsafe
transforms of the preface rules. Following the terminology of section 3, these
replace the last premise of each rule, a |~ = (z1A...Azy,), by its failsafe version
a R (TN ATy), e, by aA(x1A.Axy) P 2(z1A..Azy), glving rise to the
series of rules:

FS-PREF(n): When a |~ z1, ..., a v z, and a & —(x1A...Axy,), then

ap L.
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Using Observation 3.1, these rules may be written equivalently (modulo O):

FS-PREF(n): When a |~ 21, ..., a v 2, and a A (x1A...Azy,) |~ L, then

ap L.

The rule FS-PREF(n) says that if our background beliefs give us good
reason to believe each of the assertions in the body of the text, and also
makes it certain that at least one of them fails, then they give us good
reason to believe anything at all. We recall from section 3 that this notion
of one proposition ‘making another certain’ means, quantitatively, that the
probability of the joint truth of the former with the negation of the latter
is zero, or (in the limiting case) that the threshold chosen is itself zero. In
qualitative terms, it means that this joint truth is not a seriously entertained
possibility (more formally: is not satisfied in any world of the stoppered
preferential model determining the consequence relation).

As before, for each n > 1, FS-PREF(n+1) implies FS-PREF(n), putting
put x,4+1 = x, and applying Rw. Also, since a F y implies a A —y |~ y
which implies a |~ y (given family O), we know that rule PREF(n) implies
FS-PREF(n) which implies CL-PREF(n) (which is equivalent to PREF(n—1)).
Finally, it is not difficult to check that FS-PREF(n+1) behaves just like CL-
PREF (n+1) with regard to probabilistic soundness:

Observation 7.2. (Hawthorne [8], [9]). For n > 1, FS-PREF(n+1) and CL-
PREF(n+1) (and also PREF(n)) are probabilistically sound for all probability
functions p and all thresholds ¢ > n/n+1, although for each ¢ < n/n+1 there
are p for which each rule fails.

The verification is in the appendix.

The limiting-case rule FS-PREF(1) follows from O alone; so FS-PREF(1)
is both qualitatively sound and probabilistically sound for all thresholds ¢ >
0.

Observation 7.3. Putting all this together, we have the configuration of
implications modulo family O shown by Figure 4.

Qualitatively, all these rules are derivable from P and so have no individ-
ual interest from a qualitative point of view. Probabilistically, PREF(n), CL-
PREF (n+1), and FS-PREF(n+1) are each sound for threshold ¢ iff ¢ > n/n+1.
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Figure 4. Figure for Observation 7.3

FS-PREF(1) and CL-PREF(1) are both derivable from O. It follows easily that
the FS-PREF rules have a distinguishing property.

Corollary 7.4. Let t € (1/2, 1). Choose n to be the largest positive integer

such that ¢ > n/n+1 (i.e. the largest n such that n < t/1 —¢). Then

FS-PREF(n+1) is strictly the strongest rule in the array of the Figure for

Observation 7.3 that’s sound for probabilistic consequence with threshold t.
The verification is in the appendix.

The PREF rules are sound only for thresholds ¢ > 1/2. Now consider
a family of weaker consequence relations, a family where a |~ x says, “if
a holds, then z is somewhat plausible.” Consequence relations of this sort
correspond to conditional probabilities for thresholds ¢ < 1/2. The following
rule is a sort of continuation of the FS-PREF rules to thresholds ¢t > 1/n+1
for n > 1. But they have a somewhat different character than the PREF
rules. Let’s call them the PLAUS (for ‘plausibility’) rules:

FS-PLAUS(n+1): When a |~ z1, ..., a p zp41 and a R —(x1 A 22),
ae—(r1 Axs), ..y a R 2(Tp A Tpt1), then a v L.
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Notice that FS-PLAUS(2) is the same rule as FS-PREF(2). Both are prob-
abilistically sound at all thresholds ¢t > 1/2. And just as each FS-PREF(n+1)
rule is sound for all £ > n/n+1, it turns out that each FS-pPLAUS(n+1) is prob-
abilistically sound for all thresholds ¢ > 1/n+1. Thus each FS-PLAUS(n+1)
is probabilistically sound for sufficiently high values of ¢ (given any fixed n >
0) and likewise for sufficiently high values of n (given fixed ¢ > 0).

Observation 7.5. (Hawthorne [8]). For n > 1, FS-PLAUS(n+1) is probabilis-
tically sound for all probability functions p and all thresholds ¢t > 1/n+1,
although for each t < 1/n+1 there are p for which it fails.

The verification is in the appendix.

Clearly, for each n > 1, FS-PLAUS(n+1) implies FS-PLAUS(n+2). And
we've already seen that FS-PREF(n+2) implies FS-PREF(n+1), and that Fs-
PREF(2) is the same rule as FS-PLAUS(n+2). Thus we have the following
hierarchy of rules for thresholds t.

Observation 7.6. Putting all of the observations relating FS-PREF and Fs-
PLAUS together, we have the configuration of implications modulo family O
shown by Figure 5.

t>1/n+1 v t>1/3 t>1/72 t>2/3 .. t>n/n+1
FS-PREF(2)  FS-PREF(3) ... FS-PREF(n+1) ...

. FS-PLAUS(n+1) ... FS-PLAUS(3) FS-PLAUS(2)

< < < <
eet— o . 0 ¢ °o < ° < o, . o0¢

Figure 5. Figure for Observation 7.6

Thus the FS-PREF and FS-PLAUS rules, taken together and ordered by
strength, form an infinite sequence, both down and up, with the common
rule FS-PREF(2) = FS-PLAUS(2) as central point. In the next section we
further generalize these rules.

8. More General Threshold-Sensitive Preface and Plausibil-
ity Rules

Each Fs-PREF(n+1) rule (for each value of n > 1) is a special cases of
a yet more general preface-like rule that is probabilistically sound for an
appropriate threshold level . To introduce these rules intuitively, consider
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the failsafe version of the usual preface rule, but contraposed, so that we
suppose the background belief a to be both coherent (i.e. a [ 1) and to
imply that each of n+1 pages is error free (i.e. a | 1, ..., a | Tpi1).
Then (for n small enough relative to threshold ¢) the agent should not be
certain that at least one page has an error — that is, we should have a
“(z1A...ATp41), or equivalently, a A (z1A...AZp41) % L.

Now consider a similar case, but where background belief a is not itself
sufficient to support the claim that page i is error free, so that a |~ x;
fails to hold. Nevertheless, suppose the agent has a chain argument that
begins with background a and supports a cumulative series of intermediate
conclusions x; 1, %2, ...., Z;, (about the reliability of the process of fact-
checking page i) that ultimately jointly support the claim that page i is
error free (expressed by the statement ;) a |~ 21, a A1 P X,
vy @A T A TioN ATk —1 P~ T, For example, x;1 may say that the
proof reader is conscientious, x; 2 that she checked the references on page 4
carefully, x; 3 that she used reliable sources to check the references on page 4,
..., etc., where each x; ; may draw on whatever it needs from the conjunction
aAxi1 A\ xia/...A\z; ;1 for support.

Furthermore, the “error free” conclusions for many of the pages may
rely on such chain arguments of various lengths — perhaps chains consisting
of quite different premises for each page — premises specific to the kind of
information that specific page contains.

In such a case, a more general version of the preface rule, the CA-PREF(t)
rule applies. It says that if the number of claims about pages n+1 is small
enough and the lengths of each of the argument chains is short enough (so
that in combination n/n+1 < (374 '%)/n+1 — i.e. n/n+1 is smaller than
the average value of t*), then a must be incompatible with the conjunction
of all of the claims (premises and conclusions) involved. If, however, the
number of conclusion claims, n+1, and the lengths of the argument chains
for them, the k;, are jointly big enough relative to the threshold ¢, then a
may be perfectly compatible with the conjunction of all the claims involved.

In formulating the appropriate generalizations of the preface rules, it will
prove convenient to index the new rules by the thresholds ¢ at which they
are sound. Here is what the new rules look like.

CA-PREF(t): For n > 1, for any n+1 integers k; > 1 (1 < ¢ < n+1) such that
n < kE?jll thi (i.e., such that n/n+1 < (S74't%) /n41, the average value of
the t%i):

when for all ¢ such that 1 <i < n+1,
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apyxin, aNTig T2, o @ AT A TN AT R -1 P Tk, and
/\?:11 (a Nxi1 A IZ‘IL"Q/\.../\IEi’]ﬂ) I’v 1,
then a |~ L.

The letters ‘CA’ stand for ‘Chain Argument’. This new rule is a Chain
Argument (failsafe version) Preface Rule. FS-PREF(n+1) is a special case
of this new rule where the length of each argument chain from a to the
conclusion ; i, is 1 (i.e. where each of the k; = 1). In general, for each ¢t >
n/n+1, the CA-PREF(t) rule reduces to the FS-PREF(n-+1) rule whenever the
length k; of each chain argument is 1 and there are precisely n+1 conclusion
propositions involved.

Whereas it makes good sense to index the FS-PREF rules by the number,
n+1, of conclusion propositions involved (because the appropriate threshold
can be directly recovered from it), the CA-PREF rules depend on a complex
combination of the number of conclusion propositions, n+1, the argument
chain lengths, and the threshold. Since our goal in this paper is to charac-
terize the relationship between qualitative rules and quantitative rules, and
since this relationship is most easily seen by indexing the rules in a way
closely tied to the quantitative threshold, it makes good sense to index the
CA-PREF rules by the relevant threshold .

Observation 8.1. CA-PREF(t) is probabilistically sound for all thresholds ¢.
The verification is in the appendix. And it is also easy to check that each
CA-PREF(?) rule is derivable from P = OU(AND).

Notice that although this rule does not assume that ¢ > 1/2, it only
really applies (i.e. it only has a non-vacuous antecedent) when ¢ > 1/2;
because, if t < 1/2, we'd have n < X F < (n+1)(1/2), so 2n < (n+1),
so n < 1, which isn’t possible. This suggests that there should be a series of
additional rules, like the FS-PLAUS rules, that apply (and are effective) for
thresholds ¢t < 1/2. Here is the more general counterpart of the schema for
the FS-PLAUS rule.

CA-PLAUS(t): For n > 1, for any n+1 integers k; > 1 (1 < ¢ < n+1) such
that 1 < X0 % (i.e., such that 1/n+1 < (S7F5) /n+1, the average value
of the tFi):

when for all 4 and j such that 1 <1i < j <n+1,
(a ANxi1 N aj‘i,g/\.../\aj‘@ki) N (a ANxj1 N\ aij,Q/\.../\l‘ngj) IN 1,

and for all 7 such that 1 <7 < n+1,
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a IN Ti1, @ NXi1 l’V T2y ooy AN T30 NTG 2N AT |1 |N Ti k; s
then a ~ L.

Notice that the CA-PLAUS(¢) rule reduces to the Fs-PLAUS(n+1) rule(s)
for n/n+1 < t whenever the length k; of each chain argument is 1 and there
are precisely n+1 conclusion propositions involved. Also notice that when ¢
= 0, this rule is ineffective, since in that case E?:Jrll t*" = 0 but the antecedent
of the rule requires that E?jll t* > 1. This rule is probabilistically sound
for each threshold ¢ > 0, as the next observation shows.

Observation 8.2. CA-PLAUS(t) is probabilistically sound for all thresholds ¢.
The verification is in the appendix. And it is also easy to check that each
CA-PLAUS(?) rule is derivable from P = OU(AND).

Given the rules of O, for each t > ¢/, the rule CA-PREF(¢) implies the rule
CA-PREF(t'), but not vice versa, and the rule CA-PLAUS(¢) implies the rule
CA-PLAUS(t'), but not vice versa. This fact suggests the following definition.

Definition 8.1. For each possible threshold ¢ such that 0 <t < 1, define the
family O(t) of closure conditions on a consequence relation by putting O(0)
= O, and for all ¢t > 0, O(t) = OU{CA-PREF(t), CA-PLAUS()}.

For each ¢ > t/, the family O(¢) implies the family O(¢'), but not vice
versa. Recalling that P = OU{AND}, so that P implies each O(t), we have P
at the top of this hierarchy. In terms of families of consequence relations, as t
increases, the hierarchy of O(t) rules represents a hierarchy of ever stronger
logics, each capturing a proper subset of the set of consequence relations in
families below it.

9. Threshold-Sensitive non-Horn Rules: the Lottery and
Other Sound Rules

We now draw attention to a hierarchy of threshold-dependent non-Horn rules
that follow from the very strong qualitative ‘linear’ (alias Stalnaker) family
S, although not from the less strong ‘rational’ system R, defined in section
6. We call these new rules ‘Lottery Rules’ because of their connection to
a version of the lottery paradox. Just as the family P implies rules like
PREF(n), FS-PREF(n+1), and FS-PLAUS(n + 1), which are probabilistically
sound at all thresholds ¢ > n/n+1 (but unsound for all lower thresholds),
this series of non-Horn rules are probabilistically sound at all thresholds



The Quantitative/Qualitative Watershed for Rules of Uncertain Inference 35

t < n+1/n+2 (but unsound at all higher thresholds). R does not imply
these additional rules, but S does.
Here is the form these rules take.

FS-LOTT(n): Whenever for n > 2 distinct formulae, z1, ..., z,, a
—(x1 A x2), a & (1 Ax3), ..., a R =(Tp—1 A zy), then
a v —xp or ... or a v 1z,

Notice that for each n the rule FS-LOTT(n) implies the rule FS-LOTT(n+1).

Rule Fs-LOTT(n) says that if background beliefs @ make it certain that
no two of a list of n distinct the propositions are both true, then for at least
one of these propositions, the background beliefs ¢ must provide good reason
to believe that proposition is false. The connection to the lottery paradox
can be seen by taking ‘a’ to describe a lottery for which no two tickets are
permitted to win, and by reading each ‘z;’ as saying that “ticket ¢ will win”.
The fail-safe relations a & ~(xjAxy) (i.e. aA(zjAzy) |~ —(xjAxy)) express
the certainty that tickets j and k cannot both win.

Notice that this rule makes no supposition that “one of the tickets will
win” —i.e. it does not suppose ‘a p~ (z1V...Vx,) — and there is no supposition
that each ticket has the same chance of winning. (If all tickets have the same
chance of winning, then we should also have ‘ a |~ —z; iff a |~ —x;” for each x;
and x;, and the consequent of the rule would imply the conjunction ‘a |~ -z
and ... and a |~ -z, .) The idea, then, is that if the lottery consists of a
very large number of tickets, and if our background beliefs a make it certain
that at most one ticket can win (and if our threshold for belief isn’t too near
1), then a must support the belief that ticket j will loose, for at least one of
the tickets j.

Observation 9.1. S implies each of the FS-PREF rules. Indeed the rules
OU{ROR} implies them.

PROOF. Given a & —(z1 A za) (i.e. a A (z1 Ax2) p —(x1 A x2)), we have
(from O) a |~ =(x1 Ax2), so a v (—z1 V —x2), so by ROR we have ‘a |~ —x;
or a ~ —xy’. The rest is obvious. ]

Whereas ROR is not probabilistically sound at any threshold level, each
rule FS-LOTT(n+1), for n > 1, is probabilistically sound for sufficiently low
values of ¢ (given any fixed n > 0), and likewise for sufficiently high values
of n (given fixed t > 0).



36 James Hawthorne, David Makinson

Observation 9.2. (Hawthorne [8], [9]). For n > 1, FS-LOTT(n+1) is proba-
bilistically sound for all probability functions p and all thresholds ¢t < n/n+1,
although for each t > n/n+1 there are p for which it fails.

This is verified in the appendix.

Since FS-LOTT(n+1) is probabilistically sound precisely when threshold
t < n/n+1 while FS-PREF(m+1) is probabilistically sound precisely when
t > m/m+1, these two rules are sound together precisely when the threshold
t is between these two bounds — i.e., precisely when n/n+1 >t > m/m+1,
for n > m > 1. Clearly the narrowest such bounds on ¢ occur for n/n+1
>t > n—1/n, for values of n > 2 —i.e. for pairs of rules FS-LOTT(n+1) and
FS-PREF(n), for n > 2.

The FS-LOTT rules are only “effective” down to an upper bound of 1/2
on the value of the threshold ¢. However, there are additional probabilis-
tically sound rules for thresholds ¢ bounded above smaller fractions — e.g.,
by 1/3, by 1/4, and more generally by 1/n. The FS-LOTT rules will remain
sound at these smaller bounds, but are subsumed by (i.e. implied by) the
rules appropriate to these bounds. These new rules, associated with bounds
1/n, are appropriate for the families of weaker consequence relations we
identified earlier, those where a |~ x says, “if a holds, then x is somewhat
plausible”. These are the same relations we associated with the FS-PLAUS
rules. Consequence relations of this sort correspond to conditional probabil-
ities for thresholds ¢ < 1/2. The following rule is a sort of continuation of
the FS-LOTT rules to thresholds t < 1/n for n > 2. Let’s call them the POSs
(for ‘possibility’) rules:

Fs-POss(n):  Whenever for n > 2 distinct formulae xy, ..., zp,
a e = (x1A...Azp), then a v —z1 or ... or a |~ —zp,.

Equivalently, we can express this rule as follows:

FS-POSS(n):  Whenever for n > 2 distinct formulae, zi, ..., xp,
a A (xiA...Azy) p~ L, then a |~ =z or ... or a |~ —xy,.

Notice that FS-P0Ss(2) is the same rule as FS-LOTT(2). Both are prob-
abilistically sound at all thresholds ¢ < 1/2. Furthermore, clearly, each
rule FS-POSs(n+1) implies the rule Fs-poss(n) (and every Fs-poss(m) rule
for m < n), and all rules FS-LOTT(n) as well. Furthermore, just as each
FS-LOTT(n+1) rule is sound for all ¢ < n/n+1, it turns out that each Fs-
POss(n+1) is probabilistically sound for all thresholds ¢ < 1/n+1.
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Thus each rule Fs-pP0Oss(n+1), is probabilistically sound for sufficiently
low values of ¢ (given any fixed n > 0) and likewise for sufficiently low values
of n (given fixed t < 1/2).

Observation 9.3. (Hawthorne [8]). For n > 1, FS-POSs(n+1) is probabilis-
tically sound for all probability functions p and all thresholds ¢t < 1/n+1,
although for each t > 1/n+1 there are p for which it fails.

The verification is in the appendix.

It is easy to see that the qualitative system S implies the FS-POSS rules.

Observation 9.4. S implies each of the Fs-POSS rules. Indeed the rules
OU{ROR} implies them.

PROOF. Given a R —(z1A...AZy), from O we have a | —(z1A...Axy,), so
a p~ (mx1V...Voxy,), so by repeated applications of ROR we have ‘a ~ -z
or a v —xg, or ... or a v Ty, |

Putting the two new classes of rules described in this section together
with the related threshold-sensitive Horn rules discussed in section 7, we get
the following picture. For each threshold ¢ between 0 and 1, the rules of Q
are probabilistically sound. In addition, for each n > 2, whenever n/n+1
>t > n—1/n, the additional threshold-sensitive rules FS-LOTT(n+1) and Fs-
PREF(n) are probabilistically sound. And for each n > 2, whenever 1/n >
t > 1/n+1, the threshold-sensitive rules FS-POSS(n) and FS-PLAUS(n+1) are
probabilistically sound. Thus, given the implications among these rules we
have the following hierarchy of rules for thresholds ¢.

Observation 9.5. Putting all of the observations relating FS-PREF, FS-PLAUS,
FS-LOTT, and FS-POSS together, we have the configuration of implications
modulo family Q given by Figure 6.

This very nearly covers the strongest class of probabilistically sound rules
we know of. But there is one additional wrinkle — one further generalization.
Recall that the FS-PREF and FS-PLAUS rules were each subject to general-
izations that involved chain arguments — giving rise to the probabilistically
sound CA-PREF and CA-PLAUS rules. The two classes of rules introduced
in the present section are also generalizable to probabilisitcally sound chain



38 James Hawthorne, David Makinson

Llntl<t<l/in . 1/3<t<1/2 1/2<t<2/3 won—1/n<t<n/n+l
FS-PREF(2) FS-PREF(n)

FS-PLAUS(n+1) ... FS-PLAUS(3) FS-PLAUS(2)

edt— o . 0« o« e ., .0 4¢—— o
e—> o .. 0 > o > o .0 ———> o

FS-LOTT(2) FS-LOTT(3) FS-LOTT(n+1)
FS-POSS(n) ... FS-POSS(2)

Figure 6. Figure for Observation 9.5

argument versions, CA-LOTT and CA-POSS, which have the rules FS-LOTT
and FS-POSS, respectively, as special cases.
Here is the chain argument version of the FS-LOTT rule.

CA-LOTT(t): For n > 1, for any n+1 integers k; > 1 (1 < i < n+1) such
that 1 < X' (1 — )% (i.e., such that 1/n+1 < (S — £)k) /n+1, the
average value of the (1 — t)*):

when for all ¢ such that 1 <i < n+1,

afl i1, a Nxig P oxi2, o AN T A TN AT 1 P Tk

then, for some ¢ and j such that 1 <i < j < n+1,

(aNTi A ATi2 N AT -1 ATig,) N (@ AT ATja N ATk ATk ) 2 L

This Chain Argument Lottery rule holds vacuously when the threshold
t = 1. But the rule has substance for thresholds ¢ less than 1 provided that
n is large enough and the k; are small enough. Also notice that when this
rule is probabilistically sound for a given ¢, set of k;, and n, then (keeping ¢
fixed) for all larger values of n and all smaller values of the k;, the rule must
continue to hold. When each k; = 1, this rule is just the FS-LOTT(n+1) rule
for the smallest n such that n/n+1 > t.

Observation 9.6. CA-LOTT(t) is probabilistically sound for all thresholds ¢.
The verification is in the appendix. It is also easy to show that the

qualitative system S implies the CA-LOTT(¢) rules.

The chain argument version of the Fs-POSS rule is as follows.
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CA-POSS(t): For all n > 1 and any n+1 integers k; > 1 (1 < i < n+1) such
that n < B! (1 — )% (i.e., such that n/n+1 < (T (1 —6)%)/n+1):

when for all ¢ such that 1 <i < n+1,
a |7[/ L1, N\ T bé L2, ey G NT;L N -’Ei,2/\~-~/\xi,ki—1 I’%/ L ks
then /\n+11(a ANxia N Tio N ATk —1 AN Zik,) e L.

1=

Notice that for this rule to take effect ¢ cannot be greater than 1/2
(because, if t > 1/2, then we’d have (1 —t) < 1/2, so n < X' (1 — )k <
(n+1)(1/2), so 2n < (n+1), so n < 1). But ¢ > 0 can have any value less
than or equal to 1/2 (provided that n and the k; are small enough). Also
notice that when this rule is sound for a given t, set of k;, and n, then
(keeping t fixed) for all smaller values of n and the k;, the rule continues to
hold. When each k; = 1 this rule is just the Fs-poOSs(n+1) rule.

Observation 9.7. CA-POSS(t) is probabilistically sound for all thresholds t.
The verification is in the appendix. It is also easy to show that the
qualitative system S implies the CA-POSS(¢) rules.

The strongest families of threshold-sensitive probabilistically sound rules
we’ve investigated in this paper consist of the rules in Q = OU{NR} together
with the rules CA-PREF(t), CA-PLAUS(%) (in O(t)), plus the rules CA-LOTT(?),
CA-POSS(t). This suggests the following definition.

Definition 9.1. For each t € [0,1], define the family Q(¢) of closure conditions
on a consequence relation by putting Q(¢) = O(t)U{NR, CA-LOTT(t), CA-
POSS(t)} = OU{CA-PREF(t), CA-PLAUS(t), NR, CA-LOTT(t), CA-POSS(t)}.

The threshold-sensitive rules associated with chain arguments do not
conflict in any way. Each is formulated so as to remain sound for all thresh-
olds ¢ in the interval [0,1]. However, among these rules, when t > 1/2,
only the rules CA-PREF(t), CA-PLAUS(t), and CA-LOTT(t) apply. The rule
CA-POSS(t) remains consistent, but it fails to apply when ¢ > 1/2 because
its antecedent condition, n < X! (1 — ¢)* must be vacuous in that case
(because, when t > 1/2 we have (1 —t) < 1/2, so n < X' (1 —t)k <
(n+1)(1/2), so 2n < (n+1), so n < 1). Similarly, when ¢t < 1/2, only the
rules CA-PLAUS(t), and CA-LOTT(t), and CA-POSS(¢) apply. The rule CA-
PREF(t) remains consistent, but it fails to apply when ¢ < 1/2 because its
antecedent condition, n < E?:Jrll tk must be vacuous (because, when t <
1/2 we have n < Xk < (n+1)(1/2), so 2n < (n+1), so n < 1).
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The following observation sums up our discussion of the families of
threshold-sensitive rules.

Observation 9.8. For each t € [0,1], the family of rules Q(t) is probabilisti-
cally sound.

O(t) is the strongest family of threshold-sensitive probabilistically sound
Horn rules we have found. But when we consider all probabilistically sound
threshold-sensitive rules, Horn and non-Horn, Q(¢) emerges as the strongest
family of such rules we have been able to identify.

10. Open Questions

We gather together some open questions that were mentioned in the text.
Perhaps the most basic is that of representation:

Question 1. Can a representation theorem be established for family O
plus negation rationality plus the ‘Archimedean rule’ of section 57

Our conjecture is negative.

The next question concerns the completeness of family O with respect
to finite-premise Horn rules.

Question 2. Is every finite-premise Horn rule that is satisfied by all

probabilistically defined consequence relations derivable from family
0?

We know from Observation 4.3 that this holds for one-premise Horn
rules, and indeed for all finite-premise Horn rules with pairwise inconsistent
premise antecedents. But we also know from Corollary 5.2 that it can fail for
countable-premise Horn rules. Moreover, by Observation 5.1, if the answer
to this question is positive, it cannot be established via a representation
theorem. Our conjecture for Question 2 is nevertheless positive.

The question of completeness also arises when we consider threshold-
sensitive probabilistic consequence relations.

Question 3. Consider the set of all consequence relations defined proba-
bilistically with a fixed threshold value ¢ € (0, 1). Is every finite-premise
Horn rule that is satisfied by all of these consequence relations derivable
from those in the family O(t)? In other words, is O(t) a complete ax-
iomatization of the finite-length Horn rules satisfied by the threshold ¢
probabilistic consequence relations, for each threshold ¢? And is Q(¢) a
complete axiomatization of all (Horn and non-Horn) finite-length rules
satisfied by probabilistic consequence relations at threshold ¢?
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Appendix: Verifications

This appendix contains a number of proofs omitted from the body of the
text. They are of two kinds. Some (particularly from Part II) are rather
long but unexciting verifications whose presence in the main text would have
impeded the reader’s progress. Others (particularly from Part I) include
proofs of facts used in this paper that were established in different contexts
and sometimes in different ways by Hawthorne [8] or Bochman [4].

Observation 2.3. (Hawthorne [8]). Probabilistic consequences satisfy all the
conditions in family O.

PROOF. REFLEX, RW, and LCE are immediate. For the others, the details
are as follows. Let p be any probability function and t € [0,1]. Let |~ be the
consequence relation defined modulo p and ¢.

For wOR: Suppose a Ab |~ z and a A —b |~ z. We need to show a |~ .
If p(a) = 0 this is immediate. So suppose p(a) > 0.

Case 1: Suppose p(a Ab) = 0. Then 0 < p(a) = p(a A —b), so since by
supposition a A =b |~ z we have t < p(a A —=b A x)/p(a A —b) = pla A —bA
z)/p(a) < plaAx)/pla) soat> .

Case 2: Suppose p(a A =b) = 0. Then similarly 0 < p(a) = p(a A b);
so since by supposition a A b |~ = we have t < p(a Ab A x)/pla ANb) =
pla AbAz)/pla) < plaAz)/p(a) 50 a b z.

Case 3: Suppose finally p(a A b) > 0 and p(a A =b) > 0. Then by the
suppositions p(a Ab A x) > p(aAb) -t and p(a A —-bAzx) > plaA-b)-t, so
plaNz)=plaNxAb)+planzA-b) > [plab)+plan-=b)-t=npa)-t,
so p(a A x)/p(a) > t, that is, a |~ .

For vem: Suppose a |~ 2 Ay. We need to show a Az v y. If plaAz) =
0, then a A z |~ y and we are done. So suppose p(a A z) > 0. Then p(a) >
0, so the initial supposition gives us p(a Az Ay) > p(a) -t > p(a Ax)-t, so
plaNxzAy)/plaNzx) >t ie aAx |y as desired.

For wAND: Suppose a |~ x and a A =y |~ y. We need to show a |~ z A y.
If p(a) = 0, then a |~ x Ay and we are done. So suppose p(a) > 0.

Case 1: Suppose p(a A =y) = 0. Then p(a Az A-y) =0,s0 plaNz) =
planzANy)+plaNzA-y) =planzAy). So, since a |~ x, we have
plaNzAy) =plaAz) > pla)-t. Thus, pla Az Ay)/pla) > t, that is,
aprxzAy.

Case 2: Suppose p(a A =y) > 0. Then, since a A =y |~ y, we have 0 =
plaN—yAy)/plaN—y) >t sot=0,and so plaAzAy)/pla) >t =0, that
is, a v x A y. |
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Observation 3.2. Every rule in ¥S(P) is derivable from family O. But not
conversely: WOR is not derivable from Fs(P). Indeed, WOR is not derivable by
adding failsafe transformations of any Horn rules with two or more premises
to REFLEX, RW, LCE, VCM.

ProoF. The positive part is proven in the text. For the negative part, we
define a probabilistic property that holds for REFLEX, RW, LCE, VCM and all
failsafe transformations of Horn rules with two or more premises, is preserved
under chaining, but fails for the rule woR.

Let p be any probability function. We write p*(x,a) for the two-argument
function defined by putting p*(z,a) = ps(z) when p(a) # 0 and p*(z,a)
= 0 when p(a) = 0. Evidently, p* is not a standard probability function,
although it is closely related to conditionalization. We consider the following
majoration property for Horn rules:

if p*(x;,a;) # 0 for all ¢ < n, then p*(b,y) > p*(x;,a;) for all i <n

where b |~ y is the conclusion of the rule and a; |~ z; are its premises. Note
the presence of two quantifiers in this condition, with disjoint scopes. For
simplicity of notation, we are here assuming that the Horn rule has finitely
many premises; the same argument goes through whatever the cardinality.

Lemma 3.2.1. The rule WOR fails the majoration property for some proba-
bility function p.

Verification. The premises of WOR are aAb |~ x, aA—b |~ x and its conclusion
is a |~ . Choose a, b, z to be distinct elementary letters. It suffices to find
a probability function p such that p*(x,a A b) # 0, p*(x,a A —b) # 0, and
(say) p*(x,a) < p*(z,aAb). Define a function p on state descriptions defined
by putting p(a Ab A z) = pla AN=bAz)=plaN-bA-z)=1/3, all other
state descriptions getting value 0, and consider its unique extension to a
probability function on all formulae. Then p(a A b) = 1/3 and p(a A —b)
= 2/3 so p*(z,anb) = plaNbAx)/plaNb) = (1/3)/(1/3) =1 > 0 and
p*(z,a A =b) = pla A —=bAz)/plaN-b) = (1/3)/(2/3) = 1/2 > 0. Also
p*(z.a) =plaAz)/pla) = (2/3)/1 =2/3 <1=p*(z,aAb).

Lemma 8.2.2. Every Horn rule derivable from REFLEX, RW, LCE, VCM plus
any set of failsafe transformations of Horn rules with two or more premises,
has the majoration property for every probability function p.

Verification. Consider the set C consisting of REFLEX, RW, LCE, VCM plus
any set of failsafe transformations of Horn rules. Clearly they are all Horn
rules. Hence the rules derivable from them are precisely those that can be
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obtained by chaining. As the relation > between reals is transitive, it thus
suffices to show that each rule in C' has the majoration property.

The verifications for REFLEX, RW, LCE are trivial. For failsafe transfor-
mations of rules with two or more premises, the majoration property holds
vacuously, because p*(x;,a;) = 0 for the transformed premise. It remains to
check voMm.

The premise of VCM is a |~ 2 Ay and the conclusion is a Az |~ y. Suppose
p*(xz Ay,a) # 0; we need to show that p*(y,a Ax) > p*(z Ay,a). In the case
that p(a A ) = 0 we have LHS = 0; if also p(a) = 0 then also RHS = 0,
while if p(a) # 0 then RHS = p(a A x A y)/p(a) = 0 again. In the case that
plaAz)# 0, LHS = pla Az Ay)/pla ANx) > pla Nz Ay)/p(a) = RHS and
we are done. ]

Facts used in the proof of Observation 4.1

Fact 4.1.1. (Hawthorne [8]). All rules in the family P are derivable from
OU{AND}.

PROOF. There is only one to check: OR. Suppose a |~ x and b |~ x. We need
to show that a Vb |~ = Applying LCE to the second supposition, (aVb)Ab |~
x,80 (aVb)Ab |~ xzVa (RW); also (aVb)A—b |~ xVa (SUP); thus aVb v zVa
(WOR). Similarly, applying LCE to the first supposition, (a V b) A a |~ x, so
(aVb)Aa |~ xV-a (RW); also (aVb) A—a |~ xV—a (SUP); thus aVb ~ xV-a
(WOR). Putting these together we have a Vb |~ (zVa) A (x V —a) (AND), so
aVbpx (RW). |

Fact 4.1.2. (Bochman [4]): All closure conditions in family P are derivable
from OU{OR,CM}.

PRrOOF. By Fact 3.1.1 it suffices to derive AND from OU{OR,CM}. A deriva-
tion is given by Bochman [4] Theorem 6.7.1 points (1) and (4). Here we give
a rather different derivation via a curious variant of AND.

First, note that OU{OR,CM} implies the rule: whenever a |~ z and a |~ y,
then a A (x Vy) |~  Ay. For suppose a |~ z and a |~ y. By LCE it will
suffice to show that (a A x) V (e Ay) I~ = Ay, so by OR it will suffice to
show that (a Az) v x Ay and (a Ay) | x Ay. We show the former; the
latter is similar. On the one hand, applying CM to our two suppositions
gives a A x |~ y. On the other hand, by sup, (a A z) A -z |~ z. Applying
WAND to these gives (a A z) |~ y A x so by RW, (a Az) |~ x Ay as desired.
Now derive AND using the above rule. Suppose a |~ = and a |~ y. We want
to show that a |~ z A y. By the above rule, a A (x Vy) b x Ay, so by Rw,
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al(zVy) | x < y. But also by sup, a A—(zVy) v x < y. Applying WOR
to these gives a |~ = <> y. Applying the above rule again to a |~ x < y and
a v x we have a A (x V (z < y)) p A (z < y), so that by LCE and RW,
aA(y — x) |~ x Ay. Similarly, applying the above rule to a |~ = < y and
alvy wehave a A (yV (z < y)) v x A (z < y), so that by LCE and Rw,
a/(x —y) oz Ay. Applying OR to these gives [a A (y — z)|V[a A (x — y)]
I~ z Ay so that finally by LCE a |~ x Ay as desired. |

Fact 4.1.3. (Adams [2], Bochman [4]). All closure conditions in family P
are derivable from OU{cM,CT}.

PROOF. By Fact 3.1.1, it suffices to derive AND from OU{cM,CT}. A deriva-
tion of essentially this is given by Adams [2] (answer to exercise 2*a of section
7.2) and another by Bochman [4], Theorem 6.7.1 point (1). Here we give a
variant derivation. Suppose a |~ z and a |~ y. Then a Az |~ y (cM). Also,
(aNx) A=z |~ 2z by SUP, so a Az |~y Az (WAND), soaAx |~z Ay (RW).
Applying CT to this and the supposition a |~ z finally gives a |~ x Ay as
desired. |

Fact 4.1.4. (Bochman [4]). The closure condition OR is derivable from
Oou{cr}.

PROOF. A derivation is given by Bochman [4] Theorem 6.7.1 point (2).
Again we give a variant. Suppose a |~ z and b |~ z. From a |~ z we have
(avVb)ANal~ x (LCE), so (aVb)Aal (zVDb) (RW), but also (aV b) A —a |
(x vV b) (sup), so (aVb) v (xVb) (WOR). From b |~ = we have by LCE that
((aVD)A(xVD))A(mxVb) |~ z, but also ((aVb)A(xVb))A=(—-xVb) |z (SUP),
so (aVb)A(xVb) |~z (WOR). Putting these together with ¢T we have
(aVb) . |

Fact 4.1.5. (Bochman [4], Example 6.7.1). The closure condition AND is not
derivable from OU{cT}.

PROOF. Let |~ be the consequence relation defined by putting a |~ z iff
either a is classically inconsistent, or a is consistent with x. Then it is
straightforward to check that each rule in OU{cT} is satisfied, but AND is
not. |

Observation 4.1.6. AND is not derivable from OU{cM}.
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PROOF. The model is defined and given in a diagram in the text; we need
to show that it fails AND but satisfies all rules in OU{cM}. The failure of
AND is immediate: 123 |~ 12 and 123 |~ 13 but 123 ¢ 1 (since 1 = 12 N 13).
The success of reflexivity is immediate: a < a so a |~ a. For the remaining
rules in OU{cM} the verifications of success are as follows.

For Rw: Suppose a |~ & < y. We consider the three cases of the defini-
tion. Case 1: a <z. Thena<z<ysoa<ysoalry. Case2: 1 <aAzx
and a # 123. Then 1 <aAz <aAyandsoalsoay. Case3: 1 <aAzx
and z # 1. Then 1 < z, so since x <y and = # 1 we have y # 1, so a p~ y.

For LCE: Immediate from the fact that we are working in a Boolean
algebra.

For WAND: Suppose a |~ 2 and a A =y |~ y. We need to show a |~ z A y.
We split into three cases.

Case I: a<z,a<y. Thena <z Aysoal xAy as desired.

Case 2: a <ybuta Lz Thenl <aAzsol<a<yandl <z, so
1 <aA(zAy). So it suffices to show that if a = 123 then y # 1, which is
immediate given a < y.

Case 3: a £ y. Then a A =y £ y so since a A =y |~ y we have 1 <
(a AN —y) Ay = 0: impossible.

For wOR: Suppose a Ab |~ x and a A =b |~ 2. We need to show a | z.
We split into four cases.

Case 1: aAb<x and a A —-b<z. Then a <z so a |~ z as desired.

Case 2: aANb<zxbutaA-bLx. Thenl < (aAN-b)Ax<aAz<uz.
Since 1 < a Az, to show a |~ z it will suffice to show that if a = 123 then
x # 1. Suppose that ¢ = 123 but « = 1: we derive a contradiction. Then
b=anb<zrx=1<aA-bAxz <-b, sob<-bsothat -b = 123 and thus
aA—b =123 while z = 1, so a A —b |¥ = contradicting an initial supposition.

Case 3: a Ab £ x but a A —=b < z. Similar to Case 2.

Case 4: aANb Lz and a AN—b £ x. Then 1 < aA-bAz and also 1
<aAbAx,sol < -bandalsol <bsol<0: impossible.

For c¢Mm: Suppose a |~ = and a |~ y. We need to show a Az |~ y. We
split into three cases.

Case 1: a < x. Then a Ax = a |~ y as desired.

Case 2: a <y. Thena Az <ysoaAz |y as desired.

Case3: aLzxandaLy. Thenl <aAzx<zandl1 <aAy<ysol<
(a Axz) Ay. So to show a A z |~y it will suffice to show that if a A z = 123
then y # 1. But if a A 2 = 123 then a = 123, and since a |~ y we have y #
1 as desired. L

Observation 7.2. (Hawthorne [8], [9]). For n > 1, FS-PREF(n+1) and CL-
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PREF (n+1) (and also PREF(n)) are probabilistically sound for all probability
functions p and all thresholds ¢ > n/n+1, although for each ¢ < n/n+1 there
are p for which each rule fails.

PRrROOF. Since the rules CL-PREF(n+1) and PREF(n) are derivable from
each other, we need only concern ourselves with FS-PREF(n+1) and CL-
PREF(n+1). And since FS-PREF(n+1) implies CL-PREF(n+1), the soundness
of FS-PREF(n+1) for t > n/n+1 implies CL-PREF(n+1) is also sound these
thresholds. Furthermore, the unsoundness of CL-PREF(n+1) at thresholds
t < n/n+1 implies the unsoundness of FS-PREF(n+1) for these thresholds.
First we show that FS-PREF(n+1) is sound for all p and ¢ > n/n+1. Then
we’ll show that each ¢ < n/n+1 there are p for which CL-PREF(n+1) fails.

Suppose that a |~ 1, ..., a |~ Tpt1, a A (T1AAZpt1) o L, and a [ L,
where |, ; = |~ is a probabilistic consequence relation for p at threshold ¢.
We show that under these conditions ¢t < n/n+1. Given the last supposition,
p(a) > 0 and t > 0, and so by the first n+1 suppositions py(z;) > t for each
x;. Hence, by the supposition a A (z1A...AZp4+1) I~ L we have
plaN(ziN.NATpt1)) = 050 po (1A NATp+1) = 0. So 1 = pa(—(z1A...ATp41))
< pa(o1) + ot pal=nsr) = (1—pa(@1)) + -t (1=palins1)) < (n+1)-(1—
t). So1 < (n+1)-(1—1t),ie.,t <n/n+l.

To see that for any ¢t < n/n+1 there is a p such that CL-PREF(n+1) fails,
just let ¢ > 0 have some fixed value < n/n+1, and observe that for elemen-
tary letters 1, ..., n41, and letting ‘a’ be the formula ‘(—z1V...V-2p41),
there is clearly a p with the following properties: p(a) > 0, for all distinct
x; and xj, pa(—x; A —x;) = 0, and the p,(—z;) are all equal. For this ¢ and p
the rule fails, as follows. For each x;, p,(—z;) = 1/n+1, so pa(z;) = n/n+1
>t,80 a v ;. And a b =(xiAAzpt1). But a ¢ L since p(a) > 0 and
planL)=0. |

Corollary 7.4. Let t € (1/2, 1). Put n to be the largest positive integer
such that ¢t > n/n+1 (i.e., the largest n such that n < ¢/1 —¢). Then
FS-PREF(n+1) is strictly the strongest rule in the array of the Figure for
Observation 7.3 that’s sound for probabilistic consequence with threshold t.

ProOOF. Consider the set of all rules in the array that are sound for proba-
bilistic consequence with threshold ¢. From Observation 7.3, FS-PREF(n+1)
implies all rules in this set. To show that it is strictly the strongest in the
set, it suffices to show that it is not implied by CL-PREF(n+1). We show
quite generally that FS-PREF(m+1) is not implied by CL-PREF(m+1), for
any m > 1.
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Let a be a tautology, and let z1, ..., z;n+1 be elementary letters. It is
not difficult to construct a probability function p with p(—z; A —x;) = 0 for
each distinct pair x; and z;, and such that p(z;) = m/m+1 for each z;. Put
the threshold s = m/m+1. It will suffice to show that CL-PREF(m+-1) holds
while FS-PREF (m+1) fails for the consequence relation p~ determined by p,
s under Definition 2.2.

CL-PREF(m+1) holds vacuously since a t/ = (ziA...AZp41). We show
that FS-PREF(m+1) fails. On the one hand, p,(z;) = p(z;) = m/m+1 =
s, so each a |~ x; holds. Also p(a A (Z1A...AZpm41)) = P(TIN . ATmt1) =
1 —p(m21VVZpy1) = 1 = (p(-21) + o4 p(zmt1)) = 1= ((m+1) -
(I =m/m+1)) =0, so a A (z1A...ATm+1) b (T1A...AZm41) holds. On the
other hand, p(a A L)/p(a) =0 < s. |

Observation 7.5. (Hawthorne [8]). For n > 1, FS-PLAUS(n+1) is probabilis-
tically sound for all probability functions p and all thresholds ¢ > 1/n+1,
although for each ¢ < 1/n+1 there are p for which it fails.

PROOF. Suppose that a |~ z1, ..., a |~ zp41 and a R —(z1 Ax2), a & —(z1 A
x3), .oy @ R (T AZpy1), and a ¢ L, where v is a probabilistic consequence
relation for p at threshold ¢t. We show that under these conditions t <
1/n+1. Given the suppositions, p(a) > 0 and ¢ > 0 and also p,(x;) >t for
each x;. Hence, since a & —(z; A x;) for each distinct ¢ and j, it follows that
p(a A (z; A zj)) = 0 for all distinct ¢ and j; so pa(z; Ax;) = 0. Then 1 >
Pa(1V..VTpi1) = pa(z1) + ... Da(Tny1) > (n+1)t. Sot < 1/n+1.

To see that for any ¢ < 1/n+1 there is a p such that FS-PLAUS(n+1) fails,
just let ¢ have some fixed value < 1/n+1, and observe that for elementary
letters a, x1, ..., Tp+1, there is clearly a p with the following properties:
p(a) > 0, and for each distinct z; and xj, pa(x; A z;) = 0, and py(z;) =
pa(z;). For this ¢t and p the rule fails, as follows. For each z;, pq(z;) =
1/n+1 > t, so a v x;. For each distinct ¢ and j, pa((x; A xj)) = 0, so
plaN—=(ziAzxj)) = 0,50 aN—=(z; Azj) v (2 Azy) (e a (2 Axyj)).
But a ¢ L because p(a) > 0 and p(a A L) = 0. |

Observation 8.1. CA-PREF(t) is probabilistically sound for all thresholds ¢.

PROOF. Let p be any probability function and let ¢ be any threshold level
such that (for given n and k; > 1, 1 < i < n+1) the corresponding proba-
bilistic consequence relation |~ satisfies the following:

a v xin, aNTin b T2, oy @ AT A TiaN AT g1 P Tk, for all 1
<1i < n+l, and A?:ll(a ANxig NTiaN AT g1 Nig,) v L, but a b L. We
show that n > X! tki follows.
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From a [¥ 1 we have t > 0 and p(a) > 0. From a |~ z;; we have p(a A
xi1)/p(a) >t >0and p(aiz;i) > 0. ... From aAz; 1Az oA AT 1 P Tig,
we have p(a Ax; 1 ATi oA AT jy—1 NTi g, ) /P(@N T30 AT o N AT 1) >t >
0 and p(a A i1 A TioN AT j,—1 N\ T ;) > 0.

Now from A (@ Azi1 AziaA AT g1 Aig,) P L we have p(AH (a A
Ti1 N X2\ AT g, 1 N xz,h)) =0, so pa</\?:+11(xi,1 AT YANRVAY 73 S AN .%'17]62))
=0.

Then 1 = pa(VIH (i1 A Tio A ATig,—1 A Tig,)) < S0 pa(= (i1 A
Ti 2N N ;-1 N $17k1)) = (n—I—l) — Z?ill pa(aji,l Nxi oA\ AT g, 1 N l’z,kl)

Son > XM pla A mig A miaAe AT g1 A Tig,)/pla) = S [pla A
Ti1 N TiaNeo AT, -1 N $¢7ki)/p(a ANxi1 N xi’QA...Axi7ki,1)] . [p(a ANz A
xi,Q/\---/\xi,ki—l)/p(a/\xi,l/\fEi,Q/\---/\xi,ki—2)] B [p(a/\xi71)/p(a)] > E?:Jrlltki.

Thus, n > Z?:Jrlltki. [ |

Observation 8.2. CA-PLAUS(t) is probabilistically sound for all thresholds ¢.

PROOF. Let p be any probability function and let ¢ be any threshold level.
Suppose that (for given n and k; > 1, 1 < ¢ < n+1) the corresponding
probabilistic consequence relation |~ satisfies the following:

a IN Til, @ N\ T4 l’v Ti2y ey @ NT;1 N T 2N AT R |N i k; s for all 1
<14 < n+l1, and ((I Nxi1 ANTigN oo ATjg—1 N .7}1'7]%) VAN ((I ANxj1 NxjaN ..
A&, Nxjk;) b~ L for each i and j such that 1 <4 < j <n+1,buta p& L.
We show that 1 > Z?Illtki follows.

From a [¥ L we have t > 0 and p(a) > 0. From a |~ z;; we have p(a A
zin)/p(a) >t >0and plaAz; 1) > 0. ... From aAz; 1Az 2\ AL g, —1 1~ Zig,
we have p(a Axi1 Az oA AT -1 ANTig,) /DA AT AT a N AT 1) >t >
0 and p(a A xi1 A xi2N AT -1 AN Zik,) > 0.

Now from (a Awi1 AxioN.ce AT g, 1 ATk )N (AT 1 ATj 2N AT,y A
Tjk;) b L we have p((a A i1 AmigA.. ATig, 1 ATig,) A(aAxj1 AxjaA...
ATk Nxjk;)) = 0 (for each distinct 7, j), s0 pa((@i1 A Tig A AT g1 A
Tik;) N (Tj1 ATjaN ATk, ATjk;)) = 0 (for each distinct i, 7).

Then 1 > pa(\/?:—’—ll ($i71 NxioN AT, 1 N 1‘17]62)) =
S pa(®in A TigAe ATig 1 A i) =
Z?:Jrll plaNxig Ao Axig,—1 Nxig,)/pla) =

Z?jll DlaANTii ATiaN AT k-1 ANTik,) [P AT Axi oA AT g, —1)] - [P(aA
xig A TigN AT 1) /P(axi0 A TioNe AT, —2)] - ..o - [pla A xia)/pla)] >
1= °

Thus, 1 > Z?jlltki.



The Quantitative/Qualitative Watershed for Rules of Uncertain Inference 49

Observation 9.2. (Hawthorne [8], [9]). For n > 1, FS-LOTT(n+1) is proba-
bilistically sound for all probability functions p and all thresholds ¢t < n/n+1,
although for each ¢t > n/n+1 there are p for which it fails.

PROOF. Suppose that a A (x1 Ax2)  —(z1 Ax2), aA(x1 Axg)  —(x1 Axs),
ey @A (T A Tpg1) P —(Tn A Tpt1), but a ¢ —x; and ... and a by,
where |~ is a probabilistic consequence relation for p at threshold t. (We
show that under these conditions ¢t > n/n+1.) Then p(a) > 0 (else a |~ —x1);
for each x;, pa(—x;) < t; and for distinct pair z; and z;, po(z; A ;) = 0
[because p(—(z; Axzj) NaA(x; Axj)) =0, and a A (x; Azj) v (2 Axj), so
plaN(z; ANzj)) =0, 80 po(z; Az;) = 0]. Then 1 > po(x1V..Vant1) = palx1)
oot Paltns1) = (L= pa(cz)) + ot (1= pa(oasn)) > (0 +1)-(1 1)
Sol>(n+1)(1—t)—ie,t>n/n+l.

To see that for any ¢ > n/n+1 there is a p such that FS-PREF(n+1) fails,
just let ¢ have some fixed value > n/n+1, and observe that for elementary
letters a, x1, ..., Tnt+1, there is clearly a p with the following properties:
p(a) > 0, and for each distinct z; and x, pa(x;Azj) = 0, and pa(x;) = pa(z;).
For this ¢ and p the rule fails, as follows. For each z;, p,(x;) = 1/n+1, so
Pa(—2;) = n/n+1 < t, s0 a p¢ —x;. And for each distinct x; and z;, because
pa(xiAxj) =0, we have p(aA(z;Axj)) = 0,50 aN(x; Axj) b~ —(ziAxj). ®

Observation 9.3. (Hawthorne [8]). For n > 1, FS-P0OSS(n+1) is probabilis-
tically sound for all probability functions p and all thresholds ¢t < 1/n+1,
although for each t > 1/n+1 there are p for which it fails.

PROOF. Suppose for distinct formulae, 1, ..., Tpy1, aA (1A AZpt1) B L,
but a ¢ -z and ...and a [ —xy,41, where |~ is a probabilistic consequence
relation for p at threshold ¢ > 0. (We show that under these conditions
t > 1/n+1.) Then p(a) > 0 (else a |~ —z1); for each x;, po(—x;) < t (and so
t > 0); and pg(xiA...AZp41) = 0 [because p(a A (z1A...ATpt1) A L) =0, so
from a A (z1A...AZp41) I~ L we have that p(a A (z1A...AZp41)) = 0]. Then
1 = pa(m21V..VZpy1) < po(—21) + oo pa(—Zng1) < (n +1)-t. So 1/(n
+1) < t.

To see that for any ¢ > 1/n+1 there is a p such that Fs-poss(n+1) fails,
just let ¢ have some fixed value > 1/n+1, and observe that for elementary
letters a, y1, ..., Ynt1, there is clearly a p with the following properties:
p(a) > 0, and for each distinct y; and y;, pa(yi Ay;) = 0, and pa(vi) = pa(y;)-
For this ¢ and p the rule fails, as follows. For each y;, pa(yi) = 1/n+1 < t, so
a ftyi (e apt =) And po(=(=y1A-A=Ynt1)) = pa(¥1) + -4 Pa(Ynt1)
= 12>t 50 plaN=yAe.A7Yps1) = 0, 80 a A (1A AYpt1) o L. Now
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just take each ‘x;’ in the rule to be ‘—y;’, and we have our counterexample
to the rule. ™

Observation 9.6. CA-LOTT(t) is probabilistically sound for all thresholds ¢.

PROOF. Let p be any probability function and let ¢ be any threshold level
such that (for given n and k; > 1, 1 <4 < n+1) the corresponding proba-
bilistic consequence relation |~ satisfies the following:

a }74 L5 1, AAT4 ] |74 TX42y -y AAT 1AL 2N NTG 1 }74 L5 ks foralll <i<
n+1, and (aAzi 1 Az oA AT 1 AT g, ) AN AN 1 AT N N s ATk ~
1 for each i and j such that 1 < i < j < n+1. We show that 1 > E?jll
(1 — t)* follows.

From a ¢ —x;; we have t > 0, p(a) > 0, and p(a A —z;1)/p(a) < t, so
pla Nxi1)/pla) > 1 —t. From a A x;q [ ;2 we have p(a A x;1) > 0 and
plaNzii A—xig)/plaNzir) <t,soplaNzii Axig)/planNzii)>1—t ..
From a Axi1 AziaN.. AT j,—1 |~ T, we have p(a Az 1 Ao\ AT g—1) >
0 and p(a A x;1 A TioA AT g1 A Tig, ) /P(a A xig A TN AT g,—1) < t,
s0 pla A i1 A xiaN AT g1 AN Tig,)/P(@ N X310 A TioN Axig,—1) > 1 —t.

Now from (a A @i 1 AxioNec AT g, 1 AT g, ) AN(@ANTj1 ATjaNe ATk A
Tjk,;) L we have
p((a ANTia NTjoN NG 1 N xi,ki) N (a ANxj1 N\ $j,2/\-~/\xj,kj71 A mj,kj)) =0
(for each distinct i, j),

80 Pa((Ti1 ATigA o AZj g1 AT g ) AN (T4 ATjaN ATk, Axjg,)) = 0 (for
each distinct i, j).

Then 1 > po(VIE (i1 A mio Ao AT g1 A Tig,)) =

E?:—’—1 pa(‘rz,l A 5177,,2/\~~-A5171,ki—1 A mz,ki)

S pla A zin AwioA AT g1 A Tig,)/p(a) =

2n+1 [ (CL ANxi1 Nxi o\ AT g, 1 N xi7ki)/p(a ANxiq N wi,g/\.../\wi7ki,1)]

. [p(a/\a:z 1 /\:L'Z'72/\.../\:L'i7ki_1)/p(axi71 /\mi,Z/\-~-/\xi,ki—2)] [p(a/\a:i,l)/p(a)]
> 2n+1< ki,

Thus, 1 > X1 — t)ki, =

Observation 9.7. CA-POSS(t) is probabilistically sound for all thresholds ¢.

PROOF. Let p be any probability function and let ¢ be any threshold level

such that (for given n and k; > 1, 1 < i < n+1) the corresponding proba-

bilistic consequence relation |~ satisfies the following:

a b i, a Nz b Tio, o, A ANTi1 AN TN AT g1 o T, for all 1

<4 < n+1, and /\"H(a ANxi1 A TiaN AT g1 AN 2ig,) I~ L. We show that
> N1 — )k follows.
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From a ¥ —z;1 we have t > 0, p(a) > 0, and p(a A —z;1)/p(a) < t, so
pla Nzi1)/pla) > 1 —t. From a A x;jq P z;2 we have p(a A x;1) > 0 and
plaNxin A—xia)/plaNzii) <t soplahziiAzi2)/plaNx;n)>1—1t. ..

From aAx; 1Az o\...AZj jy,—1 P~ @ik, We have p(aAx; 1 Az o\ AT 1) >
0 and p(a A x;1 A TioA AT g1 A Tk, ) /P(a A xin A TN AT 1) < t,
s0 pla A i1 AN xiaN AT 1 AN Tig,)/P(@ N xi0 A TioN AT, —1) > 1 —t.

Now from A (@ Azi1 AziaA AT g—1 Aig,) P L we have p(AH (a A
Ti1 NxioN AT g, 1 N $l7k1)> =0, so pa</\?:+11(xi,1 NxioN AT 1 N xz,k,))
=0.

Then 1 = pa(\/;‘;llﬂ(xm A Zi oA AT i1 N Tig,)) < E?Ill Pa(—(zig A
Ti 2N N ;-1 N xz,kz)) = (n—l—l) — E?ill pa(l‘i,l A7 YANRVAV 73 S VAN 1’17]%)

Son > Z?:"'ll pla A1 A xiagh AT g1 N Tig,)/pla) = Z?Ill [p(a A
Ti1 N Ti2N\eo AT ;-1 N .Z'Lki)/p(a ANxip A xi,g/\.../\xi7ki_1)] . [p(a ANxip A

Ti oA AT j—1) [ P(@ AN i1 AT oA AT g, —2)] - .. - [plaAzi1)/p(a)] > Z?:Jrll
(1 —t)ki.
Thus, n > X (1 — )k, |
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