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Abstract 
The analysis of patent and citation data has become a popular source of evidence on localized 
knowledge spillovers and innovation. Nevertheless, an aspect has been overlooked: the patent 
distribution across inventors is extremely skewed, as many inventors register one or a few 
patents, while a small number of inventors register many patents. To our knowledge, the 
previous empirical literature has not discussed the different kinds of local innovation from 
which patents may originate. A first contribution of this paper is therefore to document the 
issue. A second contribution is to investigate whether patents originating from different 
scales of innovation are located in different cities. A third contribution - which constitutes the 
main scope of the paper - is to test whether the concentration of the activity of star inventors 
is beneficial to the local productivity of other kinds of innovation - namely the ones led by 
more occasional, and less prolific, inventors. 
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1 Introduction

The analysis of patent and citation data has become a key source of evidence on localized
knowledge spillovers and innovation. Nevertheless, one aspect has been generally overlooked:
the patent distribution across inventors is extremely skewed, as many inventors register one or
a few patents, while a small number of inventors register many patents. Innovations developed
by inventors at the opposite extremes of the distribution are unlikely to be the outcome of an
homogeneous innovation �black box�. Interestingly, this peculiar characteristic of the patenting
activity recalls the more general "innovation paradox" highlighted in the innovation literature
(e.g. Acs and Audretsch, 1990): while big companies massively invest in formal R&D activities,
many new products and processes are generated by small and medium �rms, with little or no
reported investments in R&D. The latter kind of innovation process is therefore more likely to
be based on learning-by-doing and informal innovation, being thus intrinsically di¤erent from
the activity of "professional scientists".

To our knowledge, none of the previous empirical literature on "local innovation" based
on patent data has discussed the di¤erent "innovation scales" patents may originate from. A
�rst contribution of this paper is therefore to document the issue. A second contribution is
to investigate whether patents originating from di¤erent categories of inventors are located in
di¤erent cities. A third contribution - which constitutes the main aim of the paper - is to test
whether the concentration of the activity of star inventors is bene�cial to the local productivity
of more occasional, and less proli�c, inventors.

In order to achieve that, using the USPTO/NBER database we identify two illustrative cat-
egories of inventors situated in the tails of the distribution: we de�ne as stars those inventors
who are highly productive in a time window of 8 years - while we de�ne as comets those inven-
tors that develop only one or two patents in same time window. A preliminary data inspection
at MSA level shows how the association with establishment births and other MSA structural
characteristics and number of patents is signi�cantly di¤erent for the two patent categories.
This con�rms that the categorization is not trivial, and suggests that i) the two categories may
relate to di¤erent innovation processes, and ii) stars and comets are concentrated in di¤erent
cities, especially after controlling for the general distribution of the patenting activity.

The location of investments of big companies is increasingly in�uenced, directly or indi-
rectly, by local policy makers: the attraction of "million dollar plants" is seen as a successful
policy targeted at increasing the productivity of incumbent (small) �rms through technologi-
cal spillovers (Greenstone et al, 2008). Similarly, local policy makers may be keen to attract
R&D labs of big companies within their jurisdiction. Our results do not seem to support the
e¤ectiveness of these policies: we �nd some evidence suggesting that the direct impact of stars
on the local economy is negligible; however, the lack of direct e¤ects might be compensated by
indirect e¤ects operating trough an increase of the activity of comet inventors, which in turn
may justify the provision of public money to place-marketing policies.

Therefore, in the second part of our empirical analysis we assess whether the activity of star
inventors is bene�cial to the production of comet patents, and try to quantify this e¤ect. More
speci�cally, using the NBER/USPTO patent database we estimate a model where the number
of comet patents produced in a given city, time period, and technological category is a function
of the number of star patents developed in the same city, period, and category. We exploit the
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panel dimension of our dataset to account for various �xed e¤ects, and adopt an instrumental
variable approach to avoid a potential endogeneity bias. In our preferred estimation, we �nd
that, on average, 10% more patents developed by star inventors lead to 2-3% more patents
authored by comet inventors.

2 Patents, localized knowledge spillovers, and the size of inno-
vation

Patent data have become extremely popular in the economic literature in the last two decades,
as they represent an easy and accessible way to proxy for an economic activity which is generally
very hard to measure, i.e., innovation. Furthermore, the availability of citation linkages has
added even more interest in patents data: for the �rst time, researchers had a tool to "trace"
knowledge spillovers, which previously had been considered as one of the most intangible
concepts in economic theory. A popular book by Ja¤e and Trajtenberg (2005), and the free
availability of the USTPO dataset from the NBER website, further contributed to multiply
the empirical applications based on patent data.

A signi�cant part of this literature has focused on the geographic component of innovation,
with a particular interest in the spatial decay of knowledge spillovers. A seminal contribution
by Ja¤e et al (1993) showed that a cited-citing patent couple is twice as likely to be in the
same US metropolitan area than a couple of technologically similar patents with no citation
links. Similarly, Peri (2005) examined the �ows of citations among 147 European and US
regions to �nd that "only 20% of average knowledge is learned outside the average region of
origin", and Ja¤e (1989) demonstrated that academic research has large e¤ects on the number
of private patents developed in the same US state. Finally, Carlino et al (2007) used patent
data for a cross-section of US metropolitan areas to investigate the relationship between urban
density and innovation intensity (as measured by patents per capita) �nding a positive and
robust association, with the caveat that many omitted variables might explain the positive
correlation.1 All these contributions (and many similar which we omit for brevity) highlight
that knowledge spillover have a geographically limited distance decay.

It is also important to stress that the nature and causes of knowledge spillovers are still
debated. For instance, Breschi and Lissoni (2009), building on previous contributions by
Breschi and Lissoni (2001), Zucker et al (1998), and Almeida and Kogut (1999), highlighted
how de�ning localized knowledge spillovers as an externality can be misleading, as most of
the knowledge di¤usion may take place through market interactions - namely the spatially-
bounded mobility of inventors among workplaces - rather than through informal contacts.
Using data on US inventors�application to the European Patent O¢ ce, they were able to show
that after controlling for inventors�labour mobility and the related professional network, the
role of proximity in explaining knowledge di¤usion is greatly reduced.

Previous contributions, however, did not take into consideration an important feature of

1The authors include a robustness test based on IV estimation, but, in our opinion, the exogeneity of all the
instruments is questionable, as they may a¤ect patenting through e.g. productivity. Also, it is not very clear
how sorting of very productive inventors and companies into denser cities may in�uence their results.
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patent data, i.e., the skewness of the distribution of patents across inventors.2 This is in part
due to the fact that until very recently an unique identi�er for inventors was not available in
the NBER/USPTO database and therefore calculating the distribution of patents by inventors
was infeasible. Thanks to the e¤orts of Trajtenberg et al (2006), who "estimated" an unique
inventor identi�er using an ad-hoc algorithm,3 we know that out of 1,600,000 inventors listed
in the NBER dataset in the period 1975-99, 60% of them registered just one patent, 30% from
2 to 5, and only 0,15% (2,402 inventors) more then 50 patents.

The peculiar distribution of patents by inventors reveals that the innovation process which
patenting is a proxy for is an extremely composite phenomenon. On one side, a large number
of patents is developed by "comets", i.e., individuals who apply for a patent only once or twice
over a long period. On the other side, a small group of "stars" develop individually a huge
number of patents. This, beyond being an interesting fact per se, poses a number of questions
related to the geography of innovation: do di¤erent categories of inventors interact with the
local economic environment in the same way? Do they respond similarly to the same location
determinants? Are they equally distributed over space or do they tend do concentrate? Is
spatial proximity bene�cial for their activity?

These questions are related to the growing interest in peer e¤ects in science and in the
spillovers originating from star scientists. Among the most interesting recent contributions,
Azoulay et al. (2008) exploit the exogenous variation in the number of "superstar scientists"
in US university originated by the sudden death of these individuals to estimate the loss
in productivity of their collaborators. They �nd an average 5-10% decline in their average
publication rates, starting 3-4 years after the superstars�death and enduring over time, but
no di¤erential e¤ect for co-located collaborators. Waldinger (2009) estimates the e¤ect of the
dismissal of scientists from Germany Universities during Nazism. Similarly to Azoulay et al.,
he �nds a strong e¤ect on coauthors (13-18%), but no signi�cant e¤ects at department level.
Therefore, both the studies challenge the existence of localized positive spillovers originating
from stars in academic environments.

Equally on the "skeptical" side, there are the advocates of the "death of distance" theory,
who argue for a decreasing importance of the role of spatial proximity following the progress
of communication technologies (e.g., Friedman, 2005; Quah, 1999; Cairncross, 1997). On
the other side, other economists argue that the technological progress has actually increased
the scope for proximity for innovative activities due to the higher importance of face-to-face
contacts and agglomeration externalities (e.g. Coyle, 1999). The few empirical assessments of
the issue seem to support the "death of distance" hypothesis (Gri¢ th et al, 2007; Ioannides et
al, 2008), indeed suggesting that localized knowledge spillovers are fading over time.

Turning to industrial innovation literature, the skewed patent distribution recalls the well-

2Among the closest contributions we could �nd, we mention: Silverberg and Verspagen (2007), who analysed
in depth the skewness of the distribution of citations across patents; Zucker and Darby (2007) looked at the
linkages with private companies of a small sample of star inventors.

3The authors needed to face two orders of problems: �rst, the same author may appear in the database
with di¤erent names due to spelling errors; second, di¤erent authors may have the same name (the "John
Smith problem"). The complex algorithm they developed exploits all the available accessory information (dates,
locations, technological �elds, etc.), toghether with word sound matching routines. The validity of the procedure
is con�rmed by a test on a dataset of Israeli inventors.
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known di¤erence between the innovative activity of small and big companies. In particular,
robust evidence on two distinct aspects of small �rm innovation poses a challenging "inno-
vation paradox". First, small �rms have a much higher ratio of patents developed to R&D
expenditures (Griliches,1990) than big companies. If we substitute patents with innovations
introduced to the market and R&D with employment, the result is equivalent: the ratio is
much higher for small �rms (Acs and Audretsch, 1990). The authors argue that this can be
due to the higher permeability of small companies to local public R&D inputs (e.g., university
research) (Acs et al, 1992). An alternative explanation could be that small companies rely on
alternative innovation inputs, based on learning-by-doing and applied innovation, rather than
formal scienti�c research. Second, small �rm innovation is all but a residual phenomenon,
accounting for most of the innovative activity in many sectors (Acs and Audretsch, 1990).
In passing, it is also worth mentioning that small �rms account for most of the employment
growth in the US in the last decades (Audretsch, 2002). Furthermore, Balasubramanian and
Sivadasan (2008) in a recent working paper link patent data with Census �rm data for the US,
being able to assess the impact of patents on �rm performance. They focus in particular on
�rms that patent for the �rst time, and �nd a signi�cant and large e¤ect of the �rst patent
on �rm growth (but, interestingly, little change in factor productivity). This would suggest
that "occasional" patents have a relevant market value, although further research based on
patent-�rm matched datasets is needed to explore the issue. As we cannot access this kind
of data, in this paper we focus only on patents and their inventors; the "innovation paradox"
could be an interesting way to generalize the results whenever patent-�rm matched data will
be accessible to all the interested researchers.

3 Stars and Comets

Our analysis is based on the NBER/USPTO database, which lists all the patents granted
in the United States from 1969 to 1999. We added to this dataset the inventors�unique ID
developed by Trajtenberg et al (2006). As the latter is available only since the 1975, our period
of analysis is restricted accordingly. More details on the data, including the geocoding process,
are reported in Appendix A.

At a �rst glance, the abundance of data makes a micro analysis at inventor level the most
appealing alternative. A deeper view of the data, however, suggests that this is unfeasable,
in light of the simple fact that the dataset is about patents, not inventors, which implies that
individual inventors are observed only when they patent. When an inventor is not patenting,
we do not know their location, their possible employer (i.e., the assignee of their patents), etc.
The problem would be perhaps negligible if we focused only on very productive inventors; but
given we are interested also in comets, the issue is crucial.

We therefore opt for an analysis at city level, focusing on the number of patents produced
by each group of inventors, rather than on the number of inventors themselves. Ideally, this
would require that, for every time interval, we knew how many comet patents, star patents, and
other patents are developed in a given locality. However, the data we use are rather imprecise
in the time dimension, for the following reasons: �rst, we use the year when the patent is
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granted,4 which is generally 2-3 years later the year of application. Second, we do not know
how long an inventor has been working on a patent before applying for it. Equally di¢ cult
is to time when local knowledge spillovers may have e¤ect - it could be while the source and
destination inventors are both working on their respective patents, but it could equally happen
a few years after the star has applied (or has been granted) for it. By inspecting the data we
found that the median and mean value of the citation lag of patents in the same MSA is four
years, and we therefore choose to adopt periods of the same length.5 This seems a reasonable
choice in order to "average out" some of the measurement error in the temporal dimension.
We thus identify �ve time periods of four years each, which are listed in table 1.

We then need to identify those inventors which we de�ne as stars or comets. The task
necessarily entails a degree of arbitrariness, which makes our quanti�cation of the number
of star and comet patents relatively noisy. However, the estimations we present in the paper
(namely in section 4) are robust to measurement errors,6 and we also check whether our results
are consistent with other variable de�nitions, �nding very little variation. We describe these
alternative speci�cations and results in Appendix B. Therefore, although we of course aim
for the most precise de�nition, the reader should not be excessively worried about the exact
de�nition: we just need to de�ne two good proxies of the quantity of star and comet patents
in a given city, technological category, and period.

Potentially, we could observe inventors for their whole career, and then classify them as
stars or comets according to their propensity to patent. There are, however, two problems,
one conceptual and one due to data truncation. First, to the extent that we aim at assessing
the e¤ect of productivity spillovers, a de�nition of stars based on their whole career can be
imprecise, as productivity may be highly variable along it. Second, given that our data cover the
1975-99 period, we cannot observe the whole career of the large majority of the inventors in the
sample. We therefore adopt a de�nition that takes into account the productivity of inventors
for a shorter period of time, but still long enough to approximate the average productivity
of individual inventors in that stage of their career, and to smooth short term disturbances.
We follow the same approach for comets as well, in order to avoid including in the category
inventors who do not satisfy the requirements in the years immediately before, or after, a given
period.

Therefore, for each of the �ve periods, we de�ne an 8-years long, overlapping observational
window - they are reported in the third column of table 1. In each period, a patent is de�ned
as the outcome of a �star inventor�if its �rst author has developed �ve other patents or more
(as �rst author) in the relative observational window, and it is therefore de�ned as a star
patent. The threshold has been chosen as it approximately limits the top 5% of the inventors�

4The reason why we use the grant year, rather than the application one, is to avoid the bias given by
data truncation. More precisely, using the application year we would automatically exclude all the patents not
granted (but applied for) before the 1999, as they are not included in the dataset. This subsample could easily
be non-random, e.g. better patents may take longer to be examined, etc.

5We restricted the calculation to patent couples with a maximum citation lag of ten years, as longer lags are
unlikely to be related to knowledge spillovers. The citation lag is calculated as the di¤erence between the grant
year of the citing and cited patents.

6The number of star and comet patents are used as dependent and indipendent variables, respectively. In
the �rst case, the measurment error does not a¤ect the consistency of the estimates; in the second case, we rely
on 2SLS estimates to obtain consistent coe¢ cients.
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Table 1: Period classi�cation
Period Years Obs. window
1 1978-1981 1976-1983
2 1982-1985 1980-1987
3 1986-1989 1984-1991
4 1990-1993 1988-1995
5 1994-1997 1992-1999

distribution in term of patents per-capita. Similarly, we de�ne �comet inventors�patent (�rst)
authors who developed less than three patents in the relative observational window, and less
then six till that point in time (the latter condition excludes the possibility that a star becomes
a comet); the patents they develop are de�ned as comet patents. As a further restriction, comet
patents must not have as assignee a company which is assignee of 50 patents or more in the
whole dataset, in order to avoid de�ning as comets those inventors working for companies
where many stars are potentially employed. The treshold has been chosen because 80% of
star patents are assigned to an assignee which has more than 50 patents assigned. This
restriction is important for our analysis, for two reasons: �rst, it allows us to better identify
local knowledge externalities, disentangling them from co-located increases in productivity due
to market mediated workplace contacts. The recent literature has indeed highlighted the risk
to overestimate the positive e¤ects of externalities by ignoring the "priced" component of the
professional network of inventors, as we discussed in the previous section (e.g. Breschi and
Lissoni, 2009; Zucker et al, 1998; and Almeida and Kogut, 1999). Second, our de�nition of
comets entails inventors working for �rms for which the primary activity is not the production
of patented innovation. Without a patent-�rm matched dataset this is hard to detect precisely,
but the restriction is our best approximation. Furthermore, in order to focus on patents with
a direct market application, a comet patent must be assigned to an US corporation: this leaves
out around 10% of comets which are unassigned, or assigned to individuals. These latter
restrictions are instead unnecessary for stars, as they are satis�ed in the large majority of the
cases and, in the few cases in which they are not satis�ed, it is likely to be due to spelling
errors in the assignee name. A summary of the de�nition requirements for stars and comets
are reported in 2.

Table 2: De�nition requirements
Inventor group Stars Comets

Number of patents in the relative obs window > 5 6 2
Total number of patents of the assignee 6 50
Total number of patents granted to the inventor till that point in time � 5
Kind of assignee US corporation

The analysis is generally limited to the last three periods, as MSA controls are unavailable
for period 1 and 2. We de�ne �ve periods, however, as the �rst two are used to build the
instrumental variables.
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Star patents account for the 26% of the total patents granted in the period 1986 -1997, while
the corresponding share of comet patents is equal to 11%. On the inventors�side, among all
the unique inventors listed in the �ve periods (534,120), around 5% of them are listed as stars
at least once, while for comets the same share is equal to 15%. Looking at single periods, star
inventors are 7-9% of the total, while comets are 14-16%. It is worth noticing, therefore, that
the majority of patents and inventors do not belong to the two categories. The "star" status
appears to be quite persistent across time: around 40% of stars in given period were stars
also in the previous period. The share goes down to 15% with a two periods lag. Individual
inventors listed as stars cannot become comets in following periods by construction, while a
comet can potentially become a star; this, however, happens for only 1% of comet inventors
listed in the dataset.

Interesting facts emerge also from the analysis of citation data. Table 3 reports the �ows
of citations across groups, expressed as a share of the total citations originating from each
group. Compared to patents that are neither comets nor stars (third row), comets (�rst row)
are more likely to cite comets, and less likely to cite stars. The opposite is true for stars: they
are more likely to cite stars, and less likely to cite comets. The pattern is similar also when
looking at citations within technological categories (not shown). We interpret this as further
evidence that the stars/comets categorization, although stylized and somehow arbitrary, do
identify di¤erent groups of patents. On the other hand, we notice that comets do cite stars,
although at a smaller rate than other patents; this in turn suggests that comets might bene�t
from knowledge spillovers from stars. We will explore this hypothesis in depth in the rest of
the paper.

Table 3: citations�shares, comets and stars

Cited
Comets Stars Other patents

Comets 16.2 16.8 67.0
Citing Stars 7.5 34.7 57.8

Other patents 9.7 19.8 70.5

Citations may also be useful to inspect the average "value" of di¤erent categories of patents.
Although quite debatable and noisy, the association of number of received citations with the
market value of the patents has been convincingly argued (Hall et al, 2001). We use citation
data to explore whether patents and comets signi�cantly di¤er from other patents in this
dimension, by regressing the number of received citations on "comet" and "star" dummies,
over the whole sample of patents in period 3, 4, and 5. We also include time and technological
category dummies, and a variable reporting the number of citations made to control for the
heterogeneous propensity to cite among di¤erent kinds of patents (within categories and time
periods). The dependent variable is de-meaned and standardized, and thus the constant is
excluded. We also run the same speci�cation with technological subcategory dummies and
MSA dummies, and excluding the top 5% cited patents. In both cases, we obtain very similar
results (reported in Appendix D).

Results - reported in table 4 - show that stars are on average more cited than comets,
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Table 4: Regression of citations received
Dep. var. Citations received

(standardized)
Nr. citations made 0.00763***

(0.00017)

Star patent dummy 0.176***
(0.0042)

Comet patent dummy 0.0974***
(0.0051)

Other patent dummy 0.0745***
(0.0039)

Period F.E. YES
Tech. cat. F.E. YES
Observations 590953
R2 0.12
Heteroskedasticity robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

and comets are more cited than patents which are neither stars nor comets (all the pairwise
di¤erences between the three coe¢ cients are statistically signi�cant). A star patent is receiving,
on average, 0.87 citations more than "other patents" (0.10 time 8.7, i.e., the di¤erence of the
two coe¢ cients multiplied by the standard deviation of the dependent variable, the number of
citations received). Comets, on the other side, are receiving just around one �fth of citation
more (0.02 time 8.7). Results therefore suggest that star patents have a higher scienti�c and
market value than the average patent. However, the e¤ect is positive also for comet patents:
this is important as it con�rms that even comet patents have some scienti�c value (in other
words, they are not just useless "garage patents" made for hobby).

3.1 Preliminary evidence on location of stars and comets

In this section, we present some descriptive statistics which i) show how stars and comets are
located in di¤erent places, and ii) substantiate the validity of stars and comets as good proxies
for the output of di¤erent innovation processes.

If we look at the distribution of comet, star, and other patents over total employment
across MSAs,7 we can see that there is a sizeable correlation (Table 5, Figure 1), which implies
that innovative activity is overall spatially concentrated. When plotting the shares of comets
and stars on the total of patents, however, there is a fair degree of dispersion in both the
distributions, driven by a long right tail (Figure 2, 3).

7Counties are grouped into MSAs according to the 1993 de�nition, based on 1990 Census data. Counties not
included into MSAs are also individually included in the sample. The analysis, therefore, covers the whole US
territory.
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Table 5: Patents by MSAs over total employment, rank correlation
comets stars other patents

comets 1 0.42 0.59
stars 0.42 1 0.61

other patents 0.59 0.61 1

We can go further by looking at patterns of partial correlation with MSAs structural
characteristics, setting up a simple panel regression for periods 3-4-5 based on the following
equations:

Share(Comets)it = �1Xit + �t + �it (1)

Share(Stars)it = �2Xit + �t + �it (2)

where i indexes MSAs and t periods, Xit is a matrix of MSA-speci�c coovariates, �1and �2
are vectors of coe¢ cients, and �t is a time �xed e¤ect. The aim of these regressions is to assess
whether stars and comets show two distinctive location patterns, depending on the industrial
structure of cities. The variables included in X, therefore, are a list of simple proxies of the
industrial structure of the MSA. In the detail, these variables are the following:

a) the (log of) the total patents in the MSA which are neither stars or comets, in order to
control for the size of the patenting sector in the city (we excluded stars and comets to avoid
circularity). We included this variable as the absolute size of the patenting sector may impact
di¤erently the production of stars and comets.

b) log of total employment (totemp), to control for agglomeration economies and size e¤ects;
we expect MSAs with larger employment to produce proportionally more patents, in line with
the �ndings of Carlino et al. (2007), but, again, we do not have any strong a-priori on the
association of city size with the di¤erent kinds of invention.

c) the share of employment in manufacturing (manuf. share), in order to assess whether
comets are associated with specialization in manufacturing. To the extent that comets are
linked to production phases through learning-by-doing mechanisms, this variable should also
have a positive e¤ect on the number of comets.

d) the Her�ndahl diversity index (Her�ndahl, calculated as the sum of the squares of the
share over the total of employment of 2-digit SIC sectors), as a proxy of the diversity of the
economic structure. This variable can have two opposite e¤ects: on one side, the literature has
emphasized the positive e¤ect of diversity on innovation due to Jacobian externalities (e.g.,
Glaeser et al., 1992; Duranton and Puga, 2005). On the other side, we do not exclude that MAR
externalities,8 rather than Jacobian, might be more bene�cial for the kind of innovation which
underlies the development of comets. In fact, to the extent that comets are the outcome of a

8MAR (an acronym for Marshall-Arrow-Romer) externalities are those based on within-industry knowledge
spillovers, and are associated with an high degree of sectoral specialisation.
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"learning-by-doing" innovation process, we may expect them to be more frequently developed
where there are within-industry knowledge spillovers, as well as other economy of scale, i.e., in
specialized cities.

vi) log of the number of plants with less then 500 employees (n. plants <500 emp.) as
these are de�ned as "small plants" in the US; to the extent that comets represent a proxy
for occasional and less codi�ed innovation, we hypothesize that their number is positively
a¤ected by the presence of small plants. Conversely, we expect star inventors to work for big
companies, thus the number of star patents should be negatively associated with this variable,
once controlling for total MSA employment.

The sample is restricted to the last three periods and to all the MSAs or counties where
at least 100 patents have been developed in the same interval of time. The equations are
estimated by OLS regressions on the pooled samples, with standard errors clustered at MSA
level.9 The results - reported in table 6 - clearly show how the two vectors of coe¢ cient are
di¤erent (as con�rmed by the Hausman test: the null hypothesis of equality of the coe¢ cients
of column 1-2, and 3-4, is rejected at 1% con�dence level). In particular, comet patents are
positively associated with the number of small �rms, while the total number of other patents
and the Her�ndahl index have a negative coe¢ cient (which means that a more diversi�ed city
is associated with more comets). Conversely, star patents are positively associated with both
the number of other patents and the Her�ndahl index, suggesting that star patents are more
frequently located in specialized cities.

Our (speculative) interpretation of these results is the following: comet patents are asso-
ciated with more general innovation activities, and therefore are more likely to be located in
innovative hotspots with a diversi�ed economy and many small �rms; in such cities the pool
of patents is not necessarily large, as innovations may be introduced to the market in other
forms. On the other hand, the activity of stars is more strongly associated with formal R&D
and patenting, thus it is more frequently located where the pool of patents is large, and the
structure of the local economy is specialized and dominated by big companies.

We also look at the association with establishment births, by regressing the latter variable
on the (log of the) number of star and comet patents developed in the same MSA, plus some
other controls (log of total employment, Her�ndahl index, and log of average establishment
employment - all lagged by one period to avoid simultaneity bias), for period 4 and 5 (period 3
is dropped due to data restrictions). The sample is composed of the 209 MSAs for which data
are available, and the model is estimated by OLS on the pooled sample, with standard errors
clustered at MSA level. Again, the results (table 7) show a di¤erentiated pattern for stars and
comets: while comets have a signi�cant e¤ect, comparable to the e¤ect of other patents, star
patents have a negative coe¢ cient.

We do not claim causality at this stage - many variables are potentially omitted and we
cannot exclude a reverse causality bias. Nevertheless, the associations we have analysed sup-
port two statements: �rst, once controlling for the general distribution of patenting activities,
comet and star patents are developed in di¤erent places; second, star patents seem to have a
much weaker connection with the local economy than comet patents. To the extent that the

9We also estimated a SUR model to account for correlation across errors in the two equations. The signi�cance
of the regressors, however, is not a¤ected. Results are reported in Appendix D.
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Table 6: Regression of comets/stars shares at MSA level
(1) (2) (3) (4)

COEFFICIENT Comets (share) Stars (share) Comets (share) Stars (share)

Tot. emp. (log) -0.0237*** 0.0116 0.00291 -0.00365
(0.0057) (0.011) (0.0060) (0.012)

Her�ndahl -0.276** 0.672** -0.284** 0.677**
(0.13) (0.33) (0.13) (0.33)

Manuf. share 0.0904* 0.0503 0.0573 0.0694
(0.046) (0.090) (0.045) (0.090)

N. plant <500 emp. (log) 0.0286*** -0.00404 0.0351*** -0.00776
(0.0064) (0.013) (0.0062) (0.013)

Other patents (log) -0.0412*** 0.0237***
(0.0036) (0.0082)

Period dummies YES YES YES YES
Observations 1289 1289 1289 1289
R2 0.11 0.03 0.23 0.04
Heteroskedasticity robust standard errors clustered at MSA level in parentheses
*** p<0.01, ** p<0.05, * p<0.1

former are developed in R&D labs of big companies, while the latter are the by-product of the
innovative activity of small �rms, the �nding is not surprising.

3.2 Why should stars positively a¤ect comets?

Even though we assume comet and star patents are the outcome of substantially di¤erent
innovation processes, still the activity of stars could generate positive externalities increasing
the productivity of comets. We identify four main mechanisms through which the externalities
may occur:

a) Informal knowledge spillovers: star inventors and comet inventors develop informal
contacts due to residential proximity, which in turn facilitate the activity of the latter (e.g.,
they may obtain hints on their work).

b) Formal knowledge spillovers: star inventors may transfer their expertise to comet inven-
tors in more formal ways, e.g. during seminars, conferences, and the like.

c) Workplace contacts: (future) comet inventors may have the opportunity to work in an
institution where stars are employed, without necessarily becoming stars themselves (they may
be employed in di¤erent duties, or they may leave the institution at an early stage of their
career).

d) Display/attraction e¤ects: the presence of many labs of big companies may attract
comets to a locality, as they may expect to enjoy the e¤ects of points a, b, and c.

Although all the mechanisms may, in theory, work also in the opposite direction (from
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Table 7: Regression of establishment births at MSA level
(1) (2)

COEFFICIENT Estab. births (log) Estab. births (log)

Total comets (log) 0.304*** 0.151***
(0.062) (0.048)

Total stars (log) -0.119*** -0.0818***
(0.037) (0.027)

Total oth. patents (log) 0.487*** 0.230***
(0.072) (0.054)

Her�ndahl Index t-1 -3.297
(2.30)

Tot. emp. t-1 (log) 0.500***
(0.058)

Manuf. share t-1 -0.473
(0.46)

N. plant <500 emp. t-1 (log) -0.105*
(0.063)

Constant 5.302*** 4.984***
(0.16) (0.18)

Period dummies YES YES
Observations 418 418
R2 0.71 0.85
Heteroskedasticity robust standard errors clustered at MSA level in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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comets to stars), we expect that the main direction of the knowledge spillovers to go from
the star scientist to the "occasional" inventor. However, we understand that this may not be
true a priori and we consequently design our empirical methodology to be robust to reverse
causality.

On the other side, we mentioned earlier that a few recent contributions are downsizing
the role of localized knowledge spillovers, either arguing for the weakness of local peer e¤ects
(Azoulay et al., 2008; Waldinger, 2009), or for the fading of these e¤ects over time in the light
of the "death of distance" hypothesis. Thus, the aforementioned mechanisms - and especially
a, b, and c - may also play a negligible role in our context.

We therefore test whether the activity of star inventors leads to higher production of comet
patents. Unfortunately, the data do not allow us to disentangle the di¤erent mechanisms
(e.g., a citation may be output of a, b, or c), thus in the following analysis we will generally
test for positive spillovers from stars to comets. The de�nition and empirical identi�cation
of the channels thorough which knowledge spillovers take place is probably one of the most
challenging and interesting topics in urban economics research agenda, and we hope that the
increasing availability of microgeographic data may lead to some progress in the �eld.

4 Analysis

In the present section we investigate whether the production of star patents in a city a¤ects
the production of comet patents in the same city and period, and try to quantify this e¤ect.
We therefore estimate the following model:

Cometsikt = � � Starsikt + 
Xit + �k + � t + �i + ��kt + "ikt (3)

where i, k, and t index MSAs, categories, and periods, respectively; Stars and Comets are
the number of patents in the respective group, X is a set of MSA time-variant controls, and
�; � ; � are category, time, and MSA �xed e¤ects. The six technological categories are the
following: Chemical (excluding Drugs); Computers and Communications (C&C); Drugs and
Medical (D&M); Electrical and Electronics (E&E); Mechanical; and Others.

The unit of observation is the MSA-category pair; the choice is motivated by the assumption
that knowledge �ows in the patenting activity are mostly contained within the same technolog-
ical category. This is con�rmed by citation data: 80% of citation linkages are bounded within
the same category. Furthermore, this allows us to exploit a useful source of variation within
MSA and period. The analysis is limited to periods 3-4-5, as MSA controls are not available
for previous periods, and the sample is restricted to the MSA-category pairs in which at least
25 patents have been granted in the given period.10

We opt for a log-linear speci�cation because the dependent variable is an extended count
variable (with a long right tail and skewed to the left), which approximates the normal dis-
tribution after the log transformation. The side e¤ect of the log transformation is the loss
of the zeros, which, however, are less then 5% of observations. In the following section, we

10The restriction is made in order to exclude small counties where only a few patents are developed, which
are likely to act as outliers. This also bring the advantage of reducing drastically the number of zeros and to
speed calculations. Robustness tests show that the sample selection is not a¤ecting the results.
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perform some robustness tests on the whole sample based on a Negative Binomial model with
the natural count variable and we �nd compatible results.

We suppose that there are two groups of time-variant variables which may potentially a¤ect
the number of comet patents produced in a given city, technological category, and time period.

The �rst group of variables is speci�c to the patenting activity, and it includes i) the relative
size of the given technological category - as the number of comets may increase because the
category as a whole is growing; and ii) the total number of patents in the given city, as the
number of comets in a given category may increase because the city patent sector is expanding.
Omitting these two variables will introduce an important source of spurious positive correlation
between the number of comets and stars, which in turn will lead to an overestimate of the main
coe¢ cient of interest.

The second group of variables relate to general city characteristics, and includes a few
variables measuring the total employment and the industrial structure of the MSA. This group
of variables is motivated by the �ndings we presented previously, namely the strong association
of comet patents with a few speci�c MSA structural characteristics, and from theoretical
insights suggesting that comets are more likely to be associated with small companies and a
high share of manufacturing employment. We anticipate, however, that this group of variables
is rarely signi�cant in our regressions. This is due to the inclusion of the MSA �xed e¤ects,
which absorb most of the e¤ect of variables with small variations across time.

In detail, the variables included in the matrix X are the following:
i) number of other patents (neither stars or comets) in the technological category, over

the other patents in the other �ve categories (share other patents cat.); this variable controls
for the relative size of the given technological category, and for idiosyncratic (i.e., speci�c to
the category/city pair) productivity shocks. We expect it to be positively correlated with the
number of comets.

ii) total number of patents developed in the MSA - excluding all comets to avoid circularity,
and stars of the given category to avoid double counting - as a control for the size of the
patenting activity (tot. MSA patents) in the whole city. Again, we expect a positive coe¢ cient
on this variable.

We then include four MSA-speci�c variables, as proxies for the industrial structure of the
city. These variables are exactly the same as in equations 1 and 2:

iii) Log of total employment (totemp), to control for agglomeration economies and size
e¤ects.

iv) The share of employment in manufacturing (manuf. share).
v) The Her�ndahl diversity index (Her�ndahl, calculated as the sum of the squares of the

share over the total of employment of 2-digit SIC sectors), as a proxy of the diversity of the
economic structure.

vi) Log of the number of plants with less then 500 employees (n. plants <500 emp.).
Finally, we include a number of �xed e¤ects, controlling for technological category and

MSA time invariant factors, for time-speci�c shocks, and for technological category shocks.
In a few speci�cation, we include also a MSA-period �xed e¤ect. Potentially, we could also
include a MSA-category �xed e¤ect but in this case identi�cation will arise only from within
MSA-category pairs variation, which is too limited in the data to give signi�cant results.
Standard errors are clustered at the MSA-category pair level (i.e., at every cross-sectional
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unit of observation). Alternative estimates based on clustering at the State-year pairwise
combination gave almost identical standard errors.

4.1 Instrumental Variable Estimation

Estimates of equation 3 can be inconsistent due to reverse causality or omitted variable biases,
especially for the main variable of interest (the number of star patents). We therefore create
two di¤erent instrumental variables for the number of star patents to deal with the issue.
The two instruments share a similar intuition: an exogenous variation in the productivity of
star inventors in a given MSA and period may arise from the interaction of two factors: i) an
historical presence of inventors working in a given technological category or for given companies
in that MSA, and ii) an US-wide increase of productivity of these sectors or companies in the
given period. To the extent that the �rst factor is path-dependent and exhibits some inertia
over time, it is exogenous to contemporaneous MSA-speci�c factors once MSA �xed e¤ects are
introduced in the speci�cation. At the same time, we expect the productivity of stars inventors
working in the same subcategories or companies (but in di¤erent cities) to be correlated, due to
sharing a similar competition pressure, regulatory framework, market demand, etc. Therefore,
we presuppose that US-wide productivity shift in a given sector or company will translate into
MSA-speci�c productivity shocks in proportion to the number of inventors working in that
sector or company in the given MSA.

For example, we assume that the total number of star patents developed in the MSA of
New York in the year 1994-97 entails an exogenous component due to the interaction of a)
the historical presence in New York of many R&D labs in semiconductor devices, and b) the
US-wide growth in (patent) productivity of the semiconductor devices sector in the period
1994-97, relatively to other sectors.

The IV strategy is close in spirit to the approach of Bartik (1991) and Blanchard and
Katz (1992), among others, who instrumented regional economic growth interacting the lagged
sectoral structure of a region with the contemporaneous national sectoral trend. In what
follows, the construction of the instruments is explained in detail.

4.1.1 First instrument

The �rst instrument is calculated through the following steps:
a) For each period, we calculate the total number of star inventors active in a given

MSA and technological subcategory (patents are classi�ed into 6 categories and 36 subcat-
egories). If an inventor developed patents classi�ed into di¤erent subcategories, he/she is
assigned corresponding weights summing to one, accordingly to the subcategories�shares. If
they have been recorded as resident in several MSAs, the modal one is chosen.

b) For each period, each subcategory, and each MSA, we calculate the average number
of patents produced by star inventors in the whole US, excluding the given MSA.

c) For each MSA, each period, and each subcategory, we multiply the number of inventors
in period n-2 at point a) by the productivity in the respective technological subcategories in
period n calculated in b). Subsequently, we sum the outcome by MSA, period, and technological
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category. The result is the instrumental variable for total number of star patents in period
3-4-5, by MSA and category.

Formally, it can be expressed with the following equation:

IV 1ikt = �s(StarsInvikst�2 �AvPatikst) (4)

where i indexes MSAs, t periods, k technological categories, and s technological subcate-
gories within the category k. The �rst element of the product is calculated at point a), and
the second one at point b).

The validity of the IV relies on an assumption of excludability for point a), i.e., once MSA
�xed e¤ects and the share of patents in a given category are controlled for, the number of
star inventors active in a given MSA/category in period n-2 (on average ten years before)
has no independent e¤ect on the number of comet patents developed in period n in the same
MSA/category; and on an assumption of exogeneity for b), i.e., the average productivity in
the whole US is exogenous to MSA-speci�c unobserved factors.

There is, however, a reason of concern about the exogeneity assumption for point b). To
the extent that comets in a given MSA are specialized in the same subcategories of stars, the
US-wide variation in productivity in a subcategory can be correlated with the error term of
equation 3. This in turn will compromise the validity of the instrument. We therefore build a
second IV in order to improve the robustness of our estimate.

4.1.2 Second instrument

The second instrument follows a methodology similar to the �rst one, but the technological
subcategories are substituted with the assignees of the patents. The steps are the following:

a) For the �rst period, we calculate the total number of star inventors active in a given
MSA and with a given assignee. In case of star inventors with multiple MSAs or assignees in
the same period, the modal one is chosen.

b) For each period, each assignee, and each MSA, we calculate the average number of
patents produced by star inventors in that period in the whole US, excluding the given MSA.

c) For each MSA, period, and assignee, we multiply the number of inventors in the �rst
period calculated at point a) by the average number of patents produced by star inventors
sharing the same assignee in period t calculated in b). Subsequently, we sum the outcome by
MSA, period, and technological category (if an inventor has patented in di¤erent categories in
the same period, the modal one is chosen). The result is the second instrumental variable for
total number of star patents in period t, by MSA and category.

Formally, it can be summarized by the following equation:

IV 2ikt = �a(StarsInvika1 �AvPatiat) (5)

where i indexes MSAs, t periods, k technological categories, and a the assignees. In the few
cases in which the value of point b was missing (because there were not other stars with the
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same assignee in other MSAs), it was replaced with the contemporaneous US-wide average
productivity of stars in the same technological category.

The excludability condition is identical to the one for the �rst instrument, while the exo-
geneity assumption is similar: given that stars and comets generally have di¤erent assignees
(the assignee is very often the employer of the inventor, and comets have, by de�nition, as-
signees which less than 50 patents assigned in total - while, on average, assignees of stars have
4010 assigned patents) we assume that the average productivity of an assignee in the whole US
(calculated excluding the given MSA) has no independent e¤ect on the productivity of comets
of that MSA.

5 Results

In table 8 we report mean and standard deviation of the patent variables for the 2113 MSA/category
pairs which compose our sample. As it is possible to see, the distribution of the variables in
natural form (�rst two rows) is very skewed. All the count variables (number of patents, num-
ber of �rms) and total employment enter the regression equations in logarithmic form, thus
the coe¢ cients can be interpreted as elasticities. The variables which express continous shares
(the share of other patents in the same category, the Her�ndahl index, and the share of man-
ufacturing employment) are reported in natural form (thus the coe¢ cients re�ects percentage
changes in the dependent variable following unit changes in the regressors).

Table 8: Summary statistics of stars and comets
Variable Obs Mean Std. Dev. Min Max
comets 2113 27.165 53.46 1 626
stars 2113 68.80 159.71 1 2125
log(comets) 2113 2.38 1.29 0 6.43
log(stars) 2113 3.07 1.46 0 7.66

Results from the OLS estimation are reported in col. 1, 2, and 4 in table 9. The e¤ect of
star patents on comets is always positive, but overall quite small: when the MSA �xed e¤ect
is included, the coe¢ cient ranges from 0.03 to 0.11. Among the other controls, the share of
patents in the category have a positive sign, as expected, although the latter is signi�cant only
in the speci�cation without MSA �xed e¤ects (col. 1). The same is true for the small plants
variable. The total MSA employment is positive but signi�cant in only one speci�cation, while
the Her�ndahl index and the manufacturing share are always insigni�cant. The inclusion of
the MSA-period �xed e¤ects reduces the size of the star coe¢ cient, which becomes insigni�cant
(col. 4), and magnify the e¤ect of the share of patents in the category. This is due to the fact
that now the only variation left is within-MSA (i.e., across di¤erent technological categories)
in the same period; which is probably too small to allow us to identify precisely any signi�cant
e¤ect of stars (at least with OLS), considering also the strong collinearity of the two explanatory
variables included (once other factors are controlled for).

Results from 2SLS regressions are reported in col. 3 and 5 of table 9. For brevity, here
we report only the results obtained with the second instrument, as it is assumed to be the
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Table 9: regression of comet patents
(1) (2) (3) (4) (5)

VARIABLES comets (log) comets (log) comets (log) comets (log) comets (log)
OLS OLS IV2 OLS IV2

stars (log) 0.114*** 0.0980*** 0.273*** 0.0334 0.303***
(0.0215) (0.0189) (0.0680) (0.0286) (0.0949)

Share other patents cat. 0.289*** 0.437*** 0.114 1.242*** 0.635***
(0.0797) (0.0909) (0.144) (0.168) (0.241)

Tot. MSA patents (log) 0.369*** 0.0397 0.00107
(0.0362) (0.0874) (0.0880)

Total MSA empl. (log) 0.0755 0.400* 0.384
(0.0529) (0.242) (0.238)

Plants <500 emp. (log) 0.411*** 0.0444 0.0454
(0.0609) (0.193) (0.185)

her�ndahl -1.030 2.676 3.048
(2.023) (3.070) (3.079)

Manuf. share 0.401 0.0214 -0.253
(0.432) (0.569) (0.557)

Constant -3.239*** -1.462 -0.981 3.532*** -1.475**
(0.180) (1.208) (1.951) (0.378) (0.732)

MSA f.e. NO YES YES YES YES
Tech. cat.*Period f.e. YES YES YES YES YES
MSA*period f.e. NO NO NO YES YES

Observations 2113 2113 2113 2113 2113
R2 0.764 0.861 0.852 0.834 0.817
Heteroskedasticity robust standard errors clustered at MSA-category level in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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most exogenous. In Appendix C we report more speci�cations using also the �rst instrument,
together with �rst stage estimates and other diagnostics; all the tests reported there con�rm
the validity of the IV speci�cation and the strength of the instruments.

Instrumented coe¢ cients are still positive and signi�cant, and now the elasticity of comet
to star patents is around 0.3. The value is around three times bigger than OLS estimates (and
ten times bigger when the MSA-time �xed e¤ect is included). We explain the downward bias of
the OLS as originating from negative selection: it is likely that, in general, patenting activities
in a given city and category are specialized in one of the two groups of patents (comets or
stars) for unobserved reasons, which in turn creates a negative, spurious association between
the number of comet and star patents developed in a given MSA-category pair, thus leading to
the downward bias in the OLS estimates. Another plausible explanation for the downward bias
is the presence of a measurement error in the star variable: we proxy the intensity of activity of
star inventors in a locality with the number of patents they produce, but the measure is clearly
noisy, as patents are heterogeneous in quality. To the extent that the measurement error of
the instrumental variable is independent from the one in the endogenous variable, IV estimates
eliminate the "attenuation bias" of the OLS coe¢ cient. The independence of the two errors
is actually plausible as the variables are measured using patents in di¤erent localities (in the
speci�c city and in the whole US excluding that city, respectively). We instead rule out that
the increase in the coe¢ cients may be due to weak instruments, as the hypothesis is rejected
by �rst-stage results reported in Appendix C.

5.1 Robustness tests

We run a series of robustness tests to check the validity of our estimates. In table 10, we report
the estimates of the model reported in equation 3 applying a Negative Binomial count model
to di¤erent selection of the sample: the OLS one, the OLS one plus the observation with zero
comets, the OLS one plus the observation with zero comets and less than 25 patents in the
MSA/technological category pair, and all the observation (thus adding also the observation
with zero stars; to easy comparability, this is done by applying the logarithmic transformation
to the natural variable augmented by one). We opted for a Negative Binomial, rather than a
Poisson model, as the dependent variable shows a remarkable degree of overdispersion.

Results show that the coe¢ cient of star patents is substantially una¤ected by the di¤erent
sample selections. Furthermore, is size is almost identical the OLS one. We therefore exclude
sample selection biases in our OLS estimations, due to either the exclusion of observations
with zero comets or the threshold of 25 patents.

A further robustness test involves the inclusion of spatially lagged variables. Although the
empirical literature on patents and knowledge spillovers has argued that urban agglomerations
are a good approximation of the relevant spatial decay, we cannot exclude a priori that some
of the e¤ects we are looking at may go beyond the MSA borders. On the other hand, the exact
identi�cation of true spatial e¤ects is complex in this context, as unobserved local factors may,
in fact, create spurious evidence of spatial dependence. For instance, two contiguous cities may
have similar numbers of comet patents because they share other, unobserved attributes, but
failing to recognize that would lead to conclude that the number of comet patents in contiguous
cities has a causal e¤ect on city comets (this is a classic and well known identi�cation problem
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Table 10: Negative Binomial count regressions
(1) (2) (3) (4)

VARIABLES comets (count) comets (count) comets (count) comets (count)
Sample OLS OLS + 0s OLS + 0s+ <25 pat. All

stars (log)y 0.132*** 0.129*** 0.147*** 0.153***
(0.0167) (0.0169) (0.0140) (0.0135)

Share other patents cat 0.558*** 0.524*** 0.410*** 0.401***
(0.0830) (0.0815) (0.0517) (0.0460)

Tot. MSA patents (log) 0.129** 0.131** 0.0592 0.0274
(0.0655) (0.0667) (0.0515) (0.0441)

Tot. MSA patents (log) 0.300* 0.345* 0.683*** 0.822***
(0.172) (0.176) (0.163) (0.145)

Plants <500 emp. (log) 0.158 0.196 -0.0480 -0.149
(0.136) (0.140) (0.117) (0.0990)

her�ndahl 2.842 3.306 2.841 -0.0433
(2.535) (2.503) (2.096) (1.535)

Manuf. share -0.164 0.157 -0.306 0.0317
(0.474) (0.520) (0.467) (0.375)

Constant -1.408 -2.201 -2.832** -3.150***
(1.339) (1.406) (1.346) (0.446)

MSA f.e. YES YES YES YES
Tech. cat.*Period f.e. YES YES YES YES
MSA*period f.e. NO NO NO NO
Observations 2113 2202 4191 7589
Heteroskedasticity robust standard errors clustered at MSA-category level in parentheses
*** p<0.01, ** p<0.05, * p<0.1
yThis variable is equal to [log (stars +1)] in the regression of column 4

20



in spatial economics, and more generally in social sciences, as discussed by Manski, 1999).
Nevertheless, totally ignoring spatial e¤ects might be also an important omission. In this
section, we apply some standard spatial econometrics tools, in order to check whether our
results are robust to the inclusion of spatially lagged variables.

We therefore create a set of spatially lagged variables - namely the number of stars, comets,
and other patents - calculated by weighting neighbouring observations - within a radius of 300
miles - by the inverse of their distance. Results are reported in 11. The inclusion of the spatial
variables leaves the other coe¢ cients almost una¤ected, while the spatially lagged variables
have generally signi�cant coe¢ cients, especially the "other patents" one. Including the spatial
lag of the comets makes OLS estimations inconsistent as a spatial lag of the dependent vari-
able is endogenous by construction (Anselin, 1988). Therefore, we opt for an IV estimation,
instrumenting both the endogenous variables, i.e., the number of star patents and the spatial
lag of comets. Regarding the choice of the instrument for the latter variable, a popular option
in spatial econometrics literature is the spatial lag of one or a few independent variables, as
long as one assumes that they do not have any independent e¤ect on the dependent variable.
However, in this case we have a better candidate promptly available, i.e, the spatial lag of the
instrument. The fourth and �fth columns of 11 therefore report the results of an IV regression
where stars and the spatial lag of comets are the endogenous variables, and the second IV and
its spatial lag are the instruments. The stars coe¢ cient is extremely similar to the previous
IV regressions; the lagged comets have a sizeable coe¢ cient when they are the only spatially
lagged variable included in the speci�cation (col. 4), although it is barely signi�cant. Once the
other spatial variables are included, it becomes insigni�cant; similarly, also the other spatial
lags are not statistically di¤erent from zero. One possible reason for that can be the high
correlation among these three variables, which may introduce problem of collinearity; another
source of concern can be the weakness of the instrument for the lagged comets once the other
lagged variables are included, although standard �rst stage diagnostic seems to exclude the
problem.11 However, given that our main concern is to assess whether omitted spatially lagged
variables may a¤ect our results, rather than obtaining precise point estimates for these vari-
ables, for simplicity we decide not to complicate the speci�cation any further; for the same
reason, we omit the calculation of a spatial error model (robust to spatial correlation in the
error term), as we believe that the large number of �xed e¤ects included in the speci�cations,
as well as the clustered structure of the estimated standard errors, make unlikely this kind
of problem - which, however, would a¤ect only the e¢ ciency, and not the consistency, of our
estimates. We therefore conclude that we cannot reject the presence of spatial e¤ects in the
context under analysis, but, at the same time, their omission is not a¤ecting our main results.

Finally, we run two other robustness tests, which are:
i) the exclusion of the sixth category, which includes all the patents not classi�able under

the other �ve categories;
ii) allowing for di¤erent e¤ects of stars in each of the three time periods.
In the �rst case, results are una¤ected. In the second case, coe¢ cients are not signi�cantly

11The Kleibergen-Paap rk Wald F statistic for regression of col. 5 is equal to 5.86, which corresponds to a bias
lower than 15% of the coe¢ cient according to Stock-Yogo critical values. The same statistic for the regression
of column 4 is equal to 45.947.
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Table 11: Regressions with spatially lagged variables
(1) (2) (3) (4) (5)

VARIABLES comets (log) comets (log) comets (log) comets (log) comets (log)
OLS OLS OLS IV IV

stars (log) 0.0877*** 0.0856*** 0.0854*** 0.252*** 0.251***
(0.0190) (0.0189) (0.0190) (0.0696) (0.0695)

Share other patents cat. 0.432*** 0.421*** 0.421*** 0.127 0.137
(0.0906) (0.0901) (0.0902) (0.141) (0.142)

Tot. MSA patents (log) 0.0363 0.0368 0.0362 0.00594 0.00415
(0.0882) (0.0883) (0.0882) (0.0874) (0.0884)

sp. lag stars (log) 0.119*** 0.0156 0.0176
(0.0305) (0.0512) (0.0536)

sp. lag oth. pat. (log) 0.193*** 0.175** 0.297
(0.0452) (0.0769) (0.231)

sp. lag comets (log) 0.141* -0.248
(0.0734) (0.333)

Total MSA empl. (log) 0.369 0.387 0.382 0.355 0.460*
(0.245) (0.243) (0.243) (0.237) (0.254)

Plants <500 emp. (log) 0.0499 0.0513 0.0513 0.0519 0.0519
(0.188) (0.187) (0.187) (0.178) (0.180)

her�ndahl 2.182 1.952 1.963 2.513 2.464
(3.057) (3.057) (3.056) (3.045) (3.081)

Manuf. share 0.0344 0.0342 0.0344 -0.228 -0.205
(0.563) (0.560) (0.560) (0.547) (0.552)

Constant -1.427 -1.734 -1.690 -1.460*** -2.233***
(1.241) (1.233) (1.232) (0.529) (0.776)

MSA f.e. YES YES YES YES YES
Tech. cat.*Period f.e. YES YES YES YES YES
MSA*period f.e. NO NO NO NO NO
Observations 2096 2096 2096 2096 2096
R2 0.863 0.864 0.864 0.856 0.854
Heteroskedasticity robust standard errors clustered at MSA level in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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di¤erent across periods, although the last one is generally slightly bigger. The hypothesis of a
fading e¤ect over time is therefore rejected.

Given the close similarity of these results with the ones already presented, they are not
reported for brevity (they are however available from the author upon request).

6 Conclusions

This paper builds on the analysis of a very peculiar aspect of the patent data, i.e., the skewness
of the distribution of patents among inventors. We therefore identify two illustrative categories
of patents - stars and comets - based on the average productivity of their inventors. Two
main conclusions emerge from the analysis: �rst, once controlling for the overall concentration
of patenting activity, stars and comets are associated with cities with di¤erent structural
characteristics. In particular, comets are associated with a diversi�ed economic structure,
concentration of small plants, and establishment births; while stars are more likely to be found
in metropolitan areas with a large pool of patents and a specialized economic structure. Second,
we show that the activity of star inventors is bene�cial to the activity of comet inventors: in
our preferred speci�cations, we �nd that the elasticity of comet patents to star patents is
approximately equal to 0.3, which means that, on average, a 10% increase in the number of
star patents leads approximately to a 3% increase in the number of comets.

More research is needed to expand both the conclusions we reached, in order to better
identify the characteristics of cities associated with concentrations of the two categories of
inventors; regarding the second, and to investigate the channels through which the spillovers
take place. Also, the availability of a patent-�rm matched dataset will allow i) to check our
speculative hypothesis that comets are more likely to be employed by small �rms, while stars
work for the R&D labs of big companies; and ii) to assess more in depth the impact of the
di¤erent categories of patents on the local economy.

The policy recommendations are not one-way. On one side, given the strong e¤ect of stars
on the productivity of comets, the attraction of stars to a city may be highly bene�cial to the
local economic environment: stars will bene�t comets, which in turn will foster the birth of
new plants, the innovation output of small businesses, and the generation of new employment.
Thus, even though R&D labs of big corporations may have only a limited direct e¤ect on the
local economy, as most the of employment and value added is located elsewhere, they may be
highly bene�cial in the light of the aforementioned indirect e¤ect.

On the other side, we know that stars and comets are concentrating in di¤erent places,
which might imply that attracting stars where comets are might not be a successful policy, as
stars in "comets�places" may be less productive. In other words, the same location for comets
and stars will end up to be sub-optimal for (at least) one of the two categories. Therefore,
interfering on the location choice of stars (or comets) in order to increase the spatial proximity
may introduce perverse incentives and lead to much weaker e¤ect than expected.

23



References

Acs ZJ, DB Audretsch and MP Feldman, 1992, Real E¤ects of Academic Research: Com-
ment, American Economic Review, 82:1

Acs ZJ, DB Audretsch, 1990, Innovation and small �rms, the MIT Press Real E¤ects of
Academic Research: Comment

Almeida, P., and B. Kogut. 1999. Localization of knowledge and the mobility of engineers
in regional networks. Management Science 45

Audretsch DB, 2002, The dynamic role of small �rms: evidence from the US, Small Business
Economics, 18:1-3

Anselin L., 1988, Spatial Econometrics: Methods and Models, Dordrecht, Kluwer Academic
Publishers.

Azoulay, P., J. S. Gra¤ Zivin, and J. Wang, 2008, Superstar Extinction, NBER Working
Paper No. 14577

Balasubramanian N, J Sivadasan, 2008, What Happens when Firms Patent? New Evidence
from US Economic Census Data, working paper

Bartik T.J., 1991. Who Bene�ts from State and Local Economic Development Policies?
W.E. Upjohn Institute

Bessen J, 2008, The value of U.S. patents by owner and patent characteristics, Research
Policy 37:5

Breschi, S. and Lissoni, F.,2001, Knowledge spillovers and local innovation systems: a
critical survey. Industrial and Corporate Change, 10: 975�1005.

Breschi S., and F. Lissoni, 2009, Mobility of skilled workers and co-invention networks: an
anatomy of localized knowledge �ows,Journal of Economic Geography 9 pp. 439�468

Cairncross F., 1997, The death of distance: how the communications revolution will change
our lives. Harvard Business School Press, Boston.

Carlino G.A., S. Chatterjee, R.M. Hunt, 2007, Urban density and the rate of invention,
Journal of Urban Economics, 61: 389�419

Coyle, D., 1999, The Weightless World: Strategies for Managing the Digital Economy, MIT
Press

Duranton G., D. Puga, 2005, From sectoral to functional urban specialisation, Journal of
Urban Economics, 57:2, 343-370

Ellison, G.D., E.L. Glaeser, and W.R. Kerr, forthcoming. "What Causes Industry Agglom-
eration? Evidence from Coagglomeration Patterns." The American Economic Review

Friedman, T., 2005, The World is Flat, New York: Farrar, Strauss and Giroux
Glaeser, E.L., Kallal, H.D., Scheinkman, J.A., and Shleifer, A., 1992. Growth in cities,

Journal of Political Economy 100, 1126-1152.
Greenstone M, R Hornbeck, E Moretti, 2008, Identifying agglomeration spillovers: evidence

from million dollar plants, NBER Working Paper n. W13833
Gri¢ th R., L. Sokbae, J. Van Reenen, 2007, Is Distance Dying at Last? Falling Home Bias

in Fixed E¤ects Models of Patent Citations, NBER Working Paper 13338
Griliches Z, 1990, Patent Statistics as Economic Indicators: A Survey, Journal of Economic

Literature, 28: 4

24



Hall, B.H., A. B. Ja¤e, M. Trajtenberg, 2001, The NBER Patent Citations Data File:
Lessons, Insights and Methodological Tools, NBER Working Paper 8498

Ioannides Y., H.G. Overman, E. Rossi-Hansberg, and K. Schmidheiny, 2008, The e¤ect
of information and communication technologies on urban structure, Economic Policy, 23, pp
201-242

Ja¤e A.B., 1989, Real E¤ects of Academic Research, The American Economic Review,
79:5, pp. 957-970

Ja¤e A.B., M. Trajtenberg, 2005, Patents, Citations, and Innovations: A Window on the
Knowledge Economy, The MIT Press

Ja¤e A.B., M. Trajtenberg, and R. Henderson, 1993, �Geographic localization of knowledge
spillovers as evidenced by patent citations�, Quarterly Journal of Economics 10, 577-598

Manski, C.F., 1999. Identi�cation problems in the social sciences. Harvard University
Press

Peri G, 2005, Determinants of Knowledge Flows and Their E¤ect on Innovation,The Review
of Economics and Statistics, vol. 87, issue 2, pages 308-322

Silverberg G, B Verspagen, 2007, The size distribution of innovations revisited: An appli-
cation of extreme value statistics to citation and value measures of patent signi�cance, Journal
of Econometrics, 139:2

Quah, D., 1999, The Weightless Economy in Economic Development, CEP Discussion
Paper No. 417

Trajtenberg M., G. Shi¤, R. Melamed, 2006, The "Names Game": Harnessing Inventors�
Patent Data for Economic Research, NBER Working Paper No. 12479

Waldinger F., 2009, Peer E¤ects in Science - Evidence from the Dismissal of Scientists in
Nazi Germany, CEP Discussion Paper No 910

Zucker, L G. and MR Darby, 2007, Star Scientists, Innovation and Regional and National
Immigration NBER Working Paper Series no. 13547

Zucker, L. G., Darby, M. R., Armstrong, J.,1998, Geographically localized knowledge:spillovers
or markets? Economic Inquiry, 36: 65�86.

25



Appendix A: Data
Patent data come from the United States Patent and Trademark O¢ ce (USTPO) data-

base as processed by the National Bureau of Economic Research (NBER), described in Hall
et al, 2001. To the original dataset we added the inventors�unique identi�er developed by
Trajtenberg et al (2006) and the standardized assignee name available in the Prof. Bronwyn
H. Hall website.12 We are aware that the latter is not always reliable as i) the complex own-
ership structure of companies may imply that di¤erently named assignees correspond, in fact,
to the same company, and ii) the same company name can be spelled in di¤erent ways (and
the standardization routines cannot completely solve the problem).

We eliminated patents granted to inventors residing outside US and geolocated all the
cities of residence of inventors through the ArcGis geolocator tool (based on the 2000 gazzetter
of US places from US Census) and the Yahoo! Maps Web Services. In case more authors
are listed for the same patents and they live in di¤erent cities, the city of residence of the
�rst author is chosen; this is a standard procedure in patent literature, and Carlino et al.
(2007) show that the approximation is substantially innocuous. The geocoding operation was
successful for 1,161,650 patents, which correspond to 97% of the database. We then assigned
cities to counties using the ArcGis spatial join tool, and subsequently counties into MSAs (1993
de�nition). Those counties which are not included in the MSAs dataset are reported singularly
- the geographical units are therefore a mix of counties and MSAs (for simplicity in the paper
we do not distinguish between the two entities and call all the spatial units "MSAs"). This
is a sensible choice to the extent that small counties not included in the MSAs de�nition do
not exhibit strong commuting �ows and are therefore self-contained functional entities. To our
knowledge, is the �rst time that patent data are geocoded (almost) entirely, without ignoring
small counties.

Other County and MSA speci�c variables for employment and industrial structure are
calculated from the County Business Pattern dataset, while data on establishment births come
from Company Statistics. Both the databases are freely available from the US Census webpage.

12http://elsa.berkeley.edu/~bhhall/
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Appendix B: Alternative de�nitions of comets and stars
In this appendix we present various alternative de�nitions of the patent variables, and we

brie�y discuss how the main results of the paper are a¤ected.
The �rst concern about the de�nition we adopted regards the choice of considering only

the �rst author of the patent. Looking at table 12, we can see that authors whose surname is
starting with one of the �rst letters of the alphabet are only slightly more likely to be reported
as �rst author, as compared to second or third authors. However, as a further robustness test,
we followed a di¤erent procedure, de�ning a patent as a "star patent" if at least one inventor
satis�es the requirements listed in section 3, and as a "comet patent" if all the inventors satisfy
the relative requirements. The new variables are highly correlated with the single-author ones
(99% pairwise, and 98% partial correlation when including also the total number of patents
in the same MSA and category), and lead to extremely similar results: coe¢ cients are only
sligthly (20-30%) smaller (table 13). Therefore, to the extent that the �rst author is generally
the project leader, de�ning comet and star patents based only on her/him probably increase
the precision of the estimates.

We then build three other de�nitions of the comet variable. They are the following:
1) Standard de�nition (described in Section 3) but including patents assigned to all the

assignee types (not only to US corporations), or not assigned.
2) Same as in 1, but excluding not assigned patents.
3) Same as in section 3, but relaxing the constraint on the maximum number of 50 patents

for assignee.
We then calculated the results of the speci�cation 3 with both OLS and IV (reported in

table 14 and 15, respectively) and checked whether the results were a¤ected. In the �rst case,
the coe¢ cients are reduced by around 50%, although they keep their signi�cance. This is
explained by the inclusion in the comet group of many patents not assigned or assigned to
individuals, which are likely to bear less scienti�c and market value than other patents, and
therefore they should bene�t less from spillovers from stars (assuming that if the quality of
patents is lower, there are less points of contact with excellent patents). The second de�nition
gives coe¢ cients that are around 20% smaller than the adopted de�nition; the di¤erence is
therefore small and due to similar reasons. The third comet variable gives a coe¢ cient around
twice as higher in the OLS, and similar to the one obtained with the standard comet variable
in the IV speci�cation. Again, this is not surprising, as comets de�ned in this way are more
likely to work for the same employers of stars, which in turn leaves room for spurious positive
correlation which pushes OLS estimates upward (which reduces the downward bias in the
speci�c case).

To conclude, results are always qualitatively similar to the ones obtained with the standard
de�nition of comets, and none of the (small) quantitative di¤erences is unexpected.
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Table 12: Inventors�surname initial and patent authors�sequence

Initial

A 42,942 3.58 14,683 2.69 5,697 2.45
B 115,093 9.6 43,904 8.03 16,242 6.99
C 86,866 7.25 36,552 6.69 13,911 5.99
D 57,310 4.78 24,773 4.53 9,614 4.14
E 23,823 1.99 10,272 1.88 3,941 1.7
F 45,165 3.77 20,096 3.68 7,891 3.4
G 63,038 5.26 28,161 5.15 11,123 4.79
H 85,751 7.16 39,656 7.26 16,097 6.93
I 5,838 0.49 2,606 0.48 1,087 0.47
J 28,038 2.34 12,922 2.36 5,387 2.32
K 63,828 5.33 30,438 5.57 12,917 5.56
L 63,088 5.26 30,152 5.52 13,138 5.65
M 98,633 8.23 47,858 8.76 20,944 9.01
N 24,425 2.04 11,712 2.14 5,365 2.31
O 16,422 1.37 7,974 1.46 3,541 1.52
P 55,056 4.59 27,231 4.98 12,197 5.25
Q 1,854 0.15 970 0.18 386 0.17
R 55,828 4.66 26,368 4.82 12,045 5.18
S 124,636 10.4 60,864 11.14 27,666 11.9
T 37,138 3.1 18,570 3.4 8,690 3.74
U 3,582 0.3 1,769 0.32 928 0.4
V 17,480 1.46 8,525 1.56 4,342 1.87
W 63,419 5.29 30,428 5.57 14,356 6.18
X 304 0.03 247 0.05 120 0.05
Y 9,540 0.8 5,055 0.92 2,481 1.07
Z 9,282 0.77 4,735 0.87 2,297 0.99

Total 1,198,379 100 546,521 100 232,403 100

first author second author third author

Freq. Percent Freq. Percent Freq. Percent
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Table 13: regression of comet patents, multi-author
(1) (2) (3)

VARIABLES Comets (log) Comets (log) Comets (log)
OLS OLS IV2

stars (log) 0.0795*** 0.0830*** 0.228***
(0.0205) (0.0181) (0.0645)

Share other patents cat. 0.355*** 0.543*** 0.249*
(0.0950) (0.0969) (0.148)

Tot. MSA patents (log) 0.410*** 0.137 0.0954
(0.0372) (0.0936) (0.0913)

Total MSA empl. (log) 0.120** 0.358 0.368
(0.0536) (0.243) (0.239)

Plants <500 emp. (log) 0.352*** 0.0712 0.0574
(0.0620) (0.178) (0.174)

her�ndahl -2.151 4.111 5.577*
(1.931) (3.057) (3.037)

Manuf. share 0.516 -0.178 -0.521
(0.442) (0.596) (0.598)

Constant -3.431*** -2.036 -1.875***
(0.194) (1.273) (0.558)

MSA f.e. YES YES YES
Tech. cat.*Period f.e. YES YES YES
MSA*period f.e. NO NO NO

Observations 2088 2088 2088
R2 0.763 0.864 0.857
Heteroskedasticity robust standard errors clustered at MSA level in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 14: regression of comet patents, alternative de�nitions, OLS
(1) (2) (3)

VARIABLES comets def 1 (log) comets def 2 (log) comets def 3 (log)
OLS OLS OLS

stars (log) 0.0488*** 0.0821*** 0.153***
(0.0137) (0.0190) (0.0147)

Share other patents cat. 0.465*** 0.566*** 1.164***
(0.0664) (0.0933) (0.102)

Tot. MSA patents (log) 0.210*** 0.163** 0.344***
(0.0619) (0.0824) (0.0458)

Total MSA empl. (log) -0.0964 -0.0614 0.429***
(0.163) (0.232) (0.123)

Plants <500 emp. (log) 0.194 0.291 0.0382
(0.124) (0.185) (0.127)

her�ndahl 3.460 2.867 1.735
(2.232) (3.000) (1.868)

Manuf. share -0.950* -0.777 -0.409
(0.517) (0.747) (0.401)

Constant 0.673 -0.265 -2.039***
(0.849) (1.120) (0.678)

MSA f.e. YES YES YES
Tech. cat.*Period f.e. YES YES YES
MSA*period f.e. NO NO NO

Observations 2113 2113 2113
R2 0.764 0.861 0.852
Heteroskedasticity robust standard errors clustered at MSA level in parentheses
*** p<0.01, ** p<0.05, * p<0.1

30



Table 15: regression of comet patents, alternative de�nitions, IV
(1) (2) (3)

VARIABLES comets def 1 (log) comets def 2 (log) comets def 3 (log)
IV2 IV2 IV2

stars (log) 0.156*** 0.275*** 0.361***
(0.0495) (0.0718) (0.0427)

Share other patents cat. 0.275*** 0.218 0.806***
(0.0983) (0.143) (0.101)

Tot. MSA patents (log) 0.191*** 0.126 0.306***
(0.0616) (0.0817) (0.0505)

Total MSA empl. (log) -0.114 -0.0843 0.386***
(0.160) (0.225) (0.135)

Plants <500 emp. (log) 0.189 0.292 0.0435
(0.118) (0.181) (0.116)

her�ndahl 3.292 3.125 1.492
(2.078) (2.997) (1.767)

Manuf. share -1.015** -1.045 -0.566
(0.493) (0.732) (0.365)

Constant 2.498* -1.049** -2.886**
(1.365) (0.488) (1.239)

MSA f.e. YES YES YES
Tech. cat.*Period f.e. YES YES YES
MSA*period f.e. NO NO NO

Observations 2113 2113 2113
R2 0.764 0.861 0.852
Heteroskedasticity robust standard errors clustered at MSA level in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Appendix C: IV estimation diagnostics
In this appendix we present the results from alternative speci�cations relative to the IV

estimations, following the recommendations reported in Angrist and Pischke (2008, p. 212).
We report the results of the �rst stage regressions, in order to test the strength of the ex-
cluded instruments; subsequently, we test the exogeneity of the instruments, by comparing
our main results presented in table 9 with the overidenti�ed speci�cations (thus including also
the �rst instrument) estimated through 2-stages least squares (2SLS) and Limited Information
Maximum Likelihood models (LIML).

In table 16 we report the results from the �rst stage regressions; columns 1-2 are the
speci�cations correspondent to our preferred IV estimations reported in columns 3 and 5 of
table 9, respectively. In both the speci�cations, the coe¢ cients on the instrument are highly
signi�cant, and the F statistics is well above the rule-of-thumb value of 10. In columns 3 and
4 we calculate two other �rst-stage regressions which do not have any direct correspondence
to any of the 2SLS estimates we presented in the paper, but are meant to be a further test
on the strength and exogeneity of the instrument: speci�cally, we added a MSA-category
�xed e¤ect (which we did not include in the main model), which absorbs every time-invariant
component speci�c to a given MSA-category pair. As it is possible to see, the coe¢ cient is
less precise (but this is not surprising, given the little variability left) but it is still signi�cant,
and its size is even bigger than in columns 1 and 2. Column 5, instead, reports the result
from the �rst-stage regression including both the excluded instruments. Again, the F statistic
con�rms the strength of the instruments. We also calculated a F-test on null hypothesis that
the instrumental variables are jointly equal to zero, which is clearly rejected (F=46.21).

In table 17 we report some diagnostics on the exogeneity of the instruments. Speci�cally,
we estimate the overidenti�ed regression (thus including also the �rst instrument) by means
of Limited Information Maximum Likelihood models (LIML) as well as Two Stages Least
Squares (2SLS). As Angrist and Pischke (2008) argue, LIML models are less precise but also
less biased, thus sizeable di¤erences in the point estimates with 2SLS equivalent speci�cations
should be a reason of concern. However, in this case the coe¢ cient values are very close either
among them, and to the ones estimated in the main model of table 9. Therefore, we can
conclude that the validity of the IV estimation is not a concern in our case.
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Table 16: First stage regression
(1) (2) (3) (4) (5)

VARIABLES stars (log) stars (log) stars (log) stars (log) stars (log)

IV1 (logs) 0.102***
(0.019)

IV2 (logs) 0.268*** 0.243*** 0.362* 0.528*** 0.192***
(0.0327) (0.0291) (0.215) (0.149) (0.032)

Share other patents cat. 1.352*** 1.656*** 1.038*** 0.0288 1.243***
(0.216) (0.127) (0.261) (0.161) (0.21)

Tot. MSA patents (log) 0.287** 0.812*** 0.298**
(0.115) (0.106) (0.12)

Total MSA empl. (log) -0.0352 -0.223 -0.153
(0.311) (0.265) (0.32)

Plants <500 emp. (log) 0.0190 -0.119 -0.0315
(0.247) (0.210) (0.25)

her�ndahl -2.627 -1.747 -3.691
(4.135) (3.885) (4.36)

Manuf. share 1.597* 1.125 1.588*
(0.920) (0.747) (0.90)

Constant 0.298 6.376*** 1.748*** -1.366 1.091
(1.758) (0.260) (0.506) (1.520) (1.82)

MSA f.e. YES YES YES YES YES
Tech. cat.*Period f.e. YES YES YES YES YES
MSA*Period f.e. NO YES YES NO NO

MSA*cat. f.e. NO NO YES YES NO
Observations 2113 2113 2113 2113 2113
R2 0.790 0.831 0.664 0.642 0.79
F-stat 27.04 24.60 N.A. 532.08 29.06
Heteroskedasticity robust standard errors clustered at MSA level in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 17: IV, overidenti�ed regressions, 2SLS and LIML
(1) (2) (3) (4)

VARIABLES Comets (log) Comets (log) Comets (log) Comets (log)
LIML LIML 2SLS 2SLS

Stars (log) 0.310*** 0.322*** 0.308*** 0.322***
(0.0606) (0.0776) (0.0600) (0.0775)

Share other patents cat. 0.0456 0.592*** 0.0495 0.593***
(0.133) (0.216) (0.132) (0.215)

Tot. MSA patents (log) -0.00715 -0.00669
(0.0897) (0.0896)

Total MSA empl. (log) 0.381 0.381
(0.242) (0.242)

Plants <500 emp. (log) 0.0456 0.0456
(0.188) (0.188)

her�ndahl 3.127 3.123
(3.148) (3.144)

Manuf. share -0.311 -0.308
(0.569) (0.568)

Constant -1.113 -1.358** -1.106 -1.361**
(1.985) (0.679) (1.983) (0.679)

Observations 2113 2113 2113 2113
R2 0.848 0.814 0.848 0.814
Heteroskedasticity robust standard errors clustered at MSA level in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Appendix D: Ancillary tables and results

Table 18: citations�shares, comets and stars, within tech. category
Cited

Comets Stars Other patents
Comets 16.5 16.8 66.7

Citing Stars 7.3 35.6 57.5
Other patents 9.7 19.8 70.5

Table 19: Regression of citations received with tech. subcat. �xed e¤ects
Dep. var. Citations received

(standardized)
Nr. citations made 0.00244***

(0.00014)

Star patent dummy -0.125***
(0.012)

Comet patent dummy -0.183***
(0.012)

Other patent dummy -0.206***
(0.012)

Period F.E. YES
Tech. subcat. F.E. YES
Observations 590953
R2 0.06
Heteroskedasticity robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 20: Regression of citations received excluding the top 5 per cent cited patents
Dep. var. Citations received

(standardized)
Nr. citations made 0.00817***

(0.00018)

Star patent dummy 0.243***
(0.0045)

Comet patent dummy 0.151***
(0.0053)

Other patent dummy 0.135***
(0.0041)

Period F.E. YES
Tech. subcat. F.E. YES
Observations 564339
R2 0.13
Heteroskedasticity robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 21: Regression of comets/stars shares at MSA level, SUR
(1) (2) (3) (4)

COEFFICIENT Comets (share) Stars (share) Comets (share) Stars (share)

Tot. emp. (log) -0.0237*** 0.0116 0.00291 -0.00365
(0.0049) (0.0088) (0.0049) (0.0094)

Her�ndahl -0.276** 0.672*** -0.284*** 0.677***
(0.12) (0.21) (0.11) (0.21)

Manuf. share 0.0904** 0.0503 0.0573* 0.0694
(0.036) (0.064) (0.033) (0.064)

N. plant <500 emp. ((log) 0.0286*** -0.00404 0.0351*** -0.00776
(0.0061) (0.011) (0.0056) (0.011)

Other patents (log) -0.0412*** 0.0237***
(0.0029) (0.0055)

Period dummies YES YES YES YES
Observations 1289 1289 1289 1289
R2 0.11 0.03 0.23 0.04
Heteroskedasticity robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Figure 1: Star and comet patents over employment, MSAs
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Figure 2: Share of comets by MSAs
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Figure 3: Share of stars by MSAs
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