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Abstract 
We study localization, urbanization, and Jacobs’ externality effects on plant survival in 
Sweden (1970-2004). We focus on two questions: (1) do agglomeration externalities change 
with the age of plants? (2) using new information about the relatedness among industries, 
what is the role of technological relatedness among local industries? We find that 
agglomeration externalities affect survival chances of plants. This effect, however, differs 
between corporate and non-affiliated plants. Furthermore, we find that Jacobs’ externalities 
benefit only young plants, whereas urbanization externalities harm plants at all ages. 
Localization externalities are insignificant, while the presence of related industries 
substantially increases survival rates. 
 
Keywords: Agglomeration Externalities, nursery cities, Cox Regression, Aalen, plant 
survival, Sweden 
JEL Classifications: R11, C41, O30 



1: Introduction 
 
It is often argued that both industrial diversity and regional concentration of 

an industry are beneficial for the economic performance of local firms. 

Ideally, therefore, a city would host both a large number of different 

industries and show large concentrations of each of these industries. 

Unfortunately, such an ideal city would be extremely large and thus plagued 

with substantial congestion effects. Firms therefore experience a trade-off 

between local diversity and local specialization. Economic geographers have 

long suspected that this trade-off depends on the activity that is carried out 

in a plant. More specifically, it is often argued that diversified cities are 

important in the development of new technologies by promoting 

technological spillovers between industries, whereas specialized cities play a 

larger role in the exploitation of existing technologies, a suspicion that was 

formalized in a recent article by Duranton and Puga (2001). Moreover, 

framing the question of what constitutes the ideal industrial mix for a city as 

a trade-off between specialization and diversification overlooks the fact that 

many industries are linked to each other technologically. Therefore, the 

potential of inter-industry spillovers in a city may depend strongly on the 

technological linkages between the local industries. 

 

Since the seminal article by Glaeser et al. (1992), the links between the 

geographical concentration of economic activity and the performance of local 

firms and industries have been studied extensively in the field of 

agglomeration externalities. Most authors investigate how the local 

environment affects such performance indicators as productivity or 

employment growth. By contrast, there are very few papers which study how 

different types of agglomeration externalities influence plants’ survival rates. 

However, the fact that one plant survives while others do not is an important 

signal of the performance of a plant. To gain more insights into the relations 

between agglomeration externalities and plant survival, we focus on how 

three traditional types of agglomeration externalities – localization, Jacobs’, 

and urbanization externalities – affect the survival rates of plants. 

 

Our main concern is twofold. First, as young plants are more likely than old 

plants to use and further develop new technologies, we expect that the effect 



of such externalities depends on the age of the plant. Therefore, one question 

we raise is how the impact of agglomeration externalities changes as plants 

grow older. Such an analysis requires age-dependent parameters that are 

not compatible with the proportional hazards models commonly used in 

survival analysis. Thus, to determine which agglomeration benefits prolong 

the lives of plants in different stages of their existence, we use a framework 

that combines the Aalen linear hazards model with Cox proportional hazards 

regressions. In contrast to common proportional hazards estimation, this 

methodology allows us to investigate the age dependence of parameters and 

therefore to assess how agglomeration externalities change with the age of a 

plant. 

 

The second question we raise is how important a nearby presence and 

diversity of related industries are for the success of a plant. We therefore 

extend the traditional set of agglomeration externalities with two categories 

that capture the diversity and concentration of related economic activity, 

which we call related Jacobs’ and related localization externalities, 

respectively. To determine which industries are related technologically, we 

apply a novel indicator developed by Neffke and Svensson Henning (2008) 

that extracts information on the relatedness between industries from co-

production patterns in the product portfolios of plants. This incorporation of 

the technological structure of the economy into the study of agglomeration 

externalities constitutes the second important aspect of our article. 

 

We conduct our analyses using a dataset covering almost 25,000 

manufacturing plants in Sweden. In line with the Duranton and Puga’s 

(2001) nursery cities model, we find that Jacobs’ externalities only 

contribute to plant survival in the first fifteen years of a plant’s existence. 

After this age, plants no longer benefit from being located in diversified 

cities. As mass-production plants are typically larger than prototype plants, 

we expected that larger plants might be set up from the outset as mass-

production facilities. Surprisingly, however, these outcomes did not differ 

much when we focused only on small, medium, or large plants. As a matter 

of fact, the benefits that small plants derive from their local environment 

over time are very similar to the benefits for large plants. 

 



Our findings also confirm the importance of related industries in the local 

economy. Although local related Jacobs’ effects have no impact, adding a 

term that captures related localization externalities to our regression eclipses 

the effect of pure localization externalities. Apparently, plants benefit far 

more from being located close to plants in related industries than being close 

to real competitors. 

 

The remainder of the article is structured as follows. In section 2, we discuss 

the theoretical background with an emphasis on the nursery cities model. 

Section 3 describes the empirical literature on survival analysis and 

agglomeration externalities. Section 4 presents the estimation framework. 

The data and construction of variables are discussed in section 5. In section 

6, we turn to the outcomes of the empirical analyses and the robustness 

checks. Section 7 summarizes and concludes the article. 

 

 

2: Theoretical background 
 
Agglomeration externalities are costs or benefits that firms derive from being 

located close to other economic actors. In the contemporary literature, 

agglomeration externalities are often divided into three types: urbanization 

externalities, localization externalities, and Jacobs’ externalities.1 

Urbanization externalities capture the effects of city size. Big cities often 

boast high quality amenities and infrastructure, but they are also plagued 

by congestion, resulting in pollution and high factor costs. As a 

consequence, urbanization externalities can just as well represent economies 

as diseconomies to local firms. Localization externalities are benefits that 

firms derive from the local presence of other firms belonging to the same 

industry.2 Building on Marshall (1920), these benefits are thought to accrue 

                                                 
1 As larger cities are usually also more diversified, urbanization and Jacobs’ externalities are sometimes 

not treated as separate effects. However, in this study, we follow the convention that Jacobs' 

externalities refer to a city with a high degree of diversification controlling for overall city size. 
2 Some authors prefer the term MAR (Marshall-Arrow-Romer) externalities, appealing to a more long-

lasting, dynamic effect of local specialization. However, empirically, the distinction between static and 

dynamic agglomeration effects is very demanding in terms of data requirements. The variation in the 



from a large pool of specialized labor, from easy access to local supplier and 

client firms, and from local knowledge spillovers between firms in the same 

industry. Jacobs’ externalities arise when firms benefit from the presence of 

a large number of different industries in the local economy. Jacobs (1969) 

argued that most innovations result from “adding new work to old” in cities. 

The larger the local diversity of ideas, the more new combinations can arise 

from this. This led Glaeser et al. (1992) to coin the term “Jacobs’ 

externalities” to capture the inter-industry spillover benefits of local 

diversity.  

 

By now, a large body of literature has studied the different types of 

agglomeration externalities. In many articles (e.g., Henderson et al., 1995; 

Henderson, 1997; Combes et al., 2004), findings suggest that localization 

externalities play an important role. The role of Jacobs’ externalities is less 

well established. However, they seem to be particularly important for young 

or technologically advanced industries (e.g., Henderson et al., 1995; Neffke et 

al., 2008). In the present article, inspired by Duranton and Puga’s (2001) 

nursery cities model, we suggest that both the industry level and the plant 

level may determine which types of local environments generate the largest 

benefits. 

 

According to Duranton and Puga (2001), firms enter the market with a 

prototype. Before being able to mass-produce their product, firms have to 

search for the optimal production process. The way they do this is by 

imitating locally available production technologies. The advantage of 

diversified cities is that firms can more easily imitate several different 

processes without relocating. Jacobs’ externalities thus lower costs involved 

in technological search processes. Consequently, firms prefer to perform 

their exploration activities in these cities.  

 

Localization externalities are modeled as in Fujita (1988) and are, in 

principle, present in diversified as well as specialized cities. However, to 

generate localization externalities for each of the locally used production 

                                                                                                                                         
data must allow an estimate of the precise lag structure of the regressors’ effects. Making this 

distinction is therefore beyond the scope of this chapter. 



processes that are comparable in size to the ones in specialized cities, 

diversified cities must grow very large. This comes at the cost of substantial 

congestion effects. Once firms finish their exploration efforts and no longer 

benefit from local diversity, they face a predicament. Their current location 

in big cities imposes high congestion costs without any economies in 

exploration to compensate. Therefore, these firms are drawn to specialized 

cities that strike a better balance between localization, urbanization, and 

Jacobs’ externalities. The upshot of this is that diversified cities and 

specialized cities may co-exist, but diversified cities act as incubators for 

new firms (so-called nursery cities), whereas specialized cities are more 

adequate environments for mass-production.3  

 

This model is very appealing in its simplicity. However, the way in which 

firms are proposed to engage in technological exploration appears to be too 

stylized for empirical work. If managers of firms are supposed to be 

intelligent enough to locate in diversified cities in order to benefit from 

Jacobs’ externalities, surely they must have a more sophisticated research 

strategy than randomly testing each locally available production process. 

More realistically, we would expect firms to limit their search to production 

processes used in related economic activities. This would indicate the 

importance of related variety or related diversity, as discussed by Frenken et 

al. (2007). Boschma and Iammarino (2009) show that the local economies of 

Italian regions indeed grow faster when their industries exhibit a high degree 

of coherence. 

 

A similar kind of reasoning applies to localization externalities. It is not 

realistic to expect that only plants in the same industry give rise to 

localization externalities. One could even argue that plants in the same 

industry are likely to generate lower knowledge spillovers, as they would 

rather try to prevent knowledge from leaking to their competitors. Plants in 

related industries, in contrast, may be a source of ideas that are relevant yet 

new to an industry. At the same time, firms in such related industries may 
                                                 
3 This division of labor between cities had already been anticipated in less formal studies. For instance, 

Jacobs (1969) regards large diversified cities as the breeding ground of new ideas. Similarly, in the 

product life cycle location model of Hirsch (1967), the suitability of the national production 

environment varies with the stages of the product life cycle. 



be less protective about knowledge spillovers, as they are not direct 

competitors. In this way, the diversity and concentration in related 

industries may prove to be an important asset for regional economies. In an 

international trade context, Hidalgo et al. (2007) have shown that the 

technological position of the current export portfolio of a country vis-à-vis 

other product categories largely determines into which product categories a 

country can successfully diversify. Similarly, Neffke and Svensson Henning 

(2008) show that regions more readily diversify into industries that are 

related to their current local industries than into technologically unrelated 

industries. 

 
  

3: Agglomeration externalities and survival analysis 
 
In the agglomeration externalities literature, most studies use regional 

employment growth or regional employment levels (e.g., Glaeser et al. 1992; 

Henderson et al. 1995). However, a decline in employment does not always 

result from a decline in productivity, and, therefore, it is not necessarily 

related to weaker agglomeration externalities. Good examples are labor 

saving investments or markets where demand is relatively inelastic. Under 

these circumstances, higher productivity simply means that fewer employees 

produce the same output, and employment may even drop instead of rising. 

Plant productivity data (e.g., Henderson 2003) and plant entry data 

(Rosenthal and Strange, 2003) are thus more appealing. A disadvantage of 

such data is that they are very sensitive to cyclical economic movements. 

Moreover, of a more practical order, we lack data on capital stocks. We 

would therefore have to make the uncomfortable assumption that the 

capital-labor ratio is constant across plants. Instead, our investigations rely 

on survival analysis. As noted by Bernard and Jensen (2007), “plant 

shutdown is one of the few unambiguous observed signals of plant 

performance” (p. 193). In contrast to productivity or employment growth, 

plant survival is less volatile as it is less affected by short term economic 

shocks. Moreover, the relation between plant survival and agglomeration 

externalities has so far received only very scarce attention of the field.  

 



There are preciously few papers on agglomeration externalities that focus on 

survival rates. This is surprising because, as argued above, the fact that a 

plant survives is a crude yet very significant performance measure. More 

importantly, a survival analysis also explicitly accounts for plants that exit 

and can therefore be regarded as an interesting complementary approach to 

the existing analyses in the literature. Some exceptions are Falck (2007) and 

Boschma and Wenting (2007). Both studies find that the local environment 

significantly affects survival. Falck finds that the number of new businesses 

in the same region and industry raise the survival chances of a new 

establishment. Boschma and Wenting conduct a survival analysis of the 

British automobile industry between 1895 and 1968. They find that the local 

presence of related industries, such as bicycles and coach making, has 

contributed significantly to the survival of the automobile producers. On a 

different account, Dumais et al. (2002) show that the relatively stable 

agglomeration patterns of industries is the result of a set of countervailing 

forces. On the one hand, new establishment formation and growth in 

existing establishments leads to a more even distribution of economic 

activity across space, whereas establishment closure leads to higher levels of 

concentration. 

 

In some agglomeration externalities studies, corporate and non-affiliated 

establishments have proven to be affected differently by local factors (e.g., 

Henderson, 2003; Rosenthal and Strange, 2003). In a total factor 

productivity study of American plants, Henderson finds that corporate 

plants do indeed experience lower agglomeration externalities than non-

affiliated plants. The explanation the author provides is that plants 

belonging to larger corporations can use their channels within the 

corporation to access knowledge and organize supplier and client relations. 

Therefore, corporate plants may rely less on the local environment than non-

affiliated plants do. This suggests that corporate plants are fundamentally 

different from non-affiliated plants with respect to their externality needs. In 

our analyses, we take this into account by splitting the sample into a 

corporate and a non-affiliated part. 

 

Although it is not very widespread in externality studies, survival analysis 

has been used intensively in the fields of industrial dynamics and business 



studies. Most of these studies have looked at survival of firms or plants with 

respect to their size and age (Disney et al., 2003), pre-entry experience 

(Thompson, 2005), the structure of the market (Cantner et al., 2006; 

Buenstorf, 2007), the maturity of the industry (Agarwal and Gort, 2002), or 

combinations of these dimensions (Klepper, 2002). Bernard and Jensen 

(2007) investigate the influence of a wide variety of plant and firm 

characteristics. Like Henderson, these authors stress the influence of 

corporate relations: they show that, after controlling for plant 

characteristics, plants that belong to multi-plant or multinational firms are 

more likely to close down. A robust finding in this literature is that the larger 

and older the plant, the higher its survival rate. 

 

This article aims to deepen our understanding of the relationship between 

agglomeration externalities and plant survival. Our main research goals are 

threefold. First, we want to investigate the effect of agglomeration 

externalities on the survival rates of plants. Second, we want to assess how 

these effects depend on the age of a plant. Third, we want to find out 

whether related industries give rise to important agglomeration effects, both 

in terms of related diversity and of related localization effects. 

 

4: Estimation framework 
 
In this article, we base our estimations on the semi-parametric Cox 

proportional hazards model (Cox, 1972, henceforth, simply Cox model). This 

model is widely used in the analysis of survival spells. In the Cox model, we 

estimate the influence of covariates on the hazard rate of an individual, 

which in our study will be a plant. In an informal way, the hazard rate at age 

t can be thought of as the rate at which plants exit, given that they have 

survived up to age t (e.g., Greene, 2000, pp. 937-950). In the Cox model, the 

hazard rate is specified as a function of the age of a plant and some plant 

characteristics. Let ( )βθ ,, Xt  be the hazard rate for a plant of age t  with k 

different characteristics that are summarized in matrix X . β  is a vector of 

parameters. The Cox specification now results in: 

 
(1) ( ) ( ) ( XtXt 'exp,, 0 )βθβθ =  
 



( )t0θ  is an unspecified function that represents the baseline hazard, 

capturing the direct impact of plant age on plant survival. In our application, 

this is an attractive feature. Previous research has clearly shown that age is 

an important factor in determining the survival rate of plants. However, 

although we would like to know the effect of plant age on our agglomeration 

parameters, we are not interested in the relation between age and survival 

per se. Moreover, as this relation may not be a simple linear one, as shown 

in Falck (2007), a parameterization of this crucial variable might induce 

serious model misspecification. Instead, the coefficients in the Cox model are 

obtained from maximum partial likelihood estimation, which only uses 

information on the order in which plants exit, removing the importance of 

the exact time scale. A second advantage of the Cox model is that parameter 

estimates can be expressed in the intuitively convenient form of hazard 

ratios. For instance, a hazard ratio of 2 indicates that by increasing the 

corresponding variable by 1, the associated plants are being shut down at 

twice the rate compared to the baseline situation. 

 

An important prerequisite for using the Cox model is that the effect of 

covariates is the same for plants of all ages. This is obviously violated by our 

prediction that the effect of Jacobs’ externalities diminishes as plants grow 

older. In fact, one might say that the violation of the proportional hazards 

assumption lies at the heart of our research questions. To solve this issue, 

we use a method outlined in Hosmer and Royston (2002). This method uses 

the Aalen linear hazard model (Aalen, 1989; henceforth, simply Aalen model) 

as a guide on how to incorporate age-dependent effects in a Cox model. 

 

The hazard function for an Aalen model with k covariates is quite different 

from the Cox model. It is not multiplicative but additive, and it is specified as 

follows: 

 
(2) ( )( ) ( ) ( ) ( ) kk xtxtttXth γγγγ +++= ...,, 110  
 
As in the Cox model, the coefficients 1γ  to kγ  link the change of the baseline 

hazard rate, 0γ , to a one unit change in the corresponding covariate. 

However, unlike the Cox model, the effects of the covariates now may be 



different for different ages of a plant. We can derive the cumulative hazard 

rate by integration:4
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The ’s are called cumulative regression coefficients. Instead of 

estimating the individual 

( )tpΓ

( )tpγ ’s, it is easier to calculate these cumulative 

regression coefficients (Hosmer and Lemeshow, 1999, pp. 338). The ’s 

should be regarded as empirical functions that describe the impact of the 

corresponding covariates. More specifically, the slope of these functions gives 

information about the influence of the covariate at a particular age (Aalen, 

1989). If, at age t, the slope is positive, the covariate raises the hazard rate 

and is therefore associated with a negative effect on plant survival. 

Analogously, negative slopes indicate a positive effect on plant survival, and 

horizontal slopes suggest that the covariate has no impact on the survival of 

a plant. 

pΓ

 

To get an impression of the age-dependence of the effect of the pth covariate, 

we plot  against plant age, t. In such a plot, a proportional hazard in the 

p

( )tpΓ

th variable should result in a straight line for all values of t. A violation of 

the proportional hazards assumption would lead to a plot with non-

linearities and a slope that changes with t. From an inspection of the plots, it 

is possible to derive the functional form of the age-dependence in the 

covariate under scrutiny. For the sake of simplicity, we propose piecewise 

linear functional forms. In other words, we allow the slope to change at 

certain break points, but between two breakpoints it remains constant. At 

the end of this procedure, we feed the information on the age-dependence 

back into the Cox model of equation (1), but now the coefficients take 

                                                 
4 In this notation we take  to be a vector of ones.  px



different values for different sets of t, as indicated by the argument t of the 

β’s: 5
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As the inspection of the Aalen graphs will only lead to a maximum of one 

change of slope per variable, we can express ( )tpβ  as: 
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l
pt  and  are sets of t that correspond to low and high values of h

pt ( )tpβ  
respectively. 
 

5: Data 
 
For the empirical investigations, we use data on Swedish manufacturing 

plants that were collected by Statistics Sweden.6 The dataset contains 

employment and industry information for 25,000 individual plants that were 

active somewhere between 1970 and 2004. From 1970 to 1989, the sample 

covers Swedish manufacturing plants with five employees or more. In 1990, 

the data collection regime changes to cover plants with more than five 

employees belonging to firms employing at least ten people. Plants with fewer 

than ten employees are thus only reported if they are part of a larger firm. In 

other words, from 1990 and onwards, the only plants below ten employees 

are corporate plants. In this article, we mainly focus on non-affiliated plants 

with at least ten employees, but we use the complete sample for robustness 

exercises. As we do not know the age of plants that entered before 1971, we 

                                                 
5 As we limit ourselves to step functions, the function of age enters multiplicatively in the term 

between the large brackets. This allows us to transform the regressor values and estimate a Cox model 

with time varying regressors. 
6 The data have been cleaned and checked, both manually and using tailor made algorithms. Detailed 

descriptions are available from the authors. 



only study the survival spells of the about 11,500 plants that entered in 

1971 or thereafter.7  

 

In order to measure the effect of agglomeration externalities, we have to 

define what we mean by the local environment of a plant. In terms of 

geography, we know in which of Sweden’s 277 municipalities a plant is 

located.8 However, Swedish municipalities vary enormously in size. In the 

vast and scarcely populated north, municipalities can cover many thousands 

of square kilometers, whereas in the much more densely populated south, 

municipalities are limited to a far smaller area, sometimes only small parts 

of metropolitan areas. Moreover, surely, a municipality that is located at a 

short distance from the centre of the capital city of Stockholm should 

experience some of the agglomeration externalities that are generated there. 

In fact, it is reasonable to assume that agglomeration effects attenuate 

gradually over distance. 

 

To cope with these issues, we base our agglomeration externality indicators 

on a number of geographical potentials. This works as follows. In Swedish 

municipalities, typically there is one clear “capital” agglomeration, 

surrounded by a couple of smaller population cores. We first determine the 

position of these “municipality capitals”. Next, we assume that all economic 

activity in a municipality takes place in its core. This reduces the geography 

of Sweden to 277 points. For each of these points, we calculate a number of 

quantities that are generalizations of the well-known population potential. 

For example, the employment potential of industry i in municipality m and 

year y is calculated as: 

 

                                                 
7 We were able to use a plant identification variable to follow plants over the course of their entire 

existence. From 1984 and onwards, the identification variable that had been used in the 1970s was 

gradually abandoned in favor of a new identification system. Using the years for which both the new 

and the old identifications numbers were available, we were able to create a consistent identification 

code for the vast majority of plants. Still, exit rates in 1983 and birth rates in 1984 were slightly higher 

than expected. We therefore also dropped the spells belonging to plants that entered in 1984 or exited 

in 1983. In the construction of the externality variables describing the local environment, we however 

picked up contributions from plants regardless of their entry year. 
8 We have merged a few municipalities in order to create consistent definitions over time. 
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Where:  

yE ,π :   the employment of plant π  in year y  

ymiP ,, :  the set of plants active in industry  and located in 

municipality  in year  

i

m y

M :  the set of municipalities in Sweden 

( )'mmdg : a function that expresses the attenuation over the distance over 

road between the capitals of  and '  in kilometers, .m m 'mmd 9

 
As all variables are measured at the plant’s birth, which we take to be the 

year that the plant enters our database, the subscript  is equal to the 

entry year of a plant. In the robustness analysis, however, we also 

investigate what happens if it is taken into consideration that covariates 

change over time. 

y

 

A main empirical challenge in this article is the measurement of relatedness 

between different industries. Most existing indicators are either ad hoc, like 

those that assume that two industries are related if they are close to each 

other in the Standard Industry Classification (SIC) system, or they are 

biased towards technology intensive industries, like patent based measures. 

We need a manufacturing wide measure that assesses the degree of 

relatedness in the production processes used in different industries. In this 

article we use the Revealed Relatedness (RR) index that was developed by 

Neffke and Svensson Henning (2008). In this methodology, the fact that one 

plant produces products belonging to two different industries is interpreted 

                                                 
9 We use the following expression for g: 
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This results in an attenuation that counts the contributions of municipalities at less than 10 kilometers 

fully. At longer distances, the distance decay is exponential with parameters such that the employment 

in a municipality at 100 kilometers contributes 1 percent to the overall employment potential of m . 



as an indication of relatedness of the production technologies employed in 

those industries. 

  

In essence, this RR index takes plant portfolios as an expression of the 

existence of production level economies of scope. The procedure consists of 

three steps. First, for each pair of industries, the number of co-occurrences 

(i.e., the number of plants that produce products from both industries at the 

same time) is counted. Next, this number is compared to a prediction of the 

number of co-occurrences based on some overall industry characteristics. 

This effectively corrects for the fact that some industries attract many co-

occurrences because they are very profitable or simply very large compared 

to other industries. Using a database on the product portfolios of a large 

sample of manufacturing plants, Neffke and Svensson Henning arrive at a 

matrix containing relatedness estimates for the vast majority of industry 

combinations.10,11 The maximum of the RR index is 1, which would indicate 

that the production processes used in the involved industries are virtually 

indistinguishable. In this study, we call two industries related if they have 

an RR index of at least 0.14, which corresponds to selecting the 3,000 

strongest links in the matrix.12 On the bases of this procedure, we can 

decide which industries are related to each other. This allows us to construct 

a new variant of both localization and Jacobs’ externalities.  

 

For the traditional localization externalities, we will use the term pure 

localization externalities. We proxy these pure localization externalities for a 

plant π  in industry i located in municipality m and founded in year y by the 

employment potential of the industry minus the plant’s own employment: 

 

(7)  y
pot

ymi EELOC ,,, ππ −=

                                                 
10 The RR index was available for almost all industry pairs, except for the ones that involved industries 

with very few plants. Plants in these industries have been ignored in this article. 
11 In principle, the RR matrix may change over time. However, to avoid fluctuations in the set of related 

industries over time, we use the average relatedness between industries in the period 1971-2002, which 

corresponds most closely to our sampling period. 
12 At this level, most industries are related to at least one other industry. As we leave out all plants for 

which no related industries exist, this prevents reducing our sample unnecessarily. The choice for 

exactly 3,000 links is therefore reasonable but, admittedly, ad hoc.  



 
Related localization externalities are defined in an analogous way, but they 

measure the employment potential in related industries: 

 

(8) ∑
∈

=
iRi

pot
ymiERLOC

'
,,'π . 

Here  represents the set of industries that are related to industry i 

according to our definitions above but excludes i itself.  

iR

 

To measure Jacobs’ externalities we need a variable that captures the 

number of different production processes that are used locally. As we cannot 

observe production processes, we count the number of industries with a 

significant local presence instead. An industry can be said to have a 

significant local presence if its number-of-plants potential exceeds a certain 

threshold, ξ . In the main text, we report on analyses where this threshold is 

set equal to five plants. The variable for traditional or pure Jacobs’ 

externalities is thus calculated as follows: 
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, I  is the set of all industries in Sweden, and 

 is the number-of-plants potential in industry i , municipality m , 

and year . Similarly, by only counting the number of related industries 

with a significant local presence, it is possible to construct an indicator for 

related Jacobs’ externalities: 

pot
ymiPLANT ,,
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Alternatively, the threshold, ξ , may be set in terms of an industry’s local 

employment potential. There are two reasons why we prefer a number-of-

plants based threshold. The first reason is that, in the nursery cities 

framework, diverse places are thought to have a large inter-industry 

knowledge spillover capacity of a location. According to Henderson (2003), 

each plant can be thought of as a specific experiment with the production 

technology in an industry. Therefore, the capacity of a local industry to 



generate knowledge spillovers may be better proxied by looking at the 

number of plants than the number of employees. By contrast, the 

localization externalities in the nursery cities model arise from a large local 

demand for intermediates specific to the particular production process used 

in the industry. Localization externalities depend, therefore, on the overall 

demand generated by a local industry, which will be most correlated with the 

industry’s total local employment. Secondly, a more technical reason to 

prefer a number-of-plants based value is that it reduces the correlation with 

the population potential. After all, to fill in the jobs in a municipality that 

has many industries with a high employment potential, the population 

potential must be high as well. Therefore, this variable will be less co-linear 

with our urbanization variable. Be this as it may, in our robustness 

analyses, we check whether our results also hold for indicators based on 

employment potentials.  

 

Finally, our variable to measure urbanization externalities is simply the 

population potential of the municipality of a plant: . ymPOPPOT ,

 

In terms of plant characteristics, we know from the literature that the 

employment of a plant contributes significantly to its survival. This effect is 

controlled for in all our analyses by the inclusion of the variable  

that is equal to the number of employees in the plant. In sum, our matrix 

PLANTSIZE

X  

in equation (1) contains the variables PLANTSIZE, LOC, RLOC, JAC, RJAC, 

and POPPOT that enter the analysis log transformed. 

 
 



6: Empirical results 
 

Descriptive statistics and specification details 

Tables 1 and 2 contain some general descriptive statistics for our datasets. 

As we presuppose that corporate plants behave differently from non-

corporate plants, we distinguish between them by use of an organization 

identification number. Plants that do not share their organization number 

with any other plant are called non-affiliated. All other plants are corporate 

plants.13 The set restricted to plants with at least ten employees contains 

2706 corporate and 8829 non-affiliated plants. 

 

 

The entire sample consists of about 14,700 observations (plants that entered 

after 1970). However, as explained above, we drop all plants smaller than 

ten employees to obtain a consistent sampling definition over time. This 

reduces the number of investigated plants to about 11,500. The plants that 

are lost in this operation seem to be randomly distributed across the 

country. The correlation between a dummy representing a size between five 

and nine employees and each of our agglomeration indicators is always 

lower than 5 percent. In what follows, we will focus on the results that were 

obtained when leaving out all plants under ten employees.14  

 

 

                                                 
13 The use of the organization number is not unproblematic. Firms may change organization numbers 

and use more than one organization number for administrative or legal reasons. The distinction 

between corporate and non-affiliated plants by use of organization IDs is, however, the best our data 

allow.  
14 Note that the plants below the employment threshold of ten have been used in the construction of 

the agglomeration variables. Leaving such plants out would increase the measurement error in these 

variables. As there is no substantial correlation between the size of a plant and its local environment, 

we do not believe this procedure leads to spurious results. This belief is confirmed by regressions with 

agglomeration variables that only use information from plants of at least ten employees. Outcomes are 

very similar, but standard errors are somewhat larger. 



The cross-correlations between the covariates are shown in Table 2. Given 

the sample size, in principle we have no reason to be overly concerned about 

multicollinearity effects. Moreover, if multicollinearity is an issue and our 

regression analyses run into numerical problems, small changes in our 

estimation equation should have large effects on coefficients. Such problems 

should therefore be easily detected when we experiment with different 

specifications of our externality variables in our robustness checks.  

 

Interpretation of the regression tables 

In all regressions below, we control for differences in hazard rates across 

industries by adding 3-digit industry dummies. Furthermore, all variables 

have been log transformed. This implies that the coefficients should be 

interpreted as “hazard elasticities”: a δ % increase in the pth variable raises 

the exit rate by ( )pδβexp . The regression tables report untransformed 

coefficients with their robust15 standard errors in brackets. This means that 

a negative coefficient is associated with a positive effect on survival. In the 

text, we often discuss findings in terms of hazard ratios. These express the 

increase (or decrease) in the rate with which plants exit that is associated 

with a given change in the covariate value. 

 

Outcomes 

Table 3 summarizes the results of the Cox regressions where it is assumed 

that the influence of agglomeration externalities is constant across the entire 

lifetime of a plant. Column (1) uses the observations on both corporate and 

non-affiliated plants. We start with the traditional set of agglomeration 

externalities and our control variable for plant size.  

 

The effect of plant employment (PLANTSIZE) is strong and has the expected 

negative sign. The doubling of the initial employment of a plant results in a 

                                                 
15 We control for clustering of residuals on plant ID. Controlling for clustering on municipality or 

industry yields very similar standard errors. 



reduction of the hazard ratio by 14.5 percent.16 A large population (POPPOT) 

increases the risk for a plant to exit, with a hazard ratio of about 1.25 for a 

doubling of the population. Localization externalities have a small positive, 

yet not significant effect on survival. By contrast, Jacobs’ externalities are 

significant. Doubling the number of significant local industries (JAC) is 

associated with a hazard ratio of about 0.86. Jacobs’ externalities therefore 

raise a plant’s survival probability.  

 

In column (2), we add the related localization and related Jacobs’ indicators. 

A large local concentration of related industries (RLOC) turns out to 

significantly contribute to a plant’s survival probability, whereas pure 

localization externalities (LOC) still do not have any impact. A mirror image 

is found for diversity effects: while pure Jacobs’ effects are significant and 

beneficial for survival, a large local variety of related industries (RJAC) does 

not matter.  

 

A problem may arise due to the fact that RJAC and JAC are related to each 

other by construction. Where RJAC counts the number of significant related 

industries in a city, JAC counts the overall number of significant industries 

in the city. Moreover, the variables RJAC and RLOC are also possibly 

interacting. After all, if our RJAC variable indicates that there are a large 

number of industries active in the city, the sum total of employment in these 

industries, RLOC, will also be large. We therefore ran some experiments with 

different covariate specifications to investigate the coefficient of RJAC.  

 

First, we replace JAC with a variable that counts the number of unrelated 

significant local industries (say, UJAC). In this specification, the industry 

counts of UJAC and RJAC are carried out over mutually exclusive sets: the 

set of related industries and the set of unrelated industries. This eliminates 

the problem that JAC and RJAC are correlated by design. The result of this 

is that the coefficient of RJAC indeed changes. Its point estimate drops 

below zero, indicating that related diversity has a positive effect on survival. 
                                                 
16 In fact, the influence of ln(PLANTSIZE) is strongly non-linear, with a decreasing effect for higher 

values of PLANTSIZE. However, using a non-linear specification does not affect any of the other 

coefficients. Therefore, we proceed using the simpler linear specification. In later regressions, this non-

linearity is manifest in the different coefficients we get for plants of different sizes. 



However, this effect is not significant. Next, we rerun the analysis without 

RLOC, allowing the RJAC variable to pick up all effects of the presence of 

related industries. Even now, however, the effect of RJAC remains 

insignificant. We thus conclude that RJAC does not influence survival in any 

significant way. We therefore return to our initial specification but drop the 

related Jacobs’ externalities indicator, RJAC.  

 

Next we split our sample to check whether there are any differences between 

corporate and non-affiliated plants. Column (3) is based on the sample of 

corporate plants, and column (4) covers the sample of non-affiliated plants. 

The results are indeed strikingly different. The impact of pure Jacobs’ 

externalities we found in column (2) can be wholly attributed to the non-

affiliated sample. By contrast, related localization externalities are strongest 

in the corporate sample with a point estimate that is almost four times as 

large as the one in the sample of non-affiliated plants. The negative effects of 

a large local population are again less pronounced in the corporate plants. 

 

Overall, these outcomes suggest that corporate plants indeed interact in 

different ways with the local environment compared to non-affiliated plants. 

However, contrary to our expectations, it is not simply the case that 

corporate plants are isolated from their surroundings. Rather, they seem to 

have a smaller capacity to exploit the inter-industry knowledge spillovers 

associated with Jacobs’ externalities. Because, in the context of the nursery 

cities model, we are especially interested in the dynamics of Jacobs’ 

externalities, we will leave out all corporate plants in the analyses from this 

point onward. 

 

In the lower part of Table 3, we see that there is, in fact, a problem with the 

analyses we ran thus far. The reported chi-squared test statistics indicate 

that the assumption of proportional hazard rates is violated. This may be 

due to non-constant effects of the industry dummies. Table 4 shows the 

results of a proportional hazard test with covariate specific test statistics 

when industry dummies are excluded. The hypothesis of proportional 



hazards is still rejected.17 The test statistics indicate that the main problem 

is caused by pure Jacobs’ externalities.  

 

 

To investigate this issue further, Figures 1 to 5 graph the cumulative 

regression coefficient for each variable in an Aalen model that contains the 

same covariates as before.18 To rehearse the interpretation of the graphs: 

each graph shows how the year-on-year compound effect of a covariate on 

the hazard rate (y-axis) varies with the age of the plants (x-axis). The slope of 

the graph indicates the instantaneous effect of the covariate on hazard rates 

at a particular age, so departures from a straight line indicate changes in the 

effects of the covariate. Each graph contains a solid line representing point 

estimates and two dotted lines corresponding to a 95 percent confidence 

interval. A practical matter is that, for higher ages, the number of plants 

that run the risk to exit becomes very low. As a consequence, at high ages, 

Aalen coefficients are based on only a small number of observations, and the 

graphs become very volatile. For this reason, we do not attach much value to 

the shape of the graphs after an age of 25 years. 

 

 
                                                 
17 In fact, although these variables exert significant effects, they do not seem to confound other 

variables substantially. Point estimates of significant coefficients shift only marginally (less than 25 

percent) if industry dummies are omitted. Furthermore, the effect of pure localization externalities 

turns significant in columns (1) and (4). 
18 As the Aalen model estimates a separate coefficient for each age for all of the covariates, 

identification is based on the plants that are still at risk of exiting at a certain age. As soon as there is 

too little variation in one of the covariates, the Aalen model stops producing estimates. Due to the 

small number of plants in some of our 3-digit industries, the required variation in the corresponding 

industry dummy is already lost at the age of 22. As we are only interested in the changes in the 

coefficients of our main covariates, we drop the industry dummies in the Aalen models. However, if we 

include industry dummies, the graphs are very similar to the ones we depict here. 



Starting with the ln(PLANTSIZE) variable, we find a downward sloping line 

up to the age of 19 years. This suggests that, over this period, the size of the 

plant has a positive effect on a plant’s survival rate. After 19 years, the line 

is more or less horizontal, indicating that for mature plants the initial size is 

no longer relevant. Similarly, we can find changes in slopes for ln(LOC), 

ln(JAC), and ln(POPPOT). ln(RLOC) does not seem to undergo any significant 

changes in slope. On the basis of this visual inspection of the Aalen graphs, 

we decide to allow the coefficients to change at the following ages:  

 

ln(PLANTSIZE): 19 years 

ln(LOC):  16 years 

ln(RLOC):  no changes 

ln(JAC):  15 years 

ln(POPPOT):  20 years 

 

Table 5 shows the outcomes of a Cox regression with this age-dependence 

structure specified. Column (1) of Table 5 is a repetition of column (4) in 

Table 3 but with the variable RJAC omitted. The same regression, though 

now with slopes that are allowed to change at the plant ages specified above, 

is reported on in column (2). In this specification, the proportional hazards 

assumption is still violated. However, this can now be wholly attributed to 

non-proportionalities in the industry dummies, which are not of immediate 

interest here.19  

 

In line with the Aalen graphs, we find that some of the slopes change 

substantially with age. The initial employment (PLANTSIZE) only contributes 

significantly to the survival of young plants. Mature plants do not seem to 

benefit from higher initial employment levels, but a Wald test comparing the 

coefficients of young and mature plants shows that the difference in slope is 

only significant at an 8 percent level. The population potential (POPPOT) has 

a strong and significant negative effect on the survival of young plants and 

no significant effect in mature plants. The difference in slopes, however, is 

not significant. If we turn to localization externalities, we find that pure 

                                                 
19 Outcomes without industry dummies are very similar to the ones shown here. In these estimations, 

the proportional hazards assumption is never violated at the 10 percent level. 



localization externalities are not significant at any age. Related localization 

externalities are modeled as age invariant and turn out to have the usual 

positive and significant effect on survival rates, with a point estimate that is 

very close to the baseline estimates of column (1). The most interesting 

finding is, however, that Jacobs’ externalities (JAC) improve survival chances 

only in the early years of a plant’s existence. At higher ages, the point 

estimate is positive (indicating increased failure rates) but insignificant. A 

Wald test on equality of slopes shows this change of slopes is significant at 

any conventional level. 

 

A possible explanation for the change of coefficients is that this is an artifact 

of our decision to measure the size of covariates at the time of birth. If the 

local environment changes over time, these initial conditions may be less 

informative for the agglomeration externalities a plant experiences as it 

grows older. This would result in an artificial weakening of the observed 

externality effects at higher plant ages. To investigate this possibility, we 

rerun our analyses with covariates that change over time. 

 

The general picture remains the same. There are no significant localization 

externalities, but there are strong related localization externalities. Pure 

Jacobs’ externalities contribute positively in the early years of a plant and 

are insignificant later on. Again, urbanization effects are only significant and 

negative in the early years and turn insignificant thereafter.20 The main 

difference with our previous findings is that the positive influence of plant 

employment on the survival rates of plants is now strongly increasing. This 

is not surprising, as the current plant size should carry great weight in the 

decision to close a plant. A minor difference is that point estimates of related 

localization externalities drop slightly, and they are insignificant if we take 

all plants into consideration. However, when we analyze subsamples of small 

and of medium sized plants below, the effect of RLOC turns significant 

again. 

 

In their model, Duranton and Puga suggest that young firms are involved in 

exploration activities, whereas mature firms focus on mass-production. 

                                                 
20 A minor difference is that this drop is significant now. 



Because plants that were set up for mass-production can be expected to be 

larger than prototype plants, we may find that the coefficients of externalities 

indicators are different for plants of different sizes. To test this, we divide the 

sample into three parts, small plants (below 15 employees), medium-sized 

plants (15-24 employees), and large plants (over 24 employees).21

 

Columns (3) to (5) show the outcomes of regressions based on these sub-

samples without age-dependent coefficients. Taking the standard errors into 

account, only the effect of PLANTSIZE differs significantly between plants of 

different sizes. The differences in the other coefficients can solely be 

regarded as indicative. However, pure localization externalities seem to rise 

with an increasing size of the plants, and in our large plants sample they are 

even significant for the first time in our analyses. The diseconomies 

associated with large cities (POPPOT) seem to be more important in large 

and medium plants than in small plants. This is not entirely unexpected, as 

large plants need to rent bigger spaces, and the higher rents in big cities 

should affect them more strongly. 

 

Columns (6) through (8) contain the results of the analyses with age-

dependent coefficients. Parameter estimates get less precise as a 

consequence of the smaller number of observations after dividing our sample 

into subsamples. The most striking finding is that pure Jacobs’ externalities 

are significant only for young plants and not for mature plants across all 

subsamples, especially in the subsamples of medium sized and large 

plants.22 This suggests that plants of any size benefit from Jacobs’ 

externalities in their early years only. Another interesting outcome is that 

pure localization externalities have a strong positive effect on the survival of 

large plants at a high age. This suggests that, after several years, large 

plants start extracting important benefits from being located close to other 

plants in their industry.  

 

                                                 
21 As the vast majority of our plants are very small, for a sufficiently large sample to remain, we cannot 

investigate the behavior of very large plants with any reasonable precision. 
22 If we had included the (undersampled) plants with a starting employment between 5 and 9 

employees, this result would also hold for the subsample of small plants. 



Robustness 

To conduct the analyses above, we had to take a number of ad hoc decisions. 

Below we assess the sensitivity of our outcomes to these decisions by 

introducing small variations in the estimation specification. In particular, we 

alternate between specifications where localization externalities are 

measured in terms of number-of-plants potentials and those where they are 

measured in terms of employment based indicators. Next, we introduce six 

alternative lower limits for the definition of what constitutes a “significant 

presence” of an industry when calculating JAC and RJAC.23 We also 

investigate the influence of omitting industry dummies. Finally, we rerun all 

regressions on the full sample, including plants under 10 employees. This 

results in 48 different specifications for each regression analysis we have 

discussed so far. Tables 6 and 7 summarize the outcomes of this exercise. 

The upper rows in Table 6 and in the upper part of Table 7 show the 

percentage of analyses that yield the same sign as the corresponding 

columns in Table 3 and 5. Directly below each of these rows, in italics, we 

report the percentage of times the outcome was also significant at the 5 

percent level. For example, in the rows belonging to RLOC and column (3) of 

Table 6, we can see that 95.8 percent of all 48 different robustness 

specifications yield the same negative sign we find in Table 3, and 85.4 

percent of all 48 specifications yield both a negative sign and were significant 

at least at the 5 percent level. The bottom part of Table 7 gives the 

percentage of times that the Wald test for changes of slopes was significant 

at the 5 percent level. 

 

 

To a very large degree, the signs and significance of the results of the 

alternative specifications match the ones we presented in the main text. In 

Table 6, the only important departures from our main results are found in 

coefficients that are not significant in Table 3. For example, the point 

estimates of the RJAC estimates show quite some variation in their signs, 

                                                 
23 These are 1, 5, or 10 when we look at the local number-of-plants potential, and 50, 100, or 250 for the 

local employment potential. 



but they are also hardly ever significant. Turning to Table 7, we find again 

primarily corroborations of the reported findings. Signs for the overwhelming 

majority are the same as in Table 5. As before, the main differences between 

specifications are found when variables are not significant. In the bottom 

part of Table 7, moreover, we see that our important findings concerning the 

changes in slopes are very robust as well. For variables that significantly 

changed slopes in Table 5 (as indicated by low p-values for the Wald 

statistic), we also find that other specifications indicate a rejection of equal 

slopes at the 5% level. High p-values, which would suggest that there is no 

indication that slopes change, usually result in zero percent of such 

rejections. Overall, we can conclude that the main results we reported above 

are quite robust.  

 

Discussion 

Overall, we find a strong and robust impact of local agglomeration variables 

on the survival rates of plants. In terms of the traditional urbanization, 

localization, and Jacobs’ externalities, we find that only Jacobs’ externalities 

increase survival probabilities. By contrast, a large local population leads to 

a higher failure rate of plants. This is consistent with recent theoretical work 

by Melitz and Ottaviano (2008) about the connection between market size 

and fierceness of competition. The authors show that an increase in market 

size results in lower profit margins. As large cities represent large local 

plants, urbanization externalities would increase the competition between 

local plants and raise their exit rates.24 Another potential explanation is that 

the higher rents in large cities constitute an important congestion effect. 

This interpretation is supported by the fact that the negative effects of 

urbanization externalities are particularly strong for medium and large 

plants. 

 

A puzzling finding is that localization externalities do not provide any 

benefits, except for the most mature and largest plants. One may speculate 

that old plants benefit from localization effects because they have had the 

time and the clout to structure a local cluster of firms to their own 

advantage. However, due to the small number of observations in this 
                                                 
24 We thank professor Duranton for pointing this out. 



category, this may also be a statistical artifact. The more general result that 

localization externalities are not important for most plants contrasts with a 

main finding by Dumais et al. (2002), which states that lower exit rates 

reinforce the concentration of industries in a limited number of regions. 

However, our pure localization externalities are more narrowly defined than 

the concentrations of broad 3-digit industry classes used by Dumais and his 

co-authors. In fact, if we look at the combined effect of pure and related 

localization externalities, we find this indeed strongly reduces the hazard 

rate of local plants. In general, however, it is the local activity in related 

industries, not in the same industry, that is responsible for the lion’s share 

of these benefits. A plausible explanation for this finding is that plants in 

related industries can give access to ideas that are new for a plant but can 

be easily adapted to use in their own industry. 

 

Interestingly, the effects of agglomeration externalities are very different for 

corporate than for non-affiliated plants. Most strikingly, corporate plants do 

not benefit at all from Jacobs’ externalities, but they do benefit from related 

localization externalities and substantially more than their non-affiliated 

counterparts. Intuitively, corporate plants can substitute external linkages 

by internal linkages and therefore draw less on the local environment. This 

would explain the absence of Jacobs’ externalities, but the strong effect of 

related localization externalities suggests that this is not the whole story. 

The difference between corporate and non-affiliated plants may, therefore, 

constitute an interesting point of departure for future research. 

 

In light of the nursery cities model, the most important finding undoubtedly 

is that only young plants benefit from pure Jacobs’ externalities. If young 

plants engage more in exploration activities than old plants, this can be seen 

as supporting evidence for the model. However, this age-dependence of 

Jacobs’ externalities is present in plants of all different size classes. This 

suggests that the role of Duranton and Puga’s nursery cities is not limited to 

small exploratory plants but extends to larger plants as well. Economic 

diversity may not only support explorative activity but also help overcome all 

kinds of teething problems encountered by any newly founded plant. 

 
 



7: Conclusion 
 
We set out to investigate (1) how agglomeration externalities impact the 

survival of plants, (2) how the presence of related industries affects the 

survival of a plant, and (3) how the nature of these impacts changes with the 

evolving maturity of a plant.  

Our finding in answer to the first question depends on the type of the firm. 

More specifically, corporate plants and non-affiliated plants experience 

different agglomeration benefits. We focused our analyses on the non-

affiliated plants, which constitute by far the largest group in our sample. If 

we look only at traditional categories of agglomeration externalities, we find 

that pure Jacobs’ externalities increase survival rates substantially, pure 

localization externalities have no significant influence, and urbanization 

externalities lead to higher failure rates. 

  

In an investigation of the changes of the influence of agglomeration 

externalities over time, we find that the assumption of the nursery cities 

model that young plants benefit from local diversity is empirically justified. 

The benefits of Jacobs’ externalities indeed drop as plants grow older. 

However, contrary to expectations that explorative activities in small plants 

should benefit most from the inter-industry spillovers associated with 

Jacobs’ externalities, if anything, these externalities vary even more strongly 

with plant age for medium sized and large plants than for small plants. The 

“nursery” role of diversified cities is apparently not limited to the prototype 

development stage. In the other agglomeration externalities, such changes of 

slope are not as apparent. 

 

Next, we extended the analysis by looking at diversity and concentration in 

related industries. The local diversity of related industries does not yield any 

significant benefits. However, the influence of a concentration of related 

industries, which we labeled related localization externalities, contributes 

greatly to the survival of local plants. Accordingly, the most important 

sources of knowledge for a plant are plants that are engaged in activities 

that are not precisely the same as their own activities but still are related to 

them. Such plants are a source of ideas that are novel but still close enough 

to existing practices to be relevant.  



 

Taking into consideration relatedness linkages severely complicates the 

picture of a local economy, as industries get intertwined in an intricate way. 

However, it also gives rise to a deeper understanding of how plants interact 

at the regional level. For example, whereas the traditionally much more 

investigated pure localization effects seem to lead to higher survival rates 

only in a small subset of plants that are both large and mature, related 

localization externalities show a persistent positive effect on survival chances 

across all different types of plants. In fact, the consistency with which these 

industries generate externalities suggests that they constitute one of the 

prime assets of a city. 

  

This finding indicates that, in order to better understand regional 

economies, we need to probe deeper into the links that exist between 

industries. This article has focused on technological linkages. However, non-

technological local client-supplier interaction may also contribute to a 

region’s success. Comparing and combining the role of both types of 

relatedness may be a fruitful area of research. In this article, we have also 

pooled all industries together to draw inferences. Industry specific 

idiosyncrasies were supposed to be captured completely by industry fixed 

effects. However, the maturity of an industry has often been argued to 

influence the benefits that firms can derive from agglomeration externalities 

(e.g., Glaeser et al., 1992; Audretsch and Feldman, 1996; Neffke et al., 

2008). Therefore, another interesting question is whether there is an 

additional effect of the overall maturity of an industry that has not yet been 

captured by the age structure of its plants. 
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Tables and Figures 

 
 
Table 1: Descriptive statistics of covariates 
  Obs Mean Std. dev. Min Max 
CORP 11535 0.2346 0.4238 0.0000 1.0000 
ln(PLANTSIZE) 11535 3.0375 0.8438 2.3026 8.9335 
ln(LOC) 11501 4.4984 3.4890 -33.9642 9.9399 
ln(RLOC) 11535 7.3476 2.2644 -55.3776 10.8369 
ln(JAC) 11535 1.9989 1.0840 0.0000 4.0431 
ln(RJAC) 11535 0.9562 0.8681 0.0000 3.2189 
ln(POPPOT) 11535 11.4641 1.2356 7.6566 13.8122 
Variables are as defined in section 5.4. CORP is a dummy variable that takes value 1 for 
corporate plants and 0 for non-affiliated plants. 
 



Table 2: Cross-correlations between covariates 
  ln(PLANTSIZE) ln(LOC) ln(RLOC) ln(JAC) ln(RJAC) ln(POPPOT) 
ln(PLANTSIZE) 1.0000      
ln(LOC) 0.1004 1.0000     
ln(RLOC) 0.0602 0.4367 1.0000    
ln(JAC) 0.0381 0.4123 0.5087 1.0000   
ln(RJAC) 0.0405 0.3950 0.6543 0.7130 1.0000  
ln(POPPOT) 0.0596 0.4011 0.5111 0.8959 0.6409 1.0000 
Variables are as defined in section 5. 



Table 3: Cox regressions of plant survival rates assuming age-invariant 
effects 
  (1) (2) (3) (4) 

  all all CORP 
NON-

AFFILIATED 
ln(PLANTSIZE) -0.157*** -0.157*** -0.251*** -0.177*** 
  (0.015) (0.015) (0.025) (0.024) 
      
ln(LOC) -0.006 -0.003 0.016 -0.008 
  (0.004) (0.004) (0.009) (0.005) 
      
ln(JAC) -0.151*** -0.143*** -0.021 -0.198*** 
  (0.025) (0.029) (0.063) (0.033) 
      
ln(POPPOT) 0.222*** 0.236*** 0.173** 0.250*** 
  (0.023) (0.023) (0.053) (0.026) 
      
ln(RLOC)  -0.035*** -0.088*** -0.023** 
   (0.007) (0.018) (0.008) 
      
ln(RJAC)  0.017 0.004 0.055 
   (0.026) (0.053) (0.030) 
      
Industry dummies 
 

yes 
 

yes 
 

yes 
 

yes 
 

      
Model statistics     
df PH stat 31 33 32 33 
PH stat 38.8 40.3 52.4 47.4 
Nobs 11501 11501 2698 8803 
Log-likelihood -57434.7 -57424.3 -11285.6 -42426 
Clustered (on plant identification numbers) standard errors in parentheses, * p<0.05, 
**p<0.01, *** p<0.001. Variables are as defined in section 5. PH statistic is chi-
squared distributed under the null-hypothesis of proportional hazards. All estimations 
include 3-digit industry dummies. 
 



Table 4: Test of Proportional Hazards assumption in age-invariant 
model 
  rho chi2 df Prob>chi2

ln(PLANTSIZE) 0.0050 0.14 1 0.7115 
ln(LOC) -0.0010 0.00 1 0.9466 
ln(RLOC) -0.0036 0.06 1 0.8126 
ln(JAC) 0.0267 3.48 1 0.0623 
ln(POPPOT) -0.0051 0.13 1 0.7187 
Global Test  10.95 5 0.0523 
PH statistic is chi-squared distributed under the null-hypothesis of proportional hazards. 
Variables are as defined in section 5. Model has been estimated without industry dummies 



Table 5: Cox regressions with age-varying coefficients.
  (1) (2) (3) (4) (5) (6) (7) (8) 

 all 
all 

age-var. small medium large 
small 

age-var. 
medium
age-var. 

large 
age-var.

ln(PLANTSIZE) -0.177***  -0.632*** 0.070 -0.098*    
 (0.024)  (0.158) (0.171) (0.048)    
         

ln(LOC) -0.008  -0.007 -0.006 -0.018*    
 (0.005)  (0.006) (0.009) (0.009)    
          

ln(RLOC) -0.021** -0.022** -0.0191 -0.033*** -0.014 -0.019 -0.033*** -0.015 
 (0.008) (0.008) (0.013) (0.009) (0.018) (0.013) (0.008) (0.018) 
          

ln(JAC) -0.167***  -0.143*** -0.233*** -0.151*    
 (0.028)  (0.039) (0.054) (0.064)    
          

ln(POPPOT) 0.249***  0.198*** 0.327*** 0.294***    
 (0.026)  (0.035) (0.049) (0.061)    
Age varying variables 
ln(PLANTSIZE)  -0.185***    -0.600*** 0.052 -0.099* 
                early  (0.024)    (0.160) (0.175) (0.050) 
          

ln(PLANTSIZE)   -0.006    -1.699 0.441 -0.050 
                late  (0.099)    (1.007) (0.987) (0.183) 
          

ln(LOC) early  -0.007    -0.007 -0.005 -0.012 
  (0.005)    (0.007) (0.009) (0.010) 
          

ln(LOC) late  -0.024    -0.008 -0.013 -0.086***
  (0.017)    (0.027) (0.027) (0.020) 
          

ln(JAC) early  -0.185***    -0.150*** -0.256*** -0.193** 
  (0.028)    (0.039) (0.055) (0.066) 
          

ln(JAC) late  0.055    -0.030 0.029 0.162 
  (0.064)    (0.099) (0.119) (0.123) 
          

ln(POPPOT)   0.253***    0.199*** 0.336*** 0.303***
            early  (0.026)    (0.035) (0.050) (0.062) 
          

ln(POPPOT)  0.170    0.262 0.051 0.224 
            late  (0.088)    (0.137) (0.170) (0.157) 
          

industry 
dummies yes yes yes yes yes yes yes Yes 
model statistics         
Chi2 stat. 47.6 (32) 42.6 (36) 27.5 (31) 26.9 (32) 23.4 (32) 27.4 (35) 26.3 (36) 18.1 (36)
# plants model 8803 8803 4686 2333 1784 4686 2333 1784 
log likelihood -42427.4 -42418.2 -20719.7 -9903.9 -6695.1 -20717.5 -9900.6 -6689.1 
Wald tests for change of slope: p-values 
ln(PLANTSIZE)  0.080    0.283 0.701 0.796 
ln(LOC)  0.298    0.987 0.747 0.001 
ln(JAC)  0.000    0.211 0.012 0.002 
ln(POPPOT)  0.339    0.639 0.088 0.596 
Clustered (on plant identification numbers) standard errors in parentheses, p<0.05, **p<0.01,  
*** p<0.001. Variables are as defined in section 5. PH statistic is chi-squared distributed 
under the null-hypothesis of proportional hazards. All estimations include 3-digit industry 
dummies. Chi2 stat. contains the test statistic for the proportional hazards assumption with 
d.o.f. in parentheses. 



Table 6: Robustness of results in Table 3
  (1) (2) (3) (4) 
  ALL ALL CORP NON-AFF. 
ln(PLANTSIZE) 100.0% 100.0% 100.0% 100.0% 
  100.0% 100.0% 100.0% 100.0% 
ln(LOC) 100.0% 93.8% 100.0% 100.0% 
  75.0% 4.2% 37.5% 68.8% 
ln(RLOC)  100.0% 95.8% 100.0% 
   95.8% 85.4% 79.2% 
ln(JAC) 91.7% 83.3% 35.4% 85.4% 
  75.0% 60.4% 0.0% 29.2% 
ln(RJAC)  29.2% 18.8% 50.0% 
   6.3% 10.4% 10.4% 
ln(POPPOT) 100.0% 100.0% 100.0% 100.0% 
  100.0% 100.0% 100.0% 100.0% 
The table contains the percentage of times the same sign is obtained as in Table 3. The 
second number (in italics) contains the percentage of times when both the sign is the same as 
in Table 3 and the outcome is also significant. 



Table 7: Robustness of results in Table 5 
  (1) (2) (3) (4) (5) (6) (7) (8) 

  ALL 
TV 
ALL SMALL MEDIUM LARGE 

TV 
SMALL 

TV 
MEDIUM

TV 
LARGE

ln(PLANTSIZE) 100.0%  100.0% 100.0% 100.0%    
  100.0%  100.0% 0.0% 66.7%    
ln(LOC) 100.0%  100.0% 100.0% 100.0%    
  75.0%  45.8% 0.0% 33.3%    
ln(RLOC) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
  93.8% 93.8% 81.3% 91.7% 0.0% 81.3% 91.7% 0.0% 
ln(JAC) 83.3%  83.3% 75.0% 83.3%    
  27.1%  66.7% 50.0% 25.0%    
ln(POPPOT) 100.0%  100.0% 100.0% 100.0%    
  100.0%  95.8% 100.0% 100.0%    
ln(PLANTSIZE)  100.0%    100.0% 100.0% 100.0%
                 early  100.0%    100.0% 0.0% 37.5% 
ln(PLANTSIZE)  70.8%    100.0% 100.0% 100.0%
                 late  0.0%    0.0% 0.0% 0.0% 
ln(LOC) early  100.0%    100.0% 100.0% 100.0%
   66.7%    47.9% 0.0% 0.0% 
ln(LOC) late  100.0%    77.1% 100.0% 100.0%
   0.0%    0.0% 0.0% 95.8% 
ln(JAC) early  91.7%    89.6% 83.3% 100.0%
   75.0%    66.7% 58.3% 54.2% 
ln(JAC) late  95.8%    43.8% 100.0% 100.0%
   37.5%    0.0% 16.7% 25.0% 
ln(POPPOT) early  100.0%    100.0% 100.0% 100.0%
   100.0%    95.8% 100.0% 100.0%
ln(POPPOT) late  100.0%    100.0% 29.2% 100.0%
   18.8%    18.8% 0.0% 0.0% 

Wald tests for change of slope: p-values 
ln(PLANTSIZE)  87.5%    0.0% 0.0% 0.0% 
ln(LOC)  0.0%    0.0% 0.0% 87.5% 
ln(JAC)  100.0%    0.0% 83.3% 70.8% 
ln(POPPOT)  0.0%    0.0% 41.7% 0.0% 
The table contains the percentage of times the same sign is obtained as in Table 5. The 
second number (in italics) contains the percentage of times when both the sign is the same as 
in Table 5 and the outcome is also significant. The rows for the tests on equality of slopes 
count the percentage of times that slopes are significantly different at 5% confidence level. 



Figure 1: Aalen graph of cumulative regression coefficient for ln(PLANTSIZE) 
 

 
 



Figure 2: Aalen graph of cumulative regression coefficient for ln(LOC) 
 

 
 



Figure 3: Aalen graph of cumulative regression coefficient for ln(RLOC) 
 

 
 



Figure 4: Aalen graph of cumulative regression coefficient for ln(JAC) 
 
 

 
 



Figure 5: Aalen graph of cumulative regression coefficient for ln(POPPOT) 
 

 
 



Spatial Economics Research Centre (SERC)
London School of Economics
Houghton Street
London WC2A 2AE

Tel: 020 7852 3565
Fax: 020 7955 6848
Web: www.spatialeconomics.ac.uk

SERC is an independent research centre funded by the
Economic and Social Research Council (ESRC), Department
for Business, Enterprise and Regulatory Reform (BERR),
the Department for Communities and Local Government
(CLG) and the Welsh Assembly Government.

 


	The impact of aging and technological relatedness on agglomeration externalities: A survival analysis
	 1: Introduction
	2: Theoretical background
	3: Agglomeration externalities and survival analysis
	4: Estimation framework
	5: Data
	 6: Empirical results
	Descriptive statistics and specification details
	Interpretation of the regression tables
	Outcomes
	Robustness
	Discussion


	7: Conclusion
	 Literature
	 Tables and Figures




