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Abstract: 
 
This paper expands on, and provides a qualified defence of, Arthur Fine’s 
selective interactions solution to the measurement problem. Fine’s 
approach must be understood against the background of the insolubility 
proof of the quantum measurement. I first defend the proof as an 
appropriate formal representation of the quantum measurement problem. 
Then I clarify the nature of selective interactions, and more generally 
selections, and I go on to offer three arguments in their favour. First, 
selections provide the only known solution to the measurement problem 
that does not relinquish any of the premises of the insolubility proofs. 
Second, unlike some no-collapse interpretations of quantum mechanics 
selections suffer no difficulties with non-ideal measurements. Third, unlike 
most collapse-interpretations selections can be independently motivated 
by an appeal to quantum dispositions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
1. Introduction. 
 
In a series of papers in the late 1980’s Arthur Fine proposed a novel 
solution to the quantum measurement problem, in terms of selective 
interactions, or as I shall call them, selections. The reception to Fine’s 
approach has been nearly muted1. But in light of recent developments and 
difficulties with other proposals for solving the quantum measurement 
problem, it may be worth taking another look at Fine’s proposal. In this 
paper I expand on Fine’s original proposal by providing a general 
characterisation of selections that is independent of the measurement 
problem. I then defend selections as a valuable alternative to extant 
interpretations of quantum mechanics.  
 
My defence of Fine’s original proposal is thus a very qualified one. Unlike 
Fine I do not tie up the concept of a selection to a measurement 
interaction. I also reject Fine’s own philosophical defence of selections as 
measuring “aspects”. However, suitably re-interpreted as testing quantum 
dispositions, selections are coherent; and they have some definite 
advantages over other widely discussed options in the interpretation of 
quantum mechanics. 
 
Although I shall argue that selections are not conceptually linked to the 
measurement problem, it is easier to introduce them formally in the context 
of the so-called insolubility proof of the measurement problem. The first 
part of the paper is devoted to a discussion of this proof. In section 2 of the 
paper I introduce some preliminary distinctions and notation, and I 
describe the basic intuition underlying the measurement problem. In 
section 3 I describe the premises of the insolubility proof and, in section 4, 
I defend it as an appropriate formal representation of the problem of 
measurement. In the second part of the paper I turn to the selections 
approach. Thus, in the fifth section I introduce the concept of a quantum 
selection, and I argue that selections are fully compatible with a) the 
unitary dynamics of the Schrödinger equation, and b) the denial of the 
ignorance interpretation of mixtures. I show that selections can solve the 
measurement problem without relinquishing any of the premises that 
generate the insolubility proof. In section 6, I show that selections have at 
least one advantage over several no-collapse interpretations: unlike these 
interpretations, selections can naturally accommodate non-ideal 
                                                           
1 The exception is Stairs’ [1991], whose reaction like mine was mixed. But my criticisms of Fine’s 
approach are not Stairs’. On the contrary I believe that the characterization of selections provided in 
sections 2,4 and 5 dispenses with most of Stair’s criticisms. 



measurements. I then argue, in section 7, that the selections approach, 
unlike the collapse postulate, is not at all ad hoc, but can be motivated 
independently by an appeal to quantum dispositions. 
 
PART I: THE INSOLUBILITY OF THE MEASUREMENT PROBLEM 
 
2. The Problem of Quantum Measurement. 
 
2.1. The Ignorance Interpretation of Mixtures 
 
In the most general statistical operator formalism of quantum mechanics, 
systems can be in pure or in mixed states. A pure state is represented by 
an idempotent operator of trace one, that is, a projection operator P[φ], 
upon a particular subspace φ of the Hilbert space. By contrast a mixed 
state, or a mixture, is a sum of such projectors upon pure states vi with 
associated statistical weights ( pi, 0 ≤ pi ≤ 1, with Σ pi =1), represented by a 
non-idempotent operator of trace one: W = ∑ pn P[vi].  
 
A much-discussed interpretation of quantum mixtures is the ignorance 
interpretation. According to this interpretation, a quantum system is in a 
mixture W = ∑ pn P[vi] if and only if the system is really in one of the pure 
states P[vi], but we don’t know which one. The probabilities {pn} are 
subjective and merely reflect our degree of ignorance. This interpretation, 
however, is not available for improper mixtures (roughly: those mixtures 
representing a subsystem of a larger system that result from the 
application of the axiom of reduction to the state of the larger system – 
notably the states of individual particles in an entangled EPR state). 
 
The decisive argument against the ignorance interpretation of improper 
mixtures is as follows.2 Consider a composite system S1+2 in a pure state 
W1+2 = P[ψ], where ψ = Σi,j cij vi ⊗ wj, and where, as in previous sections, vi, 
wj are the eigenstates of A, B with corresponding eigenvalues ai, bj. The 
reduced states W1, W2 can be derived from the standard identifications (*, 
in appendix 1). We obtain: W1 = Σi cii cii* vi vi*, and W2 = Σj cjj cjj* wj wj*. W1, 
W2 are improper mixtures, found by derivation from the composite state 
W1+2. Let us now assume that subsystem S1 (S2) is really in one of the 
states vi (wj) with probabilities cii2 (cjj2). The state of the combined 
system can then be reconstructed, in the manner described in Appendix 1. 
We find that W1+2 = Σi cii cii* vi vi* ⊗ W2 (or W1 ⊗ Σi cjj cjj* wj wj*, or if both 
W1 and W2 are given the ignorance interpretation then: W1+2 = Σi cii cii* vi vi* 
⊗ Σi cjj cjj* wj wj*). Thus, on the assumption that W1 (or W2, or both) can be 
                                                           
2 An incomplete version of this argument appears in Hughes (1989, pp. 149-151) 



given the ignorance interpretation, we find that W1+2 is a mixture; but by 
hypothesis W1+2 is a pure state; therefore by reductio, neither W1 nor W2 
can be given the ignorance interpretation. 
 
The ignorance interpretation is nonetheless often thought to be required for 
a satisfactory solution of the problem of measurement. For it is often 
assumed that a solution to the problem of measurement requires that the 
final state of the measuring device be a pure state, namely an eigenstate 
of the pointer position observable. One aim of this paper is to show that 
this assumption is mistaken. 
 
2.2. The Eigenstate-Eigenvalue link 
 
We can express in this framework the orthodox interpretative principle of 
quantum mechanics, the eigenstate-eigenvalue link. The basic version of 
this principle is often formulated as follows:  
 

(basic e/e link): A system has a value o1 of a physical property O if 
and only if the system’s state v is an eigenvector of the self-adjoint 
operator O that represents this physical property (i.e. if Ov =o1v).  

 
Note that this is a necessary and sufficient condition. In other words, if the 
system is not in one of the eigenstates of an operator (if for instance the 
system is in a non-trivial superposition of eigenstates of O such as c1v1 + 
c2v2), then we are not entitled to say that the system has a value of the 
property represented by the operator in question. 
 
However, in this paper I will, following (Fine, 1987), formulate the 
eigenstate-eigenvalue link in a more developed version, as follows: 
 

(e/e link): A system has a value of a physical property if and only if 
the system’s state is a) an eigenvector of the operator O that 
represents this physical property, or b) a mixture W = ∑ pn Wn, 
where O takes a value with certainty (i.e. with probability one), in 
every Wn. 

 
The crucial addition of clause b) allows us to ascribe values to the 
observables of a system in a mixed state, without requiring that the mixture 
in question be ignorance interpretable. Hence, this formulation allows us to 
ascribe values to observables of systems even when the systems are not 
in eigenstates of the corresponding operators. There are a number of 
important reasons why the new formulation of the (e/e link) is to be 
preferred which I will discuss in due course. 



 
2.3. The Quantum Theory of Measurement 
 
In order to make a measurement we must let the quantum object interact 
with a measuring device. The quantum theory of measurement, as first 
formulated by Von Neumann (1932), ascribes a quantum state to the 
measuring device, and treats the interaction as a quantum interaction, i.e. 
one that obeys the Schrödinger equation.  
 
The theory further supposes that the observable of the system that we are 
interested in is represented by self-adjoint operator O, with eigenvectors 
{φn} and eigenvalues {λn}. The pointer position observable A is represented 
by the self-adjoint operator A, which has eigenvectors {γm} with 
eigenvalues {µm}. (And let us here further assume that n=m, without loss of 
generality.)  
 
Suppose then that we have an object initially in state Wo = ∑n pn P[νn], 
where each νn may be expressed as a linear combination of eigenstates of 
the observable O of the system that we are interested in (i.e. νn = Σ ci φi); 
and a measuring device in Wa = Σn wn P[γm]. In what follows I shall often 
refer to the observable represented by the operator I ⊗ A in the tensor 
product Hilbert space as the pointer position observable. The eigenvalues 
of this observable are therefore given by the set {µn}. As the interaction 
between the object system and the measuring device is governed by the 
Schrödinger equation, there must exist a unitary operator U that takes the 
initial state of the composite system (object system + measuring device) 
into its final state at the completion of the interaction, as follows: Wo ⊗ Wa  

  U (Wo ⊗ Wa ) U-1. (For further details of the interaction formalism, see 
Appendix 1). 
 
We can now state the basic intuition behind the problem of measurement. 
Take a system in an arbitrary superposition νn = Σ ci φi. Then, due to the 
linearity of the Schrödinger equation, at the conclusion of an ideal 
measurement interaction with a measurement apparatus in any pure state, 
the composite (system+device) will be in a superposition of eigenstates of 
the pointer position observable. And in accordance with even the most 
basic description of the eigenstate-eigenvalue link (the basic e/e link), the 
pointer position observable can not have a value in this state. But surely 
quantum measurements do have some values – i.e. they have some value 
or other. Hence the quantum theory of measurement fails to describe 
quantum measurements completely! 
 



 
3. The Insolubility Proof of the Quantum Measurement 
 
The insolubility proofs are attempts to formally describe the measurement 
problem, in order to display precisely the set of premises that come into 
contradiction. The proofs go back to Wigner (1964), and include Earman 
and Shimony (1968), Fine (1970), Brown (1985), and Stein (1996). 
 
3.1. Some Notation 
 
First let me introduce some notation, following Fine (1970). Let us denote 
by Prob (W, Q) the probability distribution defined by Probw (Q=qn), for all 
eigenvalues qn of Q. And let us denote Q-indistinguishible states W, W’ as 
W≡Q W’. Two states W, W’ are Q-indistinguishible if and only if Prob (W, Q) 
= Prob (W’, Q). 
 
We may now enunciate the following two conditions on measurement 
interactions. The insolubility proof (appendix 2) purports to show that these 
two conditions are inconsistent with the Schrödinger dynamics. 
 
3.2. The Transfer of Probability Condition (TPC)  
 
Prob (U(Wo ⊗ Wa)U-1, I ⊗A) = Prob (Wo , O) 
 
This condition expresses the requirement that the probability distribution 
over the possible outcomes of the relevant observable O of the object 
system should be reproduced as the probability distribution over possible 
outcomes of the pointer position observable in the final state of the 
composite object +  apparatus system. (TPC) entails the following minimal 
condition on measurements employed by Fine (1970) and Brown (1985): A 
unitary interaction on a (system + apparatus) composite is a Wa 
measurement if, provided that the initial apparatus state is Wa, any two 
initial states of the object system that are O-distinguishible are taken into 
corresponding final states of the composite that are (I ⊗A)- distinguishible. 
So we can use the pointer position of the measuring apparatus to tell apart 
two initial states of the object system that differ with respect to the relevant 
property.  
 
But is (TPC) really a necessary condition on measurements? It could be 
argued that an interaction that transfers only part of the probability 
distribution of the object observable to the pointer observable is 
nonetheless a measurement, albeit only an approximate one. For some 
information is thereby transferred. This worry about (TPC) seems to me 



deep and legitimate. However I will argue in section 4.3 that the 
measurement problem arises in the highly idealised conditions imposed by 
the formal quantum theory of measurement; and in the context of such 
idealisations (TPC) is justified.3 
 
3.3. The Occurrence of Outcomes Condition (OOC) 
 
U(Wo ⊗ Wa)U-1 = Σ cn Wn where ∀Wn ∃ µn: ProbWn (I ⊗ A = µn) = 1 
 
This condition is often taken to express the eigenstate-eigenvalue link-
inspired requirement that the final state of the composite be a mixture over 
eigenstates of the pointer position observable. But to be precise, it 
expresses the more general idea that the final state of the composite must 
be a mixture over states in each of which the pointer position observable 
takes one particular value or other with probability one.  
 
I can now provide the reasons for my formulation of the (e/e link) in the 
previous section. It is conventional wisdom that a solution to the 
measurement problem can always be provided if the eigenstate-
eigenvalue link is denied, in particular its necessary part.4  But now note 
that (OOC) follows from (e/e link), together with the fact that quantum 
measurements have outcomes (i.e. that they have one particular outcome 
or other). A stronger condition would follow from (basic e/e link). However 
(OOC) is strong enough for the insolubility proof: It is possible to escape it, 
and hence solve the measurement problem, merely by denying (e/e link), 
and thus (OOC). Hence the adoption of (e/e link) preserves conventional 
wisdom. An additional reason in favour of  (e/e link) is its already 
mentioned consistency with the standard understanding of quantum states. 
 
 
4. A Defence of the Insolubility Proof 
 
4.1. Stein’s critique 
 
In a recent paper, Howard Stein has provided an interesting critique of the 
insolubility proof. He begins by deriving a lemma in the theory of Hilbert 
spaces (appendix 3) that has as a direct application a version of the 
insolubility proof. This lemma, he argues, is true given the ignorance 
                                                           
3 It is in addition important to emphasise that i) that selections are not generally committed to (TPC), and ii) 
even those selections that obey (TPC) are able to account for a very large class of approximate non-ideal 
measurements. See the discussion in section 6. 
4 That is, at any rate, how modal interpretations solve the measurement problem. See, for illustration, the 
essays in (Dieks and Vermaas, 1998). 



interpretation of mixtures, but does not necessarily follow without that 
interpretation. And, he continues, the ignorance interpretation of mixtures 
equivocates on the nature of quantum states, as expressed by means of 
the statistical operator formalism: A quantum mixed state so expressed 
should not be thought of as an ensemble of pure states, but as a set of 
probability distributions, each one defined over the eigenvalues of each 
observable of the system. Thus, Stein concludes, the insolubility proof 
cannot constitute an accurate representation of the measurement problem. 
 
Throughout this paper I will adopt Stein’s understanding of quantum states 
as defining probability distributions over the possible values of a system’s 
dynamic quantity. In fact, I will refer to it as the standard understanding of 
quantum states, as I believe it to be established in the literature. There are 
two reasons, however, why I want to resist Stein’s conclusion. The first is 
that the ignorance interpretation of mixtures is not strictly required for the 
formulation of the insolubility proof: the proof may be a valid representation 
of the measurement problem even if the ignorance interpretation is not 
appropriate. The second is that the type of idealisations that go into the 
formulation of the insolubility proof, which Stein’s critique may be taken to 
question implicitly, are also part and parcel of the quantum theory of 
measurement, within which the measurement problem arises. The 
insolubility proof captures as much of the measurement problem as there 
is to be captured. 
 
4.2. Ignorance is not required 
 
First, note, as a preliminary observation, that the insolubility proof can be 
stated in a manner that respects the standard understanding of quantum 
states. For the statements of conditions (OOC) and (TPC) given in the 
previous section are prima facie perfectly consistent with that 
understanding of statistical operators. 
 
I claim that the ignorance interpretation is not required for the insolubility 
proof. (OOC) is a strictly weaker condition on the final state of the 
composite than the ignorance interpretation. For suppose that the final 
state of the composite is degenerate; then it possesses no unique 
representation in terms of pure states. (OOC) is happy to accept this 
plurality of representations. By contrast, the ignorance interpretation insists 
that only one among these representations is physically meaningful 
(namely the one which contains the pure state that the system really is in, 
with the corresponding epistemic probability). But that means that the 
ignorance interpretation does not and can not be used to motivate (OOC). 
Rather, as I already emphasised, (OOC) is motivated by the (e/e link), 



together with the requirement that quantum measurements have outcomes 
and the standard understanding of quantum states. Thus rejecting the 
ignorance interpretation can not by itself suffice to explain why (OOC) may 
fail. And it is (OOC), not the ignorance interpretation, that figures as a 
premise in the insolubility proof.  
 
There are however two important caveats to the above argument. The first 
one: it is anyway the case that when the final state of the composite is non-
degenerate, (OOC) coincides with the ignorance interpretation. In that 
particular case there is only one decomposition of the system’s mixed 
state, and only for a particular (pure) eigenstate of the observable will the 
probability of any particular eigenvalue be one. Perhaps this coincidence 
underlies Stein’s thought that the ignorance interpretation is somehow 
involved. But it does not seem to provide an argument in favour of Stein’s 
conclusion, because (OOC) in general can not be justified merely by an 
appeal to the ignorance interpretation. 
 
The second caveat to my argument against Stein’s conclusion can not be 
dismissed so lightly. It concerns the use in Fine and Brown’s insolubility 
proof of a condition called Real Unitary Evolution (Brown, 1986). According 
to this condition the unitary evolution of a mixed state is given by the 
unitary evolution of its component pure states. Suppose that Wo, Wa are 
the statistical operators representing the initial states of the object system 
and measuring device respectively. And suppose that Wo = Σn cn P [φn], 
and Wa = Σm dm P [γm]. Brown states the principle of real unitary evolution 
as follows: 
 
Real Unitary Evolution (RUE) 
 
Ût (Wo ⊗ Wa) Ût

-1 = Ût (Σn cn P [φn] ⊗ Σm dm P [γm]) Ût
-1 = 

 
= Σn,m cn dm Ût (P [φn] ⊗P [γm]) Ût

-1 = Σn,m wn,m P [Ût (φn ⊗ γm)], 
 
where wn,m = cn x dm for all values of n,m. 
 
The status of (RUE) has been a matter of some debate, but I think 
everyone would agree that it is motivated by the ignorance interpretation. 
In introducing it explicitly, Brown wrote: “It should be clear, moreover, that 
the principle is an extremely natural extension of the ignorance 
interpretation of mixtures, which as a rule is postulated for instantaneous 
ensembles, to the case of ensembles of systems whose states are 
evolving over time according to the Schrödinger equation” (Brown, p 860). 
To be more precise (RUE) is equivalent to the dynamical extension of the 



ignorance interpretation. For if, as stated by the ignorance interpretation, a 
mixed state represents our subjective degree of ignorance of the (pure) 
state of a system, then any dynamical evolution of the system that fails to 
provide us with additional information about the initial state of the system 
must result in a final state that reflects our initial uncertainty. In other 
words, the pure states evolve unitarily and independently with coefficients 
cn, dn that are invariant under this evolution – and this is indeed what 
(RUE) asserts. Conversely (RUE) entails this dynamical extension of the 
ignorance interpretation, for it imposes exactly the same condition on the 
time evolution of states that would be expected if the ignorance 
interpretation were true. 
 
However, it does not seem to have been noticed that the insolubility proof 
does not employ as strong a condition as (RUE), but rather: 
 
Quasi-Real Unitary Evolution (QRUE) 
 
Ût (Wo ⊗ Wa) Ût

-1 = Ût (Σn cn P [φn] ⊗ Σm dm P [γm]) Ût
-1 = 

 
= Σn,m wnm Ût (P [φn] ⊗P [γm]) Ût

-1 = Σn,m wnm P [Ût (φn ⊗ γm)] 
 
where 1 ≤ wnm ≤ 0 and Σ wnm =1; but wnm need not equal cn dm. 
 
This condition is strong enough to generate the inconsistency between 
(OOC), (TPC) and the Schrödinger equation.5 Crucially it is not equivalent 
to the dynamic extension of the ignorance interpretation. The latter entails 
(RUE), which is a special case of (QRUE); but does not entail (QRUE) in 
general. Conversely, the dynamic extension of the ignorance interpretation 
is entailed by (RUE) but not by (QRUE). Unitary interactions are possible 
for which (QRUE) holds even when the ignorance interpretation (and RUE) 
is plainly false. For notice that there are possible choices of n,m for which 
(QRUE) is true while the ignorance interpretation and (RUE) are plainly 
false. Thus (QRUE) is neither a natural extension of the ignorance 
interpretation, nor is it motivated by it. What motivates (QRUE) instead is 
its natural compatibility with the usual rule for the evolution of the spectral 
decomposition of mixed states, namely: 

                                                           
5 I have made the use of (QRUE) explicit in my presentation of the insolubility proof in appendix 2. Brown 
(1986) made (RUE) explicit, but it is (QRUE) which is implicitly employed in Fine (1970). Stein (1996) 
invokes the commutativity between (I ⊗ A) and Û (Wo ⊗ Wa) Û-1 which he seems to think is logically 
equivalent to the ignorance interpretation of Û (Wo ⊗ Wa) Û-1. Stein’s condition is indeed necessary and 
sufficient for (QRUE), and his proof is the closest to the one in appendix 2. But Stein’s condition is not 
sufficient, only necessary, for (RUE); and hence, in my view, it is not logically equivalent to the ignorance 
interpretation. 



 
Ût (W0) Ût

-1 = Ût (Σn wn(0) Pn) Ût
-1 = Σ wn(t) Ût Pn Ût

-1 = Wt 
 
Hence, I conclude that the ignorance interpretation of mixtures is neither 
an explicit premise of the insolubility proof, nor is it logically entailed by any 
of its premises ((TPC), (OOC), (QRUE), or the Schrödinger dynamics). 
 
4.3. The Problem of Quantum Measurement is an Idealisation 
 
There is a further question about how appropriate the assumptions made 
by the insolubility proof are for measurement interactions in general. I have 
already expressed doubts that (TPC) is an appropriate necessary condition 
for realistic models of actual measurement interactions. I now want to 
argue that in the context of the usual tensor-product Hilbert space 
formalism these assumptions are reasonable. As outside this context the 
question of a measurement problem does not even arise, the 
measurement problem is reasonably captured by the insolubility proof. 
 
I will take here an idealisation to be a description of a system that, for the 
sake of presentation or ease of calculation, involves some assumptions 
that are known to be false. Thus, what I need to show is i) that any false 
assumptions that may be involved in (TPC), (OOC), (QRUE) or the use of 
the Schrödinger equation, also affect the quantum theory of measurement; 
and ii) that without those assumptions the theoretically based intuition of a 
measurement problem disappears. 
 
(TCP) is idealised on at least two counts. First, it assumes that whether 
interactions are measurements is an all-or-nothing affair that does not 
depend on the actual initial state of the system to be measured at a 
particular time, but on all the possible states that the object may have had 
in accordance with the theory. This is hardly satisfied by any real 
measurement we know. For instance, in setting up a localisation 
measurement of the position of an electron in the laboratory, we do not 
assume that the device should be able to discern a position outside the 
laboratory walls, even if it is theoretically possible that the particle’s 
position be infinitely far away from us. All real measurement devices are 
built in accordance to similar assumptions about the physically possible, as 
opposed to merely theoretically possible, states of the object system, on 
account of the particular conditions at hand. So real measurement devices 
do not strictly speaking fulfil (TPC).6 However, this idealisation has been a 
part of the quantum theory of measurement from its inception; and it would 

                                                           
6 To my knowledge this concern was first voiced by Stein (1973). 



be very difficult to see how the measurement problem would arise at all in 
its absence. For if we do not expect quantum theory to completely describe 
the physically possible initial states of a system, we should hardly expect it 
to describe completely the physically possible outcomes of a 
measurement; and that expectation is at the heart of the measurement 
problem. 
 
The second count of idealisation against (TPC) is that it appears to require 
measurements to be ideal in the technical sense of correlating one-to-one 
the initial states of the object system with states of the composite at the 
end of the interaction. However, many real measurements are not ideal in 
this sense. Most measurement apparatuses make mistakes, and no matter 
how much we may try to fine-tune our interaction Hamiltonian, we are likely 
in reality to depart from perfect correlation.7 In section 6 I argue that, 
contrary to this appearance, (TPC) is not committed to all measurements 
being ideal. On the contrary it is possible to capture a large variety of 
approximate non-ideal measurements by means of (TPC). In fact (TPC) 
turns out to be as good a theoretical guide as any for distinguishing those 
interactions for which a measurement problem can arise from those 
interactions that it makes no sense even to describe as measurements. 
 
Let us now turn to (OOC). This is also idealised, in that it assumes that the 
measuring device can only “point” to the eigenvalue of the pointer position 
observable that has probability one in the final state that results at the end 
of the interaction. The same idealisation is built into the quantum theory of 
measurement in the form of the (e/e link), which was anticipated by Von 
Neumann’s original statement of (basic e/e link). It can of course be 
relaxed, but only at the expense of introducing new rules for value-
ascription into the quantum theory of measurement. In addition it is clear 
that without (OOC) there is no measurement problem; for (OOC) captures 
precisely the intuition that is at the heart of the problem, namely that any 
quantum measurement ought to yield an outcome, that is, some outcome 
or other. Without that intuition, and without the (e/e link) to back it up, there 
is no problem of measurement. 
 
What about (QRUE)? Is it also idealised, and in what respect? (QRUE) 
assumes that a mixture of pure states of the composite (system + 
apparatus) evolves into a mixture of the unitarily evolved pure states of the 

                                                           
7 The claim that real measurements are (almost) never ideal in this sense has become common lore in recent 
philosophy of quantum mechanics, following Albert (1992) and Albert and Loewer (1993). There are, 
however, surprisingly few sound arguments offered in favour of this common lore; but it is certainly the 
case that at least some real measurements (destructive measurements) are not ideal in this technical sense. 
See Suárez (1996) and Del Seta and Suárez (1999) for a discussion. 



composite. In order to find out whether and how this assumption is 
idealised we need to ask the following question: Under what real-life 
conditions do we expect (QRUE) to fail? We do, without doubt, in cases of 
environmentally induced decoherence. For in such cases, the environment 
induces a non-unitary evolution on the states of the measuring device that 
is inconsistent with (QRUE). This phenomenon is well known to be 
ubiquitous in practice; so (QRUE) is indeed strongly idealised. More 
precisely (QRUE) assumes that the “composite” system formed by the 
quantum objects and the measuring device is isolated from the rest of the 
universe, which is almost always false in the real world. Yet, notice that the 
same idealisation is also present in the quantum theory of measurement, 
which takes the interaction between the object and the apparatus to be 
unitary, at least prior to the occurrence of an outcome. This assumption 
has in the past been contested, and is often rightly repudiated in some 
realistic accounts of measurement, for instance those offered by 
decoherence and quantum state diffusion approaches. And although it isn’t 
agreed by everyone that the measurement problem is solved completely in 
these approaches, it is generally agreed that describing the further 
interaction of the measuring device with its environment takes us closer to 
a solution of the problem.  
 
Finally, the Schrödinger equation is idealised because it assumes that all 
quantum systems, not only composite systems involving measuring 
devices, are closed systems. It assumes that the quantum Hamiltonian can 
transform pure states into pure states, or mixtures into mixtures, but never 
a pure state into a mixture or viceversa. But this again is a pre-requisite for 
a problem of measurement. For there would be no problem at all if we 
assumed, as for instance Von Neumann was forced to assume, that at 
some point in the measurement process a pure state quantum 
mechanically evolves into a mixture. 
 
I conclude that the idealising assumptions that pervade the premises of the 
insolubility proof are concomitant to the quantum theory of measurement 
itself. The insolubility proof does not trade in a description of the 
measurement process that is any more idealised, or any less realistic, than 
the one offered by the quantum theory of measurement. And it is precisely 
these idealising assumptions that account for our theoretically-driven 
intuition that there is something problematic about quantum 
measurements. Without them the insolubility proof would be empty; but so 
would the measurement problem itself. 
 
 
 



 
PART II: SELECTIONS AND DISPOSITIONS 
 
5. Selections. 
 
I have been arguing that the insolubility proof, in particular Stein’s version, 
succeeds in capturing the essence of the measurement problem. And in 
one particular respect Stein’s version succeeds admirably. His lemma 
brings out very explicitly the fact that the measurement problem would not 
arise if the initial states of the system were suitably restricted. For, as Stein 
writes, the lemma is valid “if for every nonzero u ∈ ν, the commutativity 
condition (...) holds”, where ν is a vector subspace of H, and thus includes 
all linear combinations of vectors already in ν. In particular if the 
superpositions of eigenstates of the object included in ν were discounted, 
the insolubility proof could not be formulated. The proof does not apply to a 
space of possible states that excludes arbitrary linear combinations of 
states already in the space, in other words a space of states that is not a 
vector subspace. This fact conspicuously points to an appropriate solution 
to the problem in terms of selections. The rest of this paper is devoted to a 
discussion of the selections approach. 
 
5.1. Selections. 
 
A selection is an interaction designed to test a particular disposition of a 
quantum system between the measuring device and that dispositional 
property of the system. Among the dispositional properties I include 
position, momentum, spin and angular momentum. In a selection, typically, 
the pointer position interacts only with the property of the system that is 
under test.8  There is an analogue of selections in everyday observation: 
For instance, we observe the colour of a table by interacting directly with 
those properties of the table that are responsible for its colour, and only 
those properties. Similarly, a selection can in principle test “selectively” for 
the position of a quantum object without in any way testing for its 
momentum, and so on. Quantum measurements, I claim, are selections; 
they are designed to test for a particular property of a quantum system. We 
seem perfectly able to measure the position of quantum systems in the 
laboratory without measuring their charge, or their momentum. 
 
However, the possibility of selections is not reflected in the formalism of 
the quantum theory of measurement, which insists in modelling any 

                                                           
8 I say “typically” because I want to leave open the possibility that a measurement may test a particular 
property of a system without interacting directly with that property of that system. 



interaction process by feeding in the full initial quantum state of the object 
system. On the standard understanding a quantum state is an array of 
probability distributions over the eigenvalues of all the observables of the 
system. Thus according to the quantum theory of measurement, any 
interaction whatsoever with a quantum object is, ipso facto, an interaction 
with all the properties of the object – and hence, on my definition, not a 
selection.  
 
Something must be added to the formalism to represent selections. We 
may begin by noting that the quantum state ψ defines a distinct probability 
distribution for each observable. Hence ψ is an economical representation 
of all the properties of the system. We may thus wonder if there is a more 
precise representation, for any quantum system, of each of its properties, 
individually taken. Suppose that there is a representation W(O) of precisely 
the property O of a system in state ψ. The least that we would expect W(O) 
to satisfy is the following consistency condition: W(O) must define exactly 
the same probability distribution over the eigenvalues of O as does ψ. 
 
It is indeed possible in general to find a more precise representation of 
each property of a quantum system in state ψ. Following Fine (1987), 
consider the following definition of equivalence of states relative to a 
particular observable: 
 
Q-equivalence: Two states W and W’ are Q-equivalent if and only if  Prob 
(W, Q) = Prob (W’, Q) 
 
That is, two states are equivalent with respect to an observable if and only 
if they define the same probability distribution over the observable’s 
eigenvalues. Thus if two states are Q-equivalent, they are statistically 
indistinguishible with respect to Q, and we call those states Q-
indistinguishible. Hence every observable Q effectively determines, for 
each state W, an equivalence class formed by all of W’s Q-indistinguishible 
states. We can define the equivalence class [W]Q as follows: 
 
Q-equivalence class: W ∈ [W]Q if and only if ∀ W’∈ [W]Q: W ≡Q W’. 
 
Now we see that our desideratum on any more precise representation 
W(O) of the property O of a system in state ψ amounts to the claim that 
W(O) be O-indistinguishible from ψ. 
 
Suppose that O is (a discrete and not maximally degenerate) observable of 
the system with spectral decomposition given by Σn λn Pn, where Pn = P[φn] 



= φn〉 〈φn. We can construct the standard representative W(O) of the 
equivalence class [W]O as follows: 
 

W(O) = Σn Tr (ψPn) Wn, where Wn = Pn / Tr (Pn). 
 
It is now possible to make the following claim: for a given system in a state 
ψ, and a given observable O of this system, if ψ belongs to the equivalence 
class [W]O, then W(O) represents precisely the property O of the system.9  
 
A selection (of observable O of a specific quantum system in state ψ) is 
then a quantum mechanical interaction of a measuring device with the 
specific property of the system represented by W(O). 
 
 
5.2. Selections Solve the Measurement Problem 
 
All proposed solutions to the measurement problem so far have tried to 
tinker formally with the final state of the composite, by replacing the 
superposition predicted by the Schrödinger equation with an appropriate 
mixture that will obey OCC. Collapse interpretations do this more or less 
explicitly, either by introducing an additional dynamics that will yield the 
appropriate mixture, or (as is the case, for instance, in quantum state 
diffusion) by replacing the Schrödinger dynamics altogether. No-collapse 
interpretations do this implicitly. Thus, Everett’s “relative state” is just the 
mixture that corresponds to a system in an entangled composite when the 
state of the rest of the universe is a particular eigenstate. The modal 
interpretation (in its Kochen-Healey-Dieks version) takes the final state of 
the composite yielded by the Schrodinger equation (the “dynamical state”) 
to be equivalent for the purposes of ascription of values to observables to 
a mixture (the “value state”). And Bohmian mechanics advices us to regard 
every superposition as essentially reducible to an ignorance interpretable 
mixture of eigenstates of position.10 
 
In a selection by contrast, the full quantum state of a system is to be 
replaced by a mixture. From the formal point of view of the quantum theory 
of measurement, this amounts to “tinkering” with the initial state. Fine11 
                                                           
9 In section 7 I ask the question: what kind of properties must these be to be so representable? There is no 
analogue of this type of representation in classical mechanics. In the classical case, W(O) is simply the 
value of a particular dynamical quantity of a system, as extracted from its state; and such extraction is a 
completely trivial operation. But as has been emphasised before, quantum states are not to be interpreted á 
la classical mechanics, as catalogues of actually possessed properties and their values. 
10 For a description of these, and other interpretations of quantum mechanics, see for instance, Albert 
(1992) or Dickson (1998). 
11 Fine (1987), (1993). 



employed this fact to solve the measurement problem: If the initial state of 
the object system is an appropriate mixture over the eigenstates of the 
object observable, the final state of the composite resulting from 
Schrödinger evolution satisfies (TPC) and (OOC).12  
 
To see this, let us return to the discussion of measurement interactions 
with the definitions of Q-equivalence and the standard representative in 
mind. A quantum object in state Wo interacts with an apparatus initially in 
state Wa. We are interested in the property O of the object, represented by 
the Hermitian operator O with eigenvalues λi and eigenvectors φi. The 
pointer position observable of the apparatus is represented by the 
hermitian operator I⊗A, with eigenvalues µni and eigenvectors βni 
(corresponding to the eigenvalues µn and eigenvectors γm of A). The 
insolubility proof of the measurement problem shows that no unitary 
interaction can be set up where the probability distribution laid out by Wo 
over the λi – eigenvalues of O is matched by that defined by the final state 
of the composite over the µin eigenstates of the pointer position 
observable, as long as we allow that the initial state of the system may be 
any arbitrary state, including crucially superpositions of the φi. 
 
Fine’s proposal is then to formally restrict the class of initial states of the 
object, in accordance with the possible selections. If the initial state of the 
object is Wo, and if we are interested in the observable O, Fine suggests 
that we focus only on the standard representative of the equivalence class 
[Wo]O, namely Wo(O), and that we ignore (1) all O-equivalence classes 
formed by attending to states other than Wo, and (2) all X-equivalence 
classes of Wo for observables of the object system other than O.  
 
We are then able to model the interaction of a system in a state Wo by a 
measuring device in state Wa as a selection of the property of the system 
represented by Wo(O), as follows: 
 
Wo(O) ⊗ Wa → Ût (Wo(O) ⊗ Wa) Ût

-1 =  
 
= Ût (Σn Tr (Wo Pn) Wn ⊗ Σm wm P[γm]) Ût

-1 = 
 
= Σnm ηnm (t) Ût (Wn ⊗ P[γm]) Ût

-1 = 
 
= Σnm ηnm (t) Ût (P[φn] ⊗ P[γm]) Ût

-1, 
                                                           
12 This presentation may suggest that the existence of selections is a logical consequence of the insolubility 
proof because they are the only interpretation of quantum mechanics that can get around the proof without 
relinquishing any of the proof’s premises. In section 5.4. I argue against this suggestion. 



 
where  ηnm (0) = Σnm Tr (WoPn) wm. 
 
It is now easy to see that as long as this selection satisfies (QRUE), the 
pointer position observable will take values in the final state of the 
composite, in accordance with (e/e link). For simplicity consider the ideal, 
non-disturbing, (QRUE)-obeying interaction Ut:  
 
Ût (φn ⊗ γm) Ût

-1 = φn ⊗ γn.  
 
This interaction has the following effect: 
 
Ût (Pn ⊗ P[γm]) Ût

-1 = Ût (P[φn ⊗ γm]) Ût
-1 = P[Ut (φn ⊗ γm) Ut] = P[φn ⊗ γn] = P[βnn],  

 
where βnn is an eigenvector of (I ⊗ A) with eigenvalue µnn.  
 
The final state of the composite resulting from this selection is then: 
 
Wo+a = Σnm ηnm (t) P[βnn]        (F) 
 
This is a mixture over pure states: projectors associated with the 
eigenspaces of (I ⊗ A), and according to (e/e link) the pointer position 
observable takes a value in this state. 
 
 
5.3. Selections and Ignorance 
 
Does the ignorance interpretation play a role in the solution to the 
measurement problem offered by selections? Perhaps contrary to 
appearances, it plays no role. 
 
I begin by drawing a distinction between selective interactions and 
selections. Fine defined selective interactions as unitary interactions with 
the standard representative of a system that obeyed (TPC) and (QRUE). 
He was then able to show that such selective interactions solved the 
measurement problem, for he was able to show that the final state of the 
composite resulting from any such selection obeys (OOC). I have defined 
selections, more generally, to be unitary interactions designed to test a 
particular property of a system, as represented by a standard 
representative. There is no reason in principle why a selection should obey 
(TPC), or (QRUE). And thus there is no reason in principle why a selection 
should yield a final state of the composite that satisfies (OOC). In my view 



any unitary interaction whatever between a pointer position observable of a 
measuring device and the standard representative mixed state of a system 
may represent a selection. 
 
The ignorance interpretation is not involved in selections generally. But 
even in the case of selective interactions, which obey (QRUE), there is no 
entitlement to the ignorance interpretation. For recall from section 4 that 
(QRUE) is not sufficient for the ignorance interpretation. 
 
This result has two important consequences. First, it shows why it is 
mistaken to think of selections in general either as an artifact of the 
insolubility proof, or as a logical consequence of this proof. Selections turn 
out to be a more general class of interactions, which include selective 
interactions as a subset. And although the insolubility proof shows that 
selections can solve the measurement problem, and thus provides one 
reason in favour of selections, nothing like a logical demonstration of 
selections from the premises of the insolubility proof is forthcoming. There 
is no reason in principle why all selections should obey (QRUE). Even if 
some selections (selective interactions) obey (QRUE) and get around the 
insolubility proof, this is hardly the basis for a deduction of this particular 
set of selections because, as argued in section 4, (QRUE) is itself highly 
idealised and empirically weakly motivated. Additional empirical reasons in 
favour of the existence of selections must be sought, and that is what I do 
in sections 6 and 7 of this paper. 
 
The second consequence requires some preliminary discussion. One may 
be tempted by the following argument to claim that selections make the 
mistake of ascribing the wrong state to quantum systems that enter into 
interaction with measuring devices.13 Consider the final state of a selective 
interaction, (F): 
 
Wo+a = Σnm ηnm(t) P[βnn].  
 
The probabilities ηnm are the time-evolved of the product of the 
probabilities of the eigenvalues λn in the initial state Wo(O) of the object 
system and the probabilities of µm in the initial state Wa of the apparatus. 
Now, suppose that in a selection we were required to give the ignorance 
interpretation to the final state of the composite, and to understand the 
probabilities ηnm as subjective probabilities describing our incomplete 
knowledge of the “true” state. And suppose in addition that ηnm is constant 
                                                           
13 I thank some of the participants at the VI Foundations of Physics and BSPS conferences in Nottingham, 
in  1998, for emphasising this worry. 



in time, i.e. ηnm(t) = ηnm (0) = Σnm Tr (WoPn) wm. This would commit us to 
understanding Tr (WoPn), and wm as subjective probabilities; it follows that 
we are required to give the ignorance interpretation to the initial mixed 
state of the apparatus Wa, and to the standard representative of the object 
system Wo(O). 
 
It is possible to do so in spite of the argument against the ignorance 
interpretation of improper mixtures in section 2 of this paper because 
neither Wa nor Wo is in general improper. But giving the ignorance 
interpretation to Wo (O) raises a puzzle. Recall that Wo(O) is a mixture over 
Wn states. In giving an ignorance interpretation to it, we are claiming that 
the true state of the object system at the beginning of the interaction is 
really one of the states Wn with the prescribed probabilities. But the true 
initial state of the system is Wo! This may not even be a mixed state, and it 
will generally be very different to any of the Wn. Moreover although the 
mixture Wo(O) is, by construction, in Wo’s equivalence class, neither one 
among the pure states Wn that appear in the decomposition of Wo (O) is. 
 
The point can be made more poignantly by considering formally the simple 
case of a Schrödinger cat-like measurement. We are invited to consider a 
two-dimensional observable O with eigenstates φ1 and φ2 and 
corresponding eigenvalues λ1 and λ2 respectively. We are then asked to 
consider three O-distinguishible states, φ1, φ2 and φ3, where φ3 is the linear 
combination: a1φ1 + a2φ2. Given φ3 and the spectral decomposition of O = 
λ1 P[φ1] + λ2 P[φ2], we can construct the standard representative of φ3’s O-
equivalence class, namely the mixed state: Wo(O) = a12 P[φ1] + a22 
P[φ2]. The argument above entails that in order to solve the Schrödinger cat 
paradox by means of a selection, we need to give the ignorance 
interpretation to Wo(O). This amounts to the claim that the system really is 
in state φ1 or φ2, although we ignore which one exactly. And this contradicts 
our prior knowledge that the state of the system is φ3 instead. Surely we 
are not here being asked to entertain the long-discredited ignorance 
interpretation of superpositions! 
 
The argument is fallacious. It incorrectly assumes that the ignorance 
interpretation of the final state of the composite is required to solve the 
measurement problem; and that selections are in the business of providing 
this by advancing a subjective interpretation of the probabilities. But in light 
of the previous discussion, i) the measurement problem does not call for 
the ignorance interpretation of mixtures, ii) the concept of a selection in no 
way involves the ignorance interpretation; and iii) even those selections 
that obey (QRUE) and defeat the insolubility proof do not require the 



ignorance interpretation – in fact they may be inconsistent with it, for the 
probabalities ηnm may evolve in time. 
 
To suggest that quantum measurements are quantum selections is not to 
suggest that there are no systems in superpositions; nor is it to suggest 
that the actual initial state of a system that is just about to measured is the 
mixture Wo(O) instead of the superposition ψ. That would not agree with 
experience as it is always possible to run an interference experiment on 
the system which can only be modelled correctly by means of the 
superposition. The suggestion is simply that measuring devices interact 
with only one property of a system at a time. 
 
 
6. Non-Ideal Selections. 
 
An important kind of no-collapse interpretation is the so-called Kochen-
Healey-Dieks interpretation. A well-known objection to this interpretation is 
that it cannot account for non-ideal measurements.14 In this section I show 
that selections can account for non-ideal measurements naturally.  
 
6.1. No-collapse interpretations and non-ideal measurements. 
 
In their most elementary version these interpretations ascribe values to the 
O property of the object system and to the pointer position observable of 
the measuring device if and only if the final state of the composite is in a 
biorthonormal decomposition form: 
 
ψ〉 = Σi ci φi〉 ⊗ γi〉. 
 
However, note that this is a small subset of the set of all possible final 
states: 
 
ψ〉 = Σij cij φi〉 ⊗ γj〉, 
 
in which it is typically not possible to predict perfect correlations between 
the values of the pointer position observable and the object observable. 
Ideal interaction Hamiltonians yield final states in the biorthonormal 
decomposition form; but for the larger class of Hamiltonians that govern 
non-ideal interactions, the modal interpretation cannot ascribe values in 
the final state to the pointer position observable. 
 
                                                           
14 See Albert, 1993; Albert and Loewer 1990, 1993. 



6.2. Exact and Approximate Measurements 
 
I will here adopt the following terminology: An exact measurement may 
only result from an ideal interaction while an approximate measurement 
may result from a non-ideal one. Let us begin by characterising these two 
forms of interaction: 
 
Ideal Interaction: 
 
Σi ci φi ⊗ γo → Σi di φi ⊗ γi 
 
Non-ideal Interaction: 
 
Σi ci φi ⊗ γo → Σij dij φi ⊗ γj 
 
On the account of measurement adopted in this paper, an ideal interaction 
is a measurement of O by I⊗A only if it obeys (TPC): di = ci. We may then 
define an exact measurement as an ideal interaction that obeys (TPC) and 
correlates possible values of the relevant property of the object system 
with possible values of the pointer. We may also define the notions of ∈-
measurement and approximate measurement as follows: 
 
∈-measurement: A non-ideal interaction is an ∈-measurement if cij2 < ∈, 
if i≠j, where 0<∈< ½. 
 
Approximate measurement (Shimony, 1974): An ∈-measurement is an 
approximate measurement if cij2 ≈ 0, if i≠j. 
 
In general ∈-measurements are not proper measurements of the state of 
the object system. Most ∈-measurements are not (TPC)-obeying, and can 
not be used to reliably infer the state of the object system from the 
experimental outcome. Instead these measurements generally test for the 
probabilities of states of the object system given the measurement 
outcome, and may be used to reliably infer conditional probabilities of 
states on outcomes. 
 
Approximate measurements are a special kind of ∈-measurements which 
approximate ideal measurements, and are thus approximately (TPC)-
obeying. These are proper measurements of the states of the object, as 
they allow us to infer the states of the object system to a high 
approximation. 
 



6.3. Selections for Non-Ideal Interactions 
 
I claim that the selections approach accounts for precisely that subset of ∈-
measurements that are proper measurements of the initial state of the 
object system (as opposed to measurements of conditional probabilities) 
as well as all exact and approximate measurements. In other words, 
selections are not only able to account for non-ideal measurements in 
general; they also provide a useful wedge to classify very precisely which 
non-ideal interactions are actually measurements. 
 
In the previous section I already showed how any exact measurement may 
be modelled as an exact selection; here I show how selections may model 
i) ∈-measurements of the initial state of the object system that obey (TPC) 
and ii) approximate measurements. 
 
A non-ideal selection of a disposition O of a quantum system is a non-ideal 
interaction of the pointer position property of a measuring device with the 
O disposition of the system as represented by the standard representative 
Wo(O): 
 
Σi ci

2 P[φi] ⊗ P[γo] → Σi,jdij
2 P[φi ⊗ γj] 

 
Now it is easy to show that any non-ideal selection obeys (TPC) if and only 
if it obeys the following general condition: 
 
∀j Σi dij

2 = cj
2.  

 
But this general condition is also required for ∈-measurements to obey 
(TPC). We conclude that all ∈-measurements that obey (TPC) can be 
modelled as non-ideal selections that obey the general condition. 
 
As an illustration, a two dimensional selection that constitutes an ∈-
measurement is given by the following three expressions: 
 
1.  (c1

2 P[φ1] + c2
2 P[φ2]) ⊗ P[γ0] →  

 
d11

2 P[φ1 ⊗ γ1] + d12
2 P[φ1 ⊗ γ2] + d21

2 P[φ2 ⊗ γ1] + d22
2 P[φ2 ⊗ γ2]. 

 
2.  d11

2 + d21
2 = c1

2. 
 
3. d12

2 + d22
2 = c2

2. 
 



 
6.4. Approximate Selections 
 
Let us now turn to approximate measurements. These may be 
characterised as selections by means of the general condition: 
 
∀j Σi dij

2 ≈ cj
2.  

 
 
However, these selections do not strictly obey (TPC) so we may question 
whether they are measurements at all. We may address the worry by 
independently developing a fully-fledged account of approximate 
selections, as follows:15 
 
Approximate Selection 
 
An approximate selection of the O property of a system in a pure state φn is 
a selection of the O property of a system in the mixed state ρn that 
approximates φn, where ρn approximates φn if ρn = Σm wn

m P[φm], and wn
n

                                                          

 ≈ 
1. 
 
An approximate measurement of observable O = Σn cn φn on a system in 
the state Wo = Σn cn φn can be modelled as an approximate selection: 
Substitute Wo with the standard representative of its O-equivalence class, 
namely Wo(O) = Σn cn 2 P[φn]. We may substitute each P[φn] with the 
mixed state ρn which approximates it to yield: Σn cn

2 Σm wn
m P[φm]. We 

may now run an ideal selection of the O property of this state: 
 
Σn,m cn

2 wn
m P[φm] ⊗ P[γo] →  

Σn,m cn
2 wn

m P[U(φm ⊗ γo)] = 
Σn,m cn

2 wn
m P[φm ⊗ γm] . 

 
It is easy to see that Σn,m cn

2 wn
m P[U(φm ⊗ γm)] ≈ Σn cn

2 P[U(φn ⊗ γn)]. 
In words, the state that results from an approximate selection 
approximates the final state of the exact measurement given by an ideal, 
(TPC)-obeying selection. This shows that it is legitimate to model 
approximate measurements by means of approximate selections. 
 
 
 
 

 
15 The account that follows was developed in conversations with Arthur Fine. 



6.5. Implications for Ignorance. 
 
In the second part of this paper I have been arguing that selections do not 
in general need to obey (TPC) or (QRUE). And in section 4 I showed that 
(RUE) – and the ignorance interpretation – may fail even when (QRUE) 
holds. So selections are not just one but two steps away from the 
ignorance interpretation. And indeed it is easy to show that (RUE) fails in i) 
non-ideal selections that obey (TPC), such as proper ∈-measurements; 
and ii) non (TPC) obeying selections, such as approximate measurements. 
On the other hand it is also easy to show that the special kind of ideal 
selections that do obey (TPC) and (QRUE), such as exact measurements, 
automatically obey (RUE). The requirement that the probability distribution 
be matched is, in the case of exact measurements, enough to keep fixed 
the values of the probabilistic coefficients. This result strengthens the case 
for the dispensability of (RUE) in the insolubility proofs that I made in 
section 4 of the paper, for it shows that (TPC) and (QRUE) together 
already do some of the work that (RUE) has been thought to be necessary 
for.16 
 
 
7. Selective Interactions Test Quantum Dispositions. 
 
In the final section I turn to interpretational issues. How can we understand 
selections? And why are measurements selections? I first critically address 
the answer to these questions given by Fine himself, and then provide my 
own account in terms of dispositions. 
 
7.1. Equivalence Classes as Physical “Aspects”: A Critique 
 
Fine’s thought was that some interactions are “selective” in the sense that 
they respond only to a certain aspect of the system. For every property of 
a quantum system originally in a superposition, there is a corresponding 
mixed state that is probabilistically equivalent (for that property) to the 
superposition. For instance, a system in a superposition of E-eigenstates ψ 
= Σ ci vi is probabilistically indistinguishible, as regards E, from a system in 
the mixed state W = Σ  |ci| 2 P[vi]. An interaction is selective if it has been 
set up in order to find out about this particular E aspect of the system and 
no other. In modeling this selective interaction the mixed state may be 
used, for the superposition is not a precise enough representation of this 
and only this aspect of the system. Thus Fine writes: 
 
                                                           
16 A different argument for the dispensability of (RUE) is given by Del Seta (1998). 



“The basic proposal, then, is to regard the measurement of an observable 
E on a system in state ψ as a measurement interaction that selects the 
aspect of the system corresponding to the probability distribution for E that 
is determined by state ψ.” [Fine (1992), p. 126, my italics]. 
 
Although I agree with Fine’s contention that selections can solve the 
measurement problem, I disagree with Fine’s interpretation of selections 
as measurements of aspects of physical systems. (In section 7.2 I develop 
my own interpretation of selections as measuring dispositional properties 
of quantum systems.) Fine’s interpretation contains counterintuitive 
elements, and provides a weak motivation for the existence of selections. 
 
Fine’s suggestion is that we interpret quantum systems in superpositions 
(regardless of whether individual particles or entangled sets of particles) as 
made up of smaller subsystems. He writes: 
 
“My exploration starts out from the idea that some interactions are 
selective. They do not actually involve the whole system, only some 
physical subsystem. Thus the interaction formalism ought not be applied to 
the state of the whole system, only a representative of the subsystem 
engaged in the interaction.” [Fine (1987), page 502]. 
 
Fine is here reasoning as follows: a system in a mixture has no 
“subsystems”. Hence in interacting with it, a measurement device interacts 
with the whole system. But, as the system is in a mixture, some outcome 
will result. By contrast, a system (even if a single particle) in a 
superposition is made up of several “subsystems”. In an interference 
experiment, such as a two-slit experiment, the device interacts with the 
entire system, or with all the subsytems at once, and this explains why 
interference terms occur. In a measurement interaction, however, the 
measuring device will interact only with an individual subsystem. A 
“selective interaction” then takes place, and this explains why a precise 
outcome results with a certain probability. 
 
However, the suggestion that any system in a superposition is made up of 
several “subsystems” is deeply counterintuitive from an ontological point of 
view. For suppose that the system is a single particle. The claim that the 
particle is composed of further “subsystems” corresponding to each 
standard representative, is essentially nothing but the claim that the 
particle is composed of further (smaller?) particles, each of them in a 
particular quantum state. This brings about a bizarre ontology and leaves 
us lacking in any explanation for the curious fact that in an interference 



experiment all the subsystems are interacted with, but not in a 
measurement. 
 
Suppose on the other hand, that the initial superposition is a 
representation of the entangled state of two or more particles. For 
illustration, consider an EPR pair of particles (1 and 2) in a singlet state of 
spin “up” and spin “down” along the x direction: 
 
ψ = (1/√2) upx〉1 downx〉2 - (1/√2) downx〉1 upx〉2. 
 
The suggestion that this superposition represents a system made up of 
further subsystems is even more counterintuitive. For while there is now an 
unambiguous ontological prescription for individuating these subsystems, it 
disagrees with Fine’s prescription. Fine prescribes the standard 
representatives for each of the “subsystems”: 
 
W(x) =  ½ P[up, down](x) + ½ P[down, up](x), W(y) = ½ P[up, down](y) + ½ P[down, 

up](y), etc. 
 
But W(x), W(y) represent distinct properties of the composite system of 
particles 1 and 2, and cannot be interpreted as states of each of the 
particles, individually taken. 
 
Even if these problems could be solved, it is difficult to see how Fine’s 
prescription could possibly constitute a physical motivation for selections. 
There is no independent reason why interacting with a “subsystem” will 
yield an outcome while interacting with a whole system won’t. We certainly 
do not have an analogue of this in classical mechanics, or in any other 
physical theory that I know of. (In classical mechanics, for instance, we 
typically assume that a gravitational interaction with a massive object 
designed to measure its weight will result in an outcome even if the object 
is constituted by smaller particles. In electrodynamics, measurements of 
the charge of large conductors give outcomes, even if conductors are 
made up of smaller, equally charged, parts.) Fine’s use of the system-
subsystem distinction is sui generis, and specifically tailored for quantum 
mechanics; his proposal can provide neither physical understanding nor 
motivation for selections.  
 
I believe that these are definite objections against Fine’s interpretation of 
selections. The basic problem, in my view, is that Fine’s interpretation 
constitutes a return to an unacceptable understanding of a quantum state 
as describing a complete set of actually possessed properties of a 
quantum system. On this understanding, each standard representative 



must represent a complete set of actually possessed properties of 
something, which (mis)leads Fine into “subsystem” speech. A better 
alternative, consistent with the standard understanding of quantum states, 
is that there is only one system (which may well be a composite) with each 
standard representative representing a different dispositional property of 
that system. 
 
7.2. Dispositions. 
 
I defend the view that a selection is an interaction of the pointer position 
observable of a measurement device with a dispositional property of a 
quantum object as represented by the standard representative. 
 
On this view quantum entities do not have further constituent parts or 
“subsystems”, but they possess irreducibly dispositional properties. An 
electron, for instance, possesses a disposition to manifest a value of 
momentum when tested in the appropriate way, even if in the absence of 
such test it typically lacks a specific value of momentum (for its 
wavefunction will rarely be sufficiently peaked in momentum space). The 
possession of this dispositional property by the electron would be 
unconditional: that is, the electron possesses this property in the actual 
world, just like any ordinary object possesses any of its categorical 
properties. However, a disposition is only manifested in the context of an 
appropriate test; in the absence of such test, the property may never be 
manifested –throughout the lifetime of the particle. (Just as a glass 
possesses its fragility throughout its lifetime even though it may never 
manifest it.) Hence I am adopting a sufficiently robust sense of dispositions 
that takes them to be genuine properties actually possessed by real 
systems in the world.  
 
This view of quantum entities as endowed with irreducible dispositions, 
provides us with an extremely natural way to understand selections, and 
their solution to the measurement problem. A measurement is a (QRUE), 
(OOC), (TPC) obeying selection with one of a particle’s dispositional 
properties. In order to measure the momentum of an electron, we set up a 
selective interaction of the measuring device with the momentum 
disposition. In order to measure the position we need to set up a different 
selective interaction --one that is responsive to position, but not 
momentum. And so on. 
 
Notice that there is nothing particularly shocking or revolutionary in this 
procedure for measuring physical quantities. Measurements in classical 
mechanics are no different. Willis Lamb has a concrete model to measure 



the position of a classical particle (Lamb [3]). He doesn’t set up an 
interaction that correlates every single one of the particle’s dynamical 
variables to a dynamical variable of the apparatus. That would be 
unnecessarily cumbersome. He sets up instead an interaction that 
correlates the particle’s position to one of the dynamical variables of the 
measuring apparatus (momentum). The measuring process is no different 
in classical or quantum mechanics: but quantum properties (unlike 
classical properties, in the conventional wisdom) are irreducibly 
dispositional. The difference is not in how we measure things, but in the 
kinds of things that we measure. 
 
So I suggest to interpret selections as follows: Each disposition of a 
quantum particle in a superposition ψ gets represented by a mixed state 
that is probabilistically indistinguishable from the superposition, as far as 
the property in question is concerned. The complete state of the system is, 
on this account, implicit or explicitly given by the superposed state ψ 
together with the full and complete set of mixtures representing its 
dispositional properties. If we set up a measurement interaction designed 
to measure a dispositional property of a system, and no other property, we 
must take seriously the fact that only that property is being interacted with, 
and model the initial state appropriately. 
 
Otherwise there would be relevant physical facts about the interaction that 
we would not be representing. For the interaction Hamiltonian is the same 
whatever disposition of the particle we measure. If there are genuinely 
physical differences (and not for instance merely differences in the 
experimenter’s intentions) between different experimental set ups 
designed to measure different dispositions of a quantum system, then the 
formalism of the quantum measurement theory is incomplete, for it does 
not distinguish between such interactions. This is where selections step in: 
in providing a separate representation of each of the dispositional 
properties of a system, selections provide us with a representation of 
relevant physical facts. 
 
A question remains regarding the use of the superposed ψ state. Why do 
we need it? Given that all the information about the dispositional properties 
of the particle is encoded in the set of mixed states that represent the 
particle’s dispositions, it may seem that ψ is not needed, but this is not the 
case at all. The superposition has two main functions. First, it is an 
economical way to represent all the relevant information at once. Instead 
of writing down a long collection of mixtures to fully characterise a quantum 
system, I may just write down ψ, from which it is always possible to derive 
the set of mixtures by means of Fine’s algorithm for the standard 



representative. A second function of ψ, which explains why it is not 
possible to dispense with it even in principle is related to the fact that 
dispositions may interact with each other. In quantum mechanics, 
unusually perhaps, they typically do: testing for a particular disposition of 
an object precludes us from testing another.  No test for the position 
disposition of a quantum system can be carried out simultaneously with a 
test for its momentum disposition. This type of information (about which 
interactions preclude, or condition, which others) is not encoded in the 
corresponding mixtures. Only the state ψ of the system contains this type 
of information. Hence if the experiment is set up to test the interactive 
character of the dispositions of some quantum particle (such as a two slit 
experiment) we must represent the state of the particle by means of the 
superposition, which fully represents the interference aspect of the 
physical interaction. 
 
7.4. Dispositions and propensities 
 
The account that I have been developing takes dispositions to be central to 
the interpretation of quantum mechanics, and to solving the measurement 
problem. Appeal to quantum dispositions is not new, and has a 
considerable pedigree.17 In philosophy of science perhaps the best known 
proposal in this direction has been Karl Popper’s. In this final section I 
would like to briefly distinguish my interpretation of selections from 
Popper’s propensity interpretation of the wave function. 
 
Popper’s interpretation18 subscribes, among others, to the following five 
tenets, roughly described: 
 

1. Propensities are real quantum properties instantiated in nature. 
2. Propensities are not monadic properties of any isolated quantum 

system, but relational properties of quantum entities and 
experimental set-ups. A one-electron universe would lack any 
propensities. 

3. Quantum theory is essentially a probabilistic theory, in the sense that 
it is a theory about the probabilities that certain outcomes obtain in 
certain experimental set-ups 

4. The quantum wavefunction, or state, is a description of a propensity 
wave over the outcomes of an experimental set-up. 

                                                           
17 Among the founding fathers of quantum mechanics, Heisenberg was particularly keen to understand 
quantum mechanics in terms of “potentialities”. See his (19??). 
18 See Popper, REF. 



5. Providing an objective interpretation of the probabilities in quantum 
mechanics in terms of propensities is sufficient to solve the 
philosophical puzzles concerning quantum mechanics. 

 
My account of selections shares with Popper’s interpretation an emphasis 
on the quantum probability distribution as the basis for the ascription of 
dispositions. To the extent that propensities can be defined as 
probabilistically quantified dispositional ascriptions, my account is also a 
propensity-based one. However, the similarities end there. My 
interpretation either denies or is non-committal about Popper’s thesis 1-5. 
 
The dispositional account of selections remains neutral about Popper’s 
thesis 1. It is only required that dispositions may be ascribed even in the 
absence of any actual (past, present or future) test. Beyond this 
requirement the account neither denies realism about disposition 
ascriptions nor requires it. In particular a conditional analysis of 
dispositions is acceptable as long as it accommodates this requirement. 
 
Another difference concerns the nature of the quantum dispositions or 
propensities. Popper’s thesis 2 is false in my dispositional account.19 
Although the dispositions that I take quantum mechanics to ascribe to 
systems can only be revealed by means of interactions with measuring 
devices designed to carry out measurements of the appropriate 
observables, their ascription is fully independent of the existence of such 
interactions. On my account an electron in a one-electron universe may be 
in state ψ, and thus possess all the dispositional properties described by 
the appropriate standard representatives. 
 
Popper’s thesis 3 is also false in my account: Quantum mechanics is a 
theory about quantum entities (including certainly, subatomic particles) and 
their properties, not about probabilities. It just happens that the properties 
of quantum entities are dispositional. 
 
My interpretation is not committed to Popper’s thesis 4. On my account the 
quantum wave function does not directly describe a “propensity wave”: 
instead the wave function is an economic tool to derive the mixed standard 
representative states which describe probabilities of outcomes. There is no 
need for a literal interpretation of the wavefunction as representing a real 
“wave. 20  
                                                           
19 Thesis 2 has at any rate been to my mind convincingly refuted by Peter Milne (1985) who shows that it 
leads to incorrect predictions in the case of the two-slit experiment. 
20 In addition, Neal Grossman (1982?) showed that Popper’s interpretation fails to distinguish appropriately 
between mixtures and superpositions; a problem that does not affect my dispositional account of selections. 



 
My account also denies the spirit if not the letter, of Popper’s thesis 5. Let 
us leave aside other paradoxical issues of quantum mechanics: the 
measurement problem at least cannot be solved merely by providing an 
interpretation of the calculus of probabilities, whether objective or 
subjective. One needs instead to work hard on the formal representation of 
the physics. In particular one has to i) introduce the notion of a selection 
and represent it formally; ii) provide an interpretation of selections that 
supports the claims that all measurements are selections; iii) show that the 
measurement problem only arises in the context of assumptions (TPC), 
(QRUE), (OOC) and the Schroedinger equation, and iv) show that there is 
no measurement problem for those selections that obey (TPC), (QRUE), 
(OOC) and the Schroedinger equation. I take myself to have achieved all 
these in this paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Appendix 1: The Interaction Formalism 
 
In this appendix I describe the tensor-product space formalism provided by 
the quantum theory of measurement to represent the interaction between 
an object system and a measuring device. Given two Hilbert spaces, H1 
and H2, we can always form the tensor-product Hilbert space H1+2 = H1 ⊗ 
H2, with dim (H1 ⊗ H2) = dim (H1) x dim (H2). If {vi} is a basis for H1 and {wj} 
is a basis for H2, then {vi ⊗ wj} is a basis for H1+2. Similarly if A is an 
observable defined on H1 with eigenvectors {vi} and eigenvalues ai, and B 
an observable on H2 with eigenvectors {wi} and eigenvalues bj then A ⊗ B 
is an observable on H1+2 with eigenvectors vi ⊗ wj, and corresponding 
eigenvalues aibj. 
 
Consider two systems S1 and S2. If S1’s state is W1 on H1, and S2’s state is 
W2 on H2, we can represent the state of the combined system S1+2 as the 
statistical operator W1+2 = W1⊗W2 acting on the tensor-product Hilbert 
space H1+2. If either W1, W2 is a mixture, then W1+2 is also a mixture. If, on 
the other hand, both W1, W2 are pure states then W1+2 is pure. Suppose 
that W1 =P[ψ], and W2 =P[φ], where ψ = Σi ci vi and φ = Σj dj wj. Then W1+2 = 
Σi,j ci dj vi ⊗ wj, which is a superposition of eigenstates of A ⊗ B in H1+2. 
More specifically, if S1, S2 are in eigenstates of A,B, the combined system 
S1+2 is in an eigenstate of A ⊗ B. If W1 = vi and W2 = wj, then W1+2 = vi ⊗ 
wj, a so-called product state. 
 
For an arbitrary (pure or mixed) state W1+2 of the combined system, and 
arbitrary observable A ⊗ B the Generalised Born Rule applies. The 
probability that A ⊗ B takes a particular aibj value is given by: 
 
ProbW1+2 (A ⊗ B = aibj) = Tr (W1+2 Pij), 
 
And the expectation value of the “total” A ⊗ B observable in state W1+2 is: 
 
ExpW1+2 (A ⊗ B) = Tr ((A⊗B)W1+2). 
 
We will sometimes be given the state W1+2 of a composite system, and 
then asked to figure out what the reduced states W1, W2 of the separated 
subsystems must be. Given a couple of observables A and B on H1, H2, 
there are some relatively straightforward identifications that help to work 
out the reduced states, namely: 
 
Tr ((A ⊗ I)W1+2) = Tr (AW1) 



 
Tr ((I⊗B)W1+2) = Tr(BW2),       (*) 
 
where I is the identity observable. This amounts to the demand that the 
probability distribution over the eigenspaces of observable A (B) defined by 
the reduced state W1 (W2) be the same as that laid out over A ⊗ I (I ⊗ B) 
by the composite state W1+2; thus effectively ensuring that the choice of 
description (either in the larger or smaller Hilbert space) of a subsystem in 
a larger composite system, has no measurable consequences as regards 
the monadic properties of the individual subsystems. 
 
 
Appendix 2: The Insolubility Proof 
 
Consider three O-distinguishible initial states of the object system:  
 
P[φ1], P[φ2], P[φ3],  
 
where φ1, φ2 are eigenvectors of O with eigenvalues λ1, λ2, and φ3 is a non-
trivial superposition φ3 = a1 φ1 + a2 φ2. 
 
Set up a Schrödinger interaction, in accordance with (QRUE) and (OOC): 
 
Ût (P[φi] ⊗ Wa) Ût

-1 = Σ wn P[βni], where 
 
(QRUE) βni = Ût (φi ⊗ γn),  
(OOC) ∀n∀i = 1,2,3: Î ⊗ Â (βni) = µni βni 
 
By the linearity of Ût: 
 
Ût (φ3 ⊗ γn) = a1Ût (φ1 ⊗ γn) + a2 Ût (φ2 ⊗ γn). 
 
Hence βn3 = a1βn1 + a2 βn2. 
 
Now we can calculate: 
 
(A) Î ⊗ Â (βn3) = Î ⊗ Â (a1βn1 + a2 βn2) = 

a1 (Î ⊗ Â) βn1 + a2 (Î ⊗ Â) βn2 = 
a1 µn1 βn1 + a2 µn2 βn2, 

 
 
 



and 
 
(B) Î ⊗ Â (βn3) = µn3 βn3 = 

µn3 (a1βn1 + a2 βn2) = 
a1 µn3 βn1 + a2 µn3 βn2. 

 
However, (A) and (B) are equal if and only if µn1 = µn2 = µn3, in which case 
βn1, βn2, βn3 are not (Î ⊗ Â) – distinguishible. Thus (TPC) fails for this choice 
of initial states of the system. QED. 
 
Appendix 3: Stein’s Lemma and its implications 
 
Stein’s lemma: If Q and R are bounded linear operators on the Hilbert 
spaces H2 and H1 ⊗ H2 respectively; if ν is a vector subspace of H1; and if 
for every non-zero u ∈ ν the commutativity condition Su = (Pu ⊗ Q) R = R 
(Pu ⊗ Q) holds; then there is a uniquely determined bounded linear 
operator T on H2 such that: 
 
Su = Pu ⊗ T, for every nonzero u∈ ν. 
 
Application to the Measurement Problem: Take Q to be the initial state of 
the apparatus, , i.e. Q = Wa, and R to be the inverse time-evolved pointer 
position observable, i.e. R = U-1 (I ⊗A)U. It is straightforward that U (Pu ⊗ 
Q) U-1 commutes with (I⊗A) if and only if Pu ⊗ Q commutes with R. In 
addition, according to the results in section 4 of the paper, this 
commutativity condition holds if and only if (QRUE) and (OOC) hold for Pu 
⊗ Wa.  
 
Stein’s lemma then shows that there is a uniquely determined bounded 
linear operator T on H2 such that Su = Pu⊗T. However the quantum 
statistical algorithm predicts that the expectation of the pointer position 
observable when the system is in the initial state Pu⊗Wa is: Tr 
(U(Pu⊗Wa)U-1 I⊗A) = Tr (Pu⊗T), which is equal to Tr (T) because the trace 
of Pu is one. So the expectation of the pointer position observable is 
independent of the initial state of the system, and no measurement at all 
has been carried out. 
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