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Abstract 
This paper considers some of the issues and difficulties relating to the use of spatial panel 

data regression in prediction, illustrated by the effects of mass immigration on wages and 

income levels in local authority areas of Great Britain. Motivated by contemporary urban 

economics theory, and using recent advances in spatial econometrics, the panel regression has 

wages dependent on employment density and the efficiency of the labour force. There are 

two types of spatial interaction, a spatial lag of wages, and an autoregressive process for error 

components. The estimates suggest that increased employment densities will increase wage 

levels, but wages may fall if migrants are under-qualified. This uncertainty highlights the fact 

that ex ante forecasting should be used with great caution as a basis for policy decisions.  

 
Keywords:  panel data, spatially correlated error components, economic geography, spatial 
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I. Introduction

Prediction is a difficult exercise, but ex ante prediction, in which the independent 

variables themselves have to be forecast, is even more so. Ex post prediction, with 

independent variables known with certainty, is a more feasible and a valuable adjunct to 

assessing the performance of a model. In this paper we carry out both ex post and ex ante 

prediction for panel data regressions using a random effects estimator with spatially 

autocorrelated disturbances, following, among others, Anselin (1988), Kapoor, Kelejian 

and Prucha (2007), and Baltagi and Li (2006). The aim of the paper is to highlight issues 

and assumptions associated with spatial panel prediction, using as an illustration the 

question of the impact of mass migration into the UK.  

The principal projection by the UK Government’s actuary department assumes 

net migration of 4.1M between 2004 and 2031. Assuming mainly economic migration, 

this raises the interesting question, what will be the effect on wages, and tax revenues, of 

this net increase in labour supply? Also how will the extra spending be distributed across 

the cities and regions of Great Britain?  It is possible that the projected expansion in the 

supply of labour will hold down wage levels below what they otherwise would be. On the 

other hand increasing returns due to additional labour may create positive pecuniary and 

technological externalities.

The paper tests the increasing returns hypothesis, and also uses the resulting 

estimated model for ex ante and ex post prediction. The dependent variable is the average 

wage rate1 across all occupations in each local area2 and the explanatory variables are the 

density of employment in each area, together with the efficiency levels of employees.  

 The reduced form of the model also includes a spatial lag, equal to the weighted 

average of wage rates in ‘neighbouring’ areas. As argued below, a spatial lag occurs as an 

outcome of spatial interaction between areas due to commuting.  The simplicity of the 

model means that there will undoubtedly be some unmodelled heterogeneity across areas. 

We attempt to control for this by means of a spatial autoregressive process for the 

disturbances, and hence the error components, of the panel data regression. Following 

1 In constant 1998 levels.
2 The paper analyses 408 unitary authority and local authority districts (UALADs) in Great Britain.
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Baltagi and Li (2006), the out-of sample prediction is based on Goldberger (1962) who 

derives best linear unbiased predictors. 

II. Theory

The theoretical  model  behind  the  reduced form is  well  known,  and therefore  only  a 

sketch of the model is provided here. We follow Rivera-Batiz, (1988), Abdel-Rahman 

and Fujita (1990), Quigley (1998), Fujita, Krugman and Venables (1999) and Fujita and 

Thisse (2002) and assume that the city/region economy can be divided into two sectors 

with different market structures. There is a competitive sector comprising industries and 

services  (hereafter  ‘industry’)  that  operate  under  constant  returns  to  scale  and  trade 

globally,  and an immobile   ‘producer  services’  sector  (hereafter  ‘services’)  providing 

inputs  to  the  competitive  sector  which  operates  under  monopolistic  competition  as 

described by Dixit-Stiglitz monopolistic competition theory. This seems reasonable for 

service  firms,  which  are  assumed  to  be  typically  numerous,  small,  independent  and 

heterogeneous.  In the services sector there are internal increasing returns to scale and a 

CES subproduction function which defines the level of composite services deployed in 

the Cobb-Douglas production function of the competitive sector, as defined in equation 

(1).  The net effect could be returns that increase in city employment density, although 

these externalities may be offset by the effects of congestion (Ciccone and Hall, 1996). 

Therefore  we have  the  possibility  of  increasing  returns  while  at  the  same  time  each 

actor’s decision is explicitly stated as one of profit or utility maximization.   As cities 

become denser, increasing diversity or variety in producer inputs can yield external scale 

economies, even though firms only break even (earn normal profits). There are increasing 

returns to the city economy as a whole in the context of competitive producers. 

Monopolistic  competition  theory  tells  us  why  an  increase  in  service  labour 

increases service variety, rather than creating more of the same variety3. Assume that the 

market  structure  comprises  numerous  service  firms  each  producing  their  own 

differentiated services with free exit and entry. Profits will be driven to zero (i.e. each 

3 Under monopolistic competition theory, equilibrium creates firms with size dependent on exogenous 
parameters, so an increase in service labour does not affect the size of service firms, just the number, and 
since each firm produces a different variety, that increase the number of varieties.
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firm earns normal profits) which is a stable equilibrium point. Positive profits induce 

entry and drive profits towards zero, negative profits cause exits, raising profits towards 

the stable equilibrium. Fixed costs give internal increasing returns. This means that each 

firm produces its own differentiated service variety rather than varieties being replicated 

across  firms,  so  as  to  maximise  the  internal  returns  to  scale.  Service  differentiation 

creates monopoly power and prices are a mark up on marginal costs. The equilibrium 

levels  of  output  and  labour  requirement  depend  on  exogenous  parameters  and  are 

constant across firms. 

Monopoly  power  is  determined  by  the  exogenous  parameter  µ which  takes  a 

value greater than 1.  As µ increases, so does monopoly power, and a concomitant of this 

is falling elasticity of substitution. Increasing monopoly power, ceteris paribus, increases 

the level of composite services, which is employed to give industry output.  Reducing µ 

towards 1 has a reverse effect. 

More explicitly4, assume that the level of composite services I is an argument in 

the production (Q) of competitive industry,  in other words
1 1(( ) )CQ E A I Lβ β α α− −= ⋅                                                       (1)

 in which  CE A⋅  is the number of labour efficiency units in the competitive industry 

sector and L is land area used for production. The existence of α creates the possibility 

(with α  <  1) of   diminishing  returns  due  to  congestion  effects,  since  the  factor  of 

production land (L) is set equal to 1 and the variables  are measured per unit of land. 

Since  I depends only on the labour efficiency units in the monopolistically competitive 

sector ( ME A⋅ ) and the total labour efficiency units is ( )E C MN A E E= + , it follows (see 

for example Fujita and Thisse (2002)) that
1(( ) ) ( )C EQ E A I Nβ β α γφ−= ⋅ =                                               (2)

In  equation  (2)   φ  is  a  constant  and  following  Ciccone  and  Hall  (1996) 

[1 (1 )( 1)]γ α β µ= + − −  , with   the elasticity of substitution between services equal to 

4 We develop the model initially for a single cross-section here omitting for simplicity the subscript t, prior 
to estimating a panel version.
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1
µ

µ − . If  γ > 1 there are increasing returns to employment density.  Also, using standard 

theory, the proportion (α) of final production Q  spent on labour is 
o Ew N
Q

α=                                                        (3)

in which ow  is the wage rate. Therefore    

ln ln ln lno Ew Q Nα= + −      (4)

and on substituting for  Q and for labour efficiency units  EN E A= ⋅  in which  E is the 

total employment level per square km and A is each area’s  level of efficiency, gives

ln ln ln( ) ln ln( )ow A E A Eφ γ α= + ⋅ + − ⋅  (5)

It then follows that 

1ln ( 1) ln ( 1) lnow k E Aγ γ= + − + −  (6)

in which  k1 denotes a constant.

Consider next what determines the level of efficiency (A) in each local area.  We 

assume that worker efficiency is depended on the extent of formal qualification (S) in the 

workforce,  skills  attributable  mainly  to  schooling  and  college.  We  also  assume  that 

worker  efficiency  depends  on  knowledge  and  physical  capital  (K)  available  in  the 

workplace.  Details  are  given in  the data  section  below on the measurement  of  these 

variables. 

Since workers commute to earn wages, the efficiency level of workers at any one 

place will also be partly determined by the efficiency levels in other places from which 

they might commute. Commuting frequency declines with distance increases, and this is 

reflected in the structure of the so-called  N by  N matrix  W, where  N is the number of 

areas. Details of the construction of W are given in the data section below.

Embodying these various factors, and writing in matrix notation,  the vector of 

(log) efficiency levels is   given by 

2

ln ln ln
~ (0, )

A Bb W A
N

ρ ζ
ζ

= + +
Ω%

                                          (7)
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where  lnB is a matrix of exogenous variables with N rows and  k-1 columns (equal to 1, 

lnS and lnK),  b is a k-1 by 1 coefficients vector, and the matrix product  Wln A gives an 

N by 1 vector in which the value for area i is the sum of the log efficiency levels in other 

areas weighted by commuting distance from area i. Since this leads to a somewhat 

distinct endogenous variable, we signify this by the scalar coefficient ρ. Finally, the 

vector ζ  represents excluded variables which behave as random shocks. 

Written with only exogenous variables on the right hand side gives 
1ln ( ) (ln )A I W Bbρ ζ−= − +

This can then be substituted into equation (6) to give

1
1ln ( 1) ln ( 1)( ) (ln )ow k E I W Bbγ γ ρ ζ−= + − + − − +

which is equal to

 1( ) ln ( ) ( 1)( ) ln ( 1)(ln )oI W w I W k I W E Bbρ ρ γ ρ γ ζ− = − + − − + − +

and therefore for time  t  

1

2 2

ln ln ( ) ( 1)(ln ln ) ln

~ (0, ( 1) )

o o
t t t t t t

t

w W w I W k E W E B c e
e N

ρ ρ γ ρ

γ

= + − + − − + +

− Ω%
    (8) 

III. Data

The dependent variable at time t is the natural log of mean pay5 in each of  (N = ) 408 

areas, which have denoted by ln o
tw . The data cover the period 1999-2003 inclusive (T = 

5 years), so that ln ow is an NT x 1 vector. The number of employees is taken from the 

UK’s annual business enquiry employee analysis, for both males and females and across 

all industries. This gives the employees per square km for the period 1999-2003, denoted 

by the NT x1 vector  lnE.

5 gross pay for full time workers (male and female), across all occupations. These data have been deflated 
to 1998 levels. 
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Educational attainment (S) ,  the percentage of residents with no qualifications, as 

given6 by the UK's 2001 Census. These census data are constant over the period of the 

panel, with the same N values are replicated T = 5 times in the NT x 1 vector S.  The 

focus is a lack of any qualifications so as to avoid the complexities associated with the 

comparability of different educational attainment levels across cultures and time. 

The level of workplace provided knowledge and physical capital (K) is assumed to 

depend on the local intensity of knowledge/capital intensive activities, as indicated by the 

location quotient7.  This measures  each area’s relative specialisation in computing and 

related  activities  (1992 SIC 72) and in research and development8 (1992 SIC 73),  as 

reflected in the relative concentration of employees in software and hardware consultancy 

and  supply,  data  base  activities,  data  processing,  office  machinery  and  computer 

maintenance  and  repair,  other  related  computer-oriented  activities,  and  engineering, 

natural, social sciences and humanities research. 

The W matrix is an N x N matrix of non-stochastic time constant weights which 

defines the spatial (commuting) interdependence of areas.  For origin i and destination r, 

W is defined as 

ˆexp( )

0

0 100

ir i ir

ir

ir ir

W D i r
W i r
W D km

δ= − ≠

= =

= >
                                   (9)

In which irD  is the (straight line) distance between areas and îδ  provides an area-specific 

distance decay.  Given observed travel to work patterns9  for area i, the estimated value 

ˆ arg min ( )
i

i f x
δ

δ =  in  which  
2( )k k

k
x p p= −∑ %  where  kp is  the  proportion  travelling 

distances  (d)  within  commuting  distance  class  k,  so  that  l uk d k≤ < ,  and

i ik i iku uD D
k

k
p e eδ δ− −= ∑% .  In practice  distance class bounds are  lk  = 0,2,5,10,20,30,  and 

6 Available from the website Casweb, which  is a web interface to statistics and related information from 
the United Kingdom Census of Population. 
7 The location quotient is the share of local employment in these sectors divided by national share.
8Calculated from data taken from the annual business enquiry employee, available from the UK’s Office of 
National Statistics online via  NOMIS.
9 1991 Census of Population - Special Workplace Statistics, available from NOMIS.
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40km and 2,5,10,20,30,40 and 60uk km= , as dictated by data availability.  This is done 

for each of the 408 areas, giving  îδ  (i = 1…408), so that  W embodies the differential 

propensity to commute by job location. 

Spatial interdependence is also a feature of the error process assumed for the 

model, which is used to capture the effects of across-area heterogeneity and omitted 

spatially autocorrelated variables. The basis of the error process is an N by N  contiguity 

matrix.   To obtain this, for area j, contiguous areas, say k, l, m etc, are coded 1 and non-

contiguous areas coded 0. Then each non-zero cell  is divided by its respective row total 

to give the normalised contiguity matrix10 cW . 

The short time period in this study and the presence of spatial dependence would 

seem to preclude testing for unit roots (O’Connell, 1998, Banerjee, 1999, Banerjee et. al., 

2004), although recently several panel unit root tests have been proposed that are suitable 

for the analysis of cross-correlated panels, the properties of which are discussed by 

Gutierrez (2006). However these generally assume that spatial dependence can be 

adequately captured by an error component following a factor model with a common 

factor. This is somewhat different from the error process proposed below. 

IV. The panel model with spatially autocorrelated error components

In  the  reduced  form (8),  W ln o
tw is  endogenous,  with  instantaneous  interaction 

across areas in wage levels. A shock to the wage a location i will affect areas k,l, m and 

so on, rebounding back to i,  and vice versa. Assume also that lnE is endogenous. While 

equation (8) tells us that high density will cause high wages, causation will no doubt be 

two-way, with lnE responding to wage rate variations. However assume that in the short 

run wage levels do not affect  the other variables, namely  S and  K. For the purposes of 

estimation,  it  is assumed that  S and  K are in effect  exogenous variables.  Only in the 

longer-run might they respond to variations in to ln ow . 

10 Note that remote island groups (Eilean Saar, Shetland, Orkney and Scilly)  are assumed to be contiguous 
to the nearest mainland UALAD (Highland, Orkney, Highland and Penwith respectively ).
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Writing (8) with S and K as explicit variables and taking just one cross-section at 
year t, the model is  

1

0 1 2

ln ln ( ) ln( ) ( 1)(ln ln )
ln ln

o o
t t t t

t t t

w W w I W k E W E
c c S c K e

ρ ρ γ ρ= + − + − − +
+ + +          (10)

In which te  is a stochastic disturbance. Unfortunately, we do not know  1 ln( )k α φ=  so 
the variable  1( )I W kρ−  is of necessity omitted from the estimating equation, which is 
therefore

0 1 2ln ln ( 1)(ln ln ) ln lno o
t t t t t t tw W w E W E c c S c K eρ γ ρ= + − − + + + +         (11)

This entails a constraint equalizing the coefficient ρ  for ln o
tW w and  ln tW E . In order 

to satisfy this constraint, an iterative procedure is used, as described subsequently. 
 
Simplifying, we rewrite equation (11) as

t t t tY WY H eρ β= + +                                               (12)
  
in  which  ln o

t tY w= ,  ln o
t tWY W w= ,  tH  is  the  N by  k matrix  of  regressors 

(ln ln ,1, ln , ln )t t t tE W E S Kρ− ),  β  is  a  k x  1  vector  of  parameters  0 1 2( 1, , , )c c cγ − .  

For the error or disturbance process, assume that in each period t c t te W eλ ξ= + , in 

which λ  is an unknown parameter, and tξ  is an N by 1 vector of time t innovations.  

Since we are considering a panel with T periods rather than purely cross sectional 

data, we omit t , hence 

 

( )
(( ) , )
( , )

T

T

Y I W Y H e Xb e
X I W Y H
b

ρ β

ρ β

= ⊗ + + = +
= ⊗

′ ′=
                                        (13)

in which Y is a TN x 1 vector of observations obtained by stacking ln o
t tY w=  for t = 1…

5,  X is a TN x (1 + k)   matrix of regressors, comprising the TN x 1 vector ( TI W⊗ )Y, 

and H which is a TN  x k matrix of  regressors. Also b is the  k+1 x 1 vector of parameters 

( 0 1 2, 1, , ,c c cρ γ − ).  In addition, given that  TI  is a T x T diagonal matrix with 1s on the 
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main diagonal and zeros elsewhere, and  NI  is a similar  N x  N diagonal matrix,  then 

TN T NI I I= ⊗    is a  TN x  TN diagonal matrix with 1s on the main diagonal and zeros 

elsewhere. These create the NT x 1 vector e 

 
1( )TN T ce I I Wλ ξ−= − ⊗                                                  (14)                                   

In which ξ  is an NT x 1 vector of innovations.

Regarding  the error components  in  space-time,  time dependency is  introduced 

into the innovations ξ  via permanent error component µ , thus

2

2

~ (0, )

~ (0, )

iid

iid
µ

ν

µ σ

ν σ
                                                       (15)

( )T NIξ ι µ ν= ⊗ +                                                     (16)

so that  µ  is an  N x 1 vector of errors specific to each area,  ν  is the transient  error 

component comprising an NT x 1 vector of errors specific to each area and time, Tι  is a T 

x 1  matrix with 1s , and T NIι ⊗  is a TN x N matrix equal to T stacked NI  matrices.   The 

result is that the  TN x  TN innovations variance-covariance matrix   ξΩ  is nonspherical. 

Also 2 2 2
1 Tν µσ σ σ= + .  

Also  each  of  the  two  error  components  µ  and  ν  is  subject  to  the  same 

autoregressive process (c.f. Baltagi and Li, 2006), since 

1 1 1( ) ( ) (( ) ) ( )TN T c TN T c T N TN T ce I I W I I W I I I Wλ ξ λ ι µ λ ν− − −= − ⊗ = − ⊗ ⊗ + − ⊗          (17)

Estimating the reduced form involves iterations to ensure the equality of the ρ s evident 

in equation (11) for instance, within which is nested GMM, nonlinear least squares and 

spatial FGLS.  In estimating  2 2, , ,µ νρ β σ σ and  λ , the method of Kapoor et al. (2007) is 

adapted to allow for endogenous variables in the matrix of regressors X. Regressor matrix 

X includes  vector ( TI W⊗ )Y   which is endogenous by definition, and the endogenous 
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variable   ln lnt tE W Eρ− stacked for  t =  1…5. Hence we proceed using instrumental 

variables, but also take account of the non-sphericity of variance-covariance matrix ξΩ . 

V. Results

TABLE 1
Panel regression estimates

Ungrouped 
instruments

Grouped
instruments

Estimate St. error t ratio Estimate St. error t 
ratio

constant 0c   6.10921 0.0684865 89.20   6.11018 0.0688914 88.69

ln o
tW w ρ   0.00107829 7.456e-005 14.46   0.0010334 9.411e-005 10.98

ln lnt tE W Eρ− 1γ −   0.0140515 0.00276572   5.08   0.0190839 0.00600049   3.18

ln tS  1c  -0.0913607 0.0210325  -4.34  -0.099407 0.0229029  -4.34

ln tK 2c   0.0514069 0.00532627   9.65   0.049414 0.00558258   8.85

Error process
λ   0.305396   0.317614

2
νσ   0.00218021   0.00216799

2
1σ   0.0224078   0.0224084

RSS 13.5854 13.7098
R2*  0.845178  0.843562
Instruments ln S, ln K, 

1998ln E

1998lnW E
ZZZ_

ln S, ln K, G_
1998ln E

G_ 1998lnW E
ZZZ_

Sargan p-value   0.3836 0.5878
RSS =sum of squared residuals
* squared correlation between observed and fitted values.

Table 1 summarises the outcome of the estimation procedure using a panel of data 

for the period 1999-2003. Given that variables ln o
tW w   and ln lnt tE W Eρ−  are 

endogenous, variables uncorrelated with the errors but correlated with the endogenous 

variables are required as instruments. Two sets of instruments are employed, giving the 
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two sets of results in Table 1. On the left hand side we have the estimates using log 

employment density11  for 1998 ( 1998ln E ),  1998lnW E  and  ZZZ_. The instrument  ZZZ_ 

is, for area j (j = 1,…,N), equal to the sum of straight line distances to all other areas 

(k,l,m,…). The three right hand side columns of Table 1  are based on  G_ 1998ln E ,  which 

is  a variable with values equal to -1, 0, 1 depending on whether or not  1998ln E   is in the 

upper, middle or lower third of values when placed in rank order. In addition, we use G_

1998lnW E  which is equal to the matrix product of W and G_ 1998ln E . Using groups rather 

than actual values is meant to provide  additional insurance against endogeneity, although 

in either case the Sargan tests indicates that there is no significant correlation between the 

instruments and the residuals12. Each of these instruments is constant across time, and so 

the values are replicated to create NT by 1 vectors. The other instruments are the 

exogenous variables ln tS  and ln tK .   All further analysis is based on the estimates using 

ungrouped instruments. 

The estimate of 1γ − , which is significantly greater than 0, suggest increasing 

returns to employment density as a result of  pecuniary externalities raising wages in 

denser cities.  Doubling employment density produces an increase in wages of 
0.014ln(2 ) 0.01≈  or about 1%. The implication is that increasing labour supply as a 

consequence of positive net migration will raise wage levels, but not by much. There are 

significant effects on wage levels due to labour efficiency variations as reflected by 

variations in educational attainment ( ln tS ) and availability of knowledge and physical 

capital  ( ln tK ), the coefficients of which are significant and appropriately signed. If we 

halve the percentage without qualifications, wages rise by a factor of about 
0.091ln(2 ) 0.06≈  or about 6%, while doubling the percentage without qualifications causes 

wages to fall by about 6% since 0.091ln(2 ) 0.06− ≈ − . Doubling K causes wages to rise by 

approximately 3.6%. The implication of this for positive net migration are unclear, since, 

focusing on educational attainment, it is unclear whether future migrants will be more 

11 The assumption being that, since they predate the data period, they will not be contemporaneously 
correlated with the errors.
12 Using the (iterated) 2SLS residuals.
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qualified than the current population, or less. Certainly the past record of employment 

suggests that many migrants have been poorly qualified. As indicated by Weale and Riley 

(2006),  according to Labour Force Survey ‘27.6 per cent of post-1997 immigrants work 

in elementary occupations as compared to 18.9 per cent of the population as a whole’, 

and increase by a factor of about 1.5. 

With regard to the two spatial effects in the model, the evidence that ρ  > 0 

indicates a significant autoregressive spatial lag involving ln o
tw ,  The positive sign on 

the estimated λ  reflects positive spatial disturbance correlation and hence positive 

dependence among the permanent and transient error components, reflecting spatially 

autocorrelated heterogeneity and omitted variables. The relatively high value of R2* 

suggests that the model fits the data quite well. 

VI. Ex post Prediction

The model is tested against out-of-sample data for the year 2004. In this case the known 

2004 values of the regressors, denoted by  1ln TS + , 1ln TK + and 1ln TE + are combined with 

the parameter estimates b̂  from Table 1, but in addition there  is a correction allowing for 

the error process.   

Goldberger (1962) shows that the best linear unbiased predictor (BLUP)13 for 

location i in period T + s is given by 
1

, ,
ˆˆ ˆln i T s i T s iw x b eω −

+ +′ ′= + Ω                                              (18)

In which ,ˆln i T sw + is the scalar predicted value for location i in period T + s, ,i T sx +  is a k by 

1 vector of regressor values at  i  at  T + s,  and the BLUP estimator of  b is  the k by 1 

vector b̂ . The scalar term 1 ˆi eω −′Ω  is an estimate of the prediction disturbance for location 

i at T + s, in which iω  is an NT by 1 vector of covariances of the prediction disturbance at 

location  i with the estimate of the NT by 1 vector of residuals e, and Ω  is the NT by NT 

13 An early purely spatial application of this is Dubin, Kelley Pace and Thibodeau (1999). 
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error  variance-covariance  matrix.  Given  the  innovations  covariance  matrix  ξΩ (see 

Appendix), the error  covariance matrix  Ω  is   
1[( ) ( )]TN T c TN T cI I W I I Wξ λ λ −′Ω = Ω − ⊗ − ⊗                               (19)

Which is estimated using 2ˆ ˆ, νλ σ and 2
1ˆσ . This is similar to Anselin (1988) and Baltagi and 

Li ( 2006), although in their cases the spatial error process applies only to the transient 

error component, hence, rather than equation (17), they have  

1(( ) ) ( )T N TN T ce I I I Wι µ λ ν−= ⊗ + − ⊗                                  (20)

The term 1 ˆi eω −′Ω  is equal to a weighted average of the residuals ê  for the N locations 

averaged over the T time periods,

 
1

ˆ /
T

j tj
t

e e T
=

= ∑                                                              (21)

 with the weight depending on cW  and λ̂ . Hence  
2

1
2

1

ˆ
N

i j j
j

e T eµ

ν

σ
ω δ

σ
−

=

′Ω = ∑                                                 (22)

In which and jδ is the j’th element in the i’th row of estimated 1V − with 

2
1

2 [( ) ( )]N N c N cV T I I W I Wµ

ν

σ
λ λ

σ
−′= + − −                                     (23)

With the error process applying to both error components, it follows that 
2

1 1
2 [( ) ( )] [( ) ( )]N N c N c N c N cV T I I W I W I W I Wµ

ν

σ
λ λ λ λ

σ
− −′ ′= − − + − −            (24)

To obtain the predictions, we calculate 

1 1
1 0 1 1 1 1 2 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆln ( ) [ 1 ( 1)(ln ln ) ln  + ln  + ]T T T T Tw I W c E W E c S c K eρ γ ρ ω− −

+ + + + + ′= − + − − + Ω    (25)

in which 1ˆ( )I Wρ −−  is an N by N matrix, and the square brackets give an N by 1 vector, 

and   1êω −′Ω is the N by 1 vector of  corrections. Equation (25) is equivalent to (A21) in 

the Appendix, which is shown by Monte-Carlo simulation to perform better than several 

competing prediction equations. 
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 It is apparent that the out-of-sample test produces predictions that are quite close 

to the data for 2004, as is evident from Figures 1,2 and 3. The lower panel of Figure 1 

shows the relationship between the 2004 wage rate and the model predictions , 1ˆln i Tw +

without applying the correction (in other words in equation (25) 1êω −′Ω is assumed to be 

a vector of zeros). The upper panel is the relationship between the 2004 wage rate and 

, 1ˆln i Tw +  calculated according to equation (25) including the Goldberger-type correction. 

Also the improvement due to the correction is shown by the respective values of the 

simple prediction error given by

 2
, 1 2004

1

ˆ(ln ln )
N

o
i T

i
w w+

=

−∑                                                   (26)

which is equal to 2.3897 without the correction, and equal to 1.3275 with the correction. 

Figure 2 shows the wage data for 2004, and Figure 3 gives the ex post prediction using 

equation (25). 
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Figure 1.  Fit of model to out-of-sample data with and without Goldberger-type 
correction
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Figure 2.  Weekly wage by local authority district  
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Figure 3.  Ex post predicted wage by local authority district. 
. 

VII. Ex Ante Prediction

In this section ex ante forecasts are produced using the assumption made by the 

UK Government actuary service that  by 2031 there will be 4.1M additional migrants in 

the UK14. It is assumed that these are all economic migrants and that they are all 

employed.  Predicting wages and aggregate income by area as a result of the additional 

employees calls for a  number of additional assumptions and extreme caution, notably 

because ex ante prediction calls for  predicted values of the independent regressors. 

Because of the additional uncertainty and assumptions, ex ante predictions are dangerous 

weapons, and are at best is only  a quasi-scientific basis for implementing policy.  

14 We assume 4M for Great Britain.
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1 1
0 1 2ˆ ˆ ˆˆ ˆ ˆ ˆ ˆln ( ) [ 1 ( 1)(ln ln ) ln  + ln  + ]T k T k T k T k T kw I W c E W E c S c K eρ γ ρ ω− −

+ + + + + ′= − + − − + Ω  (27)

Equation (27), which is equation (25) with T+k (2031) in place of T+1,  is the 

basis of the ex ante predictions. To implement this, it is necessary to predict employment 

density (E), educational attainment(S) and knowledge and physical capital (K). 

Additionally, we assume parameter homogeneity, so that the estimated parameters 

0 1 2ˆ ˆ ˆ ˆ ˆ, , , ,c c cρ γ  are applicable to T+k. It is also assumed that the pattern of residual 

dependence will remain the same, so that 1êω −′Ω applies, and the same commuting 

patterns is assumed for the future, so that W remains appropriate. These assumptions 

really do not have a strong factual basis, so it is important to test the sensitivity of the 

predictions to alternative assumptions. 

Let us make some first pass, naïve, assumptions and then explore the sensitivity 

of the outcomes to alternative assumptions about S. In order to allocate migrants to areas, 

ideally we should have sub-models predicting where this new employment will occur, 

hence obtain T kE + , and predict where the migrants will live, and be able to show the 

implications of migrant settlement for the levels of educational attainment ( T kS + ) in each 

area.  In the absence of such models, we simply allocate migrants’ employment 

proportional to existing employment in each area, and allocate migrants to places of 

residence in proportion to existing population. Following Weale and Riley (2006), 

assume first that these migrants are 50% less qualified than the existing population. 

Averaging across all areas, the mean proportion  of residents who are unqualified is  0.28, 

while averaging across all areas gives 0.42 for the additional migrants. Under this 

scenario,  , 2003, 2003, , 2003, 2003, ,100( 1.5 / ) / ( )i T k i i i T k i i i T kS D D M P P M+ + += + + , in which D  is 

the total number of non-migrant residents  without qualifications, P is the total number 

of non-migrant residents and M  is the number of migrants,  so the unqualified migrant 

share is 50% greater than the resident unqualified share in each area, which increases the 

percentage of the overall population without qualifications. The outcome is Figure 4. 

Secondly, assume that migrants have the same lack-of-qualification rate (28%) as the 

existing residents, so that there is no effect on T kS + . Thirdly assume that the additional 
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workforce is completely qualified, so there are no additional unqualified residents, but a 

larger overall resident population following the arrival of the immigrants. This reduces 

the percentage of the resident population without qualifications. The percentage without 

qualifications ( T kS + ) in area i is then estimated as  , 2003, 2003, ,100( ) / ( )i T k i i i T kS D P M+ += + . 
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Figure 4. Ex ante  predicted wage by local authority district
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Figure 5. Ex ante predicted weekly wage differences by local authority district 
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Figure 6. Ex ante  predicted annual aggregate income differences by local authority 
district 

Figure 5 shows the wage rate differences comparing the wages under the three 

assumptions about migrant qualification rates with the predicted wage rates assuming no 

additional migrants. The lower line shows that when 42% of migrants are unqualified, 

wages are marginally reduced compared to the no migrants scenario. This outcome is a 

combination of two effects, first the additional 4M migrants will undoubtedly increase 

employee densities, but we know from the Table 1 estimates that these would have to 

double for wage rates to increase by 1%. Any marginal rise in wage rates due to higher 

densities is more than offset by the reduction due to a fall in the percentage of the overall 

population in each area that is qualified. If  28% of migrants are unqualified, like the 

initial resident population, then the outcome is a wage increase of about 1£ per week. 

Assuming that 0% of the additional workforce is unqualified increases wages by about 

£3. These differences may seem very small, but when translated into the aggregate annual 

increase in income, significant numbers occur. 
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Figure 6 shows the effect on aggregate income, comparing  aggregate annual 

income under the three assumptions about migrant qualifications. In each case the 

aggregate  annual15 income per UALAD (i) is 

, , ,ˆ50exp(ln )i B i T k i T k iI w E L+ +=                                          (28)

where ,i T k iE L+  is the aggregate level of employment16 at time T +k  and ,ˆ i T kw + is the 

appropriate weekly wage rate.

Figure  6 shows prominent peaks for the city of London, Westminster, and for the 

other major employment concentrations.  For Westminster, the presence of fully qualified 

migrant workers increases annual aggregate income by about £170m.    Outside the main 

central cities, the typical aggregate income is about £10m more than it would be without 

the presence of qualified migrants. Summing across all areas gives the effect for the 

whole of Great Britain.   If 0% of migrants are unqualified, the gain is about £4.9bn. If 

28% of migrants of unqualified, there is an annual aggregate increase of about £1.2bn.

If 42% of migrants are unqualified, there is a loss of aggregate income compared to the 

level one would obtain with no migrants of about £0.5bn.  

VIII. Conclusions

This paper applies panel regression models with spatially correlated error components, to 

show that they have become viable tools for the spatial economist and spatial 

econometrician. In this application, the estimation procedure set out by Kapoor, Kelejian 

and Prucha (2007) is adapted to allow for the presence of an endogenous lag, and also 

allowing for a parameter restriction, both of which are necessary because of the theory 

underpinning the reduced form. The theoretical basis is a model in which increasing 

returns to employment density are an outcome of assumptions about the existence of 

internal increasing returns to service firms with a monopolistic competition market 

structure, modified by variation between areas in worker efficiency. The paper shows that 

increasing employment density increases wage rates, and wages increase with higher 

15 50 weeks
16 Density times land area.
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educational attainment and the availability of more knowledge and physical capital. The 

paper examines the outcomes and assumptions of ex post and ex ante prediction, based on 

the BLUP correction17 given by Goldberger (1962). The model error process assumed in 

the paper is that the entire disturbance structure subject to the same spatial autoregressive 

process, and this thus entails a modification of the correction used by Baltagi and Li 

(2006) which considers spatial dependence in the transient error component only (c.f 

Anselin, 1988, Baltagi and Li, 2006). The ex ante predictions use as an example the 

impact of an increase in employment attributable to positive net migration. The problem 

of predicting the independent variable, which unlike ex post prediction are not known 

with certainty, is illustrated by showing the implications of different assumptions about 

the percentage of migrant workers possessing some form of qualification. Although the 

implications of individual wage rates appear negligible, when treated as annual income 

differences by area, quite significant magnitudes ensue. The conclusion is that while it is 

important and useful to do out-of-sample ex post model testing, ex ante prediction is 

more dangerous and difficult, and should be accompanied by a very big health warning! 

However, as Pesaran (1990) observes, ‘Econometric models are important tools for 

forecasting and policy analysis, and it is unlikely that they will be discarded in the future. 

The challenge is to recognise their limitations and to work towards turning them into 

more reliable and effective tools. There seem to be no viable alternatives’.    

APPENDIX  

Innovations covariance matrix ξΩ

The vector ξ  is  equal to the sum of the  errors  µ , which differ for each area but are 

constant for the same area at different times, and the errors ν , which differ for each area 

and for each time, with no covariance across area or time.  

For areas i ,j and times t, s  

                                   2 2( )E ν µξ ξ σ σ′  = +   if i  = j;  t = s

2[ ]E µξ ξ σ′  =    if  i  = j; t ≠ s                                                    (A1)

17 It is not claimed that the correction used in the present paper is itself BLUP.
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                                  [ ][ ] 0E ξ ξ′ =  if  i ≠  j; t ≠ s

We represent the TN x TN innovation variance-covariance matrix ξΩ using the matrices 

0Q  and 1Q  defined as follows  

0 ( )T
T N

JQ I I
T

= − ⊗                                                             (A2)

in which JT  is a T x T matrix of 1s, and  

1
T

N
JQ I
T

= ⊗                                                                 (A3)

It follows that  0 1 TNQ Q I+ =  and 

2 2

2 2
0 1 1

( )T N TNJ I I

Q Q
ξ µ ν

ξ ν

σ σ

σ σ

Ω = ⊗ +

Ω = +
                                                        (A4)

in which 
2 2 2
1 Tν µσ σ σ= +                                                                    (A5)

Estimation

Estimation proceeds in three stages. Stages 1 and 3 are almost identical and both give 

estimates of  b = ( 0 1 2, 1, , ,c c cρ γ − ), however they differ by the way values are obtained 

for 2
νσ , 2

1σ and λ . In both stages 1 and 3 we first filter out the error dependence, using a 

Cochrane-Orcutt  (C-O)  transformation,  premultiplying  by  TN T cI I Wλ− ⊗  since 

1( )TN T ce I I Wλ ξ−= − ⊗ , therefore 

*

*

ˆ( ( ))
ˆ( ( ))

ˆ( ( ))

T N c

T N c

T N c

Y I I W Y

X I I W X

I I W e

λ

λ

ξ λ

= ⊗ −

= ⊗ −

= ⊗ −

                                             (A6)

A linearly independent subset of the exogenous variables is used to give the TN x 

( 1)f k≥ +  matrix of instruments  Z, and we assume matrices  X and  Z are full column 
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rank with  ( 1)f k≥ + . Since the error covariance matrix  2 2
0 1 1Q Qξ νσ σΩ = +  means that 

there are nonspherical disturbances, following Bowden and Turkington (1984), calculate 

1ˆ( )zP Z Z Z Zξ
−′ ′= Ω ,which is a  symmetric  matrix ( zP ξΩ  is idempotent)  and  hence

1
* 1 * * 1 * * * 1 * *ˆ ˆ ˆ( )( ) ( ) ( )( ) ( ) ( )z zb X Z Z Z Z X X Z Z Z Z Y X P X X PYξ ξ

−
− − − ′ ′ ′ ′′ ′ ′ ′= Ω Ω =   (A7) 

 

The estimated variance-covariance matrix of the parameters   is given by
1

* 1 * * * 1ˆ ˆ( )( ) ( ) ( )zC X Z Z Z Z X X P Xξ

−
− − ′ ′′ ′= Ω =                          (A8)

Greene (2003) also gives the equivalent of  (A7) and (A8) as generalized methods of 

moments (instrumental variables) estimators with nonspherical disturbances.

Also

ˆê Y Xb= −

Stage 1 uses arbitrary values of  1,1 and 0 respectively for    2
νσ , 2

1σ and λ ,  but estimates 

are available from the data for Stage 3. 

Additionally, within stages 1 and 3 there are iterations in order to satisfy the 

constraint involving ρ . The iterations proceed with an arbitrary value for ρ ( 1ρ% = 1) in 

the first iteration to allow calculation of 1ln lnt tE W Eρ− % , which then leads to an initial 

value 1ρ̂ given by   (say) 1̂b ( ρ is an element of vector b). The second iteration uses 

1ˆln lnt tE W Eρ− to obtain 2ρ̂ , and the third iteration uses  2ˆln lnt tE W Eρ− to obtain 3ρ̂ , 

and so on, with iterations terminating when for iteration r, 1ˆ ˆr rρ ρ −− < 0.000005, at which 

point ˆ ˆrρ ρ= and ˆ
r̂b b= .

The estimated variance-covariance matrix of the  b parameters   is given by

* * 1ˆ ( )zC X P X −′=                                                 (A9)

 and the standard errors of the b̂  are given by the squares roots of the values on the main 

diagonal of Ĉ , which allows ‘t-ratios’ to be calculated for purposes of inference. 
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For the GMM estimation at Stage 2, following Kapoor et al (2007), 

0φ η′Γ − =                                                   (A10)

and 

0φ η′Γ − =% %                                                   (A11)                                                            

where Γ  and Γ% are 3 by 4 matrices,  η  and η%  are 3 by 1 vectors and φ  = 

2 2 2
1νλ λ σ σ    is a  vector of parameters. Using  the  estimated disturbances  ê  , one 

obtains sample counterparts  g   and  g%  of  vectors  η  and η%  , and sample counterparts 

G and G% of matrices Γ and Γ% ,  defined as follows 

0 1 1 0 1

2 0 1 2 0 2 1

0 2 1 0 1 1 0 2

2 1ˆ ˆ ˆ ˆ 1 0
( 1) ( 1)
2 1 1ˆ ˆ ˆ ˆ 0

( 1) ( 1)
1 1ˆ ˆ ˆ ˆ ˆ ˆ( ) 0 0

( 1) ( 1)

e Q e e Q e
N T N T

e Q e e Q e t
N T N T NG

e Q e e Q e e Q e
N T N T

− − −

− − − −

− − − − −

− ′ ′ − − 
− ′ ′ − −=  
− ′ ′ ′+ − − 

  

          (A12)

0

1 0 1

0 1

1
( 1)

1 ˆ ˆ
( 1)

1 ˆ ˆ
( 1)

ˆ ˆQ
N T

g e Q e
N T

e Q e
N T

e e

− −

−

 
 − 
 ′=  − 
 ′ − 

′

                                    (A13)

2 2 2 2 2
1 1( )G gν νλ λ σ σ ζ λ σ σ′  − =                       (A14)

1 1 1 1 1

2 1 1 2 1 2

1 2 1 1 1 1 1 2

1

2 1ˆ ˆ ˆ ˆ

2 1 1ˆ ˆ ˆ ˆ

1 1ˆ ˆ ˆ ˆ ˆ ˆ( )

0 1

0

0 0

e Q e e Q e
N N

e Q e e Q e
G N N N

e Q e e Q e e Q e
N N

t

− − −

− − − −

− − − − −

− ′ ′ 
 

− ′ ′ =
 − ′ ′ ′+
 
  

%                       (A15)
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1

1 1 1

1 1

1

1 ˆ ˆ

1 ˆ ˆ

ˆ ˆQ
N

g e Q e
N

e Q e
N

e e

− −

−

 
 
 
 ′=  
 
 ′
  

′

%                                            (A16)

 2 2 2 2 2
1 1( )G gν νλ λ σ σ ζ λ σ σ′  − = 

% %%                (A17)

In which  1 ( )c ct tr W W′= ,  1ˆ ˆ( )T ce I W e− = ⊗  and  2 1ˆ ˆ( )T ce I W e− −= ⊗  , and  2 2
1( )νζ λ σ σ , 

2 2
1( )νζ λ σ σ% are  vectors of residuals, and  the nonlinear least squares estimators are 

given by 
2 2 2 2 2 2

1 1 1

2 2 2 2
1 1

ˆ ˆ ˆ( , , ) arg min{ ( ) ( )

( ) ( )}
ν ν ν

ν ν

λ σ σ ζ λ σ σ ζ λ σ σ

ζ λ σ σ ζ λ σ σ

′= +
′% %

                 (A18)

This can be done in various ways. One is to use unconstrained non-linear least 

squares estimation using a modified Newton-Raphson method which is suitable for 

minimising any non-linear function and this depends on numerical differences, so there is 

no need to specify derivatives. 

In general the variances associated with the two separate right hand side terms of 

(A18)  differ, and Kapoor et al (2007) suggest weighting  to allow for this. However for 

simplicity we have not introduced differential weighting.  Kapoor et al (2007)  note that 

giving equal weight to all six moments equations does give consistent estimates.

The comparative performance of alternative predictors

In this  section we compare the predictive  performance of some alternative  prediction 

equations, including equation (A21) which a simplified analogue of equation (25) and 

which  is  shown  to  perform  better  than  competitors  across  several  indicators.  The 

comparisons  are  based  on  a  Monte-Carlo  set-up  with  the  following  data  generating 

process
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1

( , )
( , )

( ( ))

E
T

E
T

TN T

Y I W Y H e
X I W Y H
b
Y Xb e
e I I W

λ γ

λ γ

ρ ξ−

= ⊗ + +

= ⊗
′ ′=

= +
= − ⊗

                                              (A19)

In (1A),  W is a standardized contiguity matrix18 on a  N  x  N   square.  Contiguity 

matrix W* is standardized by dividing each row cell by its row total.  Also in practice, for 

simplicity we assume that  WE  = W. 

  The matrix  H  had columns equal to the  N(T+1) x 1 vectors TNι ,  H1, and H2,   in 

which ( 1)N Tι +  is a N(T+1)   x 1  vector with 1s. To obtain each H, first generate time t = 0 

N x 1 vectors 1 2(0), (0)H H  by sampling at random from an N(0,1) distribution.  Then for 

t  equal to 1…T+1, where 1…T is the estimation period,  1 1 1( ) ( 1)H t H t π= − + , in which 

1π ~ N(0,1), and likewise for  2 ( )H t  using 2π ~ N(0,1). Then stacking these N x 1 vectors 

we  obtain  H1 and  H2.  In  his  way  the  exogenous  variables  in  H have  some  time 

dependency as seems reasonable for panel data. Once generated, the variables H1 and H2  

remain fixed. 

Given the exogenous variables, we next obtain the innovations vector N(T+1)  x 1 

vector ξ . The innovations vector depends on the N x 1 vector µ  obtained by sampling 

from an  N(0, 2 Iµσ ) distribution and on the N(T+1) x 1 vector ν  obtained by sampling 

from an N(0, 2Iνσ ) distribution, so that 1( )T NIξ ι µ ν+= ⊗ + . This is then used to obtain

 
1 1

( 1) 1 ( 1) 1 ( 1) 1( ( )) ( ( )) ( ( ))N T T N T T N T TY I I W H I I W I I Wλ γ λ ρ ξ− −
+ + + + + += − ⊗ + − ⊗ − ⊗   (A20) 

      

We use part  of the data  to estimate model,  and use the information from this 

estimation to predict the vector  1TY + .  Given Y,  W and  H, estimates are obtained of the 

known parameters 2
0 1 2, , , , , νρ λ γ γ γ σ and 2

µσ  using the three stage method outlined above. 

18 W* is a Rook’s case contiguity matrix, comprising 1s and 0s with 0s on the main diagonal.    

28



Since there is an endogenous lag ( TI W⊗ )Y, estimation uses instruments  Z  comprising 

the exogenous variables, H, and their spatial lags.

It  is  evident  that  there  are  a  number  of  different  forecasting  equations  with 

varying bias and precision (see for instance Kelejian  and Prucha, 2007 and Le Sage and 

Pace, 2004 for different spatial prediction equations involving a spatial lag). Using the 

values of the exogenous variables at time T + 1, and the estimated 2
0 1 2, , , , , νρ λ γ γ γ σ , 2

µσ  

and hence 1êω −′Ω  we obtain predicted Y at T +1 (Y% ) using several different forecasting 

equations and measure the forecast error  2
1

1

( )
N

T
i

Y Y +
=

−∑ % ; this leads us to equation (A21) 

and by analogy to (25) as the preferred forecasting equation. The alternative forecasting 

equations that are considered are

1 1ˆˆ ˆ( ) ( )EY I W Xb eλ ω− −′= − + Ω%                                      (A21)
1 1ˆˆ ˆ( )  EY I W Xb eλ ω− −′= − + Ω%                                         (A22)
1 ˆˆ( )  EY I W Xbλ −= −%                                                        (A23)

1ˆ ˆY Xb eω −′= + Ω%                                                              (A24)
ˆY Xb=%                                                                            (A25)

For simplicity we eliminate  subscript  T +1 from (A21) to (A25). This was replicated 

1000 times and we summarise the resulting forecast  error distribution via the median 

forecast error, the standard deviation, and the interquartile range (IQR)19.  We retain 2
µσ

=1 and  2
νσ =1 throughout.  The  outcomes  are  presented  as  ratios  of  the  summarizing 

statistics, with in each case equation (A25) providing the denominator. 

 Table 1A The comparative performance of  prediction equations A21 to A25 (1)

Simulation 

parameters

ratio Median Standard 

deviation 

IQR 

N = 81 T = 2 A21/A25     0.6696     0.7643     0.7317
λ = 0.5 A22/A25     0.7006     0.7828     0.7397
ρ = 0.75 A23/A25     0.7547     0.8016     0.7639

19 The median and IQR are chosen for  robustness to extreme values.
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0γ = 1 A24/A25     0.9460     0.9779     0.9971

1γ  = 2 A25/A25     1.0000     1.0000     1.0000

2γ  = 3

Table 2A The comparative performance of  prediction equations A21 to A25 (2)

Simulation 

parameters

ratio Median Standard 

deviation 

IQR 

N = 81 T = 2 A21/A25     0.1735    0.8896    0.1954
λ = 0.75 A22/A25     0.1941     1.0214     0.2195
ρ = 0.25 A23/A25     0.2276     1.0340     0.2340

0γ = 1 A24/A25     0.9654     0.9914     1.0001

1γ  = 1 A25/A25     1.0000     1.0000     1.0000

2γ  = 1

Table 3A The comparative performance of  prediction equations A21 to A25 (3)

Simulation 

parameters

ratio Median Standard 

deviation 

IQR 

N = 49 T = 2 A21/A25    0.7210     0.8209     0.8053
λ = 0.25 A22/A25     0.7462     0.8439     0.8109
ρ = 0.5 A23/A25     0.9181     0.9327     0.8974

0γ = 1 A24/A25     0.8424     0.9034     0.9048

1γ  = 0.5 A25/A25     1.0000     1.0000     1.0000

2γ  = 2

Table 4A The comparative performance of  prediction equations A21 to A25 (4)

Simulation 

parameters

ratio Median Standard 

deviation 

IQR 

N = 121 T = 2 A21/A25     0.6811     1.7686     0.7922
λ = 0.5 A22/A25     0.6907     1.7705     0.8099
ρ = 0.9 A23/A25     0.7088     1.7719     0.8114
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0γ = 1 A24/A25     0.9810     0.9951     1.0021

1γ  = 5 A25/A25     1.0000     1.0000     1.0000

2γ  = 1

Table 5A The comparative performance of  prediction equations A21 to A25 (5)

Simulation 

parameters

ratio Median Standard 

deviation 

IQR 

N = 81, T = 4 A21/A25     0.0326     0.1442     0.1235
λ = 0.8 A22/A25     0.0386     0.1639     0.1434
ρ = 0.3 A23/A25     0.0450     0.1731     0.1532

0γ = 1 A24/A25     0.9940     0.9571     0.9656

1γ  = 5 A25/A25     1.0000     1.0000     1.0000

2γ  = 5
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