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Abstract 
Local wage variations in the UK are explained by two non-nested rival hypotheses. The first 

derives from new economic geography theory, in which wages depend on market potential. 

The second come from urban economics theory, giving a reduced form with wage rates 

dependent on employment density. The paper examines whether one of these rivals is 

encompassed by the other by fitting an artificial nesting model using three alternative panel 

data estimators. The estimates indicate that neither hypothesis is encompassed by its rival, 

suggesting a need for new, more comprehensive, theory.  



1. Introduction

Prior to the advent of the ‘new economic geography'  (NEG), spatial  economic 

models allowing increasing returns to scale were somewhat detached from the main body 

of  economic  theory.  More recently  however,  following a  stream of  research  deriving 

initially  from  international  trade  theory  and  related  sub-disciplines  of  economics, 

culminating in the publication of the book by Fujita, Krugman, and Venables (1999),  it is 

fair to say that nowadays NEG has become widely recognized as a major contribution 

allowing,  for  the  first  time,  increasing  returns  to  scale  to  co-exist  with  micro-level 

theoretical assumptions. This has helped integrate spatial economics more fully into the 

main body of contemporary economic theory.

Recent research activity has also focused on operationalising,  testing and refining 

NEG theory (see for example Combes and Overman, 2003, Head  and  Mayer, 2003, 2006, 

Redding  and  Venables, 2004, Rice and  Venables,  2003, Brakman, et. al. , 2006), and a 

central pillar of this work has been the so-called wage equation which, in the basic NEG 

model examined in this paper and described in Fujita,  Krugman, and Venables (1999), is 

one  of  a  small  number  of  simultaneous  equations  associated  with  the  short-run 

equilibrium1. The wage equation links nominal wages to market access or potential. 

However, despite empirical evidence in support of the wage equation, this alone is 

an inadequate test of the explanatory power of NEG theory.  A sharper test, following 

Head and Ries (2001), Davis and Weinstein (2003) and Fingleton(2006), is to  examine 

the  relative  performance  of  NEG  when  confronted  with  a  competing  (and  simpler) 

explanation  of  wage  rate  variations.   In  this  spirit,  the  present  paper  tests  two  rival 

hypotheses, one associated with NEG’s wage equation and the other originating from the 

urban economics literature (referred to here as the UE model). The UE model links wage 

rate  variations  to  the  density  of  employment,  as  a  result  of  pecuniary  externalities 

available in dense cities. There is a wide literature on the most appropriate way to test 

1 This occurs without any labour migration in response to real wage differentials. The long-run dynamics 
are driven by responses to real wage differences. 
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non-nested  hypotheses.  In  this  paper  we  use  the  simplest  approach2,  described  by 

Davidson and Mackinnon (2004) as ‘inclusive regression’,  which simply puts the two 

competing  non-nested  hypotheses  together  in  a  single  equation,  in  other  words  both 

market potential (NEG), and employment density (UE) together with covariates form part 

of an artificial nesting model (ANM). 

The specific innovatory contribution of the paper is that the inclusive regression 

analysis is carried out using developments in panel data econometrics under parameter 

constraints consonant with commuting across local areas. Modelling panel data has 

several advantages, providing a richer information set than is available from purely cross-

sectional analysis, and allowing inter-area (individual) heterogeneity to be modeled, thus 

avoiding potential omitted variable bias. In the econometrics in the current paper, fixed 

effects (FE)  and random effects (RE) panel models are fitted, together with a RE 

specification embodying spatially dependent error components (Kapoor et al, 2006, 

Fingleton, 2008) estimated by feasible generalized spatial two stage least squares 

(FGS2SLS) and generalized method of moments (GMM), although the same conclusions 

are arrived at under each of these three modelling approaches. Explicit consideration is 

given to simultaneous spillover effects across areas, which is an outcome of the small 

spatial units of observation3, so that inter-area commuting is recognized as a significant 

factor. The cost of allowing contemporaneous spillover is a reduced form ANM with 

parameter constraints. These are satisfied by using an iterative estimation approach, 

within which the three panel data estimators are embedded. Additionally, the FGS2SLS 

estimator allows for endogeneity and measurement error. 

2. The Theoretical Models

Both NEG and UE theory have a common basis in Dixit-Stiglitz monopolistic 

competition theory. They both assume a two-sector economy with a monopolistic 

competitive sector (M) comprising numerous small, differentiated firms with internal 

2 Although the J test may be more powerful, inference is made more difficult by the non-standard 
distribution of the test statistic in finite samples
3 Comprising 408 unitary authority and local authority districts (UALADs), covering the surface area of 
Great Britain. There are 47 counties covering England, and 353 UALADs.  
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increasing returns to scale. This market structure assumption means that there is no 

strategic interaction, and free entry and exit, with competition driving profits down to 

zero in equilibrium. In the competitive ( C) sector, we assume constant returns to scale 

and prices set on world markets.  

 

2.1 The NEG model

The model implies that the level of M sector wages in area i, M
iw  , is related to i ‘s 

market potential  iP , which is one of the short-run4 equilibrium simultaneous equations 

(the  wage  equation)  given  by  Fujita,  Krugman  and  Venables  (1999).  In  addition,  M 

wages depend on  iA , which is area i’s  level of efficiency,  thus  

1 1
1 1[ ( ) ( ) ]M M

i r r ir i i
r

w Y G T P Aσ σ σ σ− −= =∑                                     (1a)

1ln ln lnM
iw P A

σ
= +                                                        (1b)

As shown by Head and Mayer(2006), the presence of A in equation(1a) can be derived 

from micro-  assumptions,  by  commencing  with  a  labour  quality  adjusted  production 

function  for  the  firm.  In  (1),  the  summation  is  over  areas 1,..., ,...r i R= ,  the   to i r  

transport cost is irT , M
rG denotes M prices, rY denotes income and σ  is the  elasticity of 

substitution for  M  varieties.  In contrast,  C goods are freely transported and produced 

under constant returns; C wages C
iw are constant across areas. 

 The price index is  
1

1 1( ) ][ ir
M M
i r r

r
TG w σ σλ − −= ∑                                            (2)

4 Fast entry and exit of firms drive profits to zero, but workers are slow to react and there is no migration in 
response to real wage differences between areas.  Only in the long run would be expect movement to a 
stable long-run equilibrium with no real wage differences as a result of labour migration.
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with the number of varieties5 produced in area r denoted by rλ . Income is denoted by 

(1 )r r
M C

r r rY w wθ λ θ φ= + −                                                      (3)

in which rφ is the share of C workers.



2.2 The UE model 

UE theory explains productivity/wages variations by the varying supply of non-

traded services to competitive industry.  It therefore abstracts from transport costs, and 

consequently  market  potential/access  is  irrelevant.  The  core  of  UE  theory  is  Cobb-

Douglas production function 
1 1(( ) )CQ E A I Lβ β α α− −=                                                       (4)

 With  Q denoting competitive industry production,  CE A  equal to  C labour efficiency 

units, and I equal to  the level of composite services. The quantity I is obtained via a CES 

production function for services under the  monopolistic competition market structure. 

The parameter  α < 1  produces  diminishing returns due to congestion effects (Ciccone 

and Hall, 1996), with variables  measured per unit of land ( 1 1L α− = ). Since  I depends 

only on ME A  and N = A(EC  + EM), then 
1(( ) )CQ E A I Nβ β α γφ−= =                                               (5)

with constants φ  and [1 (1 )( 1)]γ α β µ= + − −  , and with   1
µ

µ −   equal  to the elasticity of 

substitution  for  different  services.  So  long  as  γ >  1  there  are  increasing  returns  to 

employment  density.   Using  standard  equilibrium  theory,  and  with  ow  denoting  the 

overall wage rate, 
ow N
Q

α=                                                        (6)

and taking natural logs,  substituting for Q and6 N EA=  and simplifying  gives

1ln ( 1) ln ( 1) lno
i i iw k E Aγ γ= + − + −  (7)

in which  k1 denotes a constant.  

5 Equal to the share in area  r of the total supply of M workers.
6 E is the total employment level per square km.
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3. Labour Efficiency 

The wage rate o
iw  refers to the wages paid by employers in area i, and these will 

therefore be influenced by workers commuting to work from outside i. Accordingly, 

labour efficiency within i depends on the characteristics of the workers resident in i, 

represented in equation (8) by 1 ,...,i kiX X , and also on the levels of labour efficiency in 

other areas from which workers commute.

In order to capture the contribution to efficiency from in-commuters, we allow 

efficiency in i to depend on efficiency in ‘neighbouring’ areas as follows 

                                                                                             (8)

in which we multiply by iδ to allow for area i’s transport infrastructure. The values of 

these δ are determined by studying commuting flows, calibrating using census data, as in 

Fingleton(2003), and the weight exp( )ir i irW Dδ= − is set to zero for 100irD > . The 

adoption of a negative exponential function approximates to lower costs per mile for 

commuters at greater distance, possibly due to their willingness and ability to invest to 

achieve travel cost reductions, for example in season tickets available for long distance 

commuting that require an initial large outlay of money.

We express (8) more succinctly in matrix notation as

2

1

ln ln
~ (0, )

( ) ln
ln ( ) ( )

A W A Xb
N

I W A Xb
A I W Xb

ρ ξ
ξ

ρ ξ
ρ ξ−

= + +
Ω

− = +
= − +

                                                 (9)

An alternative to the endogenous spatial lag lnW A  would be to use exogenous lags (

1 ,...,i kiWX WX ), but that excludes the unmodeled effects captured by iξ , and it is well 

6

0 1 1ln ... exp( ) ln

, 100

i i k ki i ir r i
r

ir

A b b X b X D A

r i D

ρ δ ξ= + + + + − +

≠ ≤

∑



known that for W with elements of which are less than 1 and 1ρ <  the spatial lag 

embodies the remote effects of exogenous variables going to infinity, since 

1ln ( ) ( ) ( )( )i iA I W Xb W Xbρ ξ ρ ξ−= − + = +∑                               (10)

The summation is from i = 0 to ∞, W0 = I, and in general Wi is the matrix product of Wi-1 

and W . We re-express this as 
2 2 3 3 4 4ln .....A Xb WXb W Xb W Xb W Xbρ ρ ρ ρ= + + + +                             (11)

4. The Artificial Nesting Model

The ANM combines the reduced forms from the NEG and UE models, giving 

2 0 1 2

2

ln ln ln ln

~ (0, )

o
it it it it it

it

w k d E d P d A
N

η

η

= + + + +

Γ
                                  (12)

  in which k2  is a constant term, i refers to area and t refers to time. Substituting for ln A 

gives 

1
2 0 1 2ln ln ln ( ) ( )o

it it it it it itw k d E d P d I W X bρ ξ η−= + + + − + +                    (13)

and  multiplying by ( )I Wρ−   obtains 

2 0 1

2 2
2

( ) ln ( ) ( )( ln ln ) ( )

~ (0, )

o
it t it it t it

it

I W w I W k I W d E d P X g I W
N d

ρ ρ ρ ζ ρ η

ζ

− = − + − + + + + −

Ω
  (14)

which can then be rearranged to give the ANM model 

2 0 1ln ( ) ln [ln ln ] [ln ln ]
( )

o o
it it it it it it

it it it

w I W k W w d E W E d P W P
X g I W

ρ ρ ρ ρ
ζ ρ η

= − + + − + − +
+ + −       (15)
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In (15), ρ  determines the values of  2( )I W kρ− and the two compound variables 
[ln ln ]it itE W Eρ−  and [ln ln ]it itP W Pρ− , and defines the error process ( ) itI Wρ η−  and 
the autoregressive interaction between ln o

itw  and  ln o
itW w . Thus in (15) we see the effect 

of the a priori specification (8), in that there are parameter constraints involving ρ .  

5. Data

In order to measure market potential, following equation (1a) we need transport 

cost lne irD
ir irT Dτ τ= = , M prices 

M
rG , income rY and consequently wages M

iw and Cw ,  the 

M and C worker shares rλ and iφ , the overall share of  total employment  engaged in M 

activitiesθ  and also the  elasticity of substitution for M varieties σ . We measure irD by 

straight line distance between areas, with 2
3

i
ii

areaD
π

= , where iarea is the number of 

square km in  i. The use of the natural logarithm of distance gives a power function7, and 

this causes prices to increment by a factor equal to 1irT > provided irD >1. This can 

always be achieved by a suitable choice of units (alternatively by using the function 

1ir irT Dτ= + ). We choose 0.1τ =  partly on the basis that a distance of 100 miles will 

cause the delivered price to rise by a factor of 1.58.  Larger values cause much greater 

increases and also increase the correlation between the resulting market potential and the 

competing UE variable. For example, choosing 0.25τ =  is consonant with a factor of 

3.16, which seems too large, and causes the correlation to increase from 0.6373 to 

0.8328.  A high correlation makes it more difficult to distinguish between the two rivals, 

and also means that market potential is dominated by internal demand, which is based on 

the arbitrary assumptions made about the value of iiD .

Equation (3) shows that income depends on the number of varieties produced in 

area r, which is equal to the share in  r of the total supply of M workers rλ , and on the 

share of   C workers rφ  together with the expenditure share of M goods (the overall share 

7 This introduces economies of distance and thus avoids some of the limitations of iceberg transport costs 
described by McCann(2005) and Fingleton and McCann(2007).  
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of  total employment) θ .  These quantities require definition of the M and C sectors. 

Accordingly, it is assumed that the M sector is equivalent to a subset of service sectors, 

while all other sectors are C activities. The subset is defined as the Banking, Finance and 

Insurance etc subgroup of the UK's 1992 Standard Industrial Classification.  In contrast, 

in line with Fujita, Krugman and Venables (1999) the NEG  literature commonly assumes 

M activities to be manufacturing,  and all other sectors ('agriculture') to be C activities. 

However Redding and Venables (2004) use a composite of manufacturing and service 

activities, and in the UE literature (see for example Abdel-Rahman and Fujita, 1990) the 

M market structure assumptions are applied to services. Fingleton (2006) gives estimates 

that are robust to either definition of the M sector.  

Equation (12) onwards proxies  M wages  M
iw  by  o

iw , as measured by the gross 

weekly  pay  for  male  and  female  full  time  workers  from  UK’s  Office  for  National 

Statistics’  New Earnings  Survey.  This   is  not  sector  specific,  so we assume that  the 

difference between  o
iw  and  M

iw is  measurement error captured by the error term. The 

wage rate for the C sector Cw , needed also to calculate rY ,   is constant across areas, and 

assumed to equal ( )o
rMEAN w .

It is assumed that the elasticity of substitution of M sector varieties is 6.25σ = , 

which is a central value among the range of estimates provided by the literature8 equal to 

the mid-point of the range given by Head and Mayer (2003). This is supported by the 

finding  in  Fingleton  (2006)  that  the  reciprocal  of  6.25σ =  was  within  two standard 

errors of the estimated wage equation market potential coefficient. There are two main 

alternative approaches to obtaining the value of σ . One is direct nonlinear estimation, as 

carried out for example by Mion (2004) and Brakman et al (2006), but this would be 

difficult  to  operationalize  in  the  context  of  the  iterative  estimation  methods  to  be 

described subsequently, and  limit the potential complexity of the trade cost function that 

could be employed.   The other alternative is the two-step linear estimation approach of 

Redding  and  Venables  (2004),  but  this  relies  on  bilateral  trade  flows  which  are 

unavailable at the level of spatial resolution being analyzed in this paper. Anderson and 

8 Bröcker (2002) finds a value of 13, compared with 7.9 to 11.4 in Head and Ries (2001), 5 to 10 in 
Harrigan (1993), 9.28 in Eaton and Kortum (2002), 3 to 8.4 in Feenstra (1994), and 6.4 in Baier and 
Bergstrand (2001).   
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van Wincoop (2004) summarize various estimates, which are largely within the range 5 

to 10.  As with the assumed value  0.1τ = , assuming 6.25σ =  does at any snapshot in 

time produce a market potential ‘surface’ that seems to accord reasonably well with a 

priori expectations, with a single peak centred on London, and a gradual incline to lower 

levels northwards and westwards. The central spine of Great Britain, from the South East 

to Greater Manchester, possesses the highest market potential levels. Assuming 20σ =

creates a surface with numerous sharp peaks centered on individual conurbations, which 

is too similar to the employment density surface to be able to properly differentiate the 

two. In contrast, assuming 2σ = creates a more or less flat plain so that market potential 

has no explanatory power when entered into wage equation regressions. 

With regard to the measurement of labour efficiency, within an area labour 

efficiency is assumed to depend on two key indicators. First, it depends on the level of 

formal education, since education provides skills which can be put to productive use. We 

use the log percentage of the population without any formal qualifications as an indicator, 

which is denoted by ln_ea, since this is an unambiguous measure available from the UK 

2001 Census, and thus relatively free from measurement error or definitional problems. It 

is anticipated that ln_ea will be negatively related to wage rates. The disadvantage of this 

indicator is that it is constant across time, although even if data were available we would 

expect it to change very little over the period of the panel. The second component of 

worker efficiency relates to skills and knowledge gained at work. We focus on industries 

that are well known to be highly efficient and which provide transferable skills and 

efficiency generating capital equipment, particularly in information technology. 

Therefore the second element of the efficiency measure is the log of the location quotient 

for computing and related activities (1992 SIC 72) and research and development (1992 

SIC 73), which is denoted by lnknowlq. The data come from the employee analysis in the 

UK’s Annual Business Inquiry, available from  NOMIS.  
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6.  Estimation

Three estimators are applied in this paper. One is the fixed effects (FE) estimator 

entailing individual (location) and time dummies (or equivalently mean deviations) and 

OLS. The second is the  random effects (RE) estimator involving GLS (generalised least 

squares). The third is an estimator with random effects which allows for endogeneity and 

models spatially autocorrelated errors, involving feasible generalised spatial  two stage 

least squares (FGS2SLS) and the generalised method of moments (GMM). In this section 

we  briefly  sketch  each  estimation  methodology,  and  give  references  to  the  relevant 

technical literature. 

The  FE  estimation  of  the  ANM  model  (equation  (15))  involves  some  initial 

simplification,  because  2k  is unknown and therefore the variable  2( )I W kρ−  must be 

omitted9, therefore building spatial autocorrelation into the residuals. Also, the moving 

average error process ( )I Wρ η−  is substituted by a simpler spatial independent normal 

error  process.  We  re-introduce  a  spatially  dependent  error  process  subsequently. 

Consequently the FE specification is  

0 1

2

ln ln [ln ln ] [ln ln ]

~ (0, )

o o
it it it it it it

i i t t it t

t

w W w d E W E d P W P
D T X g e

e N I

ρ ρ ρ
α φ

σ

= + − + − +
+ + +           (16)

In which o
itw  is the wage rate in area i at time t, i iDα  is the fixed effect for  i, with 

coefficients   iα  and N-1 place- dummy variables  , 2,...,iD i N= , and  t tTφ  is the fixed 

effect  for  time t,  with  coefficients  tφ  and  T-1  time-dummies  , 2,...,tT t T= .  The 

specification entails a constraint equalizing the coefficient  ρ  for  ln o
itW w ,  ln itW P and 

ln itW E . In order to satisfy this constraint, an iterative procedure is used10. The model is 

estimated by OLS. 

Generalizing, we rewrite equation(16) as
9 A simplification which is necessary in all the models estimated.
10 As for all models in this paper, using an approach described subsequently.
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t t t tY WY H eρ β= + +                                               (17)
  
in which  ln o

t tY w= ,  ln o
t tWY W w= ,  tH  is the N by ( k =% k + 2 + N + T)  matrix  of 

regressors  ( 1 2 2ln ln , ln ln , ... , ... , ...t t it it t kt N NE W E P W P X X D D T Tρ ρ− − ),  β  is  a  k%   x  1 

vector of parameters ( 0 1 1 2 2, , ... , ... , ...K N Td d g g α α φ φ ). 

 

Since we are considering a panel with T periods rather than purely cross sectional 

data, we can omit t , hence 

 

( )

(( ) , )
( , )

T

T

Y I W Y H e Xb e
X I W Y H
b

ρ β

ρ β

= ⊗ + + = +

= ⊗
′ ′=

%

%
                                        (18)

in which Y is a TN x 1 vector of observations obtained by stacking ln o
t tY w=  for t = 1…

5,  X%  is a TN x (1 + k% )  matrix of regressors, comprising the TN x 1 vector ( TI W⊗ )Y, 

and  H which is a  TN  x  k%  matrix of  regressors. Also  b is the ( k% +1) x 1 vector of 

parameters  ( 0 1 1 2 2, , , ... , ... , ...K N Td d g gρ α α φ φ ).  In  addition,  given  that   TI  is  a  T  x  T 

diagonal matrix with 1s on the main diagonal and zeros elsewhere, and NI  is a similar N 

x N diagonal matrix, then TN T NI I I= ⊗    is a  TN x TN diagonal matrix with 1s on the 

main diagonal and zeros elsewhere.

We also estimate equation (16) with 2~ (0, )te N Iσ  replaced by an autoregressive 

(AR)  error process using ML (Baltagi, 2001, Elhorst 2003). In this specification, in each 

period t c t te W eλ ξ= + , in which λ  is an unknown parameter, and tξ  is an N by 1 vector 

of  time t  innovations  distributed  as   2(0, )N Iσ  and  cW  is  a  standardized  contiguity 

matrix, as distinct from the ‘commuting W matrix’ described earlier.   However the error 

process  does  not  correspond  to  the  moving  average  (MA)  process  of  (15)  and  the 

estimation takes no account of the endogeneity of right hand side variables. 
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The fixed-effects estimator has the important advantage of allowing endogeneity of 

the regressors with respect to the individual effects. However it is limited by not being 

able to identify time-invariant regressors, since time-invariant regressors are aliased by 

fixed effect dummies. Also in this case there are 408 areas and therefore we need (in 

effect) 408 dummies (or equivalently deviations from the group means) to control for 

inter-area heterogeneity. There is a loss of a large number of degrees of freedom due to 

the fixed effects. This reduces the efficiency with which we can estimate the regression 

coefficients. 

 The RE estimator allows identification of time-invariant regressor parameters, 

and estimation of  time-varying regressor parameters is carried out more efficiently, but 

exogeneity of the regressors with respect to the random individual effects is assumed to 

maintain consistency.  The components of the errors ξ are

2

2

~ (0, )

~ (0, )

iid

iid
µ

ν

µ σ

ν σ
                                                       (19)

( )T NIξ ι µ ν= ⊗ +                                                     (20)

in which µ is the N x 1 vector of individual effects, ν  is the NT x 1 vector of transient 

errors, Tι  is a T x 1  matrix with 1s , and T NIι ⊗  is a TN x N matrix equal to T stacked 

NI  matrices.   The result is that the TN x TN innovations variance-covariance matrix  ξΩ  

is non-spherical.  The composite disturbance term means that OLS is not appropriate. We 

therefore use generalised least squares (GLS), specifically the Swamy and Arora (1972) 

estimator.

The third estimator (FGS2SLS plus GMM) allows spatial dependence in the errors 

and  controls  for  endogeneity.  For  the  error  or  disturbance  process,  one  of  two error 

process  assumptions11 made  is  that  in  each  period  t c t te W eλ ξ= + ,  in  which  λ  is  an 

unknown parameter, and tξ  is an N by 1 vector of time t innovations.    

These create the NT x 1 vector e 

 

11 The autoregressive process (AR)  and the  moving average (MA) error process.
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1( )TN T ce I I Wλ ξ−= − ⊗                                           (21) 

In which ξ  is an NT x 1 vector of innovations.

Notice that  the two error components µ  and ν  are assumed to follow the same 

autoregressive process (c.f. Baltagi and Li, 2006), since 

1 1 1( ) ( ) (( ) ) ( )TN T c TN T c T N TN T ce I I W I I W I I I Wλ ξ λ ι µ λ ν− − −= − ⊗ = − ⊗ ⊗ + − ⊗          (22)

In estimating  2 2, , ,µ νρ β σ σ and  λ , the method of Kapoor et al. (2007) involving  GMM, 

nonlinear least squares and FGLS, is adapted to allow for endogenous variables in the 

matrix  of regressors  X% (see Fingleton,  2008).  Regressor matrix   X%  includes vector (

TI W⊗ )Y  which is endogenous by definition, and the endogenous12 variables ln tE  and 

ln tP  stacked for t = 1…T. Hence we proceed using instrumental variables, but also take 

account of the  non-sphericity of  variance-covariance matrix  ξΩ . To  filter out the AR 

error  dependence,  we use a  Cochrane-Orcutt  (C-O) transformation,  premultiplying  by 

TN T cI I Wλ− ⊗  since 1( )TN T ce I I Wλ ξ−= − ⊗ , therefore 

*

*

ˆ( ( ))
ˆ( ( ))

ˆ( ( ))

T N c

T N c

T N c

Y I I W Y

X I I W X

I I W e

λ

λ

ξ λ

= ⊗ −

= ⊗ −

= ⊗ −

%                                              (23)

A linearly independent subset of the exogenous variables is used to give the TN x 

( 1)f k≥ +%  matrix of instruments Z, and we assume matrices  X%  and Z are full column 

rank with ( 1)f k≥ +% .  Alternatively, assuming a moving average (MA)  error process, 

we pre-multiply by 1( )TN T cI I Wλ −− ⊗ . Both of these provide  β̂  and hence  ê , which 

forms part of the GMM estimating equations for 2 2
1, ,  andνλ σ σ given in Kapoor et 

al (2007). Fingleton (2008) gives the GMM panel data estimator for MA errors with 

extension to an endogenous spatial lag. 

12 Employment hence employment density will probably increase in response to high wages. Market access 
is dependent on wages by definition. 
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7.  Results

Table  1  gives  the  OLS  and  ML  estimates  for  the  FE  specification,  with 

heterogeneity controlled by individual and time dummies.  In addition, we give robust 

HAC standard errors due to  Arellano (2003), although with N (the number of areas) 

large relative to T (the number of time periods), the distribution theory relies on cross-

sectional  independence.  The  Beck-Katz (1995) standard error  estimates  do allow for 

contemporaneous correlation across areas and for heteroscedasticity by area, assuming no 

time  series  autocorrelation,  and  in  this  case  significantly  reduce  standard  errors  and 

increase t-ratios. However these will be relatively inaccurate for small T (here equal to 6) 

since  a  typical  element  of  the  contemporaneous  covariance  matrix  is  estimated  by 

1

ˆ
T

ij it jt
t

e e T
=

Σ = ∑ .  However each of these estimators  indicates that  the rival  compound 

variables  lnE-ρWlnE   (employment  density)  and  lnP-ρWlnP (market  potential)  are 

significant, suggesting that neither of the competing hypotheses is dominant. The Wald 

test for joint significance of the time-dummies returns a test statistic equal to 14.7708, the 

test  statistic  is  asymptotically  distributed  as  2
4χ under  the null  of  no significant  time-

dummy, and this null is rejected given the p-value  equal to 0.005. The individual effects 

are also jointly significant, as the test statistic equals 13.139, with a near zero p-value in 

the F(407,1624) distribution, thus rejecting the null of a common intercept. The presence 

of the fixed individual effects means that the time constant variable ln_ea is aliased. Also 

the effect of lnknowlq is not significantly different from 0.  The implication of the OLS 

point estimates is that doubling employment density causes wages to rise by more than 

4%, since 0.0626781ln(2 ) 0.043445= , and doubling market potential causes wages to increase by 

about 11.3%.  However none of these point or standard error estimates make allowance 

for the potential  endogeneity of variables  WY, lnE, and lnP.  For example,  Beck-Katz 

(1995) standard errors assume consistent OLS for the residuals. 
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Table 1 : Fixed effects (time-dummies and place-dummies)  with iteration
VARIABLE COEFFICIENT STDERROR T STAT P-VALUE

WY 0.0583853
(0.066490)

0.0101635
 (0.0086418)
{0.0115423}
[0.00556337]

5.745
 (7.694)
{5.058}
[10.495]

<0.00001 ***
 (<0.00001 ***)
{<0.00001 ***}
[<0.00001 ***]

lnknowlq 0.00244665
(0.001757)

0.00423387 
(0.00373829)
{0.00487733}
[0.00453254]

0.578
 (0.470)
{0.502}
[0.540]

0.56342
 (0.6384)
{0.61599}
[0.58941]

lnE-ρWlnE   0.0626781
(0.063334)

0.0240388
(0.0212245)
{0.0301758}
[0.0151206]

2.607
 (2.984)
{2.077}
[4.145]

0.00921 ***
 (<0.003 ***)
{0.03795 **}
[0.00004 ***]

lnP-ρWlnP 0.162578
(0.163211)

0.0286024 
(0.0213739)
{0.0332229}
[0.0154805]

5.683
 (7.636)
{4.894}
[10.502]

<0.00001 ***
 (<0.00001 ***)
{<0.00001 ***}
[<0.00001 ***]

λ (-0.067970) (-2.185) (0.029)*
Rsq

(squared correlation between
fitted and actual)

0.9426525
(0.942612)

Sum of squared residuals 3.20721
(3.20948)

Estimates for fixed effects are omitted because of limited interest and to conserve space.
ML estimates are given in ().
Robust HAC estimator given by Arellano(2003) in {}
Standard errors using the estimator proposed by Beck and Katz (1995), see also Greene 
(2003, chapter 13) in [].

The ML estimates for the FE model with an AR error process, using a 

standardized contiguity matrix, give t-ratios that are larger than under HAC estimation, 

but mainly smaller than with Beck-Katz (1995) estimates.  Compared with OLS, there is 

only a very minor impact on the point estimates, and we come to a similar conclusion that 

both UE and NEG variables are significant, although the presence of negative error 

dependence was not anticipated. 

Table  2  gives  the  RE estimates,  whereby individual  heterogeneity  is  modeled 

explicitly as an error component.  Given the presence of the UE (employment density) 

variable, the coefficient on market potential is clearly significant. All the other variables 
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are  significant,  with  appropriate  signs.  The  indication  is  that  doubling  employment 

density  causes  wages  to  rise  by  less  than  1%,  as  indicated  by  the  fact  that 
.ln(2 ) 0.0095=0 0137671 .  Doubling  market  potential  causes  wages  to  increase  by 

.ln(2 ) 0.05586=0 0805990  or about 5.6%.  However, as with the FE estimates of Table 1, 

these RE estimates do not take account of the endogeneity of variables, moreover there is 

no  control  for  spatial  dependence  in  the  residuals.  Also  RE  estimation  imposes  an 

assumption that the regressors are orthogonal to the random individual effects. 

Table 2 : Random effects with iteration; time-dummies 
VARIABLE COEFFICIENT STDERROR T STAT P-VALUE

constant 3.33823 1.02760 3.249 0.00118 ***
WY 0.00194853 0.000299869 6.498 <0.00001 ***

ln_ea -0.155550 0.0194621 -7.992 <0.00001 ***
lnknowlq 0.0219163 0.00358608 6.111 <0.00001 ***
lnE-ρWlnE   0.0137671 0.00298089 4.618 <0.00001 ***
lnP-ρWlnP 0.0805990 0.0275316 2.928 0.00345 ***

Sum of squared residuals 14.4433
Estimates for time-dummies omitted because of limited interest and to conserve space.

Table 3 summarizes the third estimator, namely FGS2SLS plus GMM. The specification 

allows for individual heterogeneity via random effects and time heterogeneity via 

dummies, Compared with the FE and RE estimators, it controls for the endogeneity of 

WY, lnE and lnP . Spatial error dependence is modeled by  AR and MA error processes. 

The table shows that both market potential and employment density are significant.  In 

this case doubling employment density causes wages to rise by less than 1% and doubling 

market potential causes wages to increase by about 8.2%.  
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Table 3: FGS2SLS estimates with iteration (spatially dependent errors with 

commuting  W)
VARIABLE COEFFICIENT STDERROR T STAT P-VALUE

constant 1.87711
(1.85422)

2.10043
(2.1219)

0.893677
(0.873849)

0.3715
(0.3822)

WY 0.00220046
(0.002445)

0.000570329
(0.000662915)

3.85823
(3.68825)

<0.0002  ***
(<0.00025 ***)

ln_ea -0.113757
(-0.11673)

0.0272751
(0.028223)

-4.17073
(-4.13601)

<0.00004 ***
(<0.00004 ***)

lnknowlq 0.0495796
(0.0493868)

0.00569766
(0.00580332)

8.70176
(8.51009)

<0.00001 ***
(<0.00001 ***)

lnE-ρWlnE   0.0132398
(0.0133824)

0.00352675
(0.00360731)

3.75411
(3.70981)

<0.0002  ***
(<0.0002  ***)

lnP-ρWlnP 0.118037
(0.118839)

0.0559747
(0.0565922)

2.10876
(2.09991)

0.035   *
(0.036   *)

λ 0.0294994
(-0.0303594)

2
νσ 0.0015

(0.00255578)
2
1σ 0.0238

(0.0246172)
Square of correlation between 

fitted and actual
0.7412 

(0.743854)
Sum of squared residuals 14.6134 

(14.3733)
Estimates for time-dummies omitted because of limited interest and to conserve space.
Estimates with MA errors given in ().

The instruments are based on the employment densities and market potentials for 

the year 1998, which precedes the estimation period and avoids reverse causality. As an 

added insurance against simultaneity and measurement error the 1998 values are coded13 

1,0 and -1 according to whether they are above, between or below the upper and lower 

quartiles. This provides the instruments g3le_  and g3lnMP_. Additional instruments are 

created by premultiplying by a standardized contiguity matrix, thus giving  Wg3le_ and 

Wg3lnMP_. Table 4 provides an illustration.  Applying the Sargan over-identification 

test to the (iterative) 2SLS estimates indicates that, with a test statistic equal to 2.50 and 

p-value of 0.11 in the 2
1χ  distribution, these instruments are independent of the 2SLS 

residuals.  

13 As discussed by Kennedy (2003).  
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Table 4: Instrument construction

lnE(1998) lnP(1998) g3 le_ Wc g3 le_ g3lnMP_ Wc 

g3lnMP_
7.8135 37.2766 1 -0.25 1 0.25
4.3853 37.2472 -1 -0.125 0 0.625
3.7853 37.0720 -1 -0.4286 -1 -0.4286
7.3780 37.0987 1 -1 -1 -1
5.8159 37.0871 0 -1 -1 -0.3333

Key : 

lnE(1998) = log employment density 1998

lnP(1998) = log of market potential 1998

g3 le_ = -1 if below lower quartile,  0 , 1 if above upper quartile  of  lnE(1998)

Wc g3 le_ = weighted  average of g3 le_  in contiguous areas

g3lnMP_ = -1 if below lower quartile,  0 , 1 if above upper quartile  of  lnP(1998)

Wc g3lnMP_ = weighted  average of g3lnMP_ in contiguous areas

8.  Conclusions

The evidence presented suggests that neither the UE nor the NEG model alone 

provides a satisfactory explanation of local wage variations in the UK. Each of the two 

rival hypotheses evidently carries additional explanatory information, with neither 

encompassing the other. Also it is evident that variations in labour efficiency (mediated 

by commuting) carry some independent explanatory power. These inferences are based 

on the outcome of three estimators, FE, RE and FGS2SLS plus GMM, each of which 

involves different assumptions. In the case of the FE and RE estimators, it is assumed 

that market potential and employment density are exogenous.  Also, under the RE 

estimator, there is an assumption of exogeneity of the regressors with respect to the 

individual random effects and no allowance for spatial error dependence. Under 

FGS2SLS, we assume that finite sample bias is negligible under the specific instruments 

that happen to have been chosen to allow consistent estimation. Despite the caution these 

and other assumptions engender, the broad conclusions deriving from the various results 

obtained do not depend on the econometric model used, with each of these different 
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estimators indicating some empirical advantage in hybrid models and the need for new, 

more comprehensive, theory.   
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