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NONPARAMETRIC INFERENCE FOR
UNBALANCED TIME SERIES DATA

OLLLIIIVVVEEERRR LIIINNNTTTOOONNN
London School of Economics

This paper is concerned with the practical problem of conducting inference in a
vector time series setting when the data are unbalanced or incomplete+ In this
case, one can work with only the common sample, to which a standard HAC0
bootstrap theory applies, but at the expense of throwing away data and perhaps
losing efficiency+ An alternative is to use some sort of imputation method, but
this requires additional modeling assumptions, which we would rather avoid+ We
show how the sampling theory changes and how to modify the resampling algo-
rithms to accommodate the problem of missing data+ We also discuss efficiency
and power+ Unbalanced data of the type we consider are quite common in finan-
cial panel data; see, for example, Connor and Korajczyk ~1993, Journal of Finance
48, 1263–1291!+ These data also occur in cross-country studies+

1. INTRODUCTION

Estimation of heteroskedasticity and autocorrelation consistent covariance matri-
ces ~HACs! is a well established problem in time series+ Results have been
established under a variety of weak conditions on temporal dependence and
heterogeneity that allow one to conduct inference on a variety of statistics; see
Jowett ~1955!, Hannan ~1957!, Newey and West ~1987!,Andrews ~1991!, Hansen
~1992!, de Jong and Davidson ~2000!, and Robinson ~2005!+ Alternative meth-
ods for conducting inference include the bootstrap, for which there is also now
a very active research program in time series especially; see Lahiri ~2003! for
an overview+ One convenient method for time series is the subsampling approach
of Politis, Romano, and Wolf ~1999!+ This method was used by Linton, Maa-
soumi, and Whang ~2003! in the context of testing for stochastic dominance+

This paper is concerned with the practical problem of conducting inference
in a vector time series setting when the data are unbalanced or incomplete+ In
this case, one can work with only the common sample, to which a standard
HAC0bootstrap theory applies, but at the expense of throwing away data and
perhaps losing efficiency+An alternative is to use some sort of imputation method
to complete the data set, but this requires additional modeling assumptions, which
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we would rather avoid+1 We show how the sampling theory changes and how to
modify the resampling algorithms to accommodate the problem of missing data+
We also discuss efficiency and power+ Unbalanced data of the type we consider
are quite common in financial panel data; see, for example, Connor and Koraj-
czyk ~1993!+ These data also occur in cross-country studies+

2. MODEL AND SETUP

The most general setting would be a multivariate data series $Xit , i � Nt , t �
Ii % where the set Nt contains the number of cross-sectional units at time t and Ii

contains the number of time series observations for unit i+ We are primarily
concerned with the case where Ii � Ij � � ~although in a multivariate setting
you could have Ii � Ij � � for some pairs but not for all pairs and still obtain
the main results we find subsequently!+ The set Ii� Ii � Ij could in general con-
tain just contiguous observations, or it could contain several isolated sets before
and after Ii � Ij + The setup costs in establishing notation for the most general
case are quite high, and so we have chosen to concentrate on the bivariate spe-
cial case with staggered samples so that Ii� Ii � Ij , say, is a series of contiguous
observations prior to Ii � Ij , whereas Ij� Ii � Ij is a series of contiguous obser-
vations subsequent to Ii � Ij + This captures the main issues we wish to concen-
trate on+

Suppose we have two samples denoted IX and IY on X and Y, respec-
tively, with cardinalities TX and TY , where IX � $X1, + + + , XTX

% and IY �
$YT X�1, + + + ,YT X�TY

%+ These observations can be partitioned into T XY common
observations, denoted I XY � $~XT X�1,YT X�1!, + + + , ~XT X�T XY ,YT X�T XY !%, T X sep-
arate observations on X, denoted I X � $X1, + + + , XT X %, and T Y separate observa-
tions on Y, denoted I Y � $YT X�T XY�1, + + + ,YT X�TY

%, so that TX � T X � T XY and
TY � T Y � T XY+ There are a number of cases of interest with regard to the
relative magnitudes of T X, T Y, and T XY+ We shall suppose that these quantities
are all large+

ASSUMPTION A+ T X � T X~N ! r `,T Y � T Y~N ! r `, and T XY �
T XY~N ! r ` as the magnitude parameter N r `+ In the sequel all limits are
taken as N r `+

The main case of interest theoretically is where T X, T Y, and T XY are all of
approximately the same size, but we shall allow other cases+ The case where
T XY is large relative to T X,T Y is trivial, whereas the case where T X,T Y are
large relative to T XY can be viewed as a limiting version of the main case+
Denote by

T � TX TY 0~TX � TY !

the dominant ~i+e+, smaller! magnitude; thus T � T ~N ! r ` under Assump-
tion A+
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We suppose that the data are temporally and cross-sectionally dependent but
are stationary and mixing+ We assume that the missing at random ~MAR! con-
dition of Little and Rubin ~1987! holds; that is, the process by which the obser-
vations are missing is unrelated to the underlying data distribution+

We are concerned with testing hypotheses about the marginal distributions
of Xt and Yt + There are two general types of hypotheses of interest+

Example 1

We want to test the hypothesis that

H0 :mX � E~Xt !� E~Yt !�mY (1)

with alternative either one sided or two sided+ This is a special case of the prob-
lem of testing whether f ~mX ! � f ~mY !, where mX ,mY are vectors of moments
~including quantiles! from the distributions X,Y, respectively, and f is a smooth
function+ A more general version of this would involve regression on a bench-
mark variable Zt + Thus suppose that Yt � bY

� Zt � uYt and Xt � bX
� Zt � uXt ,

where E~ut 6Zt ! � 0 with ut � ~uYt ,uXt !
�, and we observe Yt , Xt as stated pre-

viously but Zt is observed throughout t �1, + + + ,T X � TY +We want to test whether
f ~bY !� f ~bX ! for some smooth function f+ A leading example here would con-
cern comparison of the alphas of two different funds ~where these are com-
puted relative to a benchmark fund Zt !+

Example 2

We want to test the hypothesis that the distribution of Xt first-order dominates
the distribution of Yt + Let FX ,FY denote the cumulative distribution functions
~c+d+f+s! of X and Y, respectively+ The hypothesis can be stated as

H0 : sup
z
$FX ~z!� FY ~z!% � 0 (2)

with the alternative hypothesis that supz$FX~z! � FY~z!% � 0+ More generally
we can consider tests of higher order dominance+

In cases like Example 1, we can expect a normal distribution theory to apply
under moment and mixing conditions, with the possibility of obtaining asymp-
totically pivotal test statistics, whereas in cases like Example 2 we expect a
more complicated nonnormal distribution theory, with complicated dependence
on nuisance parameters precluding asymptotically pivotal statistics+

In Example 1 a natural test statistic to use is

t � MT ~ PX � PY !, (3)

where PX � TX
�1(t�1

TX Xt and PY � TY
�1(t�T X

T X�TY Yt + Under a variety of addi-
tional conditions t0 [s n N ~0,1! under the null hypothesis, where s 2 �
avar~MT ~ PX � PY !! and [s 2 is a consistent estimate thereof; we discuss the com-
putation of [s 2 subsequently+ The test is based on comparing the studentized t
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with standard normal critical values+ An alternative test statistic would be
based on only the common sample I XY, tXY � MT XY ~ PX XY � PY XY!, where
PX XY � ~T XY !�1(t�I XY Xt and PY XY � ~T XY !�1(t�I XY Yt + In this case also
tXY0 [v n N~0,1! under the null, where v2 � avar~MT XY ~ PX XY � PY XY!! and [v2

is a consistent estimate thereof+ In some cases this test may be an attractive
option, but when T X and0or T Y is large, this approach, although convenient,
may lose power+

In Example 2 a natural test statistic is

d � MT sup
z
$ ZFX ~z!� ZFY ~z!%, (4)

where ZFX~z! � TX
�1(t�1

TX 1~Xt � z! and ZFY~z! � TY
�1(t�T X

T X�TY 1~Yt � z! are the
empirical distribution functions+ In practice, the supremum in ~2! is approxi-
mated by the maximum over a large grid+ In this case, the limiting null distri-
bution is DF � supz WF~z!, where WF is a Gaussian process with covariance
function depending on the joint distribution of X,Y and on the joint autodepen-
dence of these processes+ The only feasible way of conducting inference here is
to use some sort of bootstrap procedure+ Linton et al+ ~2003! have proposed a
subsampling algorithm for the statistic dXY � MT XYsupz$ ZFX

XY~z! � ZFY
XY~z!%,

where ZFX
XY~z! � ~T XY !�1(t�I XY 1~Xt � z! and ZFY

XY~z! � ~T XY !�1(t�I XY

1~Yt � z! are the empirical distributions based on the common sample+ Because
dXY uses less data it might be expected to be less powerful than d+ We show
subsequently how to modify the Linton et al+ ~2003! subsampling algorithm to
obtain a consistent test based on d+

3. INFERENCE

3.1. Estimation of Long-Run Variance

Here we show how to estimate s 2 and conduct the test based on a studentized
version of t+ Let gX~ j ! and gY~ j ! be the marginal covariance functions of the
processes X,Y, respectively, and let gXY~ j ! � cov~Xt ,Yt�j !+ We use the sym-
bol � to denote asymptotic equivalence as N r `, that is, XN � YN if XN 0
YN r

p 1; in the matrix case this is interpreted element by element+

THEOREM 1+ Suppose that ~Xt ,Yt ! is jointly stationary with 1-summable
covariance function, that is, (j�1

` j 6gXY ~ j !6 � `. Suppose that Assumption A
holds. Then

var� PXPY� � �
1

TX
(

j��`

`

gX ~ j !
T XY

TX TY
(

j��`

`

gXY ~ j !

T XY

TX TY
(

j��`

`

gXY ~ j !
1

TY
(

j��`

`

gY ~ j ! � +
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This shows that the marginal variances are the usual terms proportional
to the full marginal sample sizes, whereas the covariance is proportional
to the common sample size T XY + The reason is basically because terms like

(t�T X�1
T X�T XY

Xt and (t�T X�T XY�1
T X�TY Yt are asymptotically independent+ The restric-

tion (j�1
` j 6gXY ~ j !6 � ` is only needed for the covariance term; if this condi-

tion does not hold, the asymptotic covariance term may be different+
A consequence of Theorem 1 is that

s 2 �
TY

TX � TY
(

j��`

`

gX ~ j !�
TX

TX � TY

� (
j��`

`

gY ~ j !� 2
T XY

TX � TY
(

j��`

`

gXY ~ j !, (5)

whereas v2 � (j��`
` gX ~ j ! � (j��`

` gY ~ j ! � 2(j��`
` gXY ~ j !+ When

T X,T Y,T XY are all of the same magnitude, all three terms in ~5! remain in the
limit; otherwise one or more of them may vanish asymptotically+ To esti-
mate these quantities we now apply the HAC theory+ Specifically, we can esti-
mate the long-run variances lrv~X ! � (j��`

` gX ~ j !, lrv~Y ! � (j��`
` gY ~ j !,

and lrcov~X,Y ! � (j��`
` gXY ~ j ! by corresponding HAC estimators based,

respectively, on the full sample of X 's, the full sample of Y 's, and the common
sample I XY + For example, let [gX~ j !� ~TX � j !�1(s�1

TX�j~Xs � PX !~Xs�j � PX ! for
j � 1, + + + , J ~TX ! and let

Zlrv~X ! � (
j��J

J

k� j

J
� [gX ~ j !, (6)

where k~+! is a weight function with support @�1,1# and J is a bandwidth param-
eter satisfying J r ` and J0TX r 0+ See Andrews ~1991! for methods and
results on how to choose J and Xiao and Linton ~2002! and Phillips ~2005! for
alternative strategies+

We now turn to the properties of the studentized tests t0 [s and tXY0 [v, where
[v, [s are consistent estimates of v,s+ Under local alternatives of the form
mX � mY � l�MT , we have

tXY

[v
n N~pXY,1! and

t

[s
n N~p,1!,

where

p �
l

s
and pXY �

l

v
lim

Nr`
	 T XY

T
+

Clearly, when T XY0T r 0 the common sample test has no power against these
alternatives and t is preferable+ However, the ranking could go the other way+
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Suppose that T X � T Y � T XY , in which case T � TX 02 � TY 02 � T XY, so

that pXY � l0v+ We then have s 2 � ~ 12_ !(j��`
` gX ~ j ! � ~ 12

_ !(j��`
` gY ~ j ! �

~ 12
_ !(j��`

` gXY ~ j !, and it is possible that v2 � s 2, at least when

(j��`
` gXY ~ j ! � 0+ For example, suppose that (j��`

` gX ~ j !�(j��`
` gY ~ j !�

q and (j��`
` gXY ~ j !� rq; then v2 � s 2 � q~2 � 3r!02, which can be neg-

ative for r � 2
3
_ +2

In conclusion, we have found that although PX is always more efficient than
PX XY, the ranking of tXY,t as test statistics could go either way—it depends on

the relative sample sizes and on their mutual dependence+ Subsequently we dis-
cuss further the issue of efficiency and local power+

3.2. Subsampling

In the second class of testing problems it is not possible to obtain a pivotal
statistic by studentizing, and inference is usually based on some sort of resam-
pling scheme+ We concentrate on the subsampling method because it has cer-
tain advantages in Example 2; see Linton et al+ ~2003! for more discussion+ The
problem here is that just subsampling through the data as usual gives missing
data or confines the researcher only to I XY , which would not adequately reflect
the sampling error of t or d+

We propose a simple modification of the subsampling procedure suitable for
the full data set and show that it works in our Example 2+ Rewrite d �
g~I X, I XY, I Y! for some function g+ Define subsample sizes bX,bXY, and bY with
b j r ` and b j0T j r 0 for j � X,Y, XY+ Then define subsamples I X, i,bX

from
I X with

I X, i,bX

� $Xi , + + + , Xi�bX�1% for i � 1, + + + ,T X � bX � 1,

likewise define subsamples I Y, i,bY

from I Y

I Y, i,bY

� $YT X�T XY�i , + + + ,YT X�T XY�i�bY�1% for i � 1, + + + ,T Y � bY � 1,

and define subsamples I XY, i,bXY

from I XY

I XY, i,bXY

� $~XT X�i ,YT X�i ! + + + , ~XT X�i�bXY�1,YT X�i�bXY�1!%

for i � 1, + + + ,T XY � bXY � 1+

Then define the subsample statistic dT,b, i � g~I X, i,bX

, I XY, i,bXY

, I Y, i,bY

! and like-
wise tT,b, i , specifically

dT,b, i � sup
z
Mb� 1

bX � bXY � (
s�i

i�bX�1

1~Xs � z!� (
s�T X � i

T X�i�bXY�1

1~Xs � z!�
�

1

bY � bXY � (
s�T X � i

T X�i�bXY�1

1~Ys � z!� (
s�T X � T XY � i

T X�T XY�i�bY�1

1~Ys � z!��+
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Here, b~T ! is chosen to satisfy ~asymptotically!

TY

TX � TY

�
b

bX � bXY ,
TX

TX � TY

�
b

bY � bXY ,

T XY

TX � TY

�
bbXY

~bX � bXY !~bY � bXY !
+ (7)

For example, when TX � TY � 2T XY and bX � bY � bXY we can take b � bX+
We approximate the sampling distribution of d ~or t! using the distribution

of the values of dT,b, i ~or tT,b, i ! computed over the different subsamples+ That
is, we approximate the sampling distribution GT of d by

ZGT,b~w! �
1

B (i�1

B

1~dT,b, i � w!, (8)

where B~T ! � min$T X � bX � 1,T Y � bY � 1,T XY � bXY � 1% is the number
of different feasible subsamples+3 Let gT,b~1 � a! denote the ~1 � a!th sample
quantile of ZGT,b~{!, that is,

gT,b~1 � a! � inf $w : ZGT,b~w!� 1 � a%+

We call it the subsample critical value of significance level a+ Thus, we reject
the null hypothesis at the significance level a if t � gT,b~1 � a!+

Although this algorithm does not seem to replicate precisely the temporal
ordering ~for example, the sample I X, i,bX

is separated temporally from I XY, i,bXY

!
this does not matter for the first-order asymptotics because of the asymptotic
independence argument+

THEOREM 2+ Suppose that ~Xt ,Yt ! is jointly stationary and alpha mixing
random sequence with 1-summable mixing coefficients and suppose that under
the null hypothesis (2) d converges in distribution to the random variable DF

whose ~1 � a!th quantile is denoted by g~1 � a!+ Suppose that Assumption A
holds. Then, under the null hypothesis (2),

gT,b~1 � a!
p
&& 
g~1 � a! if sup

z
$FX ~z!� FY ~z!%� 0

�` if sup
z
$FX ~z!� FY ~z!% � 0+

4. EFFICIENT ESTIMATION AND TESTING

It is well known that the sample mean is an efficient estimate of a population
mean when the data are independent and identically distributed ~i+i+d+! ~Bickel,
Klaassen, Ritov, and Wellner, 1993, pp+ 67– 68! and in some time series cases
~Grenander, 1954!+ Indeed, this is a case where “OLS � GLS”; see Amemiya
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~1985, pp+ 182–183!+ We show that this does not hold in the unbalanced case
and one can obtain a more efficient estimator than the sample mean+ The more
efficient estimator translates into a more powerful test+ This result carries over
to estimation of other quantities such as distribution functions+ Bickel, Ritov,
and Wellner ~1991! treat a related problem of estimating E @a~Xt ,Yt !# for known
function a when the marginal distributions of X and of Y are known, which
corresponds to the case where T X and T Y are very large relative to T XY+

Define the vector of sample moments

m � � 1

T X (
t�I X

Xt ,
1

T XY (
t�I XY

Xt ,
1

T XY (
t�I XY

Yt ,
1

T Y (
t�I Y

Yt��

� @m1,m2 ,m3 ,m4 #
�+

The vector m contains unbiased estimators of the parameter vector u �
~mX ,mY !

�+ We consider estimators that minimize the minimum distance crite-
rion ~m � Au!�C~m � Au!, where A is the 4 � 2 matrix of zeros and ones
that takes ~mX ,mY !

� into ~mX ,mX ,mY ,mY !
�, whereas C is a symmetric posi-

tive definite weighting matrix+ The resulting estimator has closed form Zu �
~A�CA!�1A�Cm, that is, it is a linear combination of the elements of m+4 There-
fore, var~ Zu! � ~A�CA!�1A�CVCA~A�CA!�1, where V is the asymptotic vari-
ance of m:

V �









1

T X (
j��`

`

gX ~ j ! 0 0 0

0
1

T XY (
j��`

`

gX ~ j !
1

T XY (
j��`

`

gXY ~ j ! 0

0
1

T XY (
j��`

`

gXY ~ j !
1

T XY (
j��`

`

gY ~ j ! 0

0 0 0
1

T Y (
j��`

`

gY ~ j !









+

The optimal choice of C is proportional to V �1, in which case Zu has asymptotic
variance proportional to ~A�V �1A!�1 +5 The full sample mean Nu � ~ PX, PY !� is
also a linear combination of m, Nu � Sm, where S is the 2 � 4 matrix with first
row S1 � TX

�1~T X,T XY,0,0! and second row S2 � TY
�1~0,0,T XY,T Y !+ Likewise

the subsample mean NuXY � ~ PX XY, PY XY!� � S XYm, where S XY is the 2 � 4 matrix
with first row S1

XY � ~0,1,0,0! and second row S2
XY � ~0,0,1,0!+ It is easy to

show that SVS � � ~A�V �1A!�1 and S XYV~S XY!� � ~A�V �1A!�1 in the matrix
partial order so that Zu is more efficient than both Nu and NuXY +Whether the weak
inequality is strict depends on the relative magnitudes of T X,T Y,T XY+ We con-
jecture that Zu is semiparametrically efficient for estimation of u under some
conditions+ To support this conjecture we can show that Zu achieves the asymp-
totic Cramèr–Rao lower bound when the data are i+i+d+ over time and Gaussian+
A feasible version of Zu, which shares its limiting distribution, can be obtained

150 OLIVER LINTON



from estimates of V, which can be obtained from the estimates of lrv~X !, lrv~Y !,
and lrcov~X,Y ! defined as in ~6!+

We illustrate these general results with an example+ Suppose that T X � T Y �
T XY and that (j��`

` gX ~ j ! � (j��`
` gY ~ j ! � q and (j��`

` gXY ~ j ! � rq+
Then

var~ Zu! �
q

T �
4 � 2r2

4 � r2

2r

4 � r2

2r

4 � r2

4 � 2r2

4 � r2
� ; var~ Nu! �

q

T � 1
r

2
r

2
1 � ;

var~ NuXY ! �
q

T � 2 2r

2r 2 �+
For all r, var~ Nu! � var~ Zu! is positive definite, strictly so for r � 0+ For all r,
var~ NuXY! � var~ Zu! is positive definite, strictly so for r � 1+

We now turn to the testing problem+ Define tE � MT ~1,�1! Zu and let ZsE be
a consistent estimate of sE , which can be obtained from the estimates of V as
already discussed+ It follows that under local alternatives mX � mY � l�MT ,

tE
ZsE

n N~pE ,1!,

where pE � l0sE + Furthermore, 6pE 6 � max$6p6,6pXY 6% so that tE 0 ZsE is the
most powerful test in this class+ Consider the special case that T X � T Y � T XY,
(j��`
` gX ~ j ! � (j��`

` gY ~ j ! � q, and (j��`
` gXY ~ j ! � rq+ We have

pE
2 �
l2

q

2 � r

2 � 2r
� max$~pXY !2,p2 %�

l2

q
max � 1

2 � 2r
,

2

2 � r
� +

For the range r � @�1,0+5# , pE
20p2 is quite modest; it lies in @1,1+12# , but as

r r 1, pE
20p2 r `+ On the other hand pE

20~pXY !2 � 2 � r � @1,3# +6

We briefly report the results of a simulation study that investigates tE ,t,tXY

in the case where Xt � Xt
* � l�MT with Xt

* � fXt�1
* � «t ,Yt � fYt�1 � ht ,

where ~«t ,ht ! are jointly standard normal with correlation r+ In this case,
(j��`
` gX ~ j ! � (j��`

` gY ~ j ! � ~1 � f!�2 and (j��`
` gXY ~ j ! � ~1 � f!�2r+

We take T X � T Y � T XY � 60 corresponding to 5 years of monthly data and
f � 0+5 throughout, while varying r � $�0+9, 0, 0+5, 0+9% + The power curves
for the 0+05 level two-sided tests are shown in Figure 1 calculated from 100,000
replications+

Throughout, the test based on tE has the higher power curve, but which test
comes second changes according to the design: the common sample test does
very poorly when r � �0+9, whereas the full sample test does very poorly
when r � 0+9, as predicted by the theory+ We acknowledge that the feasible
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Figure 1. Power curves for the 0+05 level two-sided tests+
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version of tE can suffer from small sample effects that might diminish its edge,
and we intend to investigate this in future work+

Finally, this estimation0testing strategy can also be applied to the c+d+f+s in
Example 2+ Specifically, define for each z the vector of sample moments

mz � � 1

T X (
t�I X

1~Xt � z!,
1

T XY (
t�I XY

1~Xt � z!,

1

T XY (
t�I XY

1~Yt � z!,
1

T Y (
t�I Y

1~Yt � z!��

and define estimates ZFX
E~z! and ZFY

E~z! by the preceding minimum distance
strategy+ Then define dE � MT supz$ ZFX

E~z! � ZFY
E~z!%, which converges weakly

under the null hypothesis to DF E � supz WF E ~z!, where WF E ~{! is some Gauss-
ian process+ By construction ZFX

E~z! and ZFY
E~z! are more efficient than ZFX~z!

and ZFY~z!, and it may be possible to show that tests based on dE are more
powerful than those based on d+7 The same subsampling algorithm described
in Section 3+2 could be used to set critical values+

5. CONCLUDING REMARKS

We have shown how to modify inference procedures in some special unbal-
anced data cases+ In particular, we showed how to conduct valid inference for
the “natural” full sample test statistics t,d in our two examples+We also showed
that these may not be the most powerful tests, and indeed there are situations
where using only the common sample may be superior+We proposed more effi-
cient tests that use all the data and require estimates of long-run variances to
do the optimal weighting+

Our results can be generalized in a number of ways+ First, in the multivariate
case there is possibility for further efficiency0power improvements+ Second,
we can consider more general nonseparable hypotheses+ For example, consider
the hypothesis that E @a~Xt ,Yt , + + + , Xt�p,Yt�p!# � 0 for some known function a
and lag length p+ This involves the joint distribution of ~Xt ,Yt , + + + , Xt�p,Yt�p!,
not just its marginals+ Nevertheless, one can generally improve on the test
statistic ~T XY !�1(t:t, + + + , t�p�I XY a~Xt ,Yt , + + + , Xt�p ,Yt�p ! using the minimum dis-
tance strategy discussed in Section 4 by taking appropriate choice of moments+

NOTES

1+ But if we did go down that path we would advocate a general to specific approach+
2+ The extreme case of i+i+d+ data with perfect mutual correlation makes the intuition clear—in

that case tXY is constant, whereas t will have randomness due to the unmatched samples+
3+ A more general approach can be based on dT,b, i, i ', i '' � f ~I X, i,bX

, I XY, i ',bXY
, I Y, i '',bY

! and then
taking the empirical distribution across all consistent $i, i ', i ''%+
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4+ Suppose that T X � T Y � T XY and that (j��`
` gX ~ j ! � (j��`

` gY ~ j ! � q and

(j��`
` gXY ~ j ! � rq+ The estimator has the natural form

Zu �
1

4 � r2 �~2 � r2 !m1 � 2m2 � r~m4 � m3 !

r~m1 � m2 !� 2m3 � ~2 � r2 !m4
� +

5+ More formally, under additional conditions DN ~ Zu � u! n N~0, ~A0
� V0

�1 A0 !
�1 !, where

DN � �MTX 0

0 MTY
�; A0 � lim

Nr` �
MT X0TX 0

MT XY0TX 0

0 MT XY0TY

0 MT Y0TY

�
V0 � �

(
j��`

`

gX ~ j ! 0 0 0

0 (
j��`

`

gX ~ j ! (
j��`

`

gXY ~ j ! 0

0 (
j��`

`

gXY ~ j ! (
j��`

`

gY ~ j ! 0

0 0 0 (
j��`

`

gY ~ j !

� +
6+ In this case we can write

tE � MT
1

2 � r
@~1 � r!~m1 � m4 !� ~m2 � m3 !# ,

which gives a nice interpretation—as r increases more weight is put on the common sample
difference+

7+ Suppose it can be shown that WF~{! � WF E ~{! � U~{!, where U~{! is independent of
WF E ~{!+ If ZFX

E~{! � ZFY
E~{! were semiparametrically efficient, this structure would be expected by

the Hajek–Le Cam convolution theorem ~Bickel et al+, 1993, p+ 182!+ It follows that the critical
value of the one-sided test based on supzMT $ ZFX

E~z! � ZFY
E~z!% is smaller than that based on

supzMT $ ZFX ~z! � ZFY~z!% ~see Bickel et al+, 1993, p+ 194!, and so the former test should be more
powerful under local alternatives that shift the location of the limiting processes equally+
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APPENDIX

Proof of Theorem 1. By standard arguments

var~ PX ! �
1

TX
(

j��`

`

gX ~ j ! and var~ PY ! �
1

TY
(

j��`

`

gY ~ j !+

It remains to calculate cov~ PX, PY !+ For notational brevity write xt � Xt � E~Xt ! and yt �
Yt � E~Yt !+ Then

cov~ PX, PY ! �
1

TX TY

E��(
t�1

T X

xt � (
t�T X � 1

T X�T XY

xt�� (
t�T X � T XY � 1

T X�TY

yt � (
t�T X � 1

T X�T XY

yt��
�

1

TX TY

E� (
t�T X � 1

T X�T XY

xt (
t�T X � T XY � 1

T X�TY

yt��
1

TX TY

E�(
t�1

T X

xt (
t�T X � T XY � 1

T X�TY

yt�
�

1

TX TY

E� (
t�T X � 1

T X�T XY

xt (
t�T X � 1

T X�T XY

yt��
1

TX TY

E�(
t�1

T X

xt (
t�T X � 1

T X�T XY

yt�
� I � II � III � IV+

We have

III �
T XY

TX TY
(

6 j 6�T XY
�1 �

6 j 6

T XY�gXY ~ j ! �
T XY

TX TY
(

j��`

`

gXY ~ j !� O~T �1 !
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by dominated convergence using the fact that T XY � min$TX ,TY % + Define the integer
sets

Iu � $t : s � t � u; s � T X � T XY � 1, + + + ,T X � TY ; t � 1, + + + ,T X %,

Iu
' � $t : s � t � u; s � T X � T XY � 1, + + + ,T X � TY ; t � T X � 1, + + +T X � T XY %, u � 1

and let nu ~nu
' ! denote the cardinality of Iu ~Iu

'!, noting that nu , nu
' � u for all u+ Then

II �
1

TX TY
(
t�1

T X

(
s�T X � T XY � 1

T X�TY

gXY ~s � t !�
1

TX TY
(

u�T XY � 1

T X�TY � 1

nugXY ~u!

�
1

TX TY
(

u�T XY � 1

`

u 6gXY ~u!6� o~T �2 !

because (u�1
` u 6gXY ~u!6 � ` and T 20TX TY � TX TY 0~TX � TY !

2 is bounded+ Also,

I �
1

TX TY
(

t�T X � 1

T X�T XY

(
s�T X � T XY � 1

T X�TY

gXY ~s � t !�
1

TX TY
(
u�1

TY � 1

nu
' gXY ~u!� O~T �2 !,

by the same reasoning+ Likewise IV � O~T �2!+ �

Proof of Theorem 2. The proof is based on showing that

U~{! � Mb� 1

bX � bXY � (
s�i

i�bX�1

1~Xs � {!� (
s�T X � i

T X�i�bXY�1

1~Xs � {!�
�

1

bY � bXY � (
s�T X � i

T X�i�bXY�1

1~Ys � {!� (
s�T X � T XY � i

T X�T XY�i�bY�1

1~Ys � {!��
satisfies a functional central limit theorem with limit WF~{!+ The main step is to show
that U~z! has asymptotically the same variance as MT $ ZFX ~z!� ZFY~z!%, and this follows
using the proof of Theorem 1, that is,

var~U~z!! �
b

bX � bXY (
j��`

`

gFX ~z!~ j !�
b

bY � bXY (
j��`

`

gFY ~z!~ j !

� 2
bbXY

~bX � bXY !~bY � bXY ! (j��`

`

gFXY ~z, z!~ j !,

where gFX ~z!~ j !� cov~1~Xt � z!,1~Xt�j � z!!, gFY ~z!~ j !� cov~1~Yt � z!,1~Yt�j � z!!,
and gFXY ~z, z!~ j ! � cov~1~Xt � z!1~Yt � z!,1~Xt�j � z!1~Yt�j � z!!+ The two variances
coincide when ~7! holds+ �
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