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Parisian ruin with exponential claims

Angelos Dassios, Shanle Wu

July 1, 2008

Abstract

In this paper, we extend the concept of ruin in risk theory to the
Parisian type of ruin. For this to occur, the surplus process must fall below
zero and stay negative for a continuous time interval of specified length.
Working with a classical surplus process with exponential jump size, we
obtain the Laplace transform of the time of ruin and the probability of
ruin in the infinite horizon. We also consider a diffusion approximation
and use it to obtain similar results for the Brownian motion with drift.

Keywords: ruin, Parisian type of ruin, risk process, Laplace trans-
form, ruin probability.

1 Introduction

We consider a classical surplus process in continuous time {Xt}t>0

Xt = x + ct−
Nt∑

k=0

Yk, (1)

where x ≥ 0 is the initial reserve, c is a constant rate of premium payment
per time unit, Nt is the number of claims up to time t which has a Poisson
distribution with parameter λ, and Yk, k = 1, 2, ..., are claim sizes which are
independent and identically distributed non-negative random variables that are
also independent of Nt. We also assume c > λE (Y1) (the net profit condition).
Define the stopping time

Tx = inf {t > 0 | Xt < 0} . (2)

The event of ruin in infinite time horizon can be expressed as {Tx < ∞}. The
density of Tx and the probability of ruin have been widely studied. See for
example [9], [10], [11], [12], [17], [18], [21] and [24].

In this paper, we extend the concept of ruin to the Parisian type of ruin.
The idea comes from the Parisian options, the prices of which depend on the
excursions of the underlying asset prices above or below a barrier. An example
is a Parisian down-and-out option, the owner of which loses the option if the
underlying asset price S reaches the level l and remains constantly below this
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level for a time interval longer than d . For details and extensions, see [4], [5],
[6], [7], [8], [22] and [23].

Parisian type ruin will occur if the surplus falls below zero and stays below
zero for a continuous time interval of length d. In some respects, this might be
a more appropriate measure of risk than classical ruin as it gives the office some
time to put its finances in order.

In order to introduce the concept of Parisian type of ruin mathematically,
we will first define the excursion. Set

gX
t = sup{s < t | sign (Xs) sign (Xt) ≤ 0}, (3)

dX
t = inf{s > t | sign (Xs) sign (Xt) ≤ 0}, (4)

with the usual convention, sup{∅} = 0 and inf{∅} = ∞, where

sign(x) =





1, if x > 0
−1, if x < 0
0, if x = 0

.

The trajectory between gX
t and dX

t is the excursion of process X which straddles
time t. Assuming d > 0, we now define

τX
d = inf{t > 0 | 1{Xt<0}(t− gX

t ) ≥ d}. (5)

We can see that τX
d is therefore the first time that the length of the excursion

of process X below 0 reaches given level d. We also define the events
{
τX
d ≤ t

}
and

{
τX
d < ∞}

to be the Parisian type ruin in the finite and infinite horizons.
We are interested in the corresponding probabilities

P
(
τX
d ≤ t

)

and
P

(
τX
d < ∞)

.

We will restrict ourselves here to claim sizes that are exponentially dis-
tributed as this is a case where explicit results can be obtained. We therefore
assume that the claim sizes have density αe−αx, where x > 0. From the net
profit condition above, we also have that c > λ

α .
In Section 2 we provide results on hitting times that will be used in Section 3

to give the Laplace transform of the stopping time τX
d . In Section 4 we derive the

Parisian type ruin probability in the infinite horizon. In Section 5 we introduce
a diffusion approximation and thus obtain results for the Brownian motions.

2 Definitions

We consider the Xt with x = 0 at first. In this section we are going to introduce
a semi-Markov model consisting of two states, the state when the process is
above the 0 and the state when it is below. Therefore we define

ZX
t =

{
1, if Xt > 0
2, if Xt < 0 .
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We can now express the variables defined above in terms of ZX
t :

gX
t = sup{s < t | ZX

s 6= ZX
t }, (6)

dX
t = inf{s > t | ZX

s 6= ZX
t }, (7)

τX
d = inf{t > 0 | 1{ZX

t =2}(t− gX
t ) ≥ d}. (8)

We then define
V X

t = t− gX
t ,

the time ZX
t has spent in the current state. It is easy to prove that (ZX

t , V X
t ) is

a Markov process. ZX
t is therefore a semi-Markov process with the state space

{1, 2}, where 1 stands for the state when the stochastic process X is above 0
and 2 corresponds to the state below 0.

Furthermore, we set UX
i,k, i = 1, 2 and k = 1, 2, · · · to be the time ZX spends

in state i when it visits i for the kth time. And we have, for each given i and k
there exist some t satisfying that

UX
i,k = V X

dX
t

= dX
t − gX

t .

Notice that assuming that the jump size Yk is exponentially distributed, it
is a well-known result that the size of the overshoots are also exponentially
distributed with the same parameter. Therefore the excursions above 0 and
below 0 are independent. Consequently, we have that UX

1,k, k = 1, 2, · · · , are
independent and identically distributed, so as for UX

2,k, k = 1, 2, · · · , and UX
i,k,

i = 1, 2, k = 1, 2, · · · , are independent with each other. We therefore define the
transition density for ZX :

pij(t) = lim
∆t→0

P (t < UX
i,k < t + ∆t)
∆t

,

Pij(t) = P (UX
i,k < t), P̄ij(t) = P (UX

i,k > t).

We have

Pij(t) =
∫ t

0

pij(s)ds = 1− P̄ij(t),

which is actually the probability that the process will stay in state i for no more
than time t. We will see in the later discussion that the condition c > λ

α results

in P
(
UX

1,k = ∞
)

> 0 for all k (we adopt the convention UX
i,k = ∞ if the process

never leaves state i at its kth excursion); therefore
∫ +∞
0

p12(s)ds < 1, i.e. with
a positive probability, the process will stay in state 1 forever. Hence, in this
case P̄12(t) >

∫ +∞
t

p12(s)ds.
Moreover, in the definition of ZX , we deliberately ignore the situation when

Xt = 0. The reason is that
∫ t

0

1{Xu=0}du = 0.
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We will now show how to get pij(t). We use P̂ij(β) to represent the Laplace
transform of pij(t), i.e.

P̂ij(β) =
∫ ∞

0

e−βtpij(t)dt = E
(
e−βUX

i,k

)
. (9)

Consider the equation

−β + cvβ + λ

(
α

vβ + α
− 1

)
= 0, (10)

which has two roots,

v+
β =

√
(cα + β + λ)2 − 4cαλ− (cα− β − λ)

2c
, (11)

and

v−β =
−

√
(cα + β + λ)2 − 4cαλ− (cα− β − λ)

2c
. (12)

First of all, we want to look at the length of an excursion below 0, i.e. UX
2,k,

k = 1, 2, 3, . . . . Define the stopping time

Tx = inf {t > 0, Xt = 0 | X0 = x, x < 0} .

It has been shown in [16] that

E (exp (−βTx)) = exp
(
v+

β x
)

.

According to the definitions of the process X and UX
2,k and the argument above,

every excursion below 0 starts from an overshoot below 0 with length |x| follow-
ing the exponential distribution with parameter α and follows by the excursion
with length Tx. We have therefore

P̂21(β) = E
(
e−βUX

2,k

)
=

∫ ∞

0

E
(
e−βT−x

)
αe−αxdx

=
∫ ∞

0

exp
(
−v+

β x
)

αe−αxdx

=
2cα√

(β + λ + cα)2 − 4cλα + (β + λ + cα)
.

Inverting this Laplace transform with respect to β gives the transition density

p21(t) =
√

cα

λ
e−(λ+cα)tt−1I1

(
2t
√

cλα
)

. (13)

The formulae for the inversion can be found in [3].
For the length of an excursion above 0, i.e. UX

1,k, k = 1, 2, 3, . . . , we define
the stopping time

T0 = inf {t > 0, Xt < 0 | X0 = 0} .
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By results in [15], [17] and [18] and the independence of the time and the size
of the overshoot, i.e. T0 and XT0 we have

E
(
e−βT0

)
E

(
exp

(
v−β XT0

))
= 1.

And we also know that XT0 follows exponential distribution with parameter α.
Therefore

P̂12(β) = E
(
e−βUX

1,k

)
= E

(
e−βT0

)
=

1

E
(
exp

(
v−β XT0

))

=
1

∫∞
0

exp
(
−v−β x

)
αe−αxdx

=
2λ√

(β + λ + cα)2 − 4cλα + (β + λ + cα)
.

Inverting P̂12(β) gives

p12(t) =

√
λ

cα
e−(λ+cα)tt−1I1

(
2t
√

cλα
)

(14)

(see [3] for the formulae).

3 The Laplace Transform of τX
d

In this section we give the Laplace transform of τX
d for the cases when x = 0

and when x > 0 together with the proofs.

Theorem 1 For Xt with x = 0, we have

E
(
e−βτX

d

)
=

e−βdP̄21(d)P̂12(β)
1− P̂12(β)P̃21(β)

, (15)

where

P̄21(d) = 1−
∫ d

0

√
cα

λ
e−(λ+cα)tt−1I1

(
2t
√

cλα
)

dt, (16)

P̃21 (β) =
∫ d

0

√
cα

λ
e−(β+λ+cα)tt−1I1

(
2t
√

cλα
)

dt, (17)

P̂12(β) =
2λ√

(β + λ + cα)2 − 4cλα + (β + λ + cα)
, (18)

and I1(x) is the modified Bessel function of the first kind.
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Proof: Ak denotes the event that the first time the length of the excursion
in state 2, i.e. below 0, reaches d happens during the kth excursion in this state,
i.e.

{Ak} =
{
τX
d is achieved in the kth excursion in state 2

}
.

So we have

E
(
e−βτX

d

)
=

∞∑

k=1

E
(
e−βτX

d | Ak

)
P (Ak) . (19)

Notice that given Ak, τX
d is comprised of k full excursions above 0, k − 1

below 0 with the length less than d and last one with the length d, i.e.

τX
d | Ak =

k−1∑
n=1

(
UX

1,n + UX
2,n

)
+ UX

1,k + d | UX
2,1 < d, · · · , UX

2,k−1 < d, UX
2,k ≥ d.

More importantly, UX
1,n’s have distribution P12; UX

2,n’s have distribution P21 and
all these variables are independent of each other. As a result,

E
(
e−βτX

d | Ak

)

= E
(
e−β(Pk−1

n=1(UX
1,n+UX

2,n)+UX
1,k+d)

∣∣∣ UX
2,1 < d, · · · , UX

2,k−1 < d, UX
2,k ≥ d

)

=
∞∑

k=1

e−βd

{∫ +∞

0

e−βup12(u)du

}k
{∫ d

0

e−βu p21(u)
P21(d)

du

}k−1

.

Also
P (Ak) = P21(d)k−1P̄21(d).

We have therefore

E
(
e−βτX

d

)

=
∞∑

k=1

E
(
e−βτX

d |Ak

)
P (Ak)

=
∞∑

k=1

e−βd

{∫ +∞

0

e−βup12(u)du

}k
{∫ d

0

e−βu p21(u)
P21(d)

du

}k−1

P21(d)k−1P̄21(d)

=
e−βdP̄21(d)

∫ +∞
0

e−βsp12(s)ds

1− ∫ +∞
0

e−βsp12(s)ds
∫ d

0
e−βsp21(s)ds

.

2

We should also consider the case when x > 0.

Theorem 2 For Xt, with X0 = x > 0 we have

E
(
e−βτX

d

)
=

α + v−β
α

e−βd+v−β x P̄21(d)
1− P̂12(β)P̃21(β)

. (20)
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Proof: When x > 0, we need to find the Laplace transform for UX
1,1, which

has different distribution from UX
1,k, k = 2, 3, 4, ....

Applying the optional sampling theorem to the martingale e−βt+v−β Xt (it is
easy to check that e−βt+v−β Xt is a martingale), we have

E

(
e
−βUX

1,1+v−β X
UX
1,1

∣∣∣ X0 = x

)
= ev−β x.

Since the distribution of the overshoot of this process, i.e. −XUX
1,1

, is still an
exponential distribution with parameter α and it is independent of the time of
overshoot, i.e. UX

1,1, we have

E

(
e
−βUX

1,1+v−β X
UX
1,1

∣∣∣ X0 = x

)
=

α

α + v−β
E

(
e−βUX

1,1

∣∣∣ X0 = x
)

.

Therefore

E
(
e−βUX

1,1

∣∣∣ X0 = x
)

=
α + v−β

α
ev−β x. (21)

As a result,

E
(
e−βτX

d

)

= E
(
e−βτX

d 1{UX
2,1≥d}

)
+ E

(
e−βτX

d 1{UX
2,1<d}

)

= e−βdE
(
e−βUX

1,11{UX
2,1≥d}

)
+ E

(
e−β(UX

1,1+UX
2,1)1{UX

2,1<d}
)

E
(
e−βτX̃

2

)
,

where X̃ is the same process with X0 = 0. E
(
e−βτX̃

2

)
has been calculated in

Theorem 1. Since UX
1,1 and UX

2,1 are independent, we have

E
(
e−βτX

d

)

= e−βdE
(
e−βUX

1,1

)
P

(
UX

2,1 ≥ d
)

+ E
(
e−βUX

1,1

)
E

(
e−βUX

2,11{UX
2,1<d}

)
E

(
e−βτX̃

2

)

=
α + v−β

θ
e−βd+v−β x

∫ ∞

d

p21(t)dt +
α + v−β

α
ev−β x

∫ d

0

e−βtp21(t)dtE
(
e−βτX̃

d

)

=
α + v−β

α
e−βd+v−β x P̄21(d)

1− P̂12(β)P̃21(β)
.

2

By taking β = 0, we can obtain the probability that τX
d will ever be achieved.

Corollary 2.1 For Xt with X0 = x > 0, we have

P
(
τX
d < ∞)

=
λ

cα
e(

λ
c−α)x cαP̄21(d)

cα− λP21(d)
. (22)
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Remark: From (22) we can see that the Parisian ruin probability actually
equals to the ruin probability multiplied by a constant. In fact, the Parisian
type ruin probability can also be calculated in the following way:

P
(
τX
d < ∞)

= P (Tx < ∞)
∫ ∞

0

P
(
τ X̄
d < ∞ | XTx

= −y
)

αe−αydy, (23)

where Tx has the same definition as in (2) and X̄ is the risk process with
X0 = XTx

. Therefore P (Tx < ∞) is the ruin probability which has been well
studied,

P (Tx < ∞) =
λ

cα
e(

λ
c−α)x. (24)

By using the same method in Theorem 1, we can calculate that
∫ ∞

0

E
(
e−βτX̄

d | X0 = −y
)

αe−αydy =
e−βdP̄21(d)

1− P̂12(β)P̃21(d)
. (25)

By taking β = 0 in (25) we have
∫ ∞

0

P
(
τ X̄
d < ∞ | XTx = −y

)
αe−αydy =

cαP̄21 (d2)
cα− λP21 (d2)

. (26)

Substituting (24) and (26) in (23) gives the same result as in corollary 2.1.

4 A diffusion approximation

Set

c = µ +
σ2α

2
, λ =

σ2α2

2,

with µ > 0 and let α → +∞. The process Xt − µt − x converges weakly
in D [0,∞) to a standard Brownian motion Wt with W0 = 0 and hence Xt

converges to a Brownian motion with drift

Wµ
t = x + µt + σWt.

See for example [2], pp 117-118 and also [21], pp 159-160. Moreover, the events
{
τX
d ≤ t

}

and {
sup

0≤s≤t

{
1{Xs<0}

(
s− gX

s

)} ≥ d

}

are identical and since

sup
0≤s≤t

{
1{Xs<0}

(
s− gX

s

)}
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is a continuous functional of Xt on D [0,∞) a.e., we can conclude that

lim
α→∞

P
(
τX
d ≤ t

)
= P

(
τW µ

d ≤ t
)

(27)

for all t; and therefore

lim
α→∞

E
(
e−βτX

d | X0 = x, x > 0
)

= E
(
e−βτW µ

d | Wµ
0 = x, x > 0

)
. (28)

As a result, by taking the limit α → +∞ in (20) and applying the approximation
for the modified Bessel function of the first kind (see [13])

lim
z→∞

I1(z) =
ez

√
2πz

, (29)

we have

E
(
e−βτW µ

d | Wµ
0 = x, x > 0

)
=

e−βde−
√

µ2+2βσ2+µ

σ2 x
∫∞

d
1

2
√

2πt3
e−

µ2

2σ2 tdt
√

µ2

σ2 + 2β +
∫∞

d
1

2
√

2πt3
e−βte−

µ2

2σ2 tdt
. (30)

Calculating the integrals in (30) gives

E
(
e−βτW µ

d | Wµ
0 = x, x > 0

)

=
e−βde−

√
µ2+2βσ2+µ

σ2 x

{
1√
2πd

e−
µ2

2σ2 d − µ
σ N

(
−µ

σ

√
d
)}

√
µ2

σ2 + 2β + 1√
2πd

e
−
“

β+ µ2

2σ2

”
d −

√
2β + µ2

σ2 N

(
−

√(
2β + µ2

σ2

)
d

) .(31)

The same result with x = 0 and σ = 1 has been obtained in [4], [5] and [23]
using different approaches. It is an important result for pricing the Parisian
options.

Letting β = 0 in (30) and (31), we have the Parisian type ruin probability
for a Brownian motion with positive drift,

P
(
τW µ

d < ∞ | Wµ
0 = x, x > 0

)
=

e−
2µ

σ2 x
∫∞

d
1

2
√

2πt3
e−

µ2

2σ2 tdt

µ
σ +

∫∞
d

1

2
√

2πt3
e−

µ2

2σ2 tdt
(32)

=
e−

2µ

σ2 x

{
1√
2πd

e−
µ2

2σ2 d − µ
σ N

(
−µ

σ

√
d
)}

1√
2πd

e−
µ2

2σ2 d + µ
σ N

(
µ
σ

√
d
) .(33)

The same result with x = 0 and σ = 1 can also be found in [5] where the idea
of Parisian ruin probability was first introduced.

Remark: It is tempting to derive the Parisian ruin probability by taking
the limit as α → ∞ in (22). However, the argument used to get (27) does not
generalise in the case of an infinite horizon so we can not argue directly from
(22). See [1] pp 196,199, [2] pp 119, [19], [20] and [21] pp 165-166 for more
details. A simple way to proceed is via (30) or (31) as we did.
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