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Measuring Inequality using Censored Data: 
A Multiple Imputation Approach to Estimation and Inference 

 

 

Summary. To measure income inequality with right censored (topcoded) data, we propose 

multiple imputation methods for estimation and inference. Censored observations are 

multiply imputed using draws from a flexible parametric model fitted to the censored 

distribution, yielding a partially synthetic dataset from which point and variance estimates 

can be derived using complete data methods and appropriate combination formulae. The 

methods are illustrated using U.S. Current Population Survey (CPS) data and the Generalized 

Beta of the Second Kind distribution as the imputation model. With CPS internal data, we 

find few statistically significant differences in income inequality for pairs of years between 

1995 and 2004. We also show that using CPS public use data with cell mean imputations may 

lead to incorrect inferences. Multiply-imputed public use data provide an intermediate 

solution. 

 
Key Words: Income Inequality, Topcoding, Censored Data, Multiple Imputation, Current 

Population Survey, Generalized Beta of the Second Kind distribution 
 

 

1. Introduction 

 

Many data sets used to measure income inequality are right censored (‘topcoded’). To 

maximize confidentiality and to minimize disclosure risk, data producers do not release files 

containing complete survey responses. Instead, income values for each income source that are 

above a source-specific threshold are replaced in public use files by the threshold itself (the 

‘topcode’). Right censoring is a problem for estimation of inequality levels because it 

suppresses genuine income dispersion, and it is a problem for estimation of inequality trends 

if topcode values are not adjusted consistently over time. Topcoding also affects estimates of 

standard errors of inequality statistics because variance estimates depend on second- and 

higher-order moments, and their calculation is affected by right censoring. In this paper, we 

propose a multiple imputation approach to estimation of and inference about inequality using 

topcoded data, illustrating the method with data from the U.S. March Current Population 

Survey (CPS). 
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 The CPS has been widely used both within and outside government to assess 

inequality of individual earnings and household income. All CPS data on income sources are 

subject to censoring, however, which is a major potential limitation. Topcoding in the CPS 

public use files is common, as we show below. Even the internal CPS data, used by the U.S. 

Census Bureau to produce official income distribution statistics, are also topcoded though to 

a substantially lesser degree (see e.g. Census Bureau 2009). In both types of CPS data, 

topcode values have not been adjusted consistently over time. Burkhauser et al. (2008) 

review CPS topcoding practices and provide references to earlier discussions of topcoding.  

 Although our proposed methods are illustrated with reference to the CPS, they are 

applicable more widely since the CPS is not the only survey with topcoded data. For 

example, in the U.S.A., the National Longitudinal Survey of Youth topcodes some of its 

income sources as does the Panel Study of Income Dynamics. In the United Kingdom, in 

order to comply with the Statistics and Registration Services Act of 2007, the Annual 

Population Survey and the Quarterly Labour Force Survey have introduced topcodes on 

earnings data in public release files. In Germany, the wage data that are available from social 

insurance administrative registers are right censored at the earnings level corresponding to the 

upper limit to social insurance contributions. 

 Without imputation of some kind, point identification of inequality measures from 

censored data is impossible in general. Manski (2003) addressed related issues and shows 

that, with censoring, one may derive an identification region – the lower and upper bounds – 

of some statistics summarizing censored distributions, notably parameters such as the mean 

and quantiles (2003: 11). Applying these results to internal and public use CPS data, 

Burkhauser et al. (2009) show that the bounds on the P90/P10 income inequality measure 

(the ratio of the 90th percentile to the 10th percentile) vary substantially with the prevalence 

of topcoding, because topcoded observations arise at incomes below the 90th percentile. In 

addition, there is also the problem that percentile ratio inequality measures are not based on 

incomes from throughout the income range. This limitation is not shared by inequality 

measures based on all incomes such as Lorenz curves, the Gini coefficient, coefficient of 

variation, and members of the Atkinson and Generalized Entropy classes of inequality indices 

– all widely used in the academic income distribution literature and official statistics, and 

reviewed by Cowell (2000). However, Manski’s (2003) results do not apply to these 

measures: with right-censored data, the bounds on the measures are uninformative because 

the upper bound is the maximum possible value. So, to make further progress with 

estimation, some form of imputation for censored incomes is necessary. 
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 All previous imputation procedures applied to CPS data that we are aware of have 

used methods that yield a single imputation for each right censored value. And only rarely 

has the sampling variability of the estimates derived from the imputation-augmented data also 

been estimated in a manner that takes proper account of the right censoring. We propose a 

multiple imputation approach to estimating inequality measures using topcoded data. The 

approach is closely related to, but was developed independently from, the parametric multiple 

imputation method proposed by An and Little (2007) for topcoded data, though we focus on 

measures of inequality rather than means and regression coefficients as they do. 

 We show how our approach provides consistent estimates of not only inequality 

measures but also their sampling variances, accounting for both stochastic imputation error 

and sampling variability. We use the method to analyze recent trends in household income 

inequality in the U.S.A., exploiting our unprecedented access to internal CPS data.  

 Throughout the paper, income is defined in a conventional manner. It is household 

income from all sources excluding capital gains, adjusted for differences in household size 

using the square root of household size. It is what US analysts refer to as ‘pre-tax post-

transfer’ income. The specific procedures followed when constructing the income measure 

are as discussed by Burkhauser and Larrimore 2009. This income definition is common in the 

cross-national comparative income distribution literature (cf. Atkinson, Rainwater and 

Smeeding 1995) and studies of U.S. income distribution trends (cf. Gottschalk and Danziger 

2005). Each individual is attributed with the size-adjusted income of the household to which 

he or she belongs. Income refers to income for the calendar year preceding the March 

interview. All references to ‘year’ are to income year rather than survey year. We convert 

negative and zero household income values each year (never more than one percent of cases) 

to one dollar prior to our calculations because a number of inequality indices are defined only 

for positive income values. Our samples comprise all individuals in CPS respondent 

households, excluding individuals in group quarters or in households containing a member of 

the military. All statistics are calculated using the relevant CPS sampling weights. The 

weights adjust for non-response associated with observable characteristics, but not 

unobservables. Sample sizes are large. For example, for 2004, the sample income distribution 

refers to 207,925 individuals in 75,660 households. 

 We compare our multiple imputation estimates of inequality levels and trends from 

the internal CPS data – what we label the Internal-MI series – with two series of estimates 

derived from public use CPS data which we label Public-CM and Public-MI. The Public-CM 

series arises when top-coded values are replaced by cell mean imputations derived from 

 3



internal CPS data. These imputations have been provided by the U.S. Census Bureau for each 

year since 1995, and are available to all users of public use CPS data. The availability of this 

series is one reason why we restrict our attention to the period 1995–2004 in this paper. A 

second reason is that we wish to avoid any potential inconsistencies in the income series 

arising from the major CPS redesign including the introduction of computer-assisted personal 

interviewing in survey year 1994 (Ryscavage 1995). Third, it is well-known that U.S. income 

inequality increased substantially between the mid-1970s and the mid-1990s (see e.g. 

Danziger and Gottschalk 1995), and so we focus on a later period about which there is less 

unanimity. For the decade starting from the mid-1990s, there is debate about the nature of 

inequality trends, but there is agreement that ascertaining trends in the very richest incomes is 

of particular importance in the U.S.A. and a number of other OECD countries (see e.g. 

Atkinson and Piketty 2007, Burkhauser et al. 2008, and Piketty and Saez 2003).  

 The third series we analyze, labelled Public-MI, is also derived from public use CPS 

data, but applies a multiple imputation approach to estimation and inference that mimics the 

one that we apply to internal data. Although the internal data provide the best results, 

researchers can get access to them only under special conditions, whereas public use data are 

available to all researchers. It is therefore of interest to explore the extent to which results 

from the Public-MI series match those from the Internal-MI one. 

 Using multiply-imputed internal CPS data, we show that the inequality of household 

income did not change significantly between 1995 and 2004, whether one uses ordinal 

evaluations based on Lorenz curves or cardinal comparisons based on a number of 

commonly-used inequality indices. We find that the cell-mean-augmented public use data 

lead to substantial under-estimates of inequality levels in every year, though the trends over 

time are tracked relatively well. However, the sampling variability of estimates derived from 

the cell-mean-augmented distributions is also under-estimated and, as a result, there is a 

tendency for inequality trends over the period to be shown (incorrectly) as statistically 

significant. Multiply-imputed public use data are shown to provide an intermediate case.  

 

 

2. Right censoring in income data from the March CPS 

 

 In the March CPS, a respondent in each household is asked a series of questions on 

the sources of income for the household. Starting in 1975, respondents reported income from 

11 sources, and since 1987 they have done so for income from 24 sources. High values for 
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each separate income source are topcoded by the Census Bureau; it is not only the highest 

total household income values that are topcoded. See Larrimore et al. (2008) for a full list of 

topcode values in the public use and internal CPS data, by income source.  

 The prevalence of topcoding in total household income is significantly greater than 

for any specific income source, since household income is the aggregation of multiple income 

sources across income types and household members, and each source may be topcoded. As a 

result, and also because income is measured using size-adjusted household income rather 

than nominal household income (see above), topcoded household income values are not 

necessarily the highest incomes – right censored observations may occur throughout the 

income distribution. Hence measuring inequality using the ratio of the 90th percentile to the 

10th percentile (P90/P10) with the goal of minimizing the impact of topcoding on inequality 

estimates will not be entirely successful: see Burkhauser et al. (2009).  

 The proportion of individuals with topcoded household income in each March CPS 

from 1995 through 2004 is shown in Figure 1. In the public use data, the fraction is 

substantial, ranging between 2.1% and 5.7%. In the internal data, the proportion is roughly 

constant and small, only about 0.5%. The much lower prevalence of right censoring in the 

internal data indicates their substantial value for assessments of inequality compared to public 

use data. Using internal data rather than the public use data means that incomes are better 

measured for up to approximately 5.5% (5.7% – 0.5%) more observations. Nevertheless, 

censoring remains pervasive in the internal data. The mean size-adjusted household income 

value for topcoded observations in the internal data is around $200,000. In the internal data 

for 1995, the lowest decile of the distribution of topcoded incomes corresponds to the 55th 

percentile of the distribution for all incomes. For 2000, the lowest decile of the distribution 

corresponds to the 87th percentile of the overall distribution, and somewhere between these 

positions in the other years. So, accurate measurement of the degree of inequality needs to 

account for a non-trivial degree of right-censoring, even with CPS internal data. Our multiple 

imputation approach to estimation and inference provides this. 
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Figure 1. Percentage of individuals with topcoded household income in the March CPS 
public use data (solid line) and internal data (dashed line), by year. Authors’ calculations 
from public use and internal March CPS data. 
 

 

3. Single imputation methods to account for topcoding 

 

The two principal imputation approaches to account for topcoding in public use CPS data that 

currently exist are reviewed in this section. The first approach is empirically based, using cell 

means derived from internal CPS data. Another more ad hoc imputation procedure, used e.g. 

by Katz and Murphy (1992), Lemieux (2006), and Autor et al. (2008), is to replace each 

topcoded value by a common multiple of the topcode. The second approach is model based, 

assuming that the upper tail of the income distribution has a specific parametric functional 

form. These approaches yield a single augmented data set for analysis in which each 

topcoded value is replaced by a single imputed value: they are therefore ‘single imputation’ 

methods. 

 For each year of public use data since income year 1995 (survey year 1996), the 

Census Bureau has imputed a cell mean value to each topcoded value in the public use data. 

Before 1995, the public use CPS data for each income source contained the topcode value for 

each income source for each observation topcoded on that source. These imputations, derived 
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from internal CPS data, are, for each source, equal to the mean source income of all 

individuals with incomes greater than or equal to the topcode, subject to some constraints on 

minimum cell size. For labour income sources, the means are calculated within cells further 

divided by race, gender, and employment status. The Census Bureau initially provided cell 

means for wages and salaries, self-employment income and farm income, but later extended 

them to other non-governmental income sources (1998 and thereafter). Larrimore et al. 

(2008) provide further details of the derivation. They also distribute a consistent set of cell 

mean imputations to the wider research community that extends the Census Bureau series 

back to 1975.  

 These cell mean imputations are a substantial advance for analysis, providing more 

accurate measures of the incomes of topcoded observations than do the topcodes themselves. 

They have two limitations, however, which lead to underestimation of overall inequality 

statistics and their sampling variances. First, by construction, all observations within the same 

cell receive the same imputed value, thereby removing all within-cell income variation. 

Second, the cell means are derived from internal data which are themselves right censored. 

This imparts a downward bias to cell mean estimates of topcoded incomes, and hence also a 

downward bias in estimates of overall inequality and its sampling variance. This bias is of 

unknown degree since the actual incomes of the censored observations in the internal data are 

unknown. 

 The second single imputation approach was developed before the Census Bureau cell 

mean series existed. Fichtenbaum and Shahidi (1988), using public use CPS data for 1967–

1984, proposed that the upper tail of the U.S. income distribution for each be summarized by 

the one parameter Pareto distribution. Estimates of the Gini inequality index for each year 

derived using the Pareto estimates were shown to be between 0.9% and 7.3% greater than 

corresponding Gini indices estimated ignoring topcoding. Essentially the same method was 

applied by Bishop et al. (1994) except that they used unit record public use CPS data rather 

than grouped data, examined 1985–1989, and compared entire distributions using Lorenz 

curves as well as Gini coefficients. Bishop et al. (1994) also estimated sampling variances for 

their inequality statistics, and used statistical inference procedures to test inequality 

differences. However, these procedures did not take account of the additional variability 

introduced by the stochastic nature of the imputation process.  

 In addition to ignoring imputation uncertainty, the Pareto imputation method has the 

disadvantage, shared with the cell mean imputation approach, that only a single value is 

imputed to every topcoded observation in the relevant year, so income dispersion is under-
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estimated. Moreover, and as acknowledged by the authors cited, the goodness of the Pareto 

fit to CPS income data is debatable. On this, see e.g. Angle and Tolbert (1999). This suggests 

that the use of less restrictive parametric functional forms is productive in this context. In the 

next section, we make the case for applying the GB2 distribution to CPS data on household 

incomes, and for using a multiple rather than single imputation approach. 

 

4. A multiple imputation approach to account for topcoding 

 

Our multiple imputation approach consists of five steps, which we outline before discussing 

in more detail. First we fit an imputation model – a parametric functional form that is 

presumed to describe the income distribution in each year 1995–2004, including right 

censored observations. Second, for each observation with a right censored income, we draw a 

value from the distribution implied by the fitted model using an appropriate randomization 

procedure. Third, using the distribution comprising imputed incomes for censored 

observations and observed incomes for non-censored observations, we estimate our various 

inequality indices and associated sampling variances using complete data methods. Fourth, 

we repeat the second and third steps one hundred times for each year, and finally, we 

combine the estimates from each of the one hundred data sets for each year using the 

averaging rules proposed by Reiter (2003) for the case of ‘partially synthetic’ data. This 

accounts for the uncertainty added to estimates by the imputation process as well as for 

sampling variability. Application of the five-step approach to internal CPS data yields our 

Internal-MI series of estimates; application to public use CPS data yields our Public-MI 

series. 

 Ours is the only study that we are aware of that has applied multiple imputation 

methods to right censored data for the purposes of analyzing income inequality. The closest 

study to ours is An and Little (2007). They fit lognormal and power-transformed normal 

distributions to data from the 1995 Chinese household income project, and use the estimates 

to multiply impute incomes to topcoded observations. Their focus was on estimation of and 

inference about mean incomes and income regressions for a single year rather than estimates 

and comparisons of income inequality measures and trends. Gartner and Rässler (2005) used 

lognormal distributions fitted to German wage data for 1991–2001 to multiply impute values 

for topcoded observations. Again the focus was estimation and inference concerning mean 

incomes and income regressions rather than income inequality. 
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 We assume that the distribution of size-adjusted household income in each year is 

described by the four parameter Generalised Beta of the Second Kind (GB2) distribution 

(McDonald 1984), with probability density function 

[ ] 0,
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and cumulative density function (CDF) 

F(y) = I( p, q, (y/b)a / [1 + (y/b)a] ), y > 0, (2)

where parameters a, b, p, q, are each positive. B(p, q) = Γ(p)Γ(q)/Γ(p + q) is the Beta 

function, Γ(.) is the Gamma function, and I(p, q, x) is the regularized incomplete beta 

function also known as the incomplete beta ratio. Parameter b is a scale parameter, and a, p, 

and q are each shape parameters. The GB2 is a flexible functional form incorporating many 

distributions as special cases. For example, the Singh-Maddala (Burr type 12) distribution is 

the special case of the GB2 distribution when p = 1; the Dagum (Burr type 3) distribution is 

the special case when q = 1; and the lognormal distribution is a limiting case. For details, see 

McDonald (1984) and Kleiber and Kotz (2003). Many studies have shown that the GB2 

model fits income distributions extremely well across different times and countries: see inter 

alia McDonald (1984), Bordley et al. (1996), Brachmann et al. (1996), Bandourian et al. 

(2003), and Jenkins (2009). 

 Of particular importance in the current context is the desirable behaviour of the GB2 

distribution in its upper tail. Consistent with extreme value theory, the upper and lower tails 

lie in the domain of attraction of the Fréchet distribution. The upper tail is regularly varying 

(with variation parameter equal to –aq) and it is heavy in that it decays like a power function 

as income increases, rather than decaying exponentially fast (as for the log-normal 

distribution, with middle heavy upper tail), or polynomial decreasing (as for Pareto 

distributions). See Schluter and Trede (2002, Appendix A) and Kleiber and Kotz (2003) on 

regular variation concepts and the upper tail behaviour of GB2 and other distributions.  

 We estimate the GB2 distribution parameters by maximum likelihood (ML), 

separately for each year 1995–2004. To ensure that model fit was maximized at the top of the 

distribution, we fit each GB2 distribution using observations in the richest 70 percent of the 

distribution only, making appropriate corrections for left truncation in the ML procedure. We 

chose the 30th percentile as the left truncation point after experiments balancing goodness of 

fit with ease of maximization. We specify the sample log-likelihood for each year’s data as 
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where i = 1,…, N, indexes each individual sample observation, wi is the sample weight for i, 

and ci = 1 if i is an observation with a right censored household income value, and ci = 0 

otherwise. The denominator of the expression adjusts for left truncation: z is the income level 

corresponding to the left truncation point. For maximization, we use the modified Newton-

Raphson procedure implemented in Stata’s ml command (StataCorp, 2007), with the 

parameter covariance matrix estimates based on the negative inverse Hessian. Convergence 

was achieved easily within several iterations. For brevity, we do not report estimates for each 

year but they are available from the authors on request. 

 For the internal data, model fit varied slightly across years, but was generally 

excellent. This is demonstrated first by the precision of the parameter estimates. For example, 

the smallest t-ratio for any parameter estimate (always for p) was greater than seven, and was 

typically at least two or three times larger for a and for q, and in between for b. Wald tests of 

parameter values suggested that we could easily reject restricted models such as the Singh-

Maddala or Dagum distributions in favour of the GB2 distribution. Excellent goodness of fit 

to the internal data is also demonstrated by probability plots for each year shown in Figure 2 

of Jenkins et al. (2009). These are plots of the cumulative probabilities of income expected 

given the estimated GB2 parameters against the cumulative probabilities of income observed 

in the data. Each chart is based on the richest 70% of each distribution for each year, for the 

reasons explained earlier. Excellent goodness of fit is demonstrated by the fact that every plot 

lies extremely close to a 45° ray from the origin, and much closer than is typically observed 

in plots of this type. There is also no obvious change in the nature of the plots around the 

neighbourhood of the very richest observations. Such smoothness increases our confidence in 

the use of the GB2 for imputing incomes to right censored observations in the internal CPS 

data. 

 We also fit GB2 models separately to public-use data for each year, using procedures 

that mimicked those for the internal data. Given the greater prevalence of right-censoring, 

model goodness-of-fit was not quite as good as for the internal data, but very good 

nonetheless. This is illustrated by the probability plots shown by Jenkins et al. (2009, 

Appendix Figure A).  

 The second stage of our multiple imputation approach uses the GB2 estimates to 

derive imputed values for topcoded observations for each year using the inverse transform 

 10



sampling method. Given fitted GB2 CDF, , the corresponding CDF for topcoded 

observation i is, using standard formulae for truncated distributions: 

)(ˆ yF

)](ˆ1/[)](ˆ)(ˆ[)(ˆ
iiii tFtFyFyG −−=  (4)

where ti is the topcode for i, and yi is the ‘true’ value for that observation (which we are 

unable to observe). Letting ui = , and inverting the expression for the income 

distribution among topcoded observations, we have  

)(ˆ
iyG

( ))(ˆ)](ˆ1[ˆ 1
iiii tFtFuFy +−= − . (5)

A value of yi for each topcoded observation is generated by substituting into this expression a 

value of ui equal to a random draw from a standard uniform distribution. An alternative 

approach to taking draws (suggested by a referee) would have been to use Halton or 

Hammersley sequences. Because we use a household-level income definition, all individuals 

within the same household are imputed with the same value. 

The combination of the observed incomes for non-topcoded observations with the 

imputed incomes for topcoded observations produces a partially synthetic data set for each 

year to which we can apply complete data methods to estimate our inequality statistics of 

interest. (Fully synthetic data consist of entirely multiply imputed data.) Repetition of the 

process m > 1 times produces m partially synthetic data sets for each year and, 

correspondingly, m sets of inequality estimates for each year which we combine in a manner 

discussed shortly. Note that the observations without censored data are common across each 

of the m partially synthetic data sets. Clear cut rules for the choice of m do not exist, but the 

number used is often relatively small (10 or fewer). In the next section, we report estimates 

based on m = 100. In preliminary research, we used m = 20 and derived similar conclusions 

to those reported here. 

 For inference from our multiply-imputed partially synthetic data sets, we use the 

combination formulae derived by Reiter (2003), also used by An and Little (2007), as 

follows. 

Suppose that inference is required about some scalar Q, where Q is a measure of 

inequality such as the Gini index, and index the partially synthetic data sets by j = 1, …, m. 

Denote the point estimator of Q from partially synthetic data set j by qj and the estimator of 

its variance by vj. Reiter (2003) shows that one should estimate Q using the mean of the point 

estimators 

 11



mqq
m

j
jm /

1
∑
=

=  (6)

and use 

mmp vmbT += )/(  (7)

to estimate the variance of mq , where  

∑
=

−−=
m

i
mim mqqb

1

2 )1/()(   and  ∑
=

=
m

j
jm mvv

1
/ . (8)

Thus, the multiple imputation point estimate is the simple average of the point estimates 

derived using complete data methods from each of the m partially synthetic data sets. The 

variance of this estimate is the average of the sampling variances plus a term reflecting the 

finite number of imputations, m. Tp differs from Rubin’s (1987) rule for the combination of 

estimates in the fully synthetic data case, in which case mmmp vmbbT ++= / . The expression 

for the fully synthetic data case includes additional variability (the term bm) to average over 

the response mechanism (Rubin 1987). By contrast, ‘[t]his additional averaging is 

unnecessary in partially synthetic data settings since the selection mechanism … is not 

treated as stochastic’ (Reiter 2003, p. 5). The selection mechanism in our case refers to the 

choice of topcodes by the Census Bureau for the CPS. For large sample sizes, inference 

concerning Q can be based on t-distributions with degrees of freedom vp =  

where 

21)1)(1( −+− mrm

)/( 1
mmm vbmr −= . Because our sample sizes are large and m is large, vp is very large 

also, so the t-distribution is approximated very well by a normal distribution and that is what 

we use for inference.  

 Because cardinal indices of inequality differ in their sensitivities to income 

differences in different ranges of the income distribution (Atkinson 1970), we estimate 

inequality indices that reflected this feature in a systematic way. Specifically, we consider the 

mean log deviation (MLD), Theil index, and half the coefficient of variation squared (CV2/2), 

plus the Gini coefficient. The first three indices belong to the one parameter Generalized 

Entropy class GE(α) with parameter α = 0, 1, 2, respectively, and range from being bottom-

sensitive (MLD) to being sensitive to income differences at the top of the distribution 

(CV2/2). The commonly-used Gini coefficient is a middle-sensitive inequality index. For a 

review of inequality index properties and index formulae, see Cowell (2000). We computed 

distribution-free variance estimates for the inequality indices according to formulae provided 

by Biewen and Jenkins (2006) for GE indices and by Kovačević and Binder (1997) for the 
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Gini index. In both cases, we account for the clustering of individuals in households using a 

conventional sandwich estimator. The computations were undertaken using the Stata modules 

provided by Biewen and Jenkins (2005) and Jenkins (2006). 

 We checked whether our estimates of inequality trends were robust to the choice of 

inequality measure by investigating whether or not Lorenz curves of income distributions for 

pairs of years do not intersect. The statistics of relevance for each year are the cumulative 

shares of income for different income groups for the sample ranked in ascending order of 

income (the Lorenz ordinates), and their sampling variances. If there is Lorenz dominance, 

then there is a unanimous ordering of income distributions according to all standard 

inequality indices (Foster 1985). These include the four indices mentioned in the previous 

paragraph. The computations of the distribution-free variance formulae provided by 

Kovačević and Binder (1997) were undertaken using the Stata module provided by Jenkins 

(2006). Again we account for the clustering of individuals in households using a conventional 

sandwich estimator. 

 Reiter (2003) provides a Bayesian derivation for his data combination inference 

formulae, and also the two conditions under which the inferences are valid from a frequentist 

perspective: that the analyst uses randomization valid estimators and that the synthetic data 

generation methods are proper in a sense similar to Rubin (1987). Of necessity we argue that 

these conditions are satisfied in our case; it is impossible to test their validity since access to 

the actual values for topcoded observations in the internal CPS data is not allowed. Reiter 

developed his combination rules under the assumption that the producer of the multiply 

imputed partially synthetic data sets had used imputation methods that satisfy the conditions. 

Our imputation procedures are randomization based though not fully Bayesian since we did 

not draw from the posterior predictive distribution of the GB2 parameters in each year. 

Because of the complexity of implementing this procedure in our context, we drew from the 

full data posterior distribution, treating the GB2 parameters as known and appeal to the 

excellent fit of our GB2 models. An and Little (2007) employed the same procedure as ours 

when they derived multiple imputations for data assumed to follow a power-transformed 

normal distribution. 

 

5. Estimates of U.S. income inequality, 1995–2004 

 

We first discuss the results from our analysis of Lorenz dominance and then the inequality 

indices. Throughout, tests for statistically significant differences are based on changes 
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between distributions at least two years apart. We do not test for differences between adjacent 

years because of the rotation group structure of the CPS (about half of the sample is the same 

in the March CPS for consecutive years): the test procedures we use are predicated on having 

independent samples in each year. The focus is on the Internal-MI series, but supplemented 

by discussion of how the estimates from the Public-CM and Public-MI series compare. 

Although the latter two series under-estimate inequality measures and associated sampling 

variances (as explained earlier), it is of interest to know whether these features lead to 

erroneous conclusions about inequality differences. 

 Detailed results from the Lorenz dominance analysis of the Internal-MI data for the 

beginning, middle and end of the period (1995, 2000, and 2004) are reported in Table 1. The 

details for the other years are not shown for brevity. Shown are the estimated Lorenz 

ordinates (cumulative income shares) at each successive twentieth of the distributions, 

together with the estimated standard errors (in parentheses) derived using the methods 

discussed in the previous section. The rightmost three columns report distribution-free Lorenz 

dominance test statistics for pairwise comparisons between the three years. For a pairwise 

comparison between year A and year B, and income group k = 1, …, 19, each test statistic 

(Δk) is  

( ) B
k

A
k

B
k

A
kk VVLL ˆˆˆˆ +−=Δ , (9)

where  is the estimate of the kth Lorenz ordinate,  is the estimate of its variance, and 

correspondingly for year B. Testing of the null hypothesis of dominance uses the multiple 

comparison union-intersection method of Bishop et al. (1991a, 1991b) and Bishop et al. 

(1994). Tests are based on a 5% significance level and take account of the fact that each 

dominance test is based on 19 simultaneous tests. The critical value is therefore obtained 

from the Student maximum modulus distribution (Beach and Richmond 1985): SMM(19,∞) 

= 3.01.  

A
kL̂ A

kV̂

There are four possible outcomes from the tests associated with the comparison of 

years A and B, as Bishop and colleagues explain. First, there may be no statistically 

significant difference between any pair of Lorenz ordinates (|Δk| ≤ 3.01 for all k), in which 

case A and B cannot be differentiated. Second, if there are positive and statistically significant 

differences in ordinates and no negative and statistically significant differences, then A 

Lorenz dominates B: inequality is lower according to all standard inequality indices (Δk > 

3.01 for some k and |Δl| ≤ 3.01 for l ≠ k). Third, the reverse is the case if there are negative 
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and statistically significant differences in ordinates and no positive and statistically 

significant differences (Δk < –3.01 for some k and |Δl| ≤ 3.01 for l ≠ k). Fourth, if there are 

both negative and positive differences that are statistically significant (Δk > 3.01 for some k 

and Δl < –3.01 for some l ≠ k), the Lorenz curves cross and the null hypothesis of Lorenz 

dominance is rejected. For a review of this and other approaches to testing dominance, see 

Davidson and Duclos (2000). Some more recently proposed tests such as those of Barrett and 

Donald (2003) are not widely used and their more computationally intensive nature makes it 

infeasible to apply them to CPS data in the restricted-access Census Research Data Center 

environment. 

 Table 1 suggests that, according to the point estimates of the ordinates, the Lorenz 

curve moved slightly outwards between 1995 and 2004 (indicating greater inequality). 

However, all the test statistics Δk are smaller than 3.01, and so we cannot differentiate 

between the pairs of Lorenz curves in question. For the two subperiods, the pattern of change 

in the ordinates is more complex – there are both positive and negative changes in the 

ordinates – but the outcome is the same as before. Indeed, all 36 pairwise comparisons 

undertaken (using all pairs of years 1995–2004 excluding adjacent years) fall under the 

heading of the first cases. Thus, according to Lorenz dominance tests applied to multiply 

imputed internal data, no significant change in inequality according to all Lorenz-consistent 

inequality measures could be detected over the period 1995–2004.  

 We repeated the 36 pairwise Lorenz dominance tests using the Public-CM data and 

found the same result, but with one difference. The null hypothesis of Lorenz dominance 

could not be rejected for comparisons involving 1999 – inequality for this year was 

apparently lower than for any of the other years considered. For example, in the comparison 

between 1999 and 2004, Δk > 3.01 for k = 12 to 19 inclusive, and 0 < Δk < 3.01 otherwise. 

That is, cumulative income shares were significantly lower in the top third of the income 

distribution in 2004 compared to 1999. Apart from the results for 1999, there is consistency 

between the conclusions derived from the Internal-MI and Public-CM series. We discuss why 

1999 is different below. 

 Lorenz dominance tests based on the Public-MI data led to slightly different results. 

There was less inequality in 1999 than in 1995 and in 1996. But, besides the results for this 

year, there is broad consistency between these estimates and those from the Internal-MI 

series. 

 



Table 1. Lorenz Ordinates, Standard Errors, and Test Statistics for Pairwise Lorenz Comparisons 
(Internal-MI series) 

 Year  SMM test statistics (Δk) 
Cumulative 
population share 1995 2000 2004 2004 vs. 1995 2004 vs. 2000 2000 vs. 1995

0.05 0.0040 0.0040 0.0031 –0.1104 –0.0938 –0.0006
 (0.0063) (0.0081) (0.0057)  

0.10 0.0134 0.0137 0.0122 –0.1506 –0.1511 0.0215
 (0.0063) (0.0081) (0.0057)  

0.15 0.0266 0.0268 0.0249 –0.1983 –0.1888 0.0187
 (0.0062) (0.0081) (0.0057)  

0.20 0.0433 0.0432 0.0411 –0.2615 –0.2200 –0.0031
 (0.0062) (0.0080) (0.0056)  

0.25 0.0633 0.0629 0.0603 –0.3550 –0.2660 –0.0355
 (0.0062) (0.0080) (0.0056)  

0.30 0.0866 0.0857 0.0826 –0.4740 –0.3179 –0.0828
 (0.0061) (0.0080) (0.0056)  

0.35 0.1132 0.1118 0.1082 –0.6050 –0.3673 –0.1423
 (0.0061) (0.0079) (0.0055)  

0.40 0.1432 0.1407 0.1371 –0.7391 –0.3677 –0.2513
 (0.0060) (0.0079) (0.0055)  

0.45 0.1764 0.1730 0.1693 –0.8784 –0.3865 –0.3465
 (0.0060) (0.0078) (0.0055)  

0.50 0.2133 0.2088 0.2051 –1.0172 –0.3920 –0.4536
 (0.0059) (0.0078) (0.0054)  

0.55 0.2538 0.2482 0.2445 –1.1657 –0.3918 –0.5736
 (0.0058) (0.0077) (0.0054)  

0.60 0.2982 0.2915 0.2880 –1.2952 –0.3737 –0.6953
 (0.0058) (0.0077) (0.0053)  

0.65 0.3467 0.3389 0.3358 –1.4017 –0.3282 –0.8237
 (0.0057) (0.0076) (0.0053)  

0.70 0.4000 0.3907 0.3886 –1.4915 –0.2338 –0.9858
 (0.0056) (0.0076) (0.0052)  

0.75 0.4587 0.4479 0.4474 –1.4914 –0.0596 –1.1523
 (0.0055) (0.0075) (0.0051)  

0.80 0.5240 0.5116 0.5119 –1.6227 0.0363 –1.3484
 (0.0055) (0.0074) (0.0051)  

0.85 0.5975 0.5834 0.5856 –1.6316 0.2415 –1.5526
 (0.0053) (0.0073) (0.0050)  

0.90 0.6824 0.6673 0.6711 –1.5703 0.4469 –1.7013
 (0.0052) (0.0072) (0.0049)  

0.95 0.7863 0.7713 0.7765 –1.4111 0.6247 –1.7446
 (0.0050) (0.0070) (0.0047)  

Note: standard errors are in parentheses. Source: authors’ calculations from internal CPS data. 
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 Stronger conclusions about inequality differences may be derived by moving from 

Lorenz dominance tests – concerned with differences according to all Lorenz-consistent 

inequality measures – to comparisons of specific Lorenz-consistent indices. Estimates of 

inequality indices and test statistics for pairwise comparisons for selected years are shown in 

Table 2 for the Internal-MI series. The test statistics are for pairwise difference-in-means t-

tests, and so the relevant critical value using a 5% significance level is approximately 1.96. 

We find that the estimate of each index increased between 1995 and 2000 and between 2000 

and 2004. The estimated increase between 1995 and 2004 is largest for the GE(2) and GE(0) 

indices (25% and 18%, respectively), and smallest for the Gini and GE(1) indices (3% and 

9%, respectively). However it is only for the Gini and GE(0) indices that the increases are 

statistically different from zero. Few subperiod increases are statistically significant either – 

the exceptions mainly concern GE(0). Observe that the standard errors for the GE(2) index 

are relatively large, and we comment further on this below. 

 

Table 2. Inequality Indices, Standard Errors, and Test Statistics for Pairwise Comparisons 
(Internal-MI series) 

Index Year  Test statistics 
 1995 2000 2004  2004 vs. 1995 2004 vs. 2000 2000 vs. 1995 
Gini 0.4311 0.4427 0.4453 2.8944 0.4391 1.9019
 (0.0036) (0.0049) (0.0033)  
GE(0) 0.4017 0.4298 0.4756 7.2817 3.8536 2.3992
 (0.0070) (0.0094) (0.0073)  
GE(1) 0.3731 0.4166 0.4066 1.4836 –0.3176 1.4185
 (0.0153) (0.0265) (0.0166)  
GE(2) 0.9572 1.4961 1.1937 0.4288 –0.2737 0.5322
 (0.2326) (0.9855) (0.5001)  
Note: standard errors are in parentheses. Source: authors’ calculations from internal CPS data. 

 

 

The complete set of tests for pairwise inequality index differences are summarized in 

Table 3 for all three series. For each year, inequality index, and data source series, the cell 

entry shows the year(s) for which there is a statistically significant difference in inequality 

between the comparison year (column 1) and the year(s) shown. A blank cell means no 

comparison between that year and any other year is statistically significant. The table points 

to several findings about inequality differences and about consistency in results across series. 

 First, according to the gold standard of the Internal-MI series, few inequality 

differences are significantly different from zero. Where they are statistically significant, they 
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typically refer to differences between the beginning of the period and the end of the period. 

The greatest number of statistically significant differences refer to the GE(0) index. Also, 

none of the tests for differences in the top-sensitive index GE(2) based on the Internal-MI 

series are statistically significant.  

 Second, we find more statistically significant differences using the Public-CM series 

than the Internal-MI series. For some reference years when comparisons based on the 

Internal-MI series yield no statistically significant differences at all, there are statistically 

significant differences according to the Public-CM series. Consider, for example, the 

comparisons for each of the reference years 1997, 1999 and 2000 for the Gini and GE(1) 

indices, and all comparisons for GE(2) except those involving 1998. And, whenever there is 

any statistically significant difference concerning a year A and a year B according to the 

Internal-MI series, there are often statistically significant differences between year A and 

additional years as well according to the other two series. For example, according to the 

Internal-MI series, there was a statistically significant difference between the Gini indices for 

2004 and 1995. According to the Public-CM series, the Gini index for 2004 differed from the 

estimates for 1995, 1996, 1998, 1999 and 2000. In only a few instances was there a 

statistically significant difference according to the Internal-MI series but not the Public-CM 

one, notably the GE(0) comparisons for 2001 with 1997 and 1998, and 2002 with 1999. 

 The explanation for these findings is that the suppression of genuine within-cell 

income dispersion that is associated with cell mean imputation leads to underestimation of 

not only inequality indices but also of their sampling variances. There is therefore a tendency 

for estimated inequality trends based on the Public-CM series to be judged statistically 

significant when they are not. 

 



 
 
 

Table 3. Pairwise Comparisons of Inequality Indices, by Index, Year and Estimate Series 
 Gini  GE(0)  GE(1)  GE(2) 

Year Internal-MI Public-CM Public-MI  Internal-MI Public-CM Public-MI  Internal-MI Public-CM Public-MI  Internal-
MI 

Public-CM Public-MI 

1997  1995 1995  1995 1995 1995   1995 1995   1995  
1998   1995, 1996  1995,1996 1995,1996 1995, 1996         
1999  1995–1997 1995–1997   1997 1995, 1996   1995–1997 1995, 1996   1995–1997  
2000   1995, 1996  1995 1995 1995, 1996    1995   1997  
2001 1995, 1996, 

1999 
1995, 1996, 
1998, 1999 

1995, 1996, 
1999 

 1995–1999 1995–1999 1995, 1996  1995 1995, 1998, 
1999 

   1999  

2002  1995, 1999 1995, 1996, 
1999 

 1995, 1996, 
1999 

1995, 1996, 
1999, 2000 

1995, 1996   1995, 1999 1995   1995, 1999, 
2000 

 

2003 1995 1995, 1998, 
1999 

1995, 1996, 
2001 

 1995–2000 1995–2000 1995–2001   1995, 1999 1995, 1996   1999  

2004 1995 1995, 1996, 
1998–2000 

1995, 1996  1995–2000, 
2002 

1995–2002 1995–2002   1995, 1998, 
1999, 2000 

1995   1995, 
1998–2000 

 

Note: for each year, inequality index, and data source series, the cell entry shows the year(s) for which there was a statistically significant difference in inequality between that year and the 
year(s) shown. A blank cell means no comparison between that year and any other year was statistically significant. Comparisons undertaken for every pair of years 1995–2004, adjacent years 
excepted. Authors’ calculations from internal and public use CPS data. 
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 The differences between the three series are highlighted by Figure 3. This shows the 

estimates for each of the four inequality indices, year by year, together with the associated 

95% confidence intervals. To ensure the lower bound of the confidence interval for GE(2) is 

positive, the interval for this index was calculated in the logarithmic metric and then 

transformed back to the natural metric.  

Unsurprisingly, estimates of inequality levels in each year are greater for the Internal-

MI series than for the Public-CM series. However, both series point to similar trends over the 

period: they suggest that inequality levels fell slightly at the end of the 1990s, especially 

between 1998 and 1999, and again between 2001 and 2002. This consistency appears 

reassuring for analysts, especially since all researchers have access to cell mean-augmented 

public use CPS data whereas access to internal CPS data is subject to special conditions.  
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Figure 3. Inequality indices with 95% confidence intervals, 1995–2004. Internal-MI series 
(solid line), Public-CM series (long-dashed line), and Public-MI series (short-dashed line), 
derived from internal and public use CPS data. 
 

However, Figure 3 also clearly shows that confidence intervals for inequality indices 

estimated using the Public-CM data are too narrow by a substantial amount. This feature is 

particularly striking for the top-sensitive GE(2) index, which is not surprising because it is at 

the very top of the distribution that the data series differ in dispersion. In short, the reassuring 
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consistency between the Internal-MI and Public-CM series evaporates if the researcher is 

interested in statistical inference and not simply point estimates. 

For the GE(2) index, the very wide confidence intervals in the Internal-MI series are 

likely to reflect the GE(2)’s relatively greater non-robustness to the effects of outliers in the 

sense discussed by Cowell and Victoria-Feser (1996). Although their discussion focuses on 

point estimates of inequality indices rather than sampling variances, the same points apply. In 

the GE(2) case, sampling variances depend on fourth order moments, so high income outliers 

have a large impact. The averaging process used to combine the estimates from our 100 

multiply imputed data sets appears to offset the effects on GE(2) estimates of any outliers 

added by the imputation process, but does not do so for GE(2) sampling variances. This non-

robustness problem does not arise with the other inequality indices, however.  

 The Public-MI estimate for any given year and index lies between the corresponding 

Internal-MI and Public-CM estimate, and is generally closer to the latter rather than the 

former. There are a few exceptional cases in which the Public-MI estimate is slightly smaller 

than the Public-CM estimate, most of which involve the estimates for 1995 or 1996. Our 

explanation for lower inequality in the Public-MI series than the Internal-MI one is that the 

imputation model underlying the Public-MI series does not work as well as the model 

underlying the Internal-MI series and this, in turn, is related to the substantially greater 

prevalence of topcoded data in the public use data compared to the internal data. It is the 

same feature that leads to confidence intervals that are smaller than for Internal-MI series. 

They are, however, larger than for the Public-CM series as the construction of the Public-MI 

series incorporates more variability via its imputation process. Our explanation for the 

Public-MI estimates being relatively close to the Public-CM one is that derivation of the 

Public-MI series did not use any information from the internal data, whereas the Public-CM 

series did. The impetus to inequality that is added by the randomization process in the 

derivation of the former source is matched by the use of information about actual incomes 

from the internal data in the latter source. 

The final feature of Figure 3 that we wish to comment on is the results for 1999. 

Relative to trend, this appears to be an outlier year, and echoes results from the Lorenz 

dominance analysis reported earlier. Interestingly, the index estimates for 1999 are above 

those for immediately previous and succeeding years according to the Public-MI series, but 

below them according to the other two series. Indeed, if the results for 1999 were discarded, 

the trends for the three series would look much more similar. We do not have a complete 

explanation for the exceptional 1999 results. We rule out differences in the imputation 
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process for the public data for that year, because we can see no clear differences between the 

parameter estimates of the GB2 model for 1999 and those for the years before and afterwards. 

And the computer code used to implement the imputation randomization process is generic. 

Since the Internal-MI and Public-CM series both rely on internal data for their derivation, 

whereas the Public-MI series does not, we suspect that there is some feature of the internal 

data for that year that underlies the pattern. 

 

 

6. Discussion 

 

We have demonstrated how a multiple imputation approach may be used to estimate 

inequality levels and trends from right censored income data. With a suitable imputation 

model, researchers may impute values to topcoded observations, thereby creating multiple 

partially synthetic data sets to be analyzed using complete data methods. Estimates combined 

using straightforward formulae can be used for statistical inference.  

 Applying the multiple imputation approach to internal data from the CPS, we have 

shown that no clear cut conclusions about the changes in income inequality over the period 

between 1995 and 2004 can be drawn. According to Lorenz dominance analysis, there was no 

significant change in inequality. For some specific indices, such as the Gini or the GE(0), 

there was a statistically significant increase in inequality between 1995 and 2004; for more 

top-sensitive indices such as GE(1) and GE(2), changes did not differ significantly from zero.  

 Our analysis enables assessment of the public use CPS data augmented by the Census 

Bureau’s cell mean imputations for topcoded observations in the context of estimation of 

income inequality and its trends. Taking the estimates from the multiply imputed internal data 

as the gold standard shows that the cell mean-augmented data track trends in inequality 

indices over the decade since 1995 reasonably well, though inequality levels are – 

unsurprisingly – underestimated. However, we have also shown that suppression of income 

dispersion within cells, combined with use of right censored CPS internal data to construct 

cell means, also has impacts on variance estimates. Compared to their multiply imputed 

internal data counterparts, they are underestimated, leading to confidence intervals that are 

too narrow and a tendency to incorrectly find statistically significant inequality differences. 

Put another way, cell mean imputations for topcoded observations may do an excellent job of 

helping to estimate mean incomes, but their very nature makes them less suitable for 

estimation and inference concerning statistics based on higher order moments. 
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 Although few researchers would find it practical to go through the procedures 

required to access the internal CPS data, and to undertake the research using the data within a 

U.S. Census Bureau Data Center, we have shown that there is a feasible alternative that 

works reasonably well. That is, our comparisons of the three series shows a multiple 

imputation approach applied to topcoded public use CPS data can yield results about income 

inequality that in several senses lie between those derived using multiple imputation applied 

to internal data and those derived using cell-mean augmented public use data. The Public-MI 

approach takes account of income dispersion at the top of the distribution and also takes 

account of the variability of estimates. Because the public use data are, by definition, in the 

public domain, it would also be easier for researchers to build more sophisticated imputation 

models and improve the quality of estimates derived. These models might allow for subgroup 

differences, for instance allowing for covariates in the estimation of a parametric model or 

also incorporating the information available from the cell mean imputations. As argued in the 

Introduction, the multiple imputation methods we propose may be applied to a number of 

datasets other than the CPS. The methods might also be applied to the case of interval 

censoring, i.e. when income data are provided in grouped form. Imputing a value equal to the 

midpoint of an interval is a commonly-used single imputation approach (see e.g. Kahn 1998); 

multiple imputation may be a fruitful alternative. 
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