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NONPARAMETRIC ESTIMATION
WITH AGGREGATED DATA

OLLLIIIVVVEEERRR LIIINNNTTTOOONNN
London School of Economics

YOOOOOONNN-JAAAEEE WHHHAAANNNGGG
EWHA University

We introduce a kernel-based estimator of the density function and regression func-
tion for data that have been grouped into family totals+ We allow for a common
intrafamily component but require that observations from different families be
independent+ We establish consistency and asymptotic normality for our proce-
dures+ As usual, the rates of convergence can be very slow depending on the
behavior of the characteristic function at infinity+ We investigate the practical
performance of our method in a simple Monte Carlo experiment+

1. INTRODUCTION

Grouped or aggregated data occur in many contexts in economics+ Data aggre-
gated by family, by region, and by other levels are often all that is available to
the empirical researcher+ If the object of interest is the underlying individual
relationship, then grouping can imply some consequences for estimation and
inference, depending on the model+ Inference based on linear models is little
affected by sort of grouping we consider, because it is a linear operation+ The
slope parameters of the aggregated model are the same as in the disaggregated
model, and the usual least squares estimators are consistent+ The worst thing
that can happen is some heteroskedasticity when the groups are not of equal
number, in which case one must correct the standard errors and0or improve
efficiency by weighting+ However, nonlinear models, and in particular nonpara-
metric models, suffer considerable problems in the presence of grouping, be-
cause the grouped data regression function can have almost any relationship
with the ungrouped regression function+ Standard estimation procedures are no
longer consistent and require considerable modification+
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We propose methods for estimating a nonparametric regression function and
nonparametric density function based on aggregated data+We allow for a within
“family” component but assume that the data are independent across families+
Our estimators are based on the deconvolution methods of Fan ~1991, 1992!, Fan
and Masry ~1992!, Fan and Truong ~1993!, Masry ~1991, 1993!, and Stefanski
and Carroll ~1990!+ See also Horowitz and Markatou ~1996! and Horowitz ~1998!
for an application of these ideas+We establish consistency and asymptotic nor-
mality of our methods+ The rate of convergence depends on the details of the
decay rate of the characteristic function of the data and can be very slow in-
deed+ The motivation for our work was a term paper by a Yale Ph+D+ student,
Eugene Choo ~1998!, who estimated a hedonic pricing model for slaves sold in
auction in the pre-bellum south+ The slaves were sold in job lots sometimes fam-
ily related, sometimes characteristic related, sometimes more or less randomly
composed+ The observed price was the price of the lot rather than of the indi-
vidual+ It was of interest to back out the individual price0characteristic relation-
ship from these aggregated data+ Our particular interest is to do this without
making strong assumptions about the functional form of the latent distribution+

In Section 2 we describe the model and our estimator+ In Section 3 we give
the asymptotic properties of our estimators in the two leading cases concerning
the behavior of the characteristic function+ In Section 4 we briefly discuss some
practical issues, and in Section 5 we give the results of some simulations+ The
Appendix contains our proofs+We usen to denote convergence in distribution
and

p
&& to denote convergence in probability+ Let 7A7 � tr~ATA!102 for any

matrix A+ Also, define the complex-valued quantity i � M�1+

2. MODEL SPECIFICATION AND ESTIMATION

We suppose that the data are organized into family units or batches, i+e+,
$~Yij , Xij ! : i � 1, + + + , n; j � 1, + + + , ri %+ We also suppose that there is a common
element to the data series, which we model using the one-factor structure

Yij � Y0ij � hi; Xij � X0ij � «i , (1)

where ~Y0ij , X0ij ! and ~hi ,«i ! are independent and identically distributed ~i+i+d+!
across both i and j and ~hi ,«i ! are independent of $~Y0ij , X0ij !, j � 1, + + + ri %+
Here, ri is a positive integer perhaps random but independent of all other
random variables+ The variables ~Y0ij , X0ij ! represent idiosyncratic components,
whereas ~hi ,«i ! are common to all members of “the family+” The common ef-
fect induces dependence across j within the same i, but observations across i
are mutually independent+ The assumption that the idiosyncratic components
are independent is quite strong and implies, e+g+, that E~Y0ij 6X0i1 , + + + , X0iri

! �
E~Y0ij 6X0ij !, although it should be noted that this still allows for
E~Yij 6Xi1 , + + + , Xiri

! � E~Yij 6Xij !+ We are going to be primarily interested in the
marginal effect E~Yij 6Xij !, because under the aggregation rule introduced sub-
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sequently the quantity E~Yij 6Xi1 , + + + , Xiri
! is unidentified+ The common family

component can be more or less important depending upon the data+ Certainly,
when the units are aggregated in a more or less random way, this common ef-
fect may be taken as small+ This structure is used in many fields of economics
and finance+ It can easily be extended to allow for multiple factors to the extent
that family size permits+

We further suppose that we only observe the grouped or aggregated data

PYi � (
j�1

ri

Yij; PXi �(
j�1

ri

Xij , i � 1, + + + , n+ (2)

This kind of observation rule arises quite often in household surveys where
much information is obtained only at the household level; see Chesher ~1997!
and Choo ~1998! for recent examples+ Note that this sort of grouping is differ-
ent from that considered in Amemiya ~1985, p+ 275! where there are a small
number of “families” of large size; we have a large number of families of small
size+ In many data sets, the “family size” ri is not the same across units+ Nev-
ertheless, the number of different family sizes is small relative to the total num-
ber of units+ We shall suppose that ri � $r1, + + + , rR, some finite integer R% and
that the number of families of each distinct size r�, denoted n�, is large, whereas
the family sizes themselves are relatively small ~we have (��1

R n� � n with R
fixed and n� r ` for all � in the asymptotics!+ We shall further assume that
the aggregation is not systematically related to the data distribution itself+ To
allow for such possibilities requires a model of the relationship between, say,
household size and the covariates, which is beyond the scope of this paper+

Subsequently, for notational simplicity, we sometimes denote ~Yij , Xij ,Y0ij,
X0ij , PYi , PXi , ri , ni ! as ~Y, X,Y0, X0, PY, PX, r, n!+ We shall stratify according to fam-
ily size and do our calculations on the homogeneous units to obtain consistent
estimates+We wish to estimate quantities such as the marginal density fX~{! and
joint density fY, X~{! of the individual data ~Y, X !, the regression function

E~Y 6X � x!� m~x!, (3)

or various functionals from the conditional distribution of Y given X using the
available sample $~ PYi , PXi ! : i �1, + + + , n% and without imposing functional form re-
strictions on fY, X~{!+ If m~x! � a � bx, then, E~ PY 6 PX � x! � ra � bx; i+e+, the
grouped data regression function is essentially the same as the ungrouped regres-
sion+ In general, this correspondence is not present, and we must use more so-
phisticated techniques to extract the ungrouped distribution from the grouped data+

Note that

E~Y 6X � x! �
gX ~x!

fX ~x!
, where (4)

gX ~x! ��yfY, X ~ y, x!dy+ (5)
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Let fX0
~t ! � E @exp~itX0!# , fX~t ! � E @exp~itX !# , f PX~t ! � E @exp~it PX !# , and

f«~t ! � E @exp~it«!# denote the characteristic functions+ Expressions ~1! and
~2! imply that

fX ~t ! � fX0
~t !f«~t !, (6)

f PX ~t ! � @fX0
~t !# rf«~rt ! (7)

by the convolution theorem+ Similarly, letting fY0 , X0
~s, t ! � E @exp~i~sY0 �

tX0!!# , fY, X~s, t !� E @exp~i~sY � tX !!# , f PY, PX~s, t !� E @exp~i~s PY � t PX !!# , and
fh,«~s, t ! � E @exp~i~sh � t«!!# , we have

fY, X ~s, t ! � fY0 , X0
~s, t !fh,«~s, t !, (8)

f PY, PX ~s, t ! � @fY, X ~s, t !# rfh,«~rs, rt !+ (9)

If we knew f«~t ! and fh,«~s, t !, then we would obtain the useful relations

fX ~t ! � � f PX ~t !f«~rt !�10r

f«~t !,

fY, X ~s, t ! � � f PY, PX ~t !

fh,«~rs, rt !�10r

fh,«~s, t !,

which determine fX~t ! and fY, X~s, t !+ The trick is really how to eliminate the
nuisance functions f«~t ! and fh,«~s, t !+ We show how to do this in the next
section by using two different family size data sets+ Suppose for now that we
have estimators Zf«~t ! and Zfh,«~s, t !+

We can estimate the characteristic functions of the grouped data by the em-
pirical characteristic functions

Zf PX ~t ! �
1

n (j�1

n

exp~it PXj !, (10)

Zf PY, PX ~s, t ! �
1

n (j�1

n

exp~i~s PYj � t PXj !!, (11)

and hence

ZfX ~t ! � � Zf PX ~t !Zf«~rt !�10r

Zf«~t !, (12)

ZfY, X ~s, t ! � � Zf PY, PX ~t !
Zfh,«~rs, rt !� 10r

Zfh,«~s, t !+ (13)

NONPARAMETRIC ESTIMATION WITH AGGREGATED DATA 423



We then apply deconvolution to these to obtain the density estimators

ZfX ~x! �
1

2p
�

�`

`

exp~�itx!fK ~th! ZfX ~t !dt, (14)

ZfY, X ~ y, x! �
1

~2p!2
�

�`

`�
�`

`

exp~�i~sy � tx!! EfK ~sh, th! ZfY, X ~s, t !dsdt, (15)

where fK~{! and EfK~{,{! are the Fourier transforms of the kernels K~{! and
EK~{,{!, respectively, and h is a bandwidth sequence tending to zero with sam-

ple size n+ Finally, we estimate m~x! � E~Y 6X � x! by

[m~x! �
[gX ~x!

ZfX ~x!
, where (16)

[gX ~x! ��y ZfY, X ~ y, x!dy+ (17)

In practice, equations ~14!–~17! can be complex, so we shall take the real part
only ~the imaginary parts are typically small and converge to zero in probability!+

Remarks+

1+ For each different family size r we have estimates of the desired quantities+ One
can then aggregate the estimates to improve efficiency, e+g+, by minimum dis-
tance+ Let [mr~x! be the estimate of m~x! based on families of size r, where r takes
R different values+ Then let Km~x! be the value of u that minimizes the quadratic
form ~ v [m � ue!TV~ v [m � ue!, where v [m � ~ [mr1

~x!, + + + , [mrR
~x!!T and e � ~1, + + + ,1!T,

whereas V is some positive definite weighting matrix+ The explicit representation
of Km~x! is

Km~x! � ~eTVe!�1eTV v [m+

By choosing V to be the inverse of the asymptotic variance of the unrestricted
estimator the resulting estimator has minimal variance within this class of estima-
tors+ However, the effect on bias is uncertain, and this estimator may even do
worse according to mean squared error for some data distributions+

2+ In some data sets, some of the variables are observed ungrouped+ The ungrouped
regression model of interest is Yij � m~Xij ! � uij for error term uij that satisfies
E~uij 6Xij ! � 0+ Suppose that Xij , j � 1, + + + , r are observed but only the grouped PYi

data are observed+ Then we have

PYi � (
j�1

r

m~Xij !� Sui , (18)

where Sui �(j�1
r uij + If also E~uij 6Xil !� 0 for l � j, then this is a standard additive

nonparametric regression model with the additional constraint that the function m
is the same across j+ One could estimate the regression function by backfitting or
marginal integration as described in Linton and Nielsen ~1995! and Mammen, Lin-
ton, and Nielsen ~1999! or by series estimation ~see Andrews and Whang, 1990!,
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which has the important feature that it involves no Fourier inversion+ It can be
expected that the rate of convergence of these estimators would be the same as
that of one-dimensional nonparametric regression, which would be faster than we
are able to obtain in our setting+ Even when r varies substantially with i, one can
still do better than the Fourier inversion method by using the recently developed
methods of Linton, Nielsen, Tanggaard, and Mammen ~1998! for estimating yield
curves+

When Yij , j � 1, + + + , r are observed, but only the grouped PXi data are observed, it
does not seem possible to obtain a method that bypasses the Fourier inversion,
and we seem stuck with the slow rate of convergence in this case too+ This is
likely to be the case also where some of the covariates are grouped and some are
not+

3+ Given estimates of fh,«~s, t ! one can obtain estimates of fY0 ,X0
~s, t ! from ~8! and

hence of the regression function E~Y0ij 6X0ij !+ We do not present results for this
estimation, but no doubt they can be arrived at by minor modification of our
theorems+

2.1. Estimation of f« and fh,«

We give two alternative methods for estimating the error characteristic func-
tions+ The first method is suggested by work of Horowitz and Markatou ~1996!
and does not require functional form restrictions+ The second method is based
on a semiparametric restriction on the distribution of X, namely, that the dis-
tribution of the errors «,h is parametric+ For simplicity we just describe the
methods for the problem of estimating f«, but similar comments apply to the
estimation of fh,«+ A necessary condition for nonparametric identification of
these distributions is that there are at least two distinct family sizes+

Suppose that there are at least two distinct family sizes; call them r1 and r2+
Then, we have

P~t; r1, r2 ! �
@f PX, r1

~t !#10r1

@f PX, r2
~t !#10r2

�
@f«~r1 t !#10r1

@f«~r2 t !#10r2
,

where f PX, r1
~t ! denotes the characteristic function of PX from families of size r1

and likewise f PX, r2
~t !+ The left-hand side can be consistently estimated at rate

root-n, at least for some range of t, by the empirical version of P, which we call
Pn+ Now suppose that « is symmetrically distributed about zero, in which case
f« is real-valued+ Then we can write

ln Pn~t; r1, r2 ! �
1

r1

k«~r1 t !�
1

r2

k«~r2 t !� un~t; r1, r2 !,

where

un~t; r1, r2 ! �
Pn~t; r1, r2 !� P~t; r1, r2 !

P~t; r1, r2 !
,
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whereas k«~t ! � ln f«~t ! is the cumulant generating function of «+ Now let

Zf«~t ! � exp~ [k«~t !!, [k«~t !�(
j�2

Jn

[aj t j,

where Jn is some truncation sequence and the “parameters” aj , j � 1, + + + , Jn min-
imize the least squares criterion function

(
��1

Ln �ln Pn~t� ; r1, r2 !�(
j�2

Jn

aj ~r1
j�1 � r2

j�1!t�
j�2

,

where t�, � � 1, + + + , Ln are a grid of points+We have imposed the restriction that
k«~0! � k«

' ~0! � 0, the second of which follows from the symmetry assump-
tion+ This above procedure is similar to one proposed in Horowitz and Markatou
~1996, pp+ 162–163! and can be expected to be consistent at the usual rate of
convergence of nonparametric smoothing methods ~which is faster than the rate
of convergence of our deconvolution estimators!, provided Jn goes to infinity
at a certain rate+ The restriction to symmetric errors can also perhaps be re-
laxed as in Horowitz and Markatou ~1996!+

Instead suppose that the characteristic function of « is known except for finite-
dimensional vector u0, i+e+, f«~{! � f«~{,u0!,where the function f«~{,u0! is
smooth+ In this case, one can compute Zu to minimize the criterion function

(
��1

Ln

@ ln Pn~t� !�p~t� ,u!# 2,

where p~tk,u!� k«~r1 t;u!0r1 � ~10r2!k«~r2 t;u!0r2+ See Beran and Millar ~1994!
and Knight and Satchell ~1997! for discussion of similar methods+ Under some
regularity conditions, we can expect Zu to be root-n consistent and asymptoti-
cally normal+

3. ASYMPTOTIC PROPERTIES

In this section, we analyze the asymptotic properties of the nonparametric den-
sity estimator ~14! of fX~x! and regression estimator ~16! of m~x!+ The proper-
ties depend crucially on the smoothness of the densities fX~x! and fY, X~ y, x!+
The smoothness of a density is related to the tail behavior of the characteristic
function+ That is, the faster the decay of the characteristic function, the smoother
its corresponding density+ Subsequently, we consider two types of characteris-
tic functions: characteristic functions with algebraic decay and characteristic
functions with exponential decay+ In the literature, the former type is often re-
ferred to as the case of ordinary smooth distributions and includes gamma and
Laplace distributions, whereas the latter type is referred to as that of super smooth
distributions and includes normal and Cauchy distributions and their mixtures,
among others+ Our theoretical development is similar to that in Fan and Masry
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~1992!+ The main technical difficulty we have is the nonlinear way in which
f PX~t !, e+g+, enters into ~14!+

We shall assume a uniform rate of convergence of our estimators of f«~t !
and fh,«~s, t !, which can be expected to pertain under some regularity condi-
tions as already discussed+ We shall suppose that n r `+

Assumption E1+ There exists an estimator Zf«~t ! such that for j � 0,1,2,3 we
have

sup
t�R

� ]
j

]t j Zf«~t !�
] j

]t j f«~t !� � Op~n
�a02 !

for some a with 0 � a � 1+

Assumption E2+ There exists an estimator Zfh,«~s, t ! such that for j � k �
0,1,2,3 we have

sup
~s, t !�R

2 � ]
j�k

]s kt j Zfh,«~s, t !�
] j�k

]s kt j fh,«~s, t !� � Op~n
�a02 !

for some a with 0 � a � 1+

3.1. Case I: Characteristic Functions with Algebraic Decay

3.1.1. Density estimation

Assumption A+

~i! fX0
~t !t b1 r A1, f«~t !t b2 r A2, 6fX0

' ~t !t b1�1 6 � O~1!, and 6f«' ~t !t b2�1 6 �
O~1! as t r ` for some constants A1 � 0, A2 � 0, b1 � 1, and b2 � 1 with
~r � 1!b1 � 1

2
_ +

~ii! fX0
~t ! � 0 and f«~t ! � 0 for all t � R+

~iii! fK ~{! is a symmetric function with k � 2 bounded integrable derivatives,
fK~0! � 1, and fK~t ! � 1 � O~6 t 6k! as t r 0 for some k � 0+

~iv! *�`
` 6fK ~t !6 6 t 6~2r�1!b1dt � `, *�`

` 6fK
' ~t !6 6 t 6~r�1!b1dt � `, and *�`

` 6fK ~t !62 �
6 t 62~r�1!b1dt � `+

~v! fX~{! is k-times continuously differentiable with bounded derivatives+

Remark+ Assumption A~iii! implies that the kernel function

K~u! �
1

2p
�

�`

`

exp~�itu!fK ~t !dt (19)

is a real-valued function integrating to unity and kth order, i+e+,

�
�`

`

u jK~u!du � 0 for j � 1, + + + , k � 1, �
�`

`

6ukK~u!6 du � `+
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Define

sn1
2 ~x! � n�1h�2~r�1!b1�1s1

2~x!, where (20)

s1
2~x! �

f PX ~x!r
2~b2�1!

2pA1
2~r�1! �

�`

`

6fK ~t !62 6 t 62~r�1!b1dt+ (21)

Let

fX
*~x! ��

�`

`

K~u! fX ~x � hu!du (22)

be the convolution of K and fX + The asymptotic normality of the density esti-
mator is established in the following theorem+

THEOREM 1+ Under Assumptions A and E1,

(a) if nh max$2rb1 0a, ~2b2�1!0a, ~2rb1�2b2�1!% r ` and n1�ah 2~r�1!b1�1 r 0 , then

ZfX ~x!� fX
*~x!

sn1~x!
n N~0,1!,

and
(b) if moreover nh 2~r�1!b1�2k�1 r 0 , then

ZfX ~x!� fX ~x!

sn1~x!
n N~0,1!+

Remark+ The term fX
*~x! can be expanded in a Taylor series expan-

sion to give fX
*~x! � fX~x! � O~h k!+ The mean squared error of ZfX~x! is

thus O~h 2k! � O~n�1h�2~r�1!b1�1 !; when h @ n�10~2~r�1!b1�2k�1! this is
O~n�2k0~2~r�1!b1�2k�1! !+

Let

Znj �
1

h
Gn� x � PXj

h
	 for j � 1, + + + , n, (23)

where

Gn~x! �
1

2pr
�

�`

`

exp~�itx!
fK ~t !f«~t0h!

@f PX ~t0h!# ~r�1!0r @f«~rt0h!#10r
dt+ (24)

Because we can show that sn1
2 ~x! � n�1var~Zn1! � o~1!, we can estimate

the asymptotic variance sn1
2 ~x! consistently ~in a relative sense! by

[sn1
2 ~x! �

1

n2 (
j�1

n

$ ZZnj � O ZZn %
2, (25)

428 OLIVER LINTON AND YOON-JAE WHANG



where

ZZnj �
1

h
ZGn� x � PXj

h
	, (26)

O ZZn �
1

n (j�1

n

ZZnj , and (27)

ZGn~x! �
1

2pr
�

�`

`

exp~�itx!
fK ~t ! Zf«~t0h!

@ Zf PX ~t0h!# ~r�1!0r @ Zf«~rt0h!#10r
dt+ (28)

Consistency of [sn1
2 ~x! is established in the following lemma+

LEMMA 2+ Under the assumptions of Theorem 1(a), if
nh @~3r�2!b1�b2�2#0a r ` , then

[sn1
2 ~x!

sn1
2 ~x!

p
&& 1+

Theorem 1 and Lemma 2 now combine to give the following corollary+

COROLLARY 3+ Under the assumptions of Theorem 1(b), if
nh @~3r�2!b1�b2�2#0a r ` , then

ZfX ~x!� fX ~x!

[sn1~x!
n N~0,1!+

3.1.2. Regression estimation. For simplicity of presentation, we take the
kernel function EK~u, v! to be the product kernel K~u!K~v!, which implies

EfK ~s, t ! � fK ~s!fK ~t !+ (29)

~In treating the case of characteristic functions with exponential decay, how-
ever, we find the expression of the general kernel EK~u, v! is more convenient to
deal with+!

Let f PX~{! and f PY, PX~ y, x! be the marginal and joint densities of PX and ~ PY, PX !,
respectively, and let 7~s, t !7 � Ms 2 � t 2 + Define also

v PX ~x! � E~ PY 2 6 PX � x!+ (30)

Assumption B+

~i! fY0 ,X0
~s, t !7~s, t !7r1 r B1, fh,«~s, t !7~s, t !7r2 r B2, 6] jfY0 ,X0

~s, t !0]s j 6 �
7~s, t !7r1�1 � O~1! and 6] jfh,«~s, t !0]s j 67~s, t !7r2�1 � O~1! for j � 1,2, and
3 as 7~s, t !7 r ` for some constants B1 � 0, B2 � 0, r1 � 1, and r2 � 1 with
~r � 1!r1 � 3

2
_ +

~ii! fY0 ,X0
~s, t ! � 0 and fh,«~s, t ! � 0 for all ~s, t ! � R

2+
~iii! fK ~{! is a symmetric function with k � 2 bounded integrable derivatives,

fK~0! � 1, and fK~t ! � 1 � O~6 t 6k! as t r 0 for some k � 0+
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~iv! *�`
` 6] jfK ~t !0]t j 6 6 t 6~2r�1!r1�r2dt � ` for j � 0,1,2, and 3+

~v! v PX~{! is continuous at x+
~vi! gX~{! is integrable and gX~{! and fX~{! are both k-times differentiable with bounded

continuous kth derivatives+
~vii! EY0

6 � ` and Eh6 � `+

Define

sn2
2 ~x! �

s2
2~x!

nh 2~r�1!r1�1 fX
2~x!
, (31)

where

s2
2~x! �

v PX ~x! f PX ~x!r 2~ r2�1!

~2p!4B1
2~r�1!

� �
�`

` ��
�`

` �
�`

` �
�`

`

exp~�i~sy � tx!!fK ~s!fK ~t !7~s, t !7~r�1!r1dsdtdy�2

dx+

(32)

Let

Rn~x! �
Rn1
* ~x!� Rn2

* ~x!

ZfX ~x!
, (33)

where

Rn1
* ~x! � m*~x!� m~x!, (34)

Rn2
* ~x! � @ fX

*~x!� fX ~x!#m~x!, (35)

m*~x! ��
�`

`

gX ~x � hu! fX ~x � hu!K~u!du, (36)

and fX
*~x! is as defined in ~22!+

The asymptotic normality of the regression estimator is established in the
following theorem+

THEOREM 4+ Under Assumptions E1, E2, A(i) and (ii), and B with r1 � b1,

(a) if nh max$2rr1 0a, ~2r2�3!0a,2rr1�2r2�3% r ` and n1�ah 2~r�1!r1�3 r 0 , then

[m~x!� m~x!� Rn~x!

sn2~x!
n N~0,1!,

and
(b) if moreover nh 2~r�1!r1�2k�1 r 0 , then

[m~x!� m~x!

sn2~x!
n N~0,1!+
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Remark+ The convergence rate is similar to that in the density estimation
case+

For j � 1, + + + , n, let

Znj �
1

h 2 �
�`

`

yGn� y � PYj

h
,

x � PXj

h
	 dy

� PYj

1

h
Kn1� x � PXj

h
	� Kn2� x � PXj

h
	, (37)

where

Kn1~x! ��
�`

`

Gn~ y, x!dy, (38)

Kn2~x! ��
�`

`

yGn~ y, x!dy, and (39)

Gn~ y, x! �
1

~2p!2r
�

�`

`�
�`

`

exp~�i~sy � tx!!

�

EfK ~s, t !fh,«� s

h
,

t

h
	

�f PY, PX� s

h
,

t

h
	� ~r�1!0r�fh,«� rs

h
,

rt

h
	�10r

dsdt+ (40)

Because sn2
2 ~x!� n�1var~Zn1!� o~1!, we can estimate sn2

2 ~x! consistently by

[sn2
2 ~x! �

1

n2 (
j�1

n

$ ZZnj � O ZZn %
2, (41)

where

ZZnj �
1

h 2 �
�`

`

y ZGn� y � PYj

h
,

x � PXj

h
	 dy with (42)

ZGn~ y, x! �
1

~2p!2r
�

�`

`�
�`

`

exp~�i~sy � tx!!

�

EfK ~s, t ! Zfh,«� s

h
,

t

h
	

� Zf PY, PX� s

h
,

t

h
	� ~r�1!0r� Zfh,«� rs

h
,

rt

h
	� 10r

dsdt+ (43)
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LEMMA 5+ Under the assumptions of Theorem 4(a), if
nh @~3r�2!r1�r2�4#0a r ` , then

[sn2
2 ~x!

sn2
2 ~x!

p
&& 1+

Combining Theorem 4 and Lemma 5, we have the following corollary+

COROLLARY 6+ Under the assumptions of Theorem 4(b), if
nh @~3r�2!r1�r2�4#0a r ` , then

[m~x!� m~x!

[sn2~x!
n N~0,1!+

3.2. Case II: Characteristic Functions with Exponential Decay

We next consider the case in which the tail of the characteristic function de-
cays exponentially fast+

3.2.1. Density estimation.

Assumption C+

~i! A0 6 t 6b0 exp~�a0 6 t 6b ! � 6fX0
~t !6 � B0 6 t 6b0 exp~�a0 6 t 6b ! and A16 t 6b1 �

exp~�a16 t 6b ! � 6f«~t !6 � B16 t 6b1 exp~�a16 t 6b !as 6 t 6 r ` for some positive
constants a0,a1,b,A0,B0,A1, and B1 and constants b0 and b1+

~ii! fX0
~t ! � 0 and f«~t ! � 0 for all t � R+

~iii! fK~t ! has a finite support ~�d,d !+
~iv! There exist positive constants d,B2, and l such that 6fK~t !6� B2~d � t !l for t �
~d � d,d !+

~v! fK~t ! � B3~d � t !l for t � ~d � d,d !, where B3 is a positive constant+
~vi! Either DI ~t ! � o~ ER~t !! or ER~t ! � o~ DI ~t !! as t r `, where ER~t ! and DI ~t ! are real

and imaginary parts of @fX0
~t !# r�1f«~rt !0f«~t !, respectively+

Remark+ Assumption C~i! assumes that the density functions of X0 and « are
super smooth+ It implies that the density functions are bounded and have bounded
derivatives of all orders+ Assumption C~iv! describes the behavior of fK~t ! in
the neighborhood of t � d+ Assumptions C~v! and ~vi! are used to develop lower
bounds+ Assumption C~vi! indicates that, at the tail, the characteristic function
@fX~t !# r�1 f«~rt !0f«~t ! is either purely real or purely imaginary+

Define

sn3
2 ~x! � n�1var~Zn1!, (44)

where Zn1 is as defined in ~23!+
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THEOREM 7+ Suppose Assumptions E1 and C hold and @a0 r � a1 r b#g �
a � 1

2
_ . If h � d~g ln n!�10b for some 0 � g � min$a02a1, ~1 � a!02a0 r% , then

ZfX ~x!� fX
*~x!

sn3~x!
n N~0,1!+

Remarks+

1+ As in the case of ordinary smooth distributions, the term fX
*~x! can be expanded

in a Taylor series expansion to give fX
*~x! � fX~x! � O~h k!+ Using the result of

Lemma 15~a! in the Appendix, the mean squared error of ZfX~x! is thus

O~h 2k !� O~n�1h 2@b~l�1!�~r�1!b0�1# ~ ln~10h!!2l

� exp@2$a0~r � 1!� a1~r
b � 1!%~d0h!b # !+

When h � d~g ln n!�10b, the rate of convergence is very sensitive to the value of
g; when g is large, the bias is a negligible term compared to its variance; and,
when g is sufficiently small, the variance will be a small-order term in compari-
son to the bias+ As in Fan ~1991!, we expect that the optimal rate of convergence
in our case is also O~~ ln n!�c! for some c � 0, which is very slow for moderate
sample sizes+

2+ Contrary to Theorem 1~b!, the asymptotic bias in Theorem 7 does not vanish even
if h is sufficiently small as long as g � 10~2a0 r!+ The latter condition is needed to
make the remainder term of the Taylor expansion asymptotically negligible; see
equation ~A+78! in the proof of Theorem 7 in the Appendix+ For the desired result
~ fX
*~x! � fX~x!!0sn3~x!

p
&& 0; however, we need g � 10~2a0~r � 1!!+

As an estimator of sn3
2 ~x!, we consider

[sn3
2 ~x! �

1

n2 (
j�1

n

$ ZZnj � O ZZn %
2, (45)

where ZZnj and O ZZn are as defined in ~26! and ~27!, respectively+ Consistency of
[sn3

2 ~x! is established in the following lemma+

LEMMA 8+ Under Assumptions E1 and C, if h � d~g ln n!�10b for some 0 �
g � ~a02!@2a0~r � 1! � a1$~2r � 1!r b�1 � 1 � r�1%#�1 , then

[sn3
2 ~x!

sn3
2 ~x!

p
&& 1+

Theorem 7 and Lemma 8 now combine to give the following corollary+

COROLLARY 9+ Under Assumptions E1 and C, if h � d~g ln n!�10b for some
0 � g � ~a02!@2a0~r � 1! � a1$~2r � 1!r b�1 � 1 � r�1%#�1 , then

ZfX ~x!� fX
*~x!

[sn3~x!
n N~0,1!+
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3.2.2. Regression estimation.

Assumption D+

~i! D07~s, t !7r0 exp~�b07~s, t !7r ! � 6fY0 ,X0
~s, t !6 � E07~s, t !7r0 exp~�b07~s, t !7r !

and D17~s, t !7r1 exp~�b17~s, t !7r ! � 6fh,«~s, t !6 � E17~s, t !7r1 �
exp~�b17~s, t !7r ! as 7~s, t !7 r ` for some positive constants
b0,b1,r,D0,D1,E0, and E1 and constants r0 and r1+

~ii! fY0 ,X0
~s, t ! � 0 and fh,«~s, t ! � 0 for all ~s, t ! � R

2+
~iii! EfK~s, t ! has a finite support $~s, t ! � R

2 : 7~s, t !7 � d %+
~iv! There exist positive constants d,D2, and m such that 6 EfK ~s, t !6 � D2~d �
7~s, t !7!m for 7~s, t !7 � ~d � d,d !+

~v! EfK~s, t ! � D3~d � 7~s, t !7!m for 7~s, t !7 � ~d � d,d !, where D3 is a positive
constant+

~vi! EfK ~s, t ! is symmetric in ~s, t ! ; i+e+, EfK ~s, t ! � EfK ~�s, t ! � EfK ~s,�t ! �
EfK~�s,�t !+

~vii! Either I *~s, t ! � o~R*~s, t !! or R*~s, t ! � o~I *~s, t !! as 7~s, t !7 r `, where
R*~s, t ! and I *~s, t ! are real and imaginary parts of
@fY0 ,X0

~s, t !# r�1fh,«~rs, rt !0fh,«~s, t !, respectively+
~viii! The support of PY ~i+e+, Y ! is bounded+

Remark+ The boundedness of the support of PY can be restrictive in some
cases+ This assumption, however, simplifies the proof of Theorem 10, which
follows; see the proof of Lemma 16~c! in the Appendix+

Let

Znj �
1

h 2 �Y
yGn� y � PYj

h
,

x � PXj

h
	 dy

� PYj

1

h
Kn1� x � PXj

h
	� Kn2� x � PXj

h
	, (46)

where

Kn1~x! ��
Y

Gn~ y, x!dy, (47)

Kn2~x! ��
Y

yGn~ y, x!dy, (48)

and Gn~{,{! are as defined in ~38!–~40!+ Define

sn4
2 ~x! � n�1var~Zn1!, (49)

where Zn1 is as defined in ~46!+
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Let

a* � a0~r � 1!� a1~r
b � 1! and

b* � b0~r � 1!� b1~r
r � 1!+

THEOREM 10+ Suppose Assumptions E1, E2, C, and D hold and r� b , b* �
a* , @b1 r r � b0 r#g � a � 1

2
_ , ~a* � b* � a1!g � a02, ~a* � b* � a0 r!g � 1

2
_ ,

~a* � b* � a1 r b � a0 r!g � a� 1
2
_ , ~a* � b* � a0 r!g � ~a� 1!02 , for some

~1 � a!02~b* � b0! � g � 102b0 r. If h � d~g log n!�10r , then

[m~x!� m~x!� Rn~x!

sn4~x!
n N~0,1!+

The asymptotic variance sn4
2 ~x! can be consistently estimated by

[sn4
2 ~x! �

1

n2 (
j�1

n

$ ZZnj � O ZZn %
2, (50)

where

ZZnj �
1

h 2 �Y
y ZGn� y � PYj

h
,

x � PXj

h
	 dy

with ZGn~{,{! as defined in ~43!+

LEMMA 11+ Under Assumptions E1, E2, and D, if h � d~g log n!�10r for
some 0 � g � ~a02!@2b0~r � 1! � b1$~2r � 1!r r�1 � 1 � r�1%#�1 , then

[sn4
2 ~x!

sn4
2 ~x!

p
&& 1+

Combining Theorem 10 and Lemma 11, we have the following corollary+

COROLLARY 12+ Under the conditions of Theorem 10 and Lemma 11,

[m~x!� m~x!� Rn~x!

[sn4~x!
n N~0,1!+

4. BANDWIDTH SELECTION

We have developed the theory necessary to conduct inference on the functions
fX and m in both ordinary smooth and super smooth cases+ For practical appli-
cation it is important to have some method for choosing the bandwidth param-
eter h, because this quantity determines the finite sample properties of our
estimators+ One method is based on estimating the integrated mean squared er-
ror; this requires consistent estimation of the derivatives of fX and m, unless
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some parametric specification is adopted as in Silverman ~1986!+ The alterna-
tive method of cross-validation, based on minimizing the sum of squared resid-
uals from the leave-one-out version of [m, is very time consuming here+ If one
could find the equivalent penalty function to apply to the sum of squared resid-
uals from the original [m, then this method might be feasible ~for an exposition
of the penalty function method in standard nonparametric regression; see Här-
dle, 1990!+ However, because our estimators are all nonlinear this situation is
not covered by existing theory to our knowledge+ In our simulations we have
reported results for a range of bandwidth values; this is a popular approach in
applied work+ Nevertheless, the development of automatic bandwidth selection
methods remains an important and interesting line of research to be pursued in
the future+

5. MONTE CARLO

5.1. Design

We suppose that Xij � X0ij � «i , Y0ij � m~X0ij ! for some function m specified
subsequently, and Yij � Y0ij � hi , where X0ij , «i , and hi are mutually indepen-
dent+ Then, e+g+,

fX ~x! ��p«~x � z!pX0
~z!dz,

m~x! � E~Yij 6Xij � x!� E~m~X0ij !6Xij � x!

� E~m~X0ij !6X0ij � «i � x!�

�m~z!p«~x � z!pX0
~z!dz

�p«~x � z!pX0
~z!dz

,

where pX0
~{! and p«~{! are the densities of X0ij and «i , respectively+We use nor-

mal, uniform, and double exponential distributions for p« and for pX0
, which

combined with specifications for m ~we choose linear and quadratic functions,
i+e+, m~x! � c1 � c2 x and m~x! � c1 � c2 x � c3 x 2 for some parameter values
cj ! give the functions f and m, which are our focus+ The calculations to obtain
f,m are quite complicated to do by hand but have been obtained using a sym-
bolic algebra package+ In fact, with our parameter values, the resulting func-
tions m are not far from the original function m+ More details are available
upon request+ In the normal case, X0ij ,Y0ij are generated from N~0,1! and «i ,hi

are generated from N ~0,0+1!+ In the double exponential case, we generate
X0ij ,Y0ij with variance 0+5 and «i ,hi with variance 0+05+ In the linear case we
use c1 � 0, c2 � 1, whereas in the nonlinear case we use the same c1, c2, and
take c3 � �0+1+ We have considered two different family sizes r � 2,3+
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We use the product kernel EK~u, v!� K~u!K~v!, which implies that EfK~s, t !�
fK~s!fK~t !+ We use two different kernel: the biquadratic and the normal+ For
bandwidth we have taken

h � ch � sX n�1012 and h � ch � sX ~ log n!�102

in the case of ordinary smooth and super smooth densities, respectively, where
sX is the sample standard deviation of the variable X and ch is a constant+ We
examine the performance of our method for a range of values for ch+

We tried three different sample sizes n � 100, 250, 500 with 100 replica-
tions+ We took 30 evaluation points in the interval ~�3,3!+ We calculated the
truncated integrated mean squared error ~IMSE! on this restricted range ~�3,3!+
Tables 1 and 2 show the IMSE of density estimates and regression function
estimates in normal and double exponential cases+ Figures 1– 4 show 10 simu-
lated density and regression function estimates+

5.2. Results

The graphs confirm that the estimated densities and regression functions are
not far from the truth, but exhibit some variation in shape, especially in the end
regions+ We now turn to the IMSE results reported in our tables+

Density estimation works very well for any kind of distribution; we just show
the normal and double exponential case, but the same is true also for the gamma,
chi-square, exponential, and uniform cases, which are not shown here+ IMSE
decreases with sample size and is relatively insensitive to bandwidth in the range
0+3 � ch � 0+4+ Decomposition of the IMSE into bias and variance ~not shown!
reveals that as expected squared bias increases with ch , whereas variance
decreases+

The regression function estimation appears to be somewhat more difficult,
and performance depends more dramatically on bandwidth+ Indeed for small
bandwidths, the IMSE actually increases with sample size ~this effect is more
pronounced in the super smooth case!+ This is mostly a bias phenomenon—in
fact very small bandwidths lead to big biases, which is contrary to our usual
intuition+ However, for larger bandwidths ~e+g+, when ch � 0+36 in the super
smooth case! the usual pattern reasserts itself+ This is most likely a small sam-
ple phenomenon+ The practical implications of this are that one should err on
the side of larger bandwidths+

6. CONCLUSIONS AND EXTENSIONS

We have shown how to estimate the density and regression functions of indi-
viduals from aggregated data+ Extensions to multiple covariates and to estima-
tion of derivatives are straightforward+As Horowitz and Markatou ~1996! point
out, these methods are best applied to very large data sets+ However, our sim-
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Table 1. Normal ~super smooth class!

Bandwidth~ch!

0+30 0+31 0+32 0+33 0+34 0+35 0+36 0+37 0+38 0+39 0+40

Truncated integrated mean squared error of Zf ~x!
n � 100 0+0026 0+0027 0+0027 0+0029 0+0028 0+0028 0+0028 0+0030 0+0034 0+0034 0+0034
n � 250 0+0019 0+0021 0+0020 0+0021 0+0022 0+0023 0+0023 0+0026 0+0026 0+0027 0+0028
n � 500 0+0018 0+0017 0+0018 0+0018 0+0019 0+0021 0+0021 0+0021 0+0023 0+0023 0+0024

Truncated integrated mean squared error of [m~x!; m~x! � 1 � x

n � 100 0+7602 0+4844 0+2709 0+1763 0+1730 0+1978 0+1995 0+2268 0+2546 0+2617 0+2727
n � 250 2+9354 1+6461 0+6465 0+3121 0+1829 0+1312 0+1352 0+1500 0+1735 0+1918 0+2034
n � 500 4+7715 3+4107 2+0658 1+2680 0+4694 0+1598 0+0804 0+0793 0+1090 0+1379 0+1657

Truncated integrated mean squared error of [m~x!; m~x! � 1 � x � cx 2

n � 100 0+9998 0+5321 0+2635 0+2114 0+2313 0+2152 0+2275 0+2281 0+2740 0+2797 0+3100
n � 250 2+7636 1+4345 0+8243 0+4107 0+1434 0+1269 0+1445 0+1678 0+1891 0+2033 0+2186
n � 500 4+7713 3+9076 2+3675 1+1192 0+5128 0+2336 0+0871 0+0978 0+1324 0+1524 0+1804

4
3

8



Table 2. Double exponential ~ordinary smooth class!

Bandwidth~ch!

0+30 0+31 0+32 0+33 0+34 0+35 0+36 0+37 0+38 0+39 0+40

Truncated integrated mean squared error of Zf ~x!{102

n � 100 0+20 0+18 0+19 0+18 0+18 0+19 0+17 0+19 0+20 0+21 0+21
n � 250 0+18 0+17 0+16 0+16 0+15 0+16 0+16 0+16 0+16 0+17 0+17
n � 500 0+18 0+18 0+16 0+16 0+15 0+14 0+14 0+14 0+15 0+15 0+15

Truncated integrated mean squared error of [m~x!; m~x! � 1 � x

n � 100 0+4476 0+3142 0+3786 0+4084 0+4128 0+4469 0+4716 0+5084 0+5226 0+5369 0+5501
n � 250 0+4850 0+2417 0+2120 0+2886 0+3533 0+3768 0+4118 0+4509 0+4765 0+4730 0+4917
n � 500 1+0678 0+5247 0+2184 0+1247 0+1848 0+2882 0+3443 0+3958 0+4190 0+4490 0+4606

Truncated integrated mean squared error of [m~x!; m~x! � 1 � x � cx 2

n � 100 0+4463 0+3390 0+3948 0+4411 0+4303 0+4804 0+5023 0+5377 0+5484 0+5676 0+5795
n � 250 0+5046 0+2420 0+2232 0+3104 0+3714 0+4001 0+4327 0+4696 0+5067 0+5001 0+5201
n � 500 1+2494 0+4271 0+1937 0+1744 0+2379 0+2903 0+3694 0+4184 0+4477 0+4643 0+4890

4
3

9



Figure 1. Density estimates, normal distribution+

440 OLIVER LINTON AND YOON-JAE WHANG



Figure 2. ~a! and ~b! Linear function, normal distribution+
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Figure 2. ~c! and ~d! nonlinear function, normal distribution+
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Figure 3. Density estimates, double exponential+
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Figure 4. ~a! and ~b! Linear function, double exponential+
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Figure 4. ~c! and ~d! Nonlinear function, normal distribution+
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ulation experiments show reasonable behavior for sample sizes of 500 pro-
vided the bandwidth is chosen appropriately+
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APPENDIX

In the discussion that follows, we let Cj for some integer j � 1 denote a generic con-
stant+ ~It is not meant to be equal in any two places it appears+! To simplify notation, we
let ** and *** denote *�`

` *�`
` and *�`

` *�`
` *�`

` , respectively, and we drop the sub-
scripts on w and [w, so that we write w~t ! for w«~t !+ The proof of the main results in the
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text uses the following lemma, which slightly extends Lemma 1 of Fan ~1991! to the
case where v~{! is any integrable function+

LEMMA 13+ Suppose that Qn~{! :R r R is a sequence of functions satisfying

Qn~u!r Q~u! and sup
n
6Qn~u!6� Q*~u!,

where Q*~u! satisfies

�
�`

`

Q*~u!du � ` and lim
ur`
6uQ*~u!6� 0+

Suppose v~{! :R r R is an integrable function continuous at x. Then for any sequence
hn r 0 , we have

lim
nr`

1

hn
�

�`

`

Qn� x � u

hn
	v~u!du � v~x!�

�`

`

Q~u!du+

Proof of Lemma 13. Let d � 0 be a constant+ We have

� 1

hn
�

�`

`

Qn� x � u

hn
	v~u!du � v~x!�

�`

`

Q~u!du �
� �

�`

`

@v~x � u!� v~x!#
1

hn

Qn� u

hn
	 du � 6v~x!6��

�`

`

@Qn~u!� Q~u!# dy �
� max
6u 6�d
6v~x � u!� v~x!6�

�`

`

Q*~u!du �
1

d
sup
6u 6�d0hn

6uQ*~u!6�
�`

`

6v~u!6 du

� 6v~x!6�
6u 6�d0hn

6Q*~u!6 du � 6v~x!6��
�`

`

@Qn~u!� Q~u!# dy �+ (A.1)

By the dominated convergence theorem and the assumptions, the last three terms in
~A+1! tend to zero as n r `+ Then, let d r 0 have the desired result+ �

Proof of Theorem 1. By a two-term Taylor expansion, we have

ZfX ~x!� fX ~x! �
1

2p
�

�`

`

exp~�itx!fX0
~t !@ [w~t !fK ~th!� w~t !# dt

�
1

2pr
�

�`

`

exp~�itx!
fK ~th! [w~t !
@fX0
~t !# r�1 � Zf PX ~t ![w~rt !

�
f PX ~t !

w~rt !
� dt

�
1 � r

2pr 2 �
�`

` �
0

1

~1 � w!exp~�itx!
fK ~th! [w~t !
@ Zfw~t !# 2�10r

� � Zf PX ~t ![w~rt !
�
f PX ~t !

w~rt !
�2

dwdt

[ A1n � A2n � A3n , say, (A.2)
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where

Zfw~t ! �
f PX ~t !

w~rt !
� w� Zf PX ~t ![w~rt !

�
f PX ~t !

w~rt !
� + (A.3)

Consider A1n+ By rearranging terms, we have

A1n �
1

2p
�

�`

`

exp~�itx!fX0
~t !w~t !@fK ~th!� 1# dt

�
1

2p
�

�`

`

exp~�itx!fX0
~t !fK ~th!@ [w~t !� w~t !# dt

[ A1n
* � A1n

** , say+ (A.4)

The convolution theorem implies

A1n
* ��

�`

`

K~u! fX ~x � hu!du � fX ~x!

� fX
*~x!� fX ~x!+

Therefore, for part ~a! of Theorem 1, it suffices to establish the following results:

A1n
**

sn1~x!
p
&& 0, (A.5)

A2n

sn1~x!
n N~0,1!, (A.6)

and

A3n

sn1~x!
p
&& 0+ (A.7)

The result ~A+5! holds straightforwardly because we have

6A1n
** 6 �

1

2ph
�

�`

`

6fK ~t !6 dt{sup
t�R

6 [w~t !� w~t !6

� Op~n
�a02h�1 !

using Assumptions E1 and A~iv! and hence A1n
**0sn1~x! � Op~n

~1�a!02h ~r�1!b1�0+5 ! �
op~1!+
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Next, we verify ~A+6!+ We first note that

sup
t�R

6 Zf PX ~t !� f PX ~t !6 � Op� 1

Mn
	 (A.8)

by Chebyshev’s inequality+ We have

A2n �
1

2pr
�

�`

`

exp~�itx!
fK ~th!w~t !

@fX0
~t !# r�1w~rt !

$ Zf PX ~t !� f PX ~t !%dt

�
1

2pr
�

�`

`

exp~�itx!
fK ~th!

@fX0
~t !# r�1w~rt !

$ [w~rt !� w~rt !%$ Zf PX ~t !� f PX ~t !%dt

�
1

2pr
�

�`

`

exp~�itx!
fK ~th! Zf PX ~t ! [w~t !

@fX0
~t !# r�1 [w~rt !w~rt !

$ [w~rt !� w~rt !%dt

� A2n
* � A2n

** � A2n
***, say+ (A.9)

We first show that A2n
** and A2n

*** are asymptotically negligible in the sense that both
A2n
** 0sn1~x! and A2n

***0sn1~x! are op~1!+ Note that

A2n
* �

1

n (i�1

n

~Znj � EZnj !,

where Znj is as defined in ~23!+ By Assumption A~i!, there exists a large ~but fixed!
constant M � 0 such that for 6 t 6 � M,

6fX0
~t !t b1 6 �

6A16

2
; 6w~t !t b2 6 �

6A2 6

2
+

Therefore,

�
�`

` 6fK ~t !6

6fX0
~t0h!6r�1 6w~rt0h!6

dt

� 2�
0

Mh 6fK ~t !6

6fX0
~t0h!6r�1 6w~rt0h!6

dt � 2r�1r b2�
Mh

` 6fK ~t !6

A1
r�1 A2

� t

h �
~r�1!b1�b2

dt

� 2Mh
max6fK ~t !6

min
6 t 6�M

6fX0
~t !6r�1 min

6 t 6�rM
6w~t !6

� h�~r�1!b1�b2
2r�1r b2

A1
r�1 A2

� �
0

`

6fK ~t !6 6 t 6~r�1!b1�b2dt

� O~h�~r�1!b1�b2 !+ (A.10)
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This result implies

6A2n
** 6 �

1

2prh
�

�`

` 6fK ~t !6

6fX0
~t0h!6r�1 6w~rt0h!6

dt{sup
t�R

6 [w~t !� w~t !6{sup
t�R

6 Zf PX ~t !� f PX ~t !6

� Op~n
�102n�a02h�~r�1!b1�b2�1 ! (A.11)

using Assumptions E1 and ~A+8!+ Therefore, A2n
** 0sn1~x!� Op~n

�a02h�b2�102 !� op~1!+
Similarly, we have

6A2n
*** 6 � C1

1

h
�

�`

` 6fK ~t !6 6w~t0h!6

6w~rt0h!6
dt{sup

t�R

6 [w~t !� w~t !6

� Op~n
�a02h�1 !, (A.12)

where the first inequality holds with probability tending to one using ~A+8! and As-
sumption E1 and the equality holds by Assumptions E1 and A~iv!+ Therefore, we also
have A2n

***0sn1~x! � Op~n
~1�a!02h ~r�1!b1�0+5 ! � op~1!+ To establish the asymptotic nor-

mality ~A+6!, it now suffices to verify the following Lyapunov’s condition: i+e+, for
some d � 0,

E6Zn1 � EZn162�d

nd02 @var~Zn1!#
1�d02 r 0 as nr `+ (A.13)

Let

Cn~t ! �
fK ~t !w~t0h!

@fX0
~t0h!# r�1w~rt0h!

+ (A.14)

By Fubini’s theorem and the convolution theorem, we have

EZn1 �
1

h
�

�`

`

Gn� x � u

h
	 f PX ~u!du

�
1

2prh
�

�`

` �
�`

`

exp��it� x � u

h
		Cn~t ! f PX ~u!dtdu

�
1

2prh
�

�`

`

exp��it
x

h	���`

`

exp�it
u

h	 f PX ~u!du�Cn~t !dt

�
1

2pr
�

�`

`

exp~�itx!fX ~t !fK ~th!dt

�
1

r
�

�`

`

K~u! fX ~x � hu!dur
1

r
fX ~x!, (A.15)
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where the last convergence holds by Lemma 13+ By Assumption A1~i!, we have

h ~r�1!b1Cn~t !r
r b2

A1
r�1 fK ~t !t

~r�1!b1+ (A.16)

Furthermore, by Assumption A~i!, there exists a large ~but fixed! constant M � 0 such
that for 6 t 6 � M, we have

6fX0
~t !t b1 6 �

6A16

2
; 6w~t !t b2 6 �

6A2 6

2
; 6w~t !t b2 6 � 26A2 6+

Therefore,

6h ~r�1!b1Cn~t !6 �
h ~r�1!b1

min
6 t 6�M

6fX0
~t !6r�1 min

6 t 6�rM
6w~t !6

� 1~6 t 6� hM !�
2r�1r b2

6A16r�1 6fK ~t !6 6 t 6~r�1!b11~6 t 6 � hM !+ (A.17)

For any « � 0 and for all h � «0M, we have

6h ~r�1!b1Cn~t !6 � C1� «M 	~r�1!b1

1~6 t 6� «!�
2r�1r b2

6A16r�1 6fX ~t !6 6 t 6~r�1!b1

[ D~t !+ (A.18)

Because D~t ! is integrable by Assumption A~iv!, we have

h ~r�1!b1Gn~x! �
1

2pr
�

�`

`

exp~�itx!h ~r�1!b1Cn~t !dt

r
r b2�1

2pA1
r�1 �

�`

`

exp~�itx!fK ~t !t
~r�1!b1dt (A.19)

by ~A+16! and dominated convergence theorem ~A+18!+ Integrability of D~t ! also im-
plies that

6h ~r�1!b1Gn~x!6 �
1

2pr
�

�`

`

D~t !dt[ C2 � `+ (A.20)

By integration by parts,

~ix!Gn~x! �
1

2pr
�

�`

`

exp~�itx!� ]
]t
Cn~t !	 dt+ (A.21)

Using arguments similar to those in ~A+17! and ~A+18! and Assumptions A~i! and ~iv!,
we have

6xGn~x!6 � O~h�~r�1!b1 !+ (A.22)
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Expressions ~A+20! and ~A+22! combine to give

6h ~r�1!b1Gn~x!6 �
C3

1 � 6x 6
+ (A.23)

Now, we have

EZn1
2 �

1

h 2 �
�`

` �Gn� x � u

h
	�2

f PX ~u!du

�
f PX ~x!

h 2~r�1!b1�1 �
�`

` � r b2�1

2pA1
r�1 �

�`

`

exp~�itx!fK ~t !t
~r�1!b1dt�2

dy~1 � o~1!!

�
1

h 2~r�1!b1�1 {
f PX ~x!r

2~b2�1!

2pA1
2~r�1! �̀` 6fK ~t !62 6 t 62~r�1!b1dt~1 � o~1!!

� h�2~r�1!b1�1s1
2~x!~1 � o~1!!, (A.24)

where the second equality holds by ~A+19!, ~A+23!, and Lemma 13 and the third equal-
ity holds by Parseval’s identity+

Similarly, by ~A+23! and Lemma 13, we have

E6Zn162�d � O~h�~2�d!@~r�1!b1�1#�1 !+ (A.25)

Therefore, by ~A+15!, ~A+24!, and ~A+25!, the Lyapunov condition holds using the fact
that nh r `+

Next, we verify ~A+7!+ We have

Zfw� t

h
	� t

h
	rb1

� �f PX ~t0h!
w~rt0h!

� w� Zf PX ~t0h![w~rt0h!
�
f PX ~t0h!

w~rt0h! ��� t

h
	rb1

� �fX0� t

h
	� t

h
	b1� r

� op~1!

uniformly in w � ~0,1! using Assumption E1 and ~A+8! because nah 2rb1 r `+ There-
fore, ~A+7! holds because we then have

6A3n 6 �
r � 1

2pr 2 �
�`

` 6fK ~th!6 6 [w~t !6
6 Zfw~t !62�10r � Zf PX ~t ![w~rt !

�
f PX ~t !

w~rt ! �
2

dt

�
r � 1

pr 2 �
�`

` 6fK ~th!6 6 [w~t !6
6 Zfw~t !62�10r 6w~rt !62

dt{sup
t�R

6 Zf PX ~t !� f PX ~t !62

�
r � 1

pr 2 �
�`

` 6fK ~th!6 6 [w~t !6 6 Zf PX ~t !62

6 Zfw~t !62�10r 6 [w~rt !62 6w~rt !62
dt{sup

t�R

6 [w~t !� w~t !62

� Op~n
�1h�~2r�1!b1�b2�1 ! (A.26)

uniformly in w � ~0,1!+ Now the proof of part ~a! is complete because A3n0sn1~x! �
O~n�a02h�rb1�b2�0+5 ! � op~1!+
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Finally, part ~b! follows by dominated convergence theorem using the continuity and
boundedness of the kth derivative of fX~{! ~see Assumption A~v!!+ �

Proof of Lemma 2. It suffices to establish

1

n (j�1

n

~ ZZnj
2 � Znj

2 !
p
&& 0; (A.27)

1

n (j�1

n

~ ZZnj � Znj !
p
&& 0; (A.28)

(
j�1

n

Znj
2

nEZn1
2

p
&& 1; (A.29)

1

n (j�1

n

Znj � EZn1
p
&& 0+ (A.30)

First, consider ~A+28!+ We have

� 1

n (j�1

n

~ ZZnj � Znj !�
� sup

1�j�n
6 ZZnj � Znj 6

�
1

2prh
�

�`

`

� [w~t0h!
@ Zf PX ~t0h!# ~r�1!0r @ [w~t0h!#10r

�
w~t0h!

@f PX ~t0h!# ~r�1!0r @w~t0h!#10r � dt

� C1

1

h
�

�`

` 6 [w~t0h!6
@f PX
* ~t0h!# ~2r�1!0r @w*~t0h!#10r

dt{sup
t�R

6 Zf PX ~t !� f PX ~t !6

� C2

1

h
�

�`

` 6 [w~t0h!6
@f PX
* ~t0h!# ~r�1!0r @w*~t0h!# ~r�1!0r dt{sup

t�R

6 [w~t !� w~t !6

� Op~n
�102h�~2r�1!b1�b2�1 !� Op~n

�a02h�b2 !
p
&& 0, (A.31)

where the third inequality follows from a one-term Taylor expansion and the last in-
equality holds using arguments analogous to ~A+26!+ Expression ~A+27! can be similarly
verified:

� 1

n (j�1

n

~ ZZnj
2 � Znj

2 !� � Op~n
�102h�~3r�2!b1�b2�2 !� Op~n

�a02h�~r�1!b1�b2�1 !
p
&& 0+

(A.32)
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Next, ~A+29! holds by the weak law of large numbers because

1

EZn1
2 E @Zn1

2 1~6Zn162 � «nEZn1
2 !#

�
E6Zn162~1�d!

~«n!d @EZn1
2 #1�d

�
O~h�2~1�d!@~r�1!b1�1#�1 !

~«n!d @h�2~r�1!b1�1s1
2~x!~1 � o~1!!#1�d

� O~~nh!�d !r 0 (A.33)

for each « � 0 and d � 0 using the fact that nh r `+ Finally, ~A+30! holds because

1

n
var~Zn1! � O~n�1h�2~r�1!b1�1 !r 0 (A.34)

using Chebyshev’s inequality+ Now the proof of Lemma 2 is complete+ �

Proof of Theorem 4. By a two-term Taylor expansion and rearranging terms, we
have

[gX ~x!� gX ~x!

�
1

~2p!2
���y exp~�i~sy � tx!!fY,X ~s, t !@ EfK ~sh, th!� 1# dsdtdy

�
1

~2p!2
���y exp~�i~sy � tx!!fY0 ,X0

~s, t ! EfK ~sh, th!@ [w~s, t !� w~s, t !# dsdtdy

�
1

~2p!2r
���y exp~�i~sy � tx!!

EfK ~sh, th! [w~s, t !
@fY0 ,X0

~s, t !# r�1

� � Zf PY, PX ~s, t ![w~rs, rt !
�
f PY, PX ~s, t !

w~rs, rt !
� dsdtdy

�
1 � r

~2p!2r 2 ����
0

1 ~1 � w!y exp~�i~sy � tx!! EfK ~sh, th!! [w~s, t !
@ Zfw~s, t !# 2�10r

� � Zf PY, PX ~s, t ![w~rs, rt !
�
f PY, PX ~s, t !

w~rs, rt !
�2

dwdsdtdy

[ B1n � B1n
* � B2n � B3n , say, (A.35)

where

Zfw~s, t ! �
f PY, PX ~s, t !

w~rs, rt !
� w� Zf PY, PX ~s, t ![w~rs, rt !

�
f PY, PX ~s, t !

w~rs, rt !
	 + (A.36)
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By a straightforward argument, we have

B1n ����y@ fY,X ~ y � hu, x � hv!� fY,X ~ y, x!#K~u!K~v!dudvdy

��
�`

`

@gX ~x � hu! fX ~x � hu!� gX ~x! fX ~x!#K~u!du

� Rn1
* , (A.37)

where Rn1
* is as defined in ~34!+

Subsequently we establish the following results:

Mnh 2~r�1!r1�1B1n
* p
&& 0, (A.38)

Mnh 2~r�1!r1�1B2n

s2~x!
n N~0,1!, (A.39)

and

Mnh 2~r�1!r1�1B3n
p
&& 0+ (A.40)

Then, part ~a! of Theorem 4 follows by noting

[m~x!� m~x!� Rn~x!

� ZfX�1~x!$@ [g~x!� g~x!#� @ ZfX ~x!� fX ~x!#m~x!� @Rn1
* � Rn2

* #%

� ZfX�1~x!$@ [g~x!� g~x!� Rn1
* #� @ ZfX ~x!� fX

*~x!#m~x!%

� ZfX�1~x!$@B1n
* � B2n � B3n #� @A2n � A3n #m~x!%

� ~ fX
�1~x!� op~1!!$@B1n

* � B2n � B3n #� Op~n
�102h�~r�1!b1�102 !%, (A.41)

and hence

Mnh 2~r�1!r1�1 ~ [m~x!� m~x!� Rn~x!! � Mnh 2~r�1!r1�1 fX
�1~x!B2n � op~1!, (A.42)

where A2n and A3n are as defined in ~A+2! and the last equality in ~A+41! follows by the
proof of Theorem 1+

First, we verify ~A+38!+ We first write

B1n
* �

1

~2p!2
�

�`

`

yCn~x, y!dy, (A.43)
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where

Cn~x, y! ��
�`

` �
�`

`

exp~�i~sy � tx!!Hn~s, t !Qn~s, t !dsdt, (A.44)

Hn~s, t ! � fY0 ,X0
~s, t !fK ~sh!fK ~th!, and (A.45)

Qn~s, t ! � [w~s, t !� w~s, t !+ (A.46)

By integration by parts, we have

~iy!Cn~x, y! ��
�`

` �
�`

`

exp~�i~sy � tx!! � ]
]s
@Hn~s, t !Qn~s, t !#� dsdt, (A.47)

~iy!3Cn~x, y! ��
�`

` �
�`

`

exp~�i~sy � tx!! � ]3

]s3 @Hn~s, t !Qn~s, t !#� dsdt+ (A.48)

By Assumption E2, we have

sup
~s, t !�R

2 � ]
j

]s j Qn~s, t !� � Op~n
�a02 !+ (A.49)

Therefore, we have

6yCn~x, y!6 � ��6Hn~s, t !6 dsdt{ sup
~s, t !�R

2 � ]]s Qn~s, t !�
��� � ]]s Hn~s, t !�dsdt{ sup

~s, t !�R
2
6Qn~s, t !6

� h�2��
�`

`

6fK ~t !6 dt�2

{Op~n
�a02 !

� �h�2E6 PY 6��
�`

`

6fK ~t !6 dt�2

� h�1 ��
�`

`

6fK ~t !6 dt���
�`

`

6fK
' ~t !6 dt��{Op~n

�a02 !

� Op~n
�a02h�2 !+ (A.50)

Similarly, we can also show that

6y3Cn~x, y!6 � Op~n
�a02h�2 !+ (A.51)

Now ~A+50! and ~A+51! imply

6B1n
* 6 �

1

~2p!2
�

�`

`

6yCn~x, y!6 dy � Op~n
�a02h�2 !+ (A.52)

Thus, because Mnh 2~r�1!r1�1B1n
* � Op~n

~1�a!02h ~r�1!r1�302 !� op~1!, the desired result
~A+38! follows+
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We next verify ~A+39!+ Rewrite

B2n �
1

~2p!2r
���y exp~�i~sy � tx!!

EfK ~sh, th!w~s, t !

@fY0 , X0
~s, t !# r�1w~rs, rt !

� $ Zf PY, PX ~s, t !� f PY, PX ~s, t !%dsdtdy

�
1

~2p!2r
���y exp~�i~sy � tx!!

EfK ~sh, th!

@fY0 , X0
~s, t !# r�1w~rs, rt !

� $ [w~rs, rt !� w~rs, rt !%$ Zf PY, PX ~s, t !� f PY, PX ~s, t !%dsdtdy

�
1

~2p!2r
���y exp~�i~sy � tx!!

EfK ~sh, th! Zf PY, PX ~s, t ! [w~s, t !
@fY0 , X0

~s, t !# r�1 [w~rs, rt !w~rs, rt !

� $ [w~rs, rt !� w~rs, rt !%dsdtdy

� B2n
* � B2n

**� B2n
***, say+

Observe that

B2n
* �

1

~2p!2r
���y exp~�i~sy � tx!!

EfK ~sh, th!w~s, t !

@fY0 ,X0
~s, t !# r�1w~rs, rt !

� � 1

n (i�1

n

~exp~i~s PYj � t PXj !!� E exp~i~s PYj � t PXj !!!� dsdtdy

�
1

n (i�1

n

~Znj � EZnj !, (A.53)

where Znj is as defined in ~37!+ Using arguments similar to ~A+52!, we have

6B2n
** 6 � Op~n

�102n�a02h�~r�1!r1�r2�2 !,

6B2n
*** 6 � Op~n

�a02h�2 !,

so that Mnh 2~r�1!r1�1 ~B2n
** � B2n

***! � op~1! + Therefore, to establish ~A+39!, it suffices
to verify

Mnh 2~r�1!r1�1B2n
*

s2~x!
n N~0,1!+ (A.54)

For ~A+54!, we verify the Lyapunov condition ~A+13!+ We have

EZn1 �
1

r
�

�`

`

y� 1

~2p!2
����exp~�is~ y � y * !� it~x � x * !!

�
EfK ~sh, th!w~s, t !

@fY0 , X0
~s, t !# r�1w~rs, rt !

f PY, PX ~ y
*, x * !dsdtdy *dx *� dy

� r�1�
�`

`

y��� fY, X ~ y � hu, x � hv! EK~u, v!dudv� dy

� r�1�
�`

`

K~u!gX ~x � hu! fX ~x � hu!dur r�1m~x!, (A.55)
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where the last convergence holds by Lemma 13+ We also have

EZn1
2 � E� PY1

1

h
Kn1� x � PX1

h
	� Kn2� x � PX1

h
	�2

� h�1�
�`

`

@Kn1~u!#
2v PX ~x � hu! f PX ~x � hu!du

� h�
�`

`

@Kn2~u!#
2 f PX ~x � hu!du

� 2�
�`

`

Kn1~u!Kn2~u!m PX ~x � hu! f PX ~x � hu!du

[ C1n � C2n � C3n , say+ (A.56)

Subsequently we show that C1n is the dominating term+ Using the arguments similar to
those to establish ~A+20! and ~A+22!, we have

6h ~r�1!r1 y jGn~ y, x!6 � Cj and (A.57)

6h ~r�1!r1xy lGn~ y, x!6 � Dl (A.58)

for some constant Cj ~ j � 0,1,2,3! and Dl ~l � 0,2!+ Note that, similarly to ~A+19!, we
have

h ~r�1!r1Gn~ y, x!r
r r2�1

~2p!2B1
r�1 �

�`

` �
�`

`

exp~�i~sy � tx!!fK ~s!fK ~t !7~s, t !7~r�1!r1dsdt

[ G*~ y, x!+ (A.59)

Therefore, ~A+57! ~with j � 0 and 2! together with ~A+59! implies

h ~r�1!r1Kn1~x!r �
�`

`

G*~ y, x!dy (A.60)

by the dominated convergence theorem+ Note also that ~A+57! ~with j � 0! together with
~A+58! ~with l � 0 and 2! implies

6h ~r�1!r1Kn1~x!6 �
C4

1 � 6x 6
+ (A.61)

Therefore,

h 2~r�1!r1�1C1n ��
�`

`

@h ~r�1!r1Kn1~u!#
2v PX ~x � hu! f PX ~x � hu!du

r vX ~x! fX ~x!�
�`

` ��
�`

`

G*~ y, x!dy� 2

dx � s2
2~x! (A.62)
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by Lemma 13+ Similarly, we have

h 2~r�1!r1�1C2n � h�
�`

`

@h ~r�1!r1Kn2~u!#
2 f PX ~x � hu!du

� h�fX ~x!�
�`

` ��
�`

`

yG*~ y, x!dy�2

dx � o~1!	
� o~1!+ (A.63)

By Cauchy–Schwarz inequality, ~A+62! and ~A+63! imply that h 2~r�1!r1�1C3n is also
o~1!+ Therefore, this establishes that C1n in ~A+56! is the dominating term+ Because
EZn1 � O~1!, we now have

h 2~r�1!r1�1var~Zn1! � h 2~r�1!r1�1E~Zn1
2 !� o~1!

r s2
2~x!+ (A.64)

We also have

E6Zn162�d � O~h�~2�d!@~r�1!r1�1#�1 !+ (A.65)

Therefore, the Lyapunov condition holds because nh r ` as is required+
Next, we verify ~A+40!+ It can be verified using an argument similar to that of ~A+38!

after we rewrite

1 � r

~2p!2r 2 ����
0

1 ~1 � w!y exp~�i~sy � tx!! EfK ~sh, th! [w~s, t !
@ Zfw~s, t !# 2�10r

� � Zf PY, PX ~s, t ![w~rs, rt !
�
f PY, PX ~s, t !

w~rs, rt !
�2

dwdsdtdy

B3n �
1 � r

~2p!2r 2 �
�`

` �
0

1

~1 � w!yCn~w, x, y!dwdy, (A.66)

where

Cn~w, x, y! ��
�`

` �
�`

`

exp~�i~sy � tx!!Hn~w, s, t !Qn~s, t !dsdt, (A.67)

Hn~w, s, t ! �
EfK ~sh, th! [w~s, t !
@ Zfw~s, t !# 2�10r , and (A.68)

Qn~s, t ! � � Zf PY, PX ~s, t ![w~rs, rt !
�
f PY, PX ~s, t !

w~rs, rt !
�2

+ (A.69)

Some tedious calculation yields

6yCn~w, x, y!6 � Op~n
�1h�~2r�1!r1�r2�2 !

and

6y3Cn~w, x, y!6 � Op~n
�1h�~2r�1!r1�r2�2 !
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uniformly in w � ~0,1!+ Therefore, we have

nh ~2r�1!r1�r2�2 6B3n 6 � C4 nh ~2r�1!r1�r2�2�
�`

` �
0

1

6yCn~w, x, y!6 dy � Op~1!+

Thus, because nh 2rr1�2r2�3 r `, the desired result ~A+40! follows+
Finally, part ~b! of Theorem 4 follows by the dominated convergence theorem using

the continuity and boundedness of the kth derivative of fX~{! and gX~{!+ �

Proof of Lemma 5. This is similar to the proof of Lemma 2+ �

The proof of Theorem 7 uses the following lemmas+ ~The proofs of Lemma 14 and
15 are similar to @but simpler than# those of Lemmas 16 and 17 given subsequently and
hence are omitted+!

LEMMA 14+ Under Assumptions C(i)– (iv),

(a) we have as h r 0

sup
x�R

6Gn~x!6 � O�h b~l�1!�~r�1!b0�ln
1

h
	l

exp�$a0~r � 1!� a1~r
b � 1!%� d

h
	b�	

and
(b) if moreover Assumptions C(v) and (vi) hold, then we have

6Gn~x!6 � B5 H~x!h b~l�1!�~r�1!b0 exp�$a0~r � 1!� a1~r
b � 1!%� d

h
	b�

for some B5 uniformly in x on a bounded interval, where

H~x! � �6cos~dx!6, if DI ~t !� o~ ER~t !!

6sin~dx!6, if ER~t !� o~ DI ~t !!+

LEMMA 15+ Under Assumption C, we have for large n

(a)

var~Zn1! � B6 h 2@b~l�1!�~r�1!b0�1#�ln
1

h
	2l

� exp�2$a0~r � 1!� a1~r
b � 1!%� d

h
	b�

and
(b)

var~Zn1! � B7 h 2@b~l�1!�~r�1!b0 #�1 exp�2$a0~r � 1!� a1~r
b � 1!%� d

h
	b� +
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Proof of Theorem 7. Consider the Taylor expansion ~A+2!+ To prove Theorem 7, it
suffices to verify the conditions ~A+5!–~A+7! with sn1~x! replaced by sn3~x!+

We first verify ~A+5!+ Using arguments similar to the proof of Lemma 14, we can
show

�
�`

`

6fK ~t !6�fX0� t

h
	�dt � O�h b~l�1!�b0�1�ln

1

h
	l

exp��a0� d

h
	b�	+ (A.70)

Therefore, we have

� A1n
**

sn3~x! � �
1

sn3~x!
{

1

2ph
�

�`

`

6fK ~t !6�fX0� t

h
	� dt{sup

t�R

6 [w~t !� w~t !6

� Op�n102n�a02h�rb0�102�ln
1

h
	l

exp��$a0 r � a1~r
b � 1!%� d

h
	b�	

� Op~n
102n�a02n�$a0 r�a1~r

b � 1!%g !
p
&& 0, (A.71)

where the last equality holds because h � d~g ln n!�10b+
Next, we consider ~A+6!+ By Lemma 14, we have

E6Zn162�d �
1

h 2�d
E�Gn� x � PX1

h
	�2�d

�
1

h 2�d
sup
x�R

6Gn~x!62�d

� C1 h @b~l�1!�~r�1!b0�1# ~2�d!�ln
1

h
	~2�d! l

� exp�$a0~r � 1!� a1~r
b � 1!%~2 � d!� d

h
	b� + (A.72)

Note that EZn1 is O~1! by ~A+15!+ Thus the Lyapunov condition holds because

E6Zn1 � EZn162�d

nd02 @var~Zn1!#
1�d02 � C2

�ln
1

h
	~2�d! l

nd02h 1�d02 (A.73)

by ~A+72! and Lemma 14~b! and the right-hand side of ~A+73! tends to zero with h �
d~g ln n!�10b and d � 0+ This establishes

A2n
*

sn3~x!
n N~0,1!+ (A.74)
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On the other hand, by arguments similar to the proof of Lemma 16, we have

� A2n
**

sn3~x! � �
n�~1�a!02

sn3~x!

{Op�h b~l�1!�~r�1!b0�b1�1�ln
1

h
	l

exp�$a0~r � 1!� a1 r b %� d

h
	b�	

� Op�n�a02h b1�102�ln
1

h
	l

exp�a1� d

h
	b�	

� Op~n
a1g�a02 !

p
&& 0 (A.75)

and

� A2n
***

sn3~x! � �
n�a02

sn3~x!
{Op�h b~l�1!�b0�ln

1

h
	l

exp�$�a0 � a1~r
b � 1!%� d

h
	b�	

� Op�n102n�a02h�b0�~r�1!b�102�ln
1

h
	l

exp��a0 r� d

h
	b�	

� Op~n
102n�a02n�a0 rg !

p
&& 0+ (A.76)

Now ~A+6! follows from ~A+74!–~A+76!+
Finally, we verify ~A+7!+ Consider the expression ~A+26!+ We have

6A3n 6 � C1�
�`

` 6fK ~th!6 6 [w~t !6
6 Zfw~t !62�10r 6w~rt !62

dt{sup
t�R

6 Zf PX ~t !� f PX ~t !62

� C2�
�`

` 6fK ~th!6 6 [w~t !6 6 Zf PX ~t !62

6 Zfw~t !62�10r 6 [w~rt !62 6w~rt !62
dt{sup

t�R

6 [w~t !� w~t !62

� Op�n�1h b~l�1!�b0~2r�1!�1�ln
1

h
	l

exp�$a0~2r � 1!� a1~r
b � 1!%� d

h
	b�	

� Op�n�ah b~l�1!�b1�b0�1�ln
1

h
	l

exp�$�a0 � a1~2r b � 1!%� d

h
	b�	+ (A.77)

Therefore, this implies

� A3n

sn3~x! � � Op~n
a0 rg�102 !� Op~n

@a1 r b � a0 r#g� a� 102 !
p
&& 0+ (A.78)

Now the proof of Theorem 7 is complete+ �

Proof of Lemma 8. The proof of Lemma 8 is similar to that of Lemma 5 except that
we now have for each d � 0

E6Zn162~1�d!

~«n!d @EZn1
2 #1�d

� O��ln
1

h
	2~1�d! l

ndh 1�d
	
r 0, (A.79)
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where the equality follows from Lemmas 14 and 15 and the convergence to zero holds
by using the fact that h � d~g ln n!�10b for some g � 0+ �

The proof of Theorem 10 uses the following lemmas+

LEMMA 16+ Under Assumptions D(i)– (iv),

(a) we have as h r 0

sup
x�R

��Y
Gn~x, y!dy � � O�h r~m�1!�~r�1!r0�ln

1

h
	m

exp�b*� d

h
	r�	;

(b)

sup
x�R

��Y
yGn~x, y!dy � � O�h r~m�1!�~r�1!r0�ln

1

h
	m

exp�b*� d

h
	r�	;

and
(c) if moreover Assumptions D(v) and (vi) hold, then we have

�
Y

Gn~x, y!dy � � D5 H~x!h r~m�1!�~r�1!r0 exp�b*� d

h
	r�

for some D5 uniformly in x on a bounded interval, where

H~x! � 
��Y
cos~d~x � y!!dy �, if I *~s, t !� o~R*~s, t !!

��Y
sin~d~x � y!!dy �, if R*~s, t !� o~I *~s, t !!+

LEMMA 17+ Under Assumption D, we have for large n

(a)

var~Zn1! � D6 h 2@ r~m�1!�~r�1!r0�1#�ln
1

h
	2m

exp�2b*� d

h
	r�

and
(b)

var~Zn1! � D7 h 2@ r~m�1!�~r�1!r0 #�1 exp�2b*� d

h
	r�

for some positive constants D6 and D7.

Proof of Lemma 16. We prove Lemma 16 by adapting the proof of Lemma 3+1 of
Fan and Masry ~1992!+ Let

t � lh r ln
1

h
, (A.80)
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where l is a positive constant+ Let

S~a,b! � $~s, t ! � R
2 : a � 7~s, t !7� b%

denote an index set for some a � 0 and b � 0+
We first establish part ~a!+ We have

�
Y

Gn~x, y!dy

�
1

~2p!2r
�

Y
�

�`

` �
�`

`
EfK ~s, t !w� s

h
,

t

h
	

�fY0 ,X0� s

h
,

t

h
	� r�1

w� rs

h
,

rt

h
	

dsdtdy

�
1

~2p!2r
�

Y
���S~0, d�t!

���
S~d�t, d !

	 EfK ~s, t !w� s

h
,

t

h
	

�fY0 ,X0� s

h
,

t

h
	� r�1

w� rs

h
,

rt

h
	

dsdt� dy

[
1

~2p!2r
~I1 � I2 !+ (A.81)

First, consider I1+ Let M be a large constant+ We have

I1 ��
Y
���S~0,Mh!

���
S~Mh, d�t!

	 EfK ~s, t !w� s

h
,

t

h
	

�fY0 ,X0� s

h
,

t

h
	� r�1

w� rs

h
,

rt

h
	

dsdt� dy

� C1

h 2

min
S~0,M !

6fY0 ,X0
~s, t !6r�1 min

S~0, rM !
6w~s, t !6r�1

� C2��
S~Mh, d�t!

��� s

h
,

t

h
	���r0~r�1!

exp�b*��� s

h
,

t

h
	��r� dsdt

� C3 h r0~r�1!��
S~Mh, d�t!

7~s, t !7�r0~r�1! exp@b*h�r 7~s, t !7r # dsdt

� O�h r0~r�1! exp�b*� d

h
	r�1 �

t

d
	r�	

� O�h r0~r�1!�b*rldr�1
exp�b*� d

h
	r�	 , (A.82)

where the first inequality holds by Assumption D~i!; the second inequality holds by
Assumption D~ii! and the second equality follows because the integrand in the right-
hand side of the second inequality is an increasing function of 7~s, t !7 and is bounded
by its value at the point d � t; and the last equality follows by a Taylor expansion of
~1 � t0d !r around 1+ Next, we consider I2+ We have
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I2 � C1��
S~d�t, d !

~d � 7~s, t !7!m��� s

h
,

t

h
	���r0~r�1!

exp�b*��� s

h
,

t

h
	��r� dsdt

� C2t
mh r0~r�1!��

S~d�t, d !
7~s, t !7r�2 exp�b*��� s

h
,

t

h
	��r� dsdt

� O�h r0~r�1!�r~m�1!�ln
1

h
	m

exp�b*� d

h
	r�	, (A.83)

where the first inequality holds by Assumptions D~i! and ~iv! and the second inequality
holds because ~d � 7~s, t !7!m � tm and 7~s, t !7�r0~r�1!�~ r�2! � C3 for ~s, t ! � S~d �
t,d !+ By choosing a large value of the constant l, the upper bound of I2 dominates I1+
Thus part ~a! of Lemma 16 is established+ The proof of part ~b! is similar+

We next establish part ~c!+ We first write

�
Y

Gn~ y, x!dy

�
1

~2p!2r 
�Y
���

S~0, d�t!

���
S~d�t, d !

	

� exp~i~sy � tx!!

EfK ~s, t !w� s

h
,

t

h
	

�fY0 ,X0� s

h
,

t

h
	� r�1

w� rs

h
,

rt

h
	

dsdt� dy

[ J1 � J2 + (A.84)

By ~A+82!, we have

6J16 � I1 � O�h r0~r�1!�b*rldr�1
exp�b*� d

h
	r�	+ (A.85)

By symmetry of EfK~s, t ! ~Assumption D~vi!!, we have

J2 �
1

~2p!2r
�

Y
���S~d�t, d !
	

� EfK ~s, t ! �cos~sy � tx!

R*� s

h
,

t

h
	�w� s

h
,

t

h
	�2

�fY0 ,X0� s

h
,

t

h
	�2~r�1!

�w� rs

h
,

rt

h
	�2

� sin~sy � tx!

I *� s

h
,

t

h
	�w� s

h
,

t

h
	�2

�fY0 ,X0� s

h
,

t

h
	�2~r�1!

�w� rs

h
,

rt

h
	�2  dsdt� dy+

(A.86)
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Without loss of generality, we consider only the case I *~s0h, t0h! � o~6R*~s0h, t0h!6!+
In this case, we have

J2 �
1

~2p!2r
�

Y
��S~d�t, d !
EfK ~s, t !cos~sy � tx!

�

R*� s

h
,

t

h
	�w� s

h
,

t

h
	�2

�fY0 ,X0� s

h
,

t

h
	�2~r�1!

�w� rs

h
,

rt

h
	�2

dsdt� dy~1 � o~1!!

�
1

~2p!2r
�

Y
���S~d�t, d�hr !
���

S~d�hr, d !
	

� � EfK ~s, t !cos~sy � tx!

R*� s

h
,

t

h
	�w� s

h
,

t

h
	�2

�fY0 ,X0� s

h
,

t

h
	�2~r�1!

�w� rs

h
,

rt

h
	�2  dsdt� dy

[ J2
a � J2

b + (A.87)

Note that R*~s0h, t0h! cannot change its sign for 7~s, t !7 � S ~d � t, d !+ ~Other-
wise, R*~s0h, t0h! would have a root, say, ~s *0h, t *0h!, which implies that
@fY0 ,X0

~s *, t * !# r�1w~rs *, rt * !0w~s *, t * ! � R*~s *0h, t *0h! � i I *~s *0h, t *0h! � 0 and
contradicts Assumption D~ii!+! Also, by Assumption D~v!, EfK~s, t ! � 0 for 7~s, t !7 �
~d � d,d !+ Note also that cos~sy � tx! cannot change its sign on S~d � t,d !, because
cos~sy � tx! � cos~d~ y � x!!~1 � o~1!! uniformly in y and x on S~d � t,d !+ These
imply that J2

a and J2
b have the same signs, say, positive+ Therefore, 6J26 � 6J2

b 6+ By
Assumptions D~i! and ~v!, we have

6J2 6 � C1��Y
cos~d~ y � x!!dy~1 � o~1!!�

� ��
S~d�hr, d !

�~d � 7~s, t !7!m��� s

h
,

t

h
	���r0~r�1!

exp�b*��� s

h
,

t

h
	��r�� dsdt

� C2��Y
cos~d~ y � x!!dy �� d � h r

h
	�r0~r�1!

exp�b*� d � h r

h
	r�

� ��
S~d�hr, d !

~d � 7~s, t !7!mdsdt

� C3��Y
cos~d~ y � x!!dy �h r0~r�1!�~m�1!r exp�b*� d

h
	r�1 �

h r

d
	r� , (A.88)
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where the second inequality follows from the fact that the function f ~z! �
z�r0~r�1! exp~b*h�rz r ! is increasing in z when z � ~d � h r,d !+ Using the fact that
~1 � z!r � 1 � rz02 for small z, we have

J2 � C4��Y
cos~d~ y � x!!dy �{h r0~r�1!�~m�1!r exp�b*� d

h
	r� + (A.89)

This together with ~A+84! and ~A+85! gives the desired lower bound in part ~c! by choos-
ing a large value of l so that J2 dominates J1+ �

Proof of Lemma 17. Consider ~A+56!+ Part ~a! holds because we have, by Lemma
16~a!,

var~Zn1! � C1 h�2 sup
x�R

6Kn1~x!62�
�`

`

v PX ~x! fX ~x!dx

� O�h 2@ r~m�1!�~r�1!r0�1#�ln
1

h
	2m

exp�2b*� d

h
	r�	+ (A.90)

Part ~b! follows using arguments similar to those in the proof of Lemma 16~c!+ �

Proof of Theorem 10. To prove Theorem 10, it suffices to verify the following
conditions:

B2n

sn4~x!
n N~0,1!; (A.91)

B1n
*

sn4~x!
p
&& 0; (A.92)

B3n

sn4~x!
p
&& 0; (A.93)

A2n

sn4~x!
p
&& 0; (A.94)

A3n

sn4~x!
p
&& 0+ (A.95)

By Lemma 16, for n sufficiently large, we have

E6Zn162�d � C1

1

h 2�d
sup
x�R

6Kn1~x!62�d (A.96)

� O�h @ r~m�1!�~r�1!r0�1# ~2�d!�ln
1

h
	~2�d!m

exp�b*~2 � d!� d

h
	r�	+

Because EZn1 is O~1! by ~A+55!, the Lyapunov condition holds because

E6Zn1 � EZn162�d

nd02 @var~Zn1!#
1�d02 � C2

�ln
1

h
	m~2�d!

nd02h 1�d02 r 0+ (A.97)
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Therefore, ~A+91! is established+
Now, ~A+92!-~A+95! hold because some calculation yields

� B1n
*

sn4~x! � � Op�n102n�a02h�rr0�302�ln
1

h
	m

exp��$b0 r � b1~r
r � 1!%� d

h
	r�	

� Op~n
102n�a02n�$b0 r�b1~r

r�1!%g !
p
&& 0, (A.98)

� B3n

sn4~x! � � Op�n�102h rr0�302�ln
1

h
	m

exp�b0 r� d

h
	b�	

� Op�n102�ah r1�~r�2!r0�302�ln
1

h
	m

exp�~b1 r r � b0 r!� d

h
	r�	

� Op~n
b0 rg�102 !� Op~n

~b1 r r�b0 r!g�102�a !
p
&& 0+ (A.99)

Similarly,

� A2n

sn4~x! � � Op~n
~a*�b* !g !� Op~n

~a*�b*�a1!g�a02 !

� Op~n
~a*�b*�a0 r!g�~1�a!02 !

p
&& 0 (A.100)

and

� A3n

sn4~x! � � Op~n
~a*�b*�a0 r!g�102 !� Op~n

~a*�b*�a1 r b�a0 r!g�102�a !
p
&& 0+ (A.101)

Now the proof of Theorem 10 is complete+ �

Proof of Lemma 11. Similar to the proof of Lemma 8+ �
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