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ESTIMATING ADDITIVE
NONPARAMETRIC MODELS BY
PARTIAL L, NORM: THE CURSE

OF FRACTIONALITY

OLIVER LINTON
London School of Economics
and
Yale University

We propose a new method for estimating additive nonparametric regression mod-
els based on taking the, median of a sample of kernel estimatorge establish

the consistency and asymptotic normality of our procedurhe rate of conver-
gence depends on the value®fFor q > 2 one has the usual one-dimensional
ratg but if g = 3 the rate can be slower

1. INTRODUCTION

Nonparametric estimation of the conditional mean curve has received much at-
tention in the literatureEstimation of other attributes of the conditional distri-
butions such as the conditional median curykas not received quite so much
attention in the methodological literatyggerhaps as a result of their analytical
complexity For exampleHardle (1990 spends less than 1 page out of 300 on
this topic Neverthelessthey are of as much interest for applications and have
been extensively applied in economics following the seminal work of Koenker
and Basset{1978 in parametric quantile regressio®@ne advantage of medi-
ans as location measure is that they are still consistent in the presence of a
certain amount of censoring or outliesghich can be important for some data
sets They are also equivariant to monotone transformatitigortunately as

in the mean regression counterpambnparametric estimation of the condi-
tional median suffers from the curse of dimensionakihich is manifested in

the slower attainable convergence rates in high dimensissiming that the
target function is separablspecifically additive can alleviate this probleyas

was originally shown by Ston@ 985. Additive nonparametric regression mod-
els provide a powerful tool for exploring relationships between a response vari-
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able Y and multivariate covariateX € RY because the estimates enjoy the
flexibility of nonparametric regression although not being subject to the curse
of dimensionality In addition the individual additive components are easy to
interpret

Tj@stheim and Auestad 994, Newey (1994, and Linton and Nielsefl1995
have independently proposed a procedure for estimating additive nonparamet-
ric regression modelsThe idea is to integrate an initial consistent estimator
with respect to ad — 1-dimensional probability measurket m(x) be some
consistent estimator of a function(x) and let

700 = [ M0, 6 ) BPOG ). @

When the functiorm is additive i.e,, m(x) = my(Xq) + -+ + My(Xq), 71(X1)
consistently estimates,(x;), up to an additive constanTypically, P is the
empirical distribution of the covariates,, ..., Xy, in which case

l n
#1(X1) = = 2 M(Xq, Xois ooy Xai)-
ni=1

Consistency of these estimators readily follows from the uniform consistency
of the estimatan(x). Rather the statistical issue is whether this estimator cir-
cumvents the curse of dimensionality in the sense that its rate of convergence
does not depend on the number of covariatds fact, 71(x;) can be shown to
be asymptotically normal at the same rate as one-dimensional nonparametric
regressionHence this estimator circumvents the curse of dimension&ity
ther refinements of thisntegration methodare found in Linton(1998 and
Horowitz (1999.

The estimatof,(x,) can be interpreted as the expectationsample mean
of M(xy, X,,..., Xy) with respect to some distribution &, ..., Xy. The mean
is only one example of a location measutiee median is an alternative loca-
tion measure that has found widespread. Gdeerefore why not replace the
expectation by the median operator? After alicern(xy, X,i,..., X4) has been
computedwe just have a list oh numbersif taking the mean of these num-
bers is a sensible operatiothen taking the median seems equally sensible
One advantage of taking medians is that the target quantities are well defined
for heavy tailed distributionsin this casethe relevant distribution is that of
the covariatesx,,..., Xy. For example suppose thatl = 2 and thatm(x) =
X1 + X,, Where X, is Cauchy distributedThen 71(x;) = [m(x)dP(x,) is not
defined whenP is the marginal distribution oK,. However the median of
m(Xy, X,) with respect to any continuous distribution is well defined

In this paperwe investigate a new proposal for estimation in additive non-
parametric regressiollVe shall estimate the individual additive components by

7.(X%;) = arg nzinfg(m(x) —1)dP(X,,..., Xq), (2)
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wherem(x) is an estimate of a population function(x), ¢ is a bowl-shaped
loss function P is some probability measurand the minimization is taken
with respect tat € T for some sefl C R. Even though our conclusions hold
for general loss functions, we find it useful to specialize our results to thg
distance wherep(t) = |t|? with g = 1. For examplethe L distance which
corresponds to taking(t) = |t], is less sensitive to heavy tails than the
distance For thel, loss functiono (t) = |t], the estimator is

7A-l(xl) = mediar(m(xl’ X27 EE) Xd))’

whereX,,..., Xy have joint distributiorP. This amounts to replacing the aver-
aging in the integration estimator by medianiige expect that medianing has
similar asymptotic properties to the integration estimasdrleast when both
population quantities existVe establish pointwise consistency of the partial
method for anyg = 1 under weak assumptions on the “integrating” measure
Specifically we allow it to have unbounded suppofte result is basically a
consequence of uniform consistencytiobver increasing sets result we found

in Andrews(19995 for regressionThe asymptotic distribution theory fé5(x,)
depends on the smoothness of the loss funcigwhich is measured by in

our case Estimators defined through smooth loss functions have essentially
the same behavior as the integration estimatbereas lack of smoothness leads
to a slower rate of convergence for the estimdige main conclusion of this
paper is that the partidl, estimator withq > 3 reduces al-dimensional prob-
lem to a one-dimensional problemne., the asymptotic distribution of,(x,) is
normal with one-dimensional rateshereas ifg = 3 the rate of convergence is
slower Specifically the partialL, estimator has the convergence rate of two-
dimensional nonparametric regressiovhereas the partial, estimator with

1 < g < 3 has an intermediate fractional rate of convergemeace the title
These three cases correspond well with Arcofi€96).

2. ESTIMATION

Let (X,Y) € R4 be a random vector and 1€X,,Y;),...,(X,,Y,) be an inde-
pendent and identically distributédi.d.) sample from this populatiofror each
direction x,, we partitionx = (X, X_y), wherex, is scalar whereas_, is of
dimensiond — 1; likewise letX; = (X, X_y;). Let f be the Lebesgue density
of X and letf_, denote the density ok_,. Let P be an absolutely continuous
distribution with densityp on RY whose support is included in the support of
the distribution ofX. It will be convenient to denotp_(Xx_) = [ p(x)dx, and
P(X) = S p(x)dX_y.
We write

Y=m(X)+ ¢,

where the functiorm is identified by a conditional location restriction on the
disturbances—specifically we suppose that the, median ofe given X is
zera The two leading examples would & e|X) = 0 and mediafie|X) = 0.
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In the first casem(x) is the conditional mean functipmvhereas in the second
case m(x) is the conditional medianVe then suppose that there is a unique
solution which we call 7(xy), to the population minimization problem
Jo(m(x) — t)p_k(Xx_,)dx_,. We also suppose thah(x) = my(x;) + --- +
my(Xq), for some functionsn(-), j = 1,...,d, in which caseri(x) is mg(Xy)
up to an additive constanite., we can writer,(x,) = m(x,) + u for somep.
The constanfu is defined through some restriction om(-); e.g., we might
suppose thaf o (m(x) — t)pe(X)dx is uniquely minimized at = 0. How-
ever because we only concern ourselves with estimatiomgf) up to a con-
stant in this papeme do not need to be precise on this issue

Let m(x) be a consistent estimator of(x), such as a local polynomial ker-
nel median or mearNow consider theartial criterion function

Qu(t) = f 2 (M%) — DP_ (X )dX @3)

and denote by (x,) the minimizer ofQ,(t) with respect ta for every fixed
Xk. Then7,(x;) estimatean,(x,) + w. We actually work with solutions to the
first-order conditionG,(t) = 0, where

Galt) = f (00 — DP )T g, @

wherey is the(generalizeg@lderivative of the functiow. The integration in(3)
and(4) is over a sefA, C A = supp p_x) C supp f_y), where we shall allow
the setA, to increase with sample size where necessAfy introduce this ad-
ditional generality because we wish to show consistency in the case where
has supporiR9~1. The integration can be done numerically whers 4; in
higher dimensionsit is necessary to replace the integrals by sums

3. ASYMPTOTICS

We shall restrict our attention to the classlgfcriterion functions witho (t) =
[t|9 whereq = 1 and hencey(t) = sign(t)|t]|9~%
3.1. Consistency

We first establish the pointwise consistency of the proposed estimator under
high level conditions on the pilot estimator

THEOREM 1 Suppose that g 1 and that

sup [m(x) —m(x)| =0 (5)

X_kEA,L
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with probability one for some increasing sequence of sgt$SAppose also that
there exists a unique solutiom(X,), to minet fo(M(X) — t)P_(X_1 ) dX_y.
Then, the corresponding estimatfy(x,) is strongly consistent, i.e., with prob-
ability one

| Fi(Xy) — (%) | = 0.

This generalizes Lemma 1 of Lintp@hen Wang and Hardlg(1997). In the
case thaf\, is uniformly boundedthe result(5) has been shown in Mas($996
for local polynomial regression and in Chaudh@®91a 1991h for local poly-
nomial quantile regressiodndrews (1995 extended the mean regression re-
sult to increasing set3he rate at whichA, is allowed to grow depends on the
marginal densityf of X, specifically on the quantitye, = inf, 5 f(X); i.e,
the fastelx,, decreases to zerthe more slowlyA, is permitted to expandrhe
preceding result gives conditions under whigfix,) is consistent when the
support ofp_y is infinite and is the first result of this kind that we are aware of

3.2. Asymptotic Normality

We shall now suppose that the integrationGR(t) is carried out over a fixed
setA = supf p—_x), which is assumed to be compathe results divide accord-
ing to three caseghe “smooth” case wherg > 3, the “partly smooth” case
1 < g = 2, and the unsmooth case whege= 1. In the partly smooth and
unsmooth casesve shall need some results on fractional integration and gen-
eralized functions that can be found in Lint¢t099.

We shall require some additional structure on the unrestricted estimation er-
ror m(x) — m(x). We will suppose that the estimator and its derivatives satisfy
the following Bahadur representatton

n d
D®m(x) — D®m(x) = > Wi ()7 + > i (%) + RY(%) (6)
i=1 k=1

for vectorsy = (v4,...,vq4) to be determined subsequently and for some func-
tionsa,

1 d X — X;
W (x) = Kop (2 ‘) 7
n,1 (X) nhd_HV‘ aV(X) J];l]i- < h ’ ( )

whereK is a univariate kernel function arfd= h(n) is a bandwidth sequence
Here K (t) denotesd”iK(t)/dt. Whenm(x) is a Nadaraya—Watson condi-
tional mean estimator; = Y; — m(X;), whereas iffh(x) is a conditional me-
dian estimatgry; = sign(Y; — m(X;)). Assumptions Awhich follow, are needed

in the smooth casevhereas in the unsmooth cases we shall need in addition
Assumptions Bwhich are presented subsequently
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Assumption A

(a) The random samplZ; = (Y, X!),Y; E R, X; € R4}, isi.i.d. The covariateX
have distribution that is absolutely continuous with respect to Lebesgue measure
with densityf (-).

(b) The density functiop_, has supporA that is strictly contained in the support of
the density functiorf. The densityf is bounded away from zero ok The func-
tionsf andp_y are Lipschitz continuous oA; i.e., there exists a constantsuch
that [f(x, X2) — (X, XL = cfx—k = Xl [p-k(X-k) — po(XL)| =
Clx—x — XL for all x_,,x", € A.

(c) The functiony (t) = sign(t)|t|9~L The setT is compactand 7 (x,) lies in the
interior of T.

(d) 91,...,mn are ii.d. with E(ni|X;) = 0 and E(n?) < oco. Let o?(x) =
var(ni|X; = x).

(e) The kernel functionK(-) is bounded symmetric about zerocompactly sup-
ported has Lipschitz continuous derivativand integrates to onéd.et |K|3 =
JKZ(u)du < oo, pj(K) = fulK(u)du < oo.

(f) The functionsa = a and o? are Lipschitz continuouga(xg, X_) —
a(X, X2 )| = ¢l x_ = x i ] and [o2 (X, X" i) — 02 (X, X | = €] X — X4
for all x_,, x", € A. Furthermorethe functiono? is bounded away from zero
onA.

(g) The functionsy'Y (x,) satisfy lim,,.,h "3, xQ(x) = x©(x), where the
function y©(x) is bounded

(h) The remainder term&{”(x) are such that with probability onesup, ,ca X
IR (x)| = o(n~/2r+1),

Assumption B1 There exists some neighborhood of the ddf = {x_,:
>9.emy(x,) = 0} on whichm/(x;) # 0 for somej # k. The setM, C Rt is
of Lebesgue measure zerturthermore fm(Z‘{LkmAx{)) > 0 for all x_ in
some neighborhood aM,, wheref,, is the Lebesgue density of the random
variableX 9., m,(X;).

Assumption B2

(a) The densityp_ is twice continuously differentiable ofy, and it and its first par-
tial derivatives are zero on the boundary/of

(b) For all » with |¥| = 3, the functions y{(x,) satisfy lim, ., h~ 01D x
S v (%) = x™(x), where the functiony™ (x) is bounded

(c) For allv with |v| = 3, the remainder termR{”(x) are such that with probability
one sup ,eal Ry (X)| = o(n~(=l/@r+D),

(d) The functionsa, with |¢| = 3 are Lipschitz continuoysand the kernel deriva-
tives KJ) with j = 1,2,3 are boundedsymmetric about zefccompactly sup-
ported and Lipschitz continuous

Under our assumptionghe pilot estimatorh is uniformly consistent on the
compact sefA with rate \logn/nh? + h'. Many of the usual multivariate re-

gression estimators satisfy this expansiocluding local polynomial mean and
median regression estimators
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The first part of condition B1 requires that at least one of the component
functions be strictly monotonic in some neighborhood of the/gigt Note that
the functionX,.., m,(x,) must take on both positive and negative sigmich
implies that there must be some singularity paints., there existsx*, € A
such thatX,..m.(x;) = 0. Hence the setM, is nonempty In general
M, will determine a region of dimensiond — 2 in RY"L For example
m;(x) = x; andm(x) = 0, | # kK, j, wherex, € [-1,1]. In this example M, =
{X_k:x = 0}, which is a linear subspace of dimensios- 2. Furthermore
m(x) =1 butm{(x,) = 0, | # j,k. Suppose instead tham(x,) = x? — 3,
wherex, € [0,1], | = 2,...,d. The setM is the surface of d — 1-dimensional
sphere of diameteid — 1)/2, whereasn|(x,) # 0 for all x, # 0. Regarding the
condition on the densit,, this condition is likely to hold in many examples
It is necessary because we have to deal with integrals of the form

dx_
fA 3(X) X ka ®)
ij(xj)

j#k

for constantsx > 0 and bounded continuous functiomsThis assumption helps
us to pin down for which values af integrals such ag3) exist specifically it
makes the existence @8) equivalent to the existence of the univariate integral
foll y|~«dy. It is a weak assumption in this conteitt f., were zero onM,, we
might obtain better results regarding existencé®f(which might imply better
rates of convergence for our estimator

Condition B2a) is important because we use integration by parts to borrow
the smoothness gf_,. Conditions B2Zb)—(d) ensure that the first three deriv-
atives ofrh are uniformly consistent oA. There are further restrictions o, d,
which are necessary to make the remainder terms of smaller order than the
leading termsthese are given in the statement of TheorgrwRich follows

THEOREM 2

(a) (g > 2) Suppose that the pilot estimatdn(x) satisfies the linear expansion (6)
and (7) and that assumptions A hold. Suppose also that the bandwidth sequence
satisfies h= yn=Y@+D for somey with 0 < y < co and that r> max{2,d — 1}.
Then there exists an increasing sequeicand some finite constants(Xx), S«(Xx)
such that

Sl Ti(X) — T(X%i)} = N[ (X, Sc(Xi0)], 9

wheres,, = n/@+D,

(b) (1 < q = 2) Suppose that the pilot estimatan(x) satisfies the linear expan-
sion (6) and (7) and that Assumptions A and B hold. Furthermore, suppose
that r > max{3,d + 1}. Suppose also that the bandwidth sequence satisfies
h = y(logn/n)¥@+4-29 for somey with 0 < y < o. Then (9) holds with
5n — nr/(2r+472q)/|ogn_
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(c) (g = 1) Suppose that the pilot estimatdn(x) satisfies the linear expansion
in (6) and (7) and that Assumptions A and B hold. Furthermore, suppose that r
max{3,d + 1}. Suppose also that the bandwidth sequence satisfies h
yn~ Y@ *2 for somey with 0 < y < co. Then (9) holds witt,, = n/2r+2,

The constant termg,(X,), S«(X) are given in Linton(1999.1

4. CONCLUSION

We have one positive result and one negative result about the daJ&atima-
tor. First, it is well defined in cases where the original marginal integration
estimator is nqgtand it is consistent in such cas&econdthere is a reduced
rate of convergence in generab that whereas the marginal integration estima-
tor has the one-dimensional convergence,ridite partial median estimator has
a two-dimensional convergence rate

NOTE

1. The restrictions om, d are phrased in this way because we are using a given bandWiaith
comparisonAndrews(1994 p. 2271) requiresr > d/2 for a stochastic equicontinuity result useful
for semiparametric estimatiowhereas Linton and Hardid 996 requirer > d — 1. In the second
case we require at least three derivatjves already discussed
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APPENDIX

Proof of Theorem 1. Let G(t) = Ja,(m(x) — t)p_k(x 1 )dx_. Then |Gy(t) —
G(t)| = |G, (1) — G(t)| + |G(t) — G(t)|, where with probability one

supg G(t) — G(t)| = sup

teT teT

fAclﬁ(m(X) —t)p_(X_dx_y| = 0(1)

by dominated convergencerovided sup=t [|¢(m(x) — t)|p_k(X_,)dXx_x < oo and
A(A%) — 0 asn — oo, where A denotes Lebesgue measuteremains to show that
SUpet|Gn(t) — G(t)| = o(1) with probability one By Arcones(1996 Lemma 4, we
have

22-4p| ifl<q=2

w<a+b>—¢<a>'5{z{|as|b} =1

Therefore when 1< g = 2, we have(takinga = m(x) — t andb = m(x) — m(x))

1Ga(t) — G(t)| = f (00 — 1) — (M) — DIP_ (X)X
= . [ (M(x) —t) — g (M(x) — )| p_(X_, ) dX_

= 22""[\ [M(x) = m(X)| (X ) dX

n

= 2279 sup |M(x) — m(x)|

X_kEAL

-0
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with probability one Whenq = 1, we have

IGn(t) = G(B)| = ZL {Im(x) =t = [M(x) = M) [}p_i(X_)dx_

= ZLn{m(x) —t|= sup |m(x) — m(x)l} P (X ) dX_,. (A.1)

X_kEAL

Now, for anye > 0 there exists an > 0 such that supt A(Ay(1)) < €, whereA(n) =
{X_k:|m(x) — t| = n}. Therefore for any givene > 0 we can bound the right-hand side
of (A.1) by

c

nt(1)

2[ im0 -t = dpoocodoc 2 [ = Ylpaoo,
Ant(1) A

= zfA {m(x) —t| = Yo p_k(X_ ) dx_y + o(1)

nt (1)

=2e+0(1),

with probability one whereY;, = sup, ,ca |M(x) — m(x)|. Therefore because is ar-
bitrary and independent @f we have sugt|Gn(t) — G(t)| — 0 with probability one
Combining these facts with the unique minimizing conditise conclude that if(xy)
is the unique minimizer o6(t), then7.(xx) — 7(Xyx) with probability one |

Proof of Theorem 2. First, we define a linearized versio@,(t) of G,(t) and pro-
vide a central limit theorem fog,(t). We then prove tha@,(t) andG,(t) are uniformly
close to each otheFinally, a simple mean value expansion gives the asymptotic distri-
bution of zeros ofj,(t), which we have already shown are close to zero§gt). See
Phillips (1991 for an accessible treatment of the asymptotics for least absolute devia-
tions (LAD) estimators in the parametric case

CaseQ > 1. Define G(t) = fasign(m(x) — t)|m(x) — t|9 *p_,(x_,)dx_ and let

G() =G +(q—-1 le(X) = 7% |9 2{M(X) = MOOFP_i(X_i) dx_
=G(t) + A,

Note that the functions’(u) = (q — 1)|u|9~? is continuous everywhere whep= 2 but

is discontinuous at the origin when<l q = 2. By substituting the stochastic expansion
of m(x) — m(x) into A, we can writeA, = AS + AB + remainder The main difficulty in
establishing the asymptotics Gf(t) is the random sequenag—and in particularthe
stochastic part of it

n

AF=(g-1) fA Im(x) — 7 (%) |92 ( > Wn(,oi)(x)"')i> Pok(X_i ) dX .

i=1
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CaseQ > 3. We first approximater$ by the random sequence

. 1 n X — X i a(X ,X, i)
D) K( — X (A.2)
i=1
> me(Xq)
€#k

which has finite(unconditional variance and i€,(n~Y?h~%2) (by the assumption
thatf,, > 0 on a neighborhood aM;, the approach to singularity occurs at a linear
rate i.e, it suffices to show that the integr;;ﬂ,1 u?9~4du < oo, which it does if and
only if g > 2). Furthermoreit is asymptotically normali.e., YnhaS* — N(0,v(x))
for some finitev(xx) by standard verification of the Lindeberg conditiofihe bias
term A% = (q = 1) Jalm() = 7|7 2(Ziee1 Xk ) P_ (X ) dx_ is O(h") by As-
sumption Ag) using standard argumentBherefore \'nhgG, (r(x,)) is asymptotically
normal (furthermore the optimal bandwidth that balances the squared bias against the
variance ish oc n~¥@*1 which results in a rate of convergencersf® 1), Finally,
we show that we can restrict attention to the linearizatift). We have for any
sequencee, converging to zero Sup.,, xj=e.|Gn(t) — Ga(t)| = 0p(n"Y2h7Y/2),
Furthermore sup;_,, (x =, /9n(t) — G(t)| = An = Op(n~¥2h~%2). This establishes
that the zeros of,(t) and Gy(t) are bothO,(1/v/nh) distance from the zero dB(t),
which is 7(xx), and moreover that the zero @h(t) is distanceo,(n~?h~%2) from
the zero ofGy(t). Let 7(xx) be a zero ofG,(t), in which caseby a Taylor expansion
0 = Gn(7(X) = G' (T (X)) VNh(F (%) — m(x) + VnhA, + 0,(1) using the fact
that G'(t) exists and is nonzero in a neighborhoodmfxy). This leads to the distri-
bution of Vnh(7.(x) — (X)) and hencev'nh(#,(x,) — 7(xx)). We conclude that
N7 D (2,(x) — k(X)) is asymptotically normal

Case 1< Q = 2. In this casethe unconditional variance & does not existunless
perhapd,, = 0 on My), and we cannot apply a central limit theorem directly(402).
In this casewe use fractional integration by parts to approximageby a statistic with
finite variance There will be a cost to this in terms of the rate of convergerie
corresponding\y* satisfiesAy” = Op(n~Y2h~(4~29/2|ogn) when 1< q < 3. We will
outline the argument in some detail for the special casedhat2, my(x,) = X5, A =
[0,1], andK > 0. In this case

12 X1 — Xy bl Xa = Xai
AR WE%K<T>J; xg—qa(X)K ho P (%)d%

i=1

_ 13 X1 — Xy Jl o[ a0Pa(X2) Xz = Xyi
_ nhZE"‘K<—h ) AR v A L G DL

1 3 X1 — Xy o[ apa(xp) Xo = Xyi
h—E”K(T>f P\ T ST )

for any @ with 0 < « < 1. Here for any function K, K,(a(x + b)) =
a *Dg(K(a(x + b)), where lim supK,(a(x + b)) < oo.

We now make a change of variables— u = (x, — X,;)/h to obtainAS = A% {1 +
op(1)}, where
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— Xy
En. ( . ) —a%0 X)) po(K,), (A3)

nhl+a

whereM_, (X, x2) x;‘(a(x)pz(xz)x 2). Note that|M_, (X4, Xo)| = {suga(x) x
pz(x2)|}|D;2“(x %)| = O(xg*972), asx, — 0, becausea, p,, and x, are positive
We therefore taker = (3 — 2q)/2, in which caseM_(3_2g,2)(X1, X2) = O(x;¥?) as
X2 — 0. Although the unconditional variance af* does not exist in this casthe con-
ditional variance does with probability onend we can show that

1 n X1 — Xy
Var[Aﬁk‘xl,---, Xnl = 21 5-2 Z 0'2(Xi )K2< S ) Mile«%(K(s—zq)/z)
n<h ) h
= 0,(n"*h?%*logn), (A.4)

where M; = M_ 3242 (X1, Xzi). In fact, AS" is asymptotically normal provided the
correct standardization is useas we now showNote that provided,(x,) > 0, where
f, is the marginal density oX,, we have mip, Xz = Op(n~1). Therefore we can ap-

proximatey' nh*=2%log nAS* by

e S (M 0 10 = o ol 0 = 220 S
nhlogn <1 K 2= Hlogn ) Hola-2ar2) = 2 “niv (A.5)

whereZ,; are mean zero and independent random variables with finite second moments
We then apply the Lindeberg central limit theorem for triangular arr@sow and
Teicher 1997 p. 351), which in this case requires only théd) nEZ% — v for some

finite positivev and (b) NEZ%1(|Z,;| = €) — 0 for all e > 0. The conclusion is that

> 1Z. (and henceynh*~2%lognA%) is asymptotically normal with mean zero and
variancev. We show why(a) is plausible We have

wi(Ka—aq)2)

EZ2 =
nEZ hlogn

X — X
K2<1T1>0'2(X)M3(<3—2q>/2)(x)

1
X 1<X2 = —) f(X)dX
nlogn

— 2 K K 2 1 2 M
= p5(Kg—2q,2) K] logn T 2(X)IM_((3-2q)2)(X)

1
X 1<X2 = Wgn) f(x)dx,{1+ o(1)}

dx,

= u3(Ks_2q,2) [K[? X € X _J '
2

nlogn

—log(1/nlogn)
logn

Ioglogn)
logn /)’

= ,U«(Z)(K(:-s—Zq)/z) [K[? % cx

— u3(Kissqy2) [K[I? X € X (1+
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wherec is some finite constanThe second line follows from a change of variablesd
the inequality uses the fact that® andf are bounded functions and our earlier argu-
ments Similarly, we can bounchEZ2 away from zeroAs for condition (b), we first
show that for any subsequenf®g}i_;, (*) MaX —j=n Wy, — p0, Wherew,; = K((xy —
X11)/N)X5Y2/A/nhlogn > 0. By independence and the law of iterated expectation

have for anye > 0,
X1 — Xy i
K 1 1i
h(n,)

Pr( max W, = E) = [PI’(Wnki = 6)]”" =|1-E qu_ m s
K K k

1=i=ng

whereF,|; denotes the conditional cumulative distribution functionXgf given Xy;.
Now, becausé((x; — X4i)/h(ny))/e X ngh(ng)log ne — 0 andF,1(0) = 0, we have by
a Taylor expansion and change of variables that

[ Elk Xy = Xy M
()|

Pr( max w,, =¢e)=|1-f,(0) ——————
<1§i£nk e E) 21(0) e X n.h(ny)logn,

200 [ K06~ uhngyau |
= 1—

e X n.logny
-1

wheref,; is the conditional density function of;; givenX,;, wheread; is the marginal
density ofXy;, which establishe$*). This in turn implies that max-, Wy ; — 0 in
probability wherew;; = K((x; — Xy;)/NX5Y20 (X;)1(X5 = 1/nlogn)/~/nhlogn,
becauser (X;) is bounded Therefore max_,, W, ; — O with probability one along
some subsubsequenée, }~;, which implies that conditior(4.14) of Muller (1988
p. 31) is satisfied and hence the Lindeberg conditigb) is satisfied along these sub-
sequences conditional ofy,..., X, with probability one In conclusion Ei“ﬁlznkli -
N(O,v) with probability one conditional oiXy,..., X,, . Because the limit distribution
does not depend oX,..., X, , the weak convergence holds unconditionafjnally,
we haveXL,; Z, — N(0,v) by the sequential compactness property of real sequences

The bias termAB is of orderh’ as before This means that the optimal bandwidth
is h oc (logn/n)¥(2+4-29 and the optimal rate of convergenceGg(n~"/(#-2a+20) x
(logn)Y/2). In conclusion Y nh*~2%log nG,(r(x,)) is asymptotically normalFinally,
we can show that the linearization errorgn™"/4=24+20 jog n).

CaseQ = 1. In this casethe preceding methods do not apply becau&e) = sign(u)
is discontinuous with a nonremovable singularijowever the functionsG,(t) =
Jasign(m(x) — t)p_k(X_x)dx_x andG(t) = fasign(m(x) — t)p_k(X_x)dx_y are contin-
uously differentiable ir, and the derivative o6, e.g., can be represented a&(t)/ot =
2[8o(Mm(x) — t)p_k(X_k)dx_k, Whered,(-) is the Dirac delta(generalized function,
which is defined through its integralse., [8,(t)g(t)dt = g(x) for any univariate func-
tion g(-) that is continuous at (see Gel'fand and Shilgw964. In this caselet
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Gn(t) = f sign{m(x) — t}p_,(X_,)dx_y
A

+fA‘(So(m(X) = Ti(XIM(X) = MX)p_i (X ) dX_ = G(1) + A,,.

We show for any sequeneg converging to zero that syp,, =, (t) — Gu(t)| =
0p(N"¥2h71), and Vnh?G,(n (%)) = VnhZ[a8o(m(x) — 7(x{M(x) —
M(X)}p—_k(X_k)dXx_x = N(b(xy),v(xy)) for someb(xy),v(x¢). Then providedI' =

G (m¢(xx)) = [8o(M(X) — 7 )p_k(X_k)dx_x # O, we have the limiting distribution of
7r(xx) by the same arguments used earlgy Theorem 51 of Spivak(1965, M, is a
manifold provided the vectom;(x,), £ # k) # 0 on some open neighborhood .6

in R97L In this casethese “delta integrals” can be represented as ordinary Lebesgue
integrals overMy, i.e, [So(M(X) — 7(Xi))P—i(X—)dX_ = Jrq, P-k(X_)dx_, and
J8o(m(x) = (X IM(X) — MX)FP (X1 dX i = [ IM(X) = MX)FP_ (X i) dX
(see Gel'fand and Shilo\1964 Ch. Il ). BecauseM, generally determines a region of
dimensiongd — 2, the random sequence Wgn(rk(xk)) behaves like the integral of
a d-dimensional smoother with respect tala- 2—dimensional integrator.e., it should
behave like a two-dimensional regression smootimethe special case that,(x,) = x,

for somef # k, andm;(x;) = 0 for all j # £, k, this interpretation is exact because then
My = {X_x: X, = 0} and

fM {m(x) = m)}p_ (X ) dx_ = f{m(x,k,O) = M(X_, 0Pk (X 1, 0V AX_ ks

wherex_¢  is the (d — 2) X 1 vector excluding botkx, and x,. Note that asymptotic
normality follows from an application of the Lindeberg central limit theorémthe
general casewve must apply a change of variables argument to return to ordinary inte-
grals but we end up with the same qualitative behavior n



