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ESTIMATING ADDITIVE
NONPARAMETRIC MODELS BY
PARTIAL Lq NORM: THE CURSE

OF FRACTIONALITY

OLLLIIIVVVEEERRR LIIINNNTTTOOONNN
London School of Economics

and
Yale University

We propose a new method for estimating additive nonparametric regression mod-
els based on taking theLq median of a sample of kernel estimators+ We establish
the consistency and asymptotic normality of our procedures+ The rate of conver-
gence depends on the value ofq+ For q . 3

2
_ one has the usual one-dimensional

rate, but if q # 3
2
_ the rate can be slower+

1. INTRODUCTION

Nonparametric estimation of the conditional mean curve has received much at-
tention in the literature+ Estimation of other attributes of the conditional distri-
butions, such as the conditional median curves, has not received quite so much
attention in the methodological literature, perhaps as a result of their analytical
complexity+ For example, Härdle~1990! spends less than 1 page out of 300 on
this topic+ Nevertheless, they are of as much interest for applications and have
been extensively applied in economics following the seminal work of Koenker
and Bassett~1978! in parametric quantile regression+ One advantage of medi-
ans as location measure is that they are still consistent in the presence of a
certain amount of censoring or outliers, which can be important for some data
sets+ They are also equivariant to monotone transformations+ Unfortunately, as
in the mean regression counterpart, nonparametric estimation of the condi-
tional median suffers from the curse of dimensionality, which is manifested in
the slower attainable convergence rates in high dimensions+ Assuming that the
target function is separable, specifically additive, can alleviate this problem, as
was originally shown by Stone~1985!+ Additive nonparametric regression mod-
els provide a powerful tool for exploring relationships between a response vari-
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Hengartner+ I thank two referees, Joel Horowitz, and Peter Phillips for comments and the National Science Foun-
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able Y and multivariate covariatesX [ Rd because the estimates enjoy the
flexibility of nonparametric regression although not being subject to the curse
of dimensionality+ In addition, the individual additive components are easy to
interpret+

Tjøstheim and Auestad~1994!, Newey~1994!, and Linton and Nielsen~1995!
have independently proposed a procedure for estimating additive nonparamet-
ric regression models+ The idea is to integrate an initial consistent estimator
with respect to ad 2 1–dimensional probability measure: let [m~x! be some
consistent estimator of a functionm~x! and let

[t1~x1! 5E [m~x1, x2, + + + , xd !dP~x2, + + + , xd !+ (1)

When the functionm is additive, i+e+, m~x! 5 m1~x1! 1 {{{ 1 md~xd!, [t1~x1!
consistently estimatesm1~x1!, up to an additive constant+ Typically, P is the
empirical distribution of the covariatesX2, + + + ,Xd, in which case

[t1~x1! 5
1

n (
i51

n

[m~x1,X2i , + + + ,Xdi !+

Consistency of these estimators readily follows from the uniform consistency
of the estimate [m~x!+ Rather, the statistical issue is whether this estimator cir-
cumvents the curse of dimensionality in the sense that its rate of convergence
does not depend on the number of covariatesd+ In fact, [t1~x1! can be shown to
be asymptotically normal at the same rate as one-dimensional nonparametric
regression+ Hence this estimator circumvents the curse of dimensionality+ Fur-
ther refinements of thisintegration methodare found in Linton~1998! and
Horowitz ~1999!+

The estimator [t1~x1! can be interpreted as the expectation~or sample mean!
of [m~x1,X2, + + + ,Xd! with respect to some distribution forX2, + + + ,Xd+ The mean
is only one example of a location measure; the median is an alternative loca-
tion measure that has found widespread use+ Therefore, why not replace the
expectation by the median operator? After all, once [m~x1,X2i , + + + ,Xdi ! has been
computed, we just have a list ofn numbers+ If taking the mean of thesen num-
bers is a sensible operation, then taking the median seems equally sensible+
One advantage of taking medians is that the target quantities are well defined
for heavy tailed distributions+ In this case, the relevant distribution is that of
the covariatesX2, + + + ,Xd+ For example, suppose thatd 5 2 and thatm~x! 5
x1 1 x2, whereX2 is Cauchy distributed+ Then, t1~x1! 5 *m~x!dP~x2! is not
defined whenP is the marginal distribution ofX2+ However, the median of
m~x1,X2! with respect to any continuous distribution is well defined+

In this paper, we investigate a new proposal for estimation in additive non-
parametric regression+We shall estimate the individual additive components by

[t1~x1! 5 arg min
t
E®~ [m~x! 2 t !dP~x2, + + + , xd !, (2)
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where [m~x! is an estimate of a population functionm~x!, ® is a bowl-shaped
loss function, P is some probability measure, and the minimization is taken
with respect tot [ T for some setT # R+ Even though our conclusions hold
for general loss functions®, we find it useful to specialize our results to theLq

distance, where®~t ! 5 6 t 6q with q $ 1+ For example, the L1 distance, which
corresponds to taking®~t ! 5 6 t 6, is less sensitive to heavy tails than theL2

distance+ For theL1 loss function®~t ! 5 6 t 6, the estimator is

[t1~x1! 5 median~ [m~x1,X2, + + + ,Xd !!,

whereX2, + + + ,Xd have joint distributionP+ This amounts to replacing the aver-
aging in the integration estimator by medianing+We expect that medianing has
similar asymptotic properties to the integration estimator, at least when both
population quantities exist+We establish pointwise consistency of the partialLq

method for anyq $ 1 under weak assumptions on the “integrating” measure+
Specifically, we allow it to have unbounded support+ The result is basically a
consequence of uniform consistency of[m over increasing sets, a result we found
in Andrews~1995! for regression+ The asymptotic distribution theory for[t1~x1!
depends on the smoothness of the loss function® ~which is measured byq in
our case!+ Estimators defined through smooth loss functions have essentially
the same behavior as the integration estimator, whereas lack of smoothness leads
to a slower rate of convergence for the estimate+ The main conclusion of this
paper is that the partialLq estimator withq . 3

2
_ reduces ad-dimensional prob-

lem to a one-dimensional problem; i+e+, the asymptotic distribution of[t1~x1! is
normal with one-dimensional rate, whereas ifq # 3

2
_ the rate of convergence is

slower+ Specifically, the partialL1 estimator has the convergence rate of two-
dimensional nonparametric regression, whereas the partialLq estimator with
1 , q , 3

2
_ has an intermediate fractional rate of convergence, hence the title+

These three cases correspond well with Arcones~1996!+

2. ESTIMATION

Let ~X,Y! [ Rd11 be a random vector and let~X1,Y1!, + + + , ~Xn,Yn! be an inde-
pendent and identically distributed~i+i+d+! sample from this population+ For each
direction xk, we partitionx 5 ~xk, x2k!, wherexk is scalar whereasx2k is of
dimensionsd 2 1; likewise letXi 5 ~Xki ,X2ki !+ Let f be the Lebesgue density
of X and letf2k denote the density ofX2k+ Let P be an absolutely continuous
distribution with densityp on Rd whose support is included in the support of
the distribution ofX+ It will be convenient to denotep2k~x2k! 5 *p~x!dxk and
pk~xk! 5 *p~x!dx2k+

We write

Y 5 m~X ! 1 «,

where the functionm is identified by a conditional location restriction on the
disturbance«—specifically, we suppose that theLq median of« given X is
zero+ The two leading examples would beE~« 6X ! 5 0 and median~« 6X ! 5 0+
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In the first case, m~x! is the conditional mean function, whereas in the second
case, m~x! is the conditional median+ We then suppose that there is a unique
solution, which we call tk~xk!, to the population minimization problem
*®~m~x! 2 t !p2k~x2k!dx2k+ We also suppose thatm~x! 5 m1~x1! 1 {{{ 1
md~xd!, for some functionsmj ~{!, j 5 1, + + + ,d, in which case, tk~xk! is mk~xk!
up to an additive constant; i+e+, we can writetk~xk! 5 mk~xk! 1 m for somem+
The constantm is defined through some restriction onmk~{!; e+g+, we might
suppose that*®~mk~xk! 2 t !pk~xk!dxk is uniquely minimized att 5 0+ How-
ever, because we only concern ourselves with estimation ofmk~{! up to a con-
stant in this paper, we do not need to be precise on this issue+

Let [m~x! be a consistent estimator ofm~x!, such as a local polynomial ker-
nel median or mean+ Now consider thepartial criterion function

Qn~t ! 5E
An

®~ [m~x! 2 t !p2k~x2k!dx2k (3)

and denote by[tk~xk! the minimizer ofQn~t ! with respect tot for every fixed
xk+ Then [tk~xj ! estimatesmk~xk! 1 m+ We actually work with solutions to the
first-order conditionGn~t ! 5 0, where

Gn~t ! 5E
An

c~ [m~x! 2 t !p2k~x2k!dx2k, (4)

wherec is the~generalized! derivative of the function®+ The integration in~3!
and~4! is over a setAn # A 5 supp~ p2k! , supp~ f2k!, where we shall allow
the setAn to increase with sample size where necessary+ We introduce this ad-
ditional generality because we wish to show consistency in the case wherep2k

has supportRd21+ The integration can be done numerically whend # 4; in
higher dimensions, it is necessary to replace the integrals by sums+

3. ASYMPTOTICS

We shall restrict our attention to the class ofLq criterion functions with®~t ! 5
6 t 6q, whereq $ 1 and hencec~t ! 5 sign~t !6 t 6q21+

3.1. Consistency

We first establish the pointwise consistency of the proposed estimator under
high level conditions on the pilot estimator+

THEOREM 1+ Suppose that q$ 1 and that

sup
x2k[An

6 [m~x! 2 m~x!6r 0 (5)
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with probability one for some increasing sequence of sets An. Suppose also that
there exists a unique solution,tk~xk! , to mint[T *®~m~x! 2 t !p2k~x2k!dx2k.
Then, the corresponding estimator[tk~xk! is strongly consistent, i.e., with prob-
ability one

6 [tk~xk! 2 tk~xk!6r 0+

This generalizes Lemma 1 of Linton, Chen,Wang, and Härdle~1997!+ In the
case thatAn is uniformly bounded, the result~5! has been shown in Masry~1996!
for local polynomial regression and in Chaudhuri~1991a, 1991b! for local poly-
nomial quantile regression+ Andrews~1995! extended the mean regression re-
sult to increasing sets+ The rate at whichAn is allowed to grow depends on the
marginal densityf of X, specifically, on the quantityan 5 infx2k[An

f ~x!; i+e+,
the fasteran decreases to zero, the more slowlyAn is permitted to expand+ The
preceding result gives conditions under which[tk~xk! is consistent when the
support ofp2k is infinite and is the first result of this kind that we are aware of+

3.2. Asymptotic Normality

We shall now suppose that the integration inGn~t ! is carried out over a fixed
setA 5 supp~ p2k!, which is assumed to be compact+ The results divide accord-
ing to three cases: the “smooth” case whereq . 3

2
_ , the “partly smooth” case

1 , q # 3
2
_ , and the unsmooth case whereq 5 1+ In the partly smooth and

unsmooth cases, we shall need some results on fractional integration and gen-
eralized functions that can be found in Linton~1999!+

We shall require some additional structure on the unrestricted estimation er-
ror [m~x! 2 m~x!+ We will suppose that the estimator and its derivatives satisfy
the following Bahadur representation:

D ~n! [m~x! 2 D ~n!m~x! 5 (
i51

n

Wn, i
~n!~x!hi 1 (

k51

d

xnk
~n!~xk! 1 Rn

~n!~x! (6)

for vectorsn 5 ~n1, + + + ,nd! to be determined subsequently and for some func-
tions an

Wn, i
~n!~x! 5

1

nhd16n6 an~x! )
j51

d

K ~nj !S xj 2 Xji

h
D, (7)

whereK is a univariate kernel function andh 5 h~n! is a bandwidth sequence+
Here, K ~nj ! ~t ! denotesdnjK~t !0dtnj+ When [m~x! is a Nadaraya–Watson condi-
tional mean estimator, hi 5 Yi 2 m~Xi !, whereas if [m~x! is a conditional me-
dian estimator, hi 5 sign~Yi 2 m~Xi !!+ Assumptions A, which follow, are needed
in the smooth case, whereas in the unsmooth cases we shall need in addition
Assumptions B, which are presented subsequently+
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Assumption A+

~a! The random sample$Zi [ ~Yi ,Xi
'!', Yi [ R, Xi [ Rd%i51

n is i+i+d+ The covariatesX
have distribution that is absolutely continuous with respect to Lebesgue measure
with densityf ~{!+

~b! The density functionp2k has supportA that is strictly contained in the support of
the density functionf+ The densityf is bounded away from zero onA+ The func-
tions f andp2k are Lipschitz continuous onA; i+e+, there exists a constantc such
that 6 f ~xk, x2k

' ! 2 f ~xk, x2k
' !6 # c7x2k 2 x2k

' 7, 6p2k~x2k! 2 p2k~x2k
' !6 #

c7x2k 2 x2k
' 7 for all x2k, x2k

' [ A+
~c! The functionc~t ! 5 sign~t !6 t 6q21+ The setT is compact, and tk~xk! lies in the

interior of T+
~d! h1, + + + ,hn are i+i+d+ with E~hi 6Xi ! 5 0 and E~hi

2! , `+ Let s2~x! 5
var~hi 6Xi 5 x!+

~e! The kernel functionK~{! is bounded, symmetric about zero, compactly sup-
ported, has Lipschitz continuous derivative, and integrates to one+ Let 7K722 5
*K 2~u!du , `, m j ~K ! 5 *u jK~u!du , `+

~f ! The functions a 5 a~0! and s 2 are Lipschitz continuous6a~xk, x2k! 2
a~xk, x2k

' !6 # c7x2k 2 x2k
' 7 and 6s2~xk, x2k

' ! 2 s2~xk, x2k
' !6 # c7x2k 2 x2k

' 7
for all x2k, x2k

' [ A+ Furthermore, the functions2 is bounded away from zero
on A+

~g! The functionsxnk
~0!~xk! satisfy limnr` h2r (k51

d xnk
~0!~xk! 5 x~0!~x!, where the

function x~0!~x! is bounded+
~h! The remainder termsRn

~0!~x! are such that with probability one, supx2k[A 3
6Rn

~0!~x!6 5 o~n2r0~2r11! !+

Assumption B1+ There exists some neighborhood of the setMk 5 $x2k :
(,Þk

d m,~x, ! 5 0% on whichmj
'~xj ! Þ 0 for somej Þ k+ The setMk # Rd21 is

of Lebesgue measure zero; furthermore, fm~(,Þk
d m,~x, !! . 0 for all x2k in

some neighborhood ofMk, where fm is the Lebesgue density of the random
variable(,Þk

d m,~X,i !+

Assumption B2+

~a! The densityp2k is twice continuously differentiable onA, and it and its first par-
tial derivatives are zero on the boundary ofA+

~b! For all n with 6n6 # 3, the functions xnk
~n!~xk! satisfy limnr` h2~r26n6! 3

(k51
d xnk

~v!~xk! 5 x~n!~x!, where the functionx~n!~x! is bounded+
~c! For all n with 6n6 # 3, the remainder termsRn

~n!~x! are such that with probability
one, supx2k[A6Rn

~n!~x!6 5 o~n2~r26n6!0~2r11! !+
~d! The functionsan with 6n6 # 3 are Lipschitz continuous, and the kernel deriva-

tives K ~ j ! with j 5 1,2,3 are bounded, symmetric about zero, compactly sup-
ported, and Lipschitz continuous+

Under our assumptions, the pilot estimator [m is uniformly consistent on the
compact setA with rate!log n0nhd 1 hr+ Many of the usual multivariate re-
gression estimators satisfy this expansion, including local polynomial mean and
median regression estimators+
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The first part of condition B1 requires that at least one of the component
functions be strictly monotonic in some neighborhood of the setMk+ Note that
the function(,Þk m,~x, ! must take on both positive and negative signs, which
implies that there must be some singularity points; i+e+, there existsx2k

* [ A
such that(,Þk m,~x,

*! 5 0+ Hence, the setMk is nonempty+ In general,
Mk will determine a region of dimensionsd 2 2 in Rd21+ For example,
mj ~xj ! 5 xj andml ~xl ! 5 0, l Þ k, j, wherexl [ @21,1# + In this example,Mk 5
$x2k : xj 5 0%, which is a linear subspace of dimensionsd 2 2+ Furthermore,
mj
'~xj ! 5 1 but ml

'~xl ! 5 0, l Þ j, k+ Suppose instead thatml ~xl ! 5 xl
2 2 1

2
_ ,

wherexl [ @0,1# , l 5 2, + + + ,d+ The setMk is the surface of ad 2 1–dimensional
sphere of diameter~d 2 1!02, whereasml

'~xl ! Þ 0 for all xl Þ 0+ Regarding the
condition on the densityfm, this condition is likely to hold in many examples+
It is necessary because we have to deal with integrals of the form

E
A

g~x!dx2k

*(
jÞk

d

mj ~xj !*
a

(8)

for constantsa . 0 and bounded continuous functionsg+ This assumption helps
us to pin down for which values ofa integrals such as~8! exist; specifically, it
makes the existence of~8! equivalent to the existence of the univariate integral
*0

16y62ady+ It is a weak assumption in this context: if fm were zero onMk, we
might obtain better results regarding existence of~8! ~which might imply better
rates of convergence for our estimator!+

Condition B2~a! is important because we use integration by parts to borrow
the smoothness ofp2k+ Conditions B2~b!–~d! ensure that the first three deriv-
atives of [m are uniformly consistent onA+ There are further restrictions onr,q,d,
which are necessary to make the remainder terms of smaller order than the
leading terms; these are given in the statement of Theorem 2, which follows+

THEOREM 2+

(a) ~q . 3
2
_! Suppose that the pilot estimator[m~x! satisfies the linear expansion (6)

and (7) and that assumptions A hold. Suppose also that the bandwidth sequence
satisfies h5 gn210~2r11! for someg with 0 , g , ` and that r. max$2,d 2 1% .
Then there exists an increasing sequencedn and some finite constantsmk~xk!,sk~xk!
such that

dn$ [tk~xk! 2 tk~xk!% r N @mk~xk!,sk~xk!# , (9)

wheredn 5 nr0~2r11! .
(b) ~1 , q # 3

2
_! Suppose that the pilot estimator[m~x! satisfies the linear expan-

sion (6) and (7) and that Assumptions A and B hold. Furthermore, suppose
that r . max$3,d 1 1% . Suppose also that the bandwidth sequence satisfies
h 5 g~ log n0n!10~2r1422q! for someg with 0 , g , ` . Then (9) holds with
dn 5 nr0~2r1422q!0 log n.
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(c) ~q 5 1! Suppose that the pilot estimator[m~x! satisfies the linear expansion
in (6) and (7) and that Assumptions A and B hold. Furthermore, suppose that r.
max$3,d 1 1% . Suppose also that the bandwidth sequence satisfies h5
gn210~2r12! for someg with 0 , g , ` . Then (9) holds withdn 5 nr0~2r12! .

The constant termsmk~xk!,sk~xk! are given in Linton~1999!+1

4. CONCLUSION

We have one positive result and one negative result about the partialLq estima-
tor+ First, it is well defined in cases where the original marginal integration
estimator is not, and it is consistent in such cases+ Second, there is a reduced
rate of convergence in general, so that whereas the marginal integration estima-
tor has the one-dimensional convergence rate, the partial median estimator has
a two-dimensional convergence rate+

NOTE

1+ The restrictions onr,d are phrased in this way because we are using a given bandwidth+ For
comparison, Andrews~1994, p+ 2271! requiresr . d02 for a stochastic equicontinuity result useful
for semiparametric estimation, whereas Linton and Härdle~1996! requirer . d 2 1+ In the second
case we require at least three derivatives, as already discussed+
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APPENDIX

Proof of Theorem 1. Let OG~t ! 5 *An
c~m~x! 2 t !p2k~x2k!dx2k+ Then 6Gn~t ! 2

G~t !6 # 6Gn~t ! 2 OG~t !6 1 6 OG~t ! 2 G~t !6, where with probability one

sup
t[T
6 OG~t ! 2 G~t !6 5 sup

t[T
*E

An
c
c~m~x! 2 t !p2k~x2k!dx2k* 5 o~1!

by dominated convergence, provided supt[T *6c~m~x! 2 t !6p2k~x2k!dx2k , ` and
l~An

c ! r 0 asn r `, wherel denotes Lebesgue measure+ It remains to show that
supt[T 6Gn~t ! 2 OG~t !6 5 o~1! with probability one+ By Arcones~1996, Lemma 4!, we
have

6c~a 1 b! 2 c~a!6 # H222q 6b6 if 1 , q # 2

2$6a6# 6b6% if q 5 1+

Therefore, when 1, q # 2, we have~taking a 5 m~x! 2 t andb 5 [m~x! 2 m~x!!

6Gn~t ! 2 G~t !6 5 *E
An

$c~ [m~x! 2 t ! 2 c~m~x! 2 t !%p2k~x2k!dx2k*
# E

An

6c~ [m~x! 2 t ! 2 c~m~x! 2 t !6p2k~x2k!dx2k

# 222qE
An

6 [m~x! 2 m~x!6p2k~x2k!dx2k

# 222q sup
x2k[An

6 [m~x! 2 m~x!6

r 0
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with probability one+ Whenq 5 1, we have

6Gn~t ! 2 G~t !6 # 2E
An

$6m~x! 2 t 6# 6 [m~x! 2 m~x!6%p2k~x2k!dx2k

# 2E
An
H6m~x! 2 t 6# sup

x2k[An

6 [m~x! 2 m~x!6J p2k~x2k!dx2k+ (A.1)

Now, for anye . 0 there exists anh . 0 such that supt[T l~Ant~h!! , e, whereAnt~h! 5
$x2k : 6m~x! 2 t 6# h% + Therefore, for any givene . 0 we can bound the right-hand side
of ~A+1! by

2E
Ant~h!

$6m~x! 2 t 6 # Yn%p2k~x2k!dx2k 1 2E
Ant

c ~h!

$h # Yn%p2k~x2k!dx2k

# 2E
Ant~h!

$6m~x! 2 t 6# Yn%p2k~x2k!dx2k 1 o~1!

# 2e 1 o~1!,

with probability one, whereYn 5 supx2k[An
6 [m~x! 2 m~x!6+ Therefore, becausee is ar-

bitrary and independent oft, we have supt[T 6Gn~t ! 2 G~t !6 r 0 with probability one+
Combining these facts with the unique minimizing condition, we conclude that iftk~xk!
is the unique minimizer ofG~t !, then [tk~xk! r tk~xk! with probability one+ n

Proof of Theorem 2. First, we define a linearized versionGn~t ! of Gn~t ! and pro-
vide a central limit theorem forGn~t !+We then prove thatGn~t ! andGn~t ! are uniformly
close to each other+ Finally, a simple mean value expansion gives the asymptotic distri-
bution of zeros ofGn~t !, which we have already shown are close to zeros ofGn~t !+ See
Phillips ~1991! for an accessible treatment of the asymptotics for least absolute devia-
tions ~LAD ! estimators in the parametric case+

CaseQ . 1+ Define G~t ! 5 *A sign~m~x! 2 t !6m~x! 2 t 6q21p2k~x2k!dx2k and let

Gn~t ! 5 G~t ! 1 ~q 2 1!E
A
6m~x! 2 tk~xk!6q22$ [m~x! 2 m~x!%p2k~x2k!dx2k

[ G~t ! 1 Dn+

Note that the functionc '~u! 5 ~q 2 1!6u6q22 is continuous everywhere whenq $ 2 but
is discontinuous at the origin when 1, q # 2+ By substituting the stochastic expansion
of [m~x! 2 m~x! into Dn we can writeDn 5 Dn

S 1 Dn
B 1 remainder+ The main difficulty in

establishing the asymptotics ofGn~t ! is the random sequenceDn—and in particular, the
stochastic part of it

Dn
S 5 ~q 2 1!E

A
6m~x! 2 tk~xk!6q22S(

i51

n

Wn, i
~0!~x!hiD p2k~x2k!dx2k+
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CaseQ . 3
2
_ + We first approximateDn

S by the random sequence

Dn
S* 5

1

nh (
i51

n

KS xk 2 Xki

h
D a~xk,X2ki !

* (
,Þk

m,~X,i !*
22q

p2k~X2ki !hi , (A.2)

which has finite~unconditional! variance and isOp~n2102h2102! ~by the assumption
that fm . 0 on a neighborhood ofM1, the approach to singularity occurs at a linear
rate; i+e+, it suffices to show that the integral*0

1 u2q24du , `, which it does if and
only if q . 3

2
_!+ Furthermore, it is asymptotically normal, i+e+, !nhDn

S* r N~0, v~xk!!
for some finitev~xk! by standard verification of the Lindeberg condition+ The bias
term Dn

B 5 ~q 2 1!*A6m~x! 2 tk~xk!6q22~(k51
d xnk

~0!~xk!!p2k~x2k!dx2k is O~hr ! by As-
sumption A~g! using standard arguments+ Therefore, !nhGn~tk~xk!! is asymptotically
normal ~furthermore, the optimal bandwidth that balances the squared bias against the
variance ish @ n210~2r11!, which results in a rate of convergence ofnr0~2r11! !+ Finally,
we show that we can restrict attention to the linearizationGn~t !+ We have for any
sequenceen converging to zero sup6 t2tk~xk!6#en

6Gn~t ! 2 Gn~t !6 5 op~n2102h2102!+
Furthermore, sup6 t2tk~xk!6#en

6Gn~t ! 2 G~t !6 5 Dn 5 Op~n2102h2102!+ This establishes
that the zeros ofGn~t ! andGn~t ! are bothOp~10!nh! distance from the zero ofG~t !,
which is tk~xk!, and moreover that the zero ofGn~t ! is distanceop~n2102h2102! from
the zero ofGn~t !+ Let Stk~xk! be a zero ofGn~t !, in which case, by a Taylor expansion
0 5 Gn~ Stk~xk!! 5 G'~tk~xk!!!nh~ Stk~xk! 2 tk~xk!! 1 !nhDn 1 op~1! using the fact
that G'~t ! exists and is nonzero in a neighborhood oftk~xk!+ This leads to the distri-
bution of!nh~ Stk~xk! 2 tk~xk!! and hence!nh~ [tk~xk! 2 tk~xk!!+ We conclude that
nr0~2r11!~ [tk~xk! 2 tk~xk!! is asymptotically normal+

Case 1, Q # 3
2
_ + In this case, the unconditional variance ofDn

S* does not exist~unless
perhapsfm 5 0 onMk!, and we cannot apply a central limit theorem directly to~A+2!+
In this case, we use fractional integration by parts to approximateDn

S by a statistic with
finite variance+ There will be a cost to this in terms of the rate of convergence; the
correspondingDn

S* satisfiesDn
S* 5 Op~n2102h2~422q!02 log n! when 1, q , 3

2
_ + We will

outline the argument in some detail for the special case thatd 5 2, m2~x2! 5 x2, A 5
@0,1# , andK . 0+ In this case,

Dn
S 5

1

nh2 (
i51

n

hi KS x1 2 X1i

h
DE

0

1 1

x2
22q a~x!KS x2 2 X2i

h
Dp2~x2!dx2

5
1

nh2 (
i51

n

hi KS x1 2 X1i

h DE
0

1

Dx2

2aSa~x!p2~x2!

x2
22q DDx2

a SKS x2 2 X2i

h DD dx2

5
1

nh21a (
i51

n

hi KS x1 2 X1i

h DE
0

1

Dx2

2aSa~x!p2~x2!

x2
22q DKaS x2 2 X2i

h D dx2

for any a with 0 , a , 1+ Here, for any function K, Ka~a~x 1 b!! [
a2aDx

a~K~a~x 1 b!!!, where lim supa Ka~a~x 1 b!! , `+
We now make a change of variablesx2 ° u 5 ~x2 2 X2i !0h to obtainDn

S 5 Dn
S* $1 1

op~1!%, where
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Dn
S* 5

1

nh11a (
i51

n

hi KS x1 2 X1i

h
DM2a~x1,X2i !m0~Ka!, (A.3)

whereM2a~x1, x2! 5 Dx2

2a~a~x!p2~x2!x2
q22!+ Note that6M2a~x1, x2!6 # $sup6a~x! 3

p2~x2!6%6Dx2

2a~x2
q22!6 5 O~x2

a1q22!, as x2 r 0, becausea, p2, and x2 are positive+
We therefore takea 5 ~3 2 2q!02, in which caseM2~~322q!02!~x1, x2! 5 O~x2

2102! as
x2 r 0+ Although the unconditional variance ofDn

S* does not exist in this case, the con-
ditional variance does with probability one, and we can show that

var@Dn
S* 6X1, + + + ,Xn# 5

1

n2h522q (
i51

n

s2~Xi !K
2S x1 2 X1i

h
DMi

2 m0
2~K~322q!02!

5 Op~n21h2q24 log n!, (A.4)

where Mi 5 M2~~322q!02!~x1,X2i !+ In fact, Dn
S* is asymptotically normal provided the

correct standardization is used, as we now show+ Note that providedf2~x2! . 0, where
f2 is the marginal density ofX2, we have mini#n X2i 5 Op~n21!+ Therefore, we can ap-
proximate!nh422q0 log nDn

S* by

1

!nh log n (
i51

n

KS x1 2 X1i

h
Dhi Mi 3 1SX2i $

1

n log n
Dm0~K~322q!02! [ (

i51

n

Zni , (A.5)

whereZni are mean zero and independent random variables with finite second moments+
We then apply the Lindeberg central limit theorem for triangular arrays~Chow and
Teicher, 1997, p+ 351!, which in this case requires only that~a! nEZni

2 r v for some
finite positive v and ~b! nEZni

2 1~6Zni 6 $ e! r 0 for all e . 0+ The conclusion is that

(i51
n Zni ~and hence!nh422q0 log nDn

S*! is asymptotically normal with mean zero and
variancev+ We show why~a! is plausible+ We have

nEZni
2 5

m0
2~K~322q!02!

h log n
EK 2S x1 2 X1

h
Ds2~X !M2~~322q!02!

2 ~X !

3 1SX2 $
1

n log n
D f ~X !dX

5 m0
2~K~322q!02!7K 72

1

log n
Es2~x!M2~~322q!02!~x!

3 1Sx2 $
1

n log n
D f ~x!dx2$11 o~1!%

# m0
2~K~322q!02!7K 72 3 c 3

1

log n
E 1

n log n

1 dx2

x2

5 m0
2~K~322q!02!7K 72 3 c 3

2log~10n log n!

log n

5 m0
2~K~322q!02!7K 72 3 c 3 S11

loglogn

log n
D ,
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wherec is some finite constant+ The second line follows from a change of variables, and
the inequality uses the fact thats2 and f are bounded functions and our earlier argu-
ments+ Similarly, we can boundnEZni

2 away from zero+ As for condition ~b!, we first
show that for any subsequence$nk%k51

` , ~*! max1#i#nk
wnki r p0, wherewni 5 K~~x1 2

X1i !0h!X2i
2102YY!nh log n . 0+ By independence and the law of iterated expectation, we

have for anye . 0,

PrS max
1#i#nk

wnki # eD5 @Pr~wnki # e!# nk 5 312 E5F2611 KS x1 2 X1i

h~nk! D
e 3 nkh~nk! log nk

264
nk

,

whereF261 denotes the conditional cumulative distribution function ofX2i given X1i +
Now, becauseK~~x1 2 X1i !0h~nk!!0e 3 nkh~nk! log nk r 0 andF261~0! 5 0, we have by
a Taylor expansion and change of variables that

PrS max
1#i#nk

wnki # eD . 312 f261~0!

EHKS x1 2 X1i

h~nk! DJ
e 3 nkh~nk! log nk

4
nk

5 312

f261~0!EK~u! f1~x1 2 uh~nk!!du

e 3 nk log nk

4
nk

r 1,

wheref261 is the conditional density function ofX2i givenX1i , whereasf1 is the marginal
density ofX1i , which establishes~*!+ This in turn implies that max1#i#nk

wnki
* r 0 in

probability, where wni
* 5 K~~x1 2 X1i !0h!X2i

2102s~Xi !1~X2i $ 10n log n!YY!nh log n,
becauses~Xi ! is bounded+ Therefore, max1#i#nk

wnkl i
r 0 with probability one along

some subsubsequence$nkl
%l51
` , which implies that condition~4+14! of Müller ~1988,

p+ 31! is satisfied, and hence the Lindeberg condition~b! is satisfied along these sub-
sequences conditional onX1, + + + ,Xnkl

with probability one+ In conclusion, (i51
nkl Znkl i

r

N~0, v! with probability one conditional onX1, + + + ,Xnkl
+ Because the limit distribution

does not depend onX1, + + + ,Xnkl
, the weak convergence holds unconditionally+ Finally,

we have(i51
n Zni r N~0, v! by the sequential compactness property of real sequences+

The bias termDn
B is of orderhr as before+ This means that the optimal bandwidth

is h @ ~ log n0n!10~2r1422q! and the optimal rate of convergence isOp~n2r0~422q12r ! 3

~ log n!102!+ In conclusion, !nh422q0 log nGn~tk~xk!! is asymptotically normal+ Finally,
we can show that the linearization error isop~n2r0~422q12r ! log n!+

CaseQ 5 1+ In this case, the preceding methods do not apply becausec~u! 5 sign~u!
is discontinuous with a nonremovable singularity+ However, the functionsGn~t ! 5
*A sign~ [m~x! 2 t !p2k~x2k!dx2k andG~t ! 5 *A sign~m~x! 2 t !p2k~x2k!dx2k are contin-
uously differentiable int, and the derivative ofG, e+g+, can be represented as]G~t !0]t 5
2*d0~m~x! 2 t !p2k~x2k!dx2k, wheredx~{! is the Dirac delta~generalized! function,
which is defined through its integrals; i+e+, *dx~t !g~t !dt 5 g~x! for any univariate func-
tion g~{! that is continuous atx ~see Gel’fand and Shilov, 1964!+ In this case, let
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Gn~t ! 5E
A

sign$m~x! 2 t %p2k~x2k!dx2k

1E
A

d0~m~x! 2 tk~xk!!$ [m~x! 2 m~x!%p2k~x2k!dx2k [ G~t ! 1 Dn+

We show for any sequenceen converging to zero that sup6 t2tk~xk!6#en
6Gn~t ! 2 Gn~t !6 5

op~n2102h21!, and !nh2Gn~tk~xk!! 5 !nh2*A d0~m~x! 2 tk~xk!!$ [m~x! 2
m~x!%p2k~x2k!dx2k r N~b~xk!, v ~xk!! for someb~xk!, v ~xk!+ Then, provided G 5
G'~tk~xk!! 5 *d0~m~x! 2 tk!p2k~x2k!dx2k Þ 0, we have the limiting distribution of
[tk~xk! by the same arguments used earlier+ By Theorem 5+1 of Spivak~1965!,Mk is a

manifold provided the vector~m,
' ~x, !, , Þ k! Þ 0 on some open neighborhood ofMk

in Rd21+ In this case, these “delta integrals” can be represented as ordinary Lebesgue
integrals overMk, i+e+, *d0~m~x! 2 tk~xk!!p2k~x2k!dx2k 5 *Mk

p2k~x2k!dx2k and
*d0~m~x! 2 tk~xk!!$ [m~x! 2 m~x!%p2k~x2k!dx2k 5 *Mk

$ [m~x! 2 m~x!%p2k~x2k!dx2k

~see Gel’fand and Shilov, 1964, Ch+ III !+ BecauseMk generally determines a region of
dimensionsd 2 2, the random sequence in!nh2Gn~tk~xk!! behaves like the integral of
a d-dimensional smoother with respect to ad 2 2–dimensional integrator; i+e+, it should
behave like a two-dimensional regression smoother+ In the special case thatm,~x,! 5 x,

for some, Þ k, andmj ~xj ! 5 0 for all j Þ ,, k, this interpretation is exact because then
Mk 5 $x2k : x, 5 0% and

E
Mk

$ [m~x! 2 m~x!%p2k~x2k!dx2k 5E$ [m~x2k,0! 2 m~x2k,0!%p2k~x2,, k,0!dx2,, k,

wherex2,, k is the ~d 2 2! 3 1 vector excluding bothx, and xk+ Note that asymptotic
normality follows from an application of the Lindeberg central limit theorem+ In the
general case, we must apply a change of variables argument to return to ordinary inte-
grals, but we end up with the same qualitative behavior+ n
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