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AN ALGORITHM FOR THE SOLUTION OF LINEAR PROGRAMMING PROBLEMS
H. P. WILLIARS \qvo

Abstract

This paper describes an algerithm for

solving iinear programming problems. It is
quite different from the simplex and is based

on a decision procedure used in logic. A small
problem is fully worked out. Advantages of the
method over the simplex are discussed.

This algorithm is based on a decision procedure for the formal theory of dense linear
order. The procedure is due to Langford * . It is described in Mendzlson = . A
linear programming prcblem consists of a number of equalities and inequalities. In

the simplex method all inequalities are converted to equalities by the introduction

of slack variables. Az a result the simplex carries out calculations with equations

but has to deal with the possibility of some of the variables being negative (infeasible).
The algorithm described here does rot intreduce slacks but carries out calculations with
equations and inequalities making use of the algebra of those relations. The algorithm
is most easily justified by formal logic. The notation is defined and the logical
equivalernces should be intuitive but further explanations can be found in “ . Although

the description uses logical formalism this is not necessary once the validity of the trans-
formations is realised.

Logical Nectation

The following symbols are taken from formal logic. Their meanings and the truth of the
equivalences in which they are used should be intuitive.

~ means "not"
\V means "or"
. means "and"
- means "implies"
V means "for all"
| means "there exists"

Logical and Arithmetical Equivalences

In the follawing equivalences A and B represent statements. P(X) is a statement involving
the arithmetic variable x. The logical symbols defined above combine these statements
to form other statements. The symbols s and t represent arithmetic expressions. When such
expressions are related by the relations & and = statements are produced. T represents
a statement that is always true (a tautology). The following equivalences are used in the

algorithm.
(i) A -8 A v 8
(i) ~n A
(iii) ~(AvR)
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In the following equivalences the symbol "% is used to denote a conjunction of a
. 4 W
number of statements using */ <~ . Hence :
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In case (viii) the conjunction 'ﬂ'\'m (54 ¢ -&:6\ is taken over all possible
combinations of . and J . ;;’:

Logical Formulation and Selution of an L.P. Problem

All L.P, problems will be considered as maximisation problems. This can be achieved
by reversing the signs of the coefficients in the objective function for a minimisation

problem. All L.P, problems can therefore be stated in the following form.
A

N o P o
Maximise U = 2_%3 Ry
=
subject to the following restraints
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Suppose a value of U is chosen greater than or equal to the maximum. Then all sets of
values of the variables %: which satisfy the restraints R., (\ Ea S mitm)  will

give a value to the objective function less than or equal to 1} . Logically this can
be expressed by '

B ra Vs - - Py (Ry-Reoe Ronen > Tcyx; s U)

The problem is therefore to find the least value of 1J for which the above statement is
true.
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Using the logical equivalences this statement is equivalent to :
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For simplicity the relations™s and “< will be treated as the relations ‘> and

e This is permissible since it is the continuum of rational numbers which are
being considered. The statement :

S ey — U 2 0 will be vepreserted by Rinewan
The problem has therefore been reduced to the following form :

Find the least 5‘) such that :

~ 3 Khax\,.,\-v- 3x| (R|-R1_"‘ Rh-ﬂ-‘h Rh-\-“«.-&‘)

This is a well known form for logical statements. The symbol 3 is a quantifier, A
method of reduction known as the "elimination of quantifiers" will be used to successively
eliminate each variable X3 and its corresponding quantifier 3 %; . When all these
variables have been eliminated the problem will be in a form where the least value of U
is immediate. To eliminate a variable R 3 the following procedures are carried out :

1.  Examine only those statements a-;, which involve the variable ¥; . The other
statements remain unchanged during the consideration of this variable.

2, In the selected statements R.;, divide through by the coefficient of ¥ . If
this coefficient is negative in an inequality statement change a less-than

inequality to a greater-than inequality or vice-versa.

The statements R:& are now in the following possible forms :

(E) X3+ S, =0
(L) X;+ . €0
(G) X;*Vvyi >0

where = S5, s y Va4, represent expressions involving the variables from among

iy ¥ gy 9Xa 3y U which have not been eliminated, together with the
constants.
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3.  The following three possibilities must be distinquished :

(i) There exists at least one {{LOF the form (E).

(i) All {";,‘ are of the form (L) or all R,;’ are of the form (G)

3

(iti)  There do not exist any R;of the form (E) and not all &L
of the same form.

are

In case (i) a substitution is made of =Sz for the variable %3 in all other
statements. This can be effected by subtracting the statement from all the
others. This transformation is a result of the equivalence (vii).

In case (ii) the problem is unbounded. This is a result of equivalence (ix).

Since the statement (A) is true regardless of the value of \J , the least U will
be infinite.

In case (iii) the equivalence (viii) is applied. This can be effected by sub-
tracting each statement of the form (G) from each statement of the form ()
in turn and making the result a less-than inequality. For example if :

Riv 2 %3 +%. S0
R-‘q, = X:\ '\‘\':‘.L 20

combining R-i‘ and R_;?_ produces the statement :
t-i\ — Vi, S0

All such combinations of R-{\ and Riqare produced where Ry ranges over all
statements of the form (L) and [, ranges over all statements of the form (G).

After following the above procedures for the variable %3it is eliminated. The procedures

are repeated for each of the remaining variables in turn. If at any stage a statement of
the form :

b <0
results where b is a constant there are two possibilities :
(i) b is positive
(i7) b is negative or zero

In case (i) the statement is clearly false. This means that a number of the initial restraints
must have been self contradictory i.e. the problem is infeasible.

In case (ii) the statement is clearly true and does not further effect the problem. The
statement need not therefore be considered in the rest of the calculation.

When the above procedures have been performed for all the variables X; statements
remain involving only the variable \J .

Procedure 2. is carried out for the variable 1J . The resulting statements P,.i__ are of
the following possible forms :

(a) V- ky =0
b)Y V- k; <o
) UV - % >0

[
where the 3 are constants.
The problem has therefore been reduced to the following form :



Find the least W such that

b

(B) A (P‘ * (}"L‘ .o pq— .\)
Using the equivalence (iv) this can be stated as :
Find the least \J such that

(C) L) ?‘V A.P_,).'q ... ¥ «..-P?.

The statements ﬂ?i’are of the following possible forms corresponding to the forms of

. above.

1%
(a) U - f\t;.; *0
(b) U— Gy 20
(c) U - G; <0

Statements of the form (a) will not arise in practice since the variable 'J initially only
occurs in Kngwas which is an inequality relation. In statements of the forms (b) and
(c) the relations > and * <™ arereally “ 2™ and “«> . The reason
for the appearance of the other symbols was the earlier simplification regarding the use cf

only one type of inequality sign.
It is necessary to distinguish two possibilities in the final statements above.

(1) There exist statements of the form (c)

(i) There only exist statements of the form (b)

In case (i) there is clearly no least 1) such that
V < G;;.
The problem is therefore unbounded.
In case (ii) the least value of W satisfying the statements is the least value of Qs

appearing. This value is therefore the maximum possible value which can be attained
by the objective function.

It remains to find the values of the variables X3 which give this maximum value to the
objective function. The statement :

V—6& >0

which gives this maximum value will have resulted from successive combinations of other
statements using the procedures above. These other statements will have been equalities
and inequalities. Since the Optimum value of U satisfies the equation :

U— & =

any inequalities which were used would have to be converted to equalities. This argu-
ment can be applied backwards successively to show that the above equation results from
a certain set of the original equalities and inequalities when they are taken as equalities.
This set of equations can be sol ved to provide the values of the variables X .
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The answer to the problem is independent of the order in which the variables
X3  are eliminated. This order, however, greatly affects the amount of

computation. When all the rows 3 are inequolities the variable

to be eliminated should be chosen so that procedure 3 (iii) results in the

smallest possible number of new rows. This will be apparent in the example.

General Considerations

i) The above description uses logical symbolism to provide a rigorous
justification for the algorithm. In any calculation, of course, this
is not necessary and the execution of the above procadures appears
much simpler as is demonstrated by the example.

ii) Although logical notation makes the proof concise it is possible to
justify each step without it. Each elimination of a variable %3 trans-
forms the L.P. problem to another problem having the same answer but with
a lesser number of variables. This process is repeated until a problem
is produced with only one variable W. , The solution to such a pro-
blem is immediate.

iii) To obtain the values of the variables X3 giving the optimum solution
it is necessary to solve a set of equations. These equations will be a
subset of the original rows R4, of the problem. They will give a
unique (optimal) value of @ . There will sometimes be alternative
values for the variables ®3 as is well known from the simplex.

iv) It is possible to consider the answer to the problem as a basis in the
sense of the simplex. In general certain of the equations to be solved
will have resulted from restraints Q&.’zxq-:) and will therefore be :
X; =0

Such variables can be considered as out of the basis. The other variables
will provide structurals for the basis. Corresponding to the original rows

Ry (v 848 ) whichdonot appear in the final set of equations
there will be slacks in the basis. Apart from the cags of alternative solu-
tions mentioned before the basis will be a square matrix which can be
inverted, If there are alternate solutions the matrix will have more columns

than rows and a solution can be obtained by selecting any non=-singular
square matrix from the set of columns.

v) Although this algorithm works by transformations on rows there is a dual
where the transformations are on columns. In this case an elimination is
performed for each row in the problem. Since most problems have more
columns than rows this would probably be more efficient.

An example is now given of a small L.P. problem solved using the algorithm.
Possible advantages of the algorithm over the simplex are then discussed.
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Example of the Solution of an L.P. Problem

Maximise U= %, 77Xy + Xa

stbject to the following
constraints ¢

7
3‘)(‘*- X«,_--XJ ‘3’"“'\
LK — K &=\

Writing the statements p\,}_} enclosed in the brackets in (A) as separate rows

together with ﬁ.q and converting to the form described in Procedure 2
yields the following tableau.

R,
&*
‘:{ 2 ,.-a
Ry
R,
Rs

%O
Ry X, %O
Re };3 > O
R‘? Xy "{'A’ >\1+ X} ‘J 70

Since there is an equality (R, )

involving ¥y a substitution may be made

for ®v in the other rows involving Xy . The figures on the left indicate
from which original rows the new rows result.

ik S ¥a ¥ 5= X +lo 30

, 1

1,3 5% - Exa o+ i

S 3 Xe <+ Xn -4 <9

\, € %Xn ""f‘;X':, %0

y X 20

R X 4 >0

b S
L9 %Xq_ +-if1‘_x<5"".;:,u 0

Either X4 or X4 can now be climinated. Examination of the signs of the co-
efficients of these variables together wi th the direction of the inequalities

indicates that elimination of ¥ 9 will result in the fewer number of rows
Procedure 2 is applied to yield the following tableau



\,3 ){1 e .3";(5 -+ .,; » G
L& Ka - E: 20
L . ‘ _ - S ¢
-~ XL "‘"'T’XS €3 fj
‘ 6 ] S, 2
} )('1. "*' f‘; X‘s 7
&
! Xq_ >0
3 %5 %0
. \ ] \ “ﬁ .
ng Kqg + < st C’)U 2 O
Procedure 3(iii) is applied to eliminate X4 and results in the following
tableau.
Shr o =EX -6 €0
IS | 3 5
Y s “ - z:«-(!;" & \.‘)
\f‘)')?’ ,‘.T,;_‘Xs 3
Sy hG .'.3 LN - 1;% <O
' § ‘) = — 8 < {‘)
Sy R -8 =0
8 X >
! .
<) h 9 %Xé +=U - 2 €0
Procedure 2 is cpplied and X 3 eliminated to give :
<, 4,73, 8 _ 3%: PN
ol St — 46 SO
S 1,4, @ .2 =0O
le' S. ‘l L - (*‘ g s O
S0, 2 IR
Syh, 9, 2 % U - &0 €0

In those siatements which do not involve the variable Y} the constants are
negative. Therefore the problem is not infeasible.

Procedure 2 is carried out on the other statements to yield the following tableau



3.5 1) e 2 <@
? ) :? ;J - & o S:): !',:Q

These statements occur when the problem is in form (B). After converting
the problem to form (C)all the statements are greater-than inequalities
showing that the problem is not unbounded. The least value of . is 80
arising from the statement

U- 80 >0

This statement arises from the following rows of the original tableau :
1,5, 8,9

Here the optimal solution to the problem is the solution to the following set
of simultaneous equations

bRy = SRq = Ry TO
[

I Rq ¥ Kz LG
x-s = O
¥ +"TXqy 4+ %3 =V
This gives X\::."G, Xa=s ¥, "3{;'5 =0, U=go

This solution can be regarded in terms of a basis in the following way. Taklng

the formulation on page 2 with T = S there is one restraint K- ‘\-t'g L\ .8 a) 3
namely §Lg , which becomes an equality. Therefore the variable ¥ - is out

of the basis. From among the restraints 4y (} € % € 3 ) the following do

not appear Ry Qa3 Wy . These rows are therefore in the basis. Hence

the optimal basis consists of variables %, and %4 and rows Ry, \‘{3,@(;? .

Comparison of the Algorithm With the Simplex

The original simplex method has undergone many refinements. Analogous refine-

ments could be made to this algorithm. In particular the following two modifiza-
tions could be made :

i) Instead of actually subtracting rows represent the subtractions

by multiplication by elementary matrices. This would save
redundant computation.

i) Instead of explicitly writing each row X3 =0 C‘ €y ‘-’T‘f\)
assume the existence of such a row when eliminating b33

Any restraints representing bounds could be represented by giving
each variable a lower and upper bound.
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The Simplex method is made up of tterations. Each {feration consists
of selecting a variable, taking a row in which it occurs and using this row
to eliminate the variable from all the other rows. Some of these variables
will be slacks and all the rows will be equality rows.

The algorithm described here also consists of eliminating variables between
rows. Assuming the problem to be feasible and bounded two cases must be
distinguished.

i) The variable to be eliminated occurs in at least one
equality row.

i)  The variable to be eliminated occurs (with like signs)
in M., , less-than rows, 4wmq greater-than rows.

These variables will consist only of the original variables (structurals) in the
problem.

In the case of (i) one of the equality rows in which the variable occurs is used
to eliminate the variable from all the other rows. The amount of computation
involved will be comparable with an elimination in the Simplex. In case

(i) eliminations will be made between all possible pairs of dissimilar inequalities
in which the varioble occurs. Hence there will be %% a subtractions.
The amount of computation will be at least as great as a Simplex elimination.

It should be remembered, however, that

(i) Most matrices are sparse and a particular variable does
not occur in many rows.

(ii)  The variable to be eliminated is chosen to make M ™~
as small as possible.

The average amount of computation for eliminating a variable will probably,
therefore, be greater with this algorithm than with the simplex. With the
Simplex, however, the total number of eliminations (\ ¢terations \)is indeter-
minate. For this algorithm each variable has to be eliminated once only.

In most problems solved with the simplex there are two phases in the calcula=-
tion.
(i)  Obtaining a feasible solution

(ii) Obtaining an optimal solution
- With the algorithm described here there is no such distinction.

Many problems solved with the Simplex exhibit " degeneracy ". Alot of
Wterations have no beneficial effect. Such a difficulty will not arise with
this algorithm.

Redundant ‘%terations often take place with the gimplex in which a variable

enters and leaves the basis a number of times. There is no corresponding
phenomenon here.
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With the Simplex on an infeasible problem it is often difficult to tell which
are the contradictory restraints. This algorithm shows a preblem to be
infeasible when a row of the form

b £ 0

where B s positive, is obtained. The original rows of the problem from
which this row arises give the contradictory restraints.

All these factors contribute to making the amount of computation with the
Simplex unpredictable. With this algorithm the amount of computation is
much more determinate. [t seems likely that either the algorithm or its
dual could be an improvement on the Simplex. This, however, requires
testing by computer on realistic problems.
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