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Abstract

Two procedures for solving Integer Programmes (IPs) are described. When
applied respectively to IPs vhose Linear Programming relaxations are duals
a correspondence between the two procedures is maintained. This éorres—
pondence is provedand showmn to result in two reduced nodels with the same
coefficients. One model (the Primal) reduces to a disjunction of inequal-
ities and consmuences. The other nmodel (the Duzl) weduces to 2 single
equation and a series of homogeneous lineesr congruences. A numerical ex-—

ample is given.

*A version of this paper was given at the XI Imternational Symposium on
Mathenatical Programming under the title "The Dual of a Integer Programme".

We use a slightly less presumpitucus title here.



(1)

INTRODUCTION

It has been shown by Lee (3) and Williams (5) how integer variables can
be eliminated from a system of inequalities using the decision procedure
of Presburger (). By successively eliminating integer variables between
inequalities and congruences an Integer Programme (IP) is reduced to a
disjunction of inequalities and congruences involving a single variable
representing the objective function. This procedure can be regarded as

a generalisation of Fourier-Motzkin elimination for Linear Programmes.
The version of the procedure described here represents a simplification

of that in (3) and (5) which allows a pattern to become apparent.

Another method of solving IPs has been described by Williams (6). This
involves successively eliminating constraints reducing the model to a

Knapsack Problem together with a series of homogeneous linear congruences.

If the two procedures are applied to models where LP relaxtions ére duals
then the resultant reduced models bear a close relationship to each other
involving the same coefficients. This relationship is analogous to the
relationship between final tableaus of the Primal and Dual Simplex
algorithms when applied to duel models. Hence the original IP ﬁodels can,

in a sensg)be regarded as duals.

THE STANDARD FORM OF THE PRIMAL MODEL

We will consider a pure IP model in the forms
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It is convenient to convert this model into the form:
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In the course of the elimination procedure described here we will generate
a more general class of models than that above, involving more complicated
linear congruences. It is therefore more convenient to describe the above

model as a special case of this more general form of model.
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Where\ftf'are non-negative coefficients

and the congruences ke K taken together implys
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R, K and Hr are suitable finite index sets taken from Z. We assume all

coefficients are integral.

Note that the model P involves a conjunction of a disjunction of contraints
in the form of inequalities and congruences. s We prefer to keep the model
in this Conjunctive Normal Form in constrast to the treatment of (3) and
(5). It is important to note howevér that each inequality indexed by I

and each congruence indexed by K is really a disjunction of inequalities or

congruences over values o} ,'\r for L\r € Hr

Such a disjunction of inequalities, for a particular 'L , i a tightening

of the simple inequality:

Za'«j ¢ 7 i
JeT

It is shown in (7) that a set of linear congruences implies a modulus and
residue for any given linear expression. We stipulate in P that the con-

gruences R & K mgt be such that the implied modulus for each A € |

is M.

P3 above is clearly a special case of P when:

R=4, K=3j, M =1 for all ke K ,

(]



(L)

dkao for k # J, 4y =1, e = 0 forallk €K

THE ELIMINATION OF A VARTABLE FROM THE PRIMAL MODEL

The algorithm described in (3) and (5) proceeds by successively eliminating
the variables Xgo Xy 00 ) Xal from the model. By keeping the model
in/Conjunctive Normal Form we manage here to simplify this process consid-
erably as well as maintaining a pattern which corresponds to the dual

method described in section 5.

Since there is complete flexibility in the order for eliminating the
variables we will describe the elimination of a general variable Xp from

model P.

Pthrou,ghout the

inequalities. In addition we make this substitution in the congruences,

STEP 1 We take a = \C"\m_ (Q&P) and substitute y for adc
S

miltiplying the modulus and terms by a factor if necessary)in order to keep
integral coefficients. The congruence y= O(mod a) is also appended. For
convenience we will name the new coefficients of y in the inequalities

aip remembering that now gcd (aip) = 1., The implied congruences (1) will

~

now be:
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STEP 2 By means of the Generalised Chinese Remainder Theorem we can

aggregate the congruences to produce at most one congruence involving the
variable y together with other congruences independent of y. Full details
of the Generalised Chinese Remginder Theorum can be found in, for example

Dickson (1), and are therefore omitted here. For simplicity we will write
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the single congruence involving y as:

~ ™
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where /g is an expresion involving the constant and h,. terms.

It is shown in (7) tha if a series of congruences:
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Since for congruences (2) gecd (a.ip) = 1 these congruences can be added in
“

suitable multiples >\'L to imply a congruence (mod M) where y has a

coefficient of 1.

Therefore there exist mul'tipliers/\k )/\)\\ )/\/\1 etc. which can be applied
to congruence (3) and the remaining congruences (not involving y) respect-

ivily in this transformed model P to imply the congruence in which y has

a coefficient of 1.

Hence: /LOL? = | (\Moc\ M) ) /kAT\J = 0 (W\oc\ M)
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Multiplying (3) through by /AA, Model P can now be expressed as:
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& other congruences not involving y

where gcd (aip):: 1 and the terms /&k.C(A )/u\/g have)for convenience,

been renamed ol on d [3 respectively.

STEP 3 We partition the set of inequalities I in three subsets:
B
f40 ay >OB
L P
C D)
Gp = 177 ®p<0]
N 7
Three cases are distinguished in order to eliminate y.
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In case (i) we wemove the congruence (3) involving y.

In case (ii) JWe Temove congruence (3) and those inequalities for which CLiP 0.
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Case (iii) is the non-trivial case.

Let P\: O"\/\QO\'\P’: \C,'W\. (0,“\) for all "LQ LP U GP
AeLPUGP

We then take each ~V € Lﬁ P together with each 1 ( (; p
Let e.g. 'i-\ﬁ L‘P ) ;\q_ ¢ G P The corresponding inequalities can

be written:
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and the congruence involving y:
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Congruence (8) is clearly redundant being implied by (7).
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(6) and (7) can then be written:
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for some integer k

Following the discussion in (3), (5) or the discussion of Presburger's pre-

cedure in Kreiseland Krivine (2)> (9) can be written:
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(18] ‘is used to represent the highest member of the index set R)

For the purposes of the algorithm it is only necessary to include one
of the congruences above and the corresponding one of ' the terms glm”
R lRl+ . In order, however,to demonstrate the correspondence

with the transoxrmations of the Dual model we retain both congruences and

berms C‘\r«\ﬂ >C‘m\%1 '
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It is possible to simplify the above disjunction by noting that the con-
gruences can only hold for certain values of Clel—\» and ("\RH’L .
Since all terms apart from C\\R\-H in the first of the two congruences above
are multiples of Q'\IIP we need only consider values of (\\\3\“' which are
multiples of Ow \p « Similarly we need only consider values of Q P+
/
which are multiples of Cl,\'q P . The fact that the congruences guarantee
congruence (2) for each - ¢ T allows us to further restrict (AlR\'H to
I3 ! N ' r
multiples of Q'\\F‘ \J\ onmd C\‘\P\H’L Ao vauld \\\’)\(’; O‘g (l}.‘ul e \J\ ,
. / /

For convenience we rename C\\RH , as Qﬂ'upMC\\R\*l and R\R'H’L as 0.,\\P ™ Q‘?H’L'
The above disjunction can then be written as:
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The two congruences generated clearly imply that the inequality generated

can also be regarded as a congruence modulus AM.

The above procedure is carried out between each pair from Lp and Gp to
generate an inequality and pair of congruences in each case. We also in-

clude the inequality y7% 0 as a special case of Lp.
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THE STANDARD FORM OF THE DUAL MODEL

We will consider a pure IP model in the form:
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I' and J' are index sets as defined in section 2.

Clearly we have chosen D1 as an IP whose linear programming relaxation is

the dual of the linear programming relaxation of P1.

Corresponding to the conversions in section 2 we can convert D1 to the form:

Maximise Z \0;\,8).;

et
e | : 4 !
[ - ’ . Y e )
D2 s.t. 5 [ Y — N\ _\‘J\) g Q fal O- T
14 MY ) -
”\\';11
Mo :\
~—
A S0 owd Aatcece e ol A e



(11)

or more compactly as:

L
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The sets I, J and the other new coefficients are as defined in section 1.

In the course of the procedure we will geégratemore congruences and we will

therefore consider the more general form of model:
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A1l coefficients are integral and j}i,c are non-negative,
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THE ELIMINATION OF A CONSTRAINT FROM THE DUAL MODEL

The algorithm discribed in (6) proceeds by successively eliminating the
homogeneous "balance" constraints from D. There is complete flexibility
over the order in which we eliminate these constraints. Therefore we will
describe the elimination of a general constzraint p € J. In order to mirror

the treatment in section 3 we will number the steps.

STEP 1 We divide constraint p through by the greatest common divisor of
the coefficients CL&P . For convenience we rename the new coefficients

QA .
~P
Step 2 of Section 3 has no counterpart and is therefore omitted.

STEP 3 Following the partitioning of I into subsets in section 3 we dis-

tinguish three cases:

; . , -~ ; L ’ e "" o _:‘," -
(i) Zb - I 4) (\ :ﬁ) L_ FT ‘\f‘.‘./D O v ‘\3 r - (:..) \ ‘\\‘ T — ;‘: s \‘j N () w 4 “)’

In case (i) the constraint is already empty and can be removed.

In case (ii) we remove all variables }ﬁ{ for which O . * 0.
i

For case (iii) we introduce new variables V

to satisfy the conditionS:

L

N = Uap M. i;@/ ol A ¢ L
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A



(13)
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where I and m are indexed over sets of cardina.lities\l.y‘ v | and

respectively.

Substituting (10), (11) and (12) for the Y+ into D, constraint p disappears.

In order to illustrate the general form of the transformed model we, take

’Llé l_p and . ¢ L;P and consider the coefficients of the new variable \/,'xlq o

The objective coefficient will be:

| AN
\ /‘D“\ . D/“/“/
/ / -
R Sl Oap)

The coefficient in a general constraint j € J will be:

y AN
BALL Oy
2 = ]
Oiip 0p )

the coefficient in a general congruence r € R will be:

ATV

! B ‘ -

\ (G JPR CX g /
\ H

It is also necessary to impose extra congruences to guarantee the

integrality of " . after the substitution. These are:

j
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In order to produce integral coefficients throughout the transformed model
we multiply the ohjective, constraints and congruences through by

/A\ B O3 1> CL e = \ Cowr ( o ‘ \)

": 1 L ‘r,\.) C l»',

and replace this coefficient M throughout by AM. This gives the trans-

formed coefficients as :

\ O N T L
Objectives _— ( > Ny RN oA
) N .
\ i .
Constraints: (OL “\P - O b O 2 O \) for all \ 3
AN ! J
/ - ! 1 \
Original Congruencess: <Q;\ S JV o., f_l\& P ,JL AL / for all v ¢ (f
(Modulus AM) Poo h J
: t A
New Congruences: O~ o \: (d
(Modulus AM)
/
O\ ~ ~ \3 {\J\

The coefficients appearing above for the new variable AN (1A are
clearly the same as those appearing in the new inequality of the Primal

model once the corresponding variable has been eliminated.

A NUMERTCATL EXAMPLE

The Primal Model
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Eliminating x, (end simplifying the resulting congruences) we obtain:

2 xo+ 1Sx. > ¢S +720, + 90,

A Xo T (Z.:i-LIZL “‘C{ ‘*“/1.61! _P<¥ C:Z
Ny, +6x. 7 O + 2K + 30k
X 7 O

> ES +C7C1 + QQS (mod 36)

(moa 2)

Cye My X =3+ Q\ + G Ql (mod 9)

where H;= 50, 1, ..., 175, By = 4o, 1, woy 34, 5y = {0, 1, L, J

Note that the congruences imply that each of the new inequalities can also
be regarded as congruencesmodulus 36. This can be seen by applying multi-
pliers of 15, 18, 20 respectively to the congruences to imply that the first
inequality can be treated as a congruence modulus 36. TFor the wecond in—-
equality the appropriate multipliers are 3k4,18,20. TFor the third inequality
the appropriate multipliers are 6,18,20.

Eliminating x, (and simplifying the resulting congruences) we obtain:-
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+<
> -6o +30k, 4 6ok L <
= [o6S (;\!,,\ l‘Y/C»\‘*G(_‘)C'; SO0V L .
T 5 Y G
B C\\_ QFLC,»‘—AC&

io+3quHZK5JQQ&LﬁYWC945'
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+901 ‘

(mod 1080)
1550 (mod 36)

5 (mod 3)

¢ (mod 2)

where E) ¢ Co, 1, ..., m} B <00, {0, 1, .0 5 Hfg), 1 eeey 38

Note that the congruences imply that the inequalities can each be regarded

as a congruence modulus 1080.

inequality are 3L, 0, 360, 5L40.

0, 720, 5Lo.

The congruence multipliers for the first

For the second inequality they are L0,

For the third inequality they are 30, 1050, O, 5L0.

The solution to the above model (minimising x6) iss

x, =3 hy=hy,=hy=hg =0,k =1, h =1, b =5

This yields the optimal solution to the original model:

X, =3, x4 = 1, x, = 5.

The Dual Model

2
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s.t. yo
‘4830'+Qj)+qB14 M3 -
340 7w Tl Y, YT

|

C O —

:Bo >'\§’l}/\_/§1)'33 My > 0O

and integral.
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Eliminating the first homogeneous constraint we obtain:

Maximise (i/‘ (gj\/‘ — (_4 \jx\)
36
ot RN AV R V) = 36
ISy, — vy P 6y F356u, = 0
Vo Ve g = O (mod 18)
V) T O (modl)
N = O (mod9)

Eliminating the second homogeneous constraint we obtain:

) ™
Maximise /(30\'\11 - éowx— éowg}
1080
s.t. /_Z)QV\)) — GO\/«JL — GO\/JB - \OgO
YV w, = Lowa — ‘SV\/B = O (mod 540)
2w, = O (mod 120)
VSw, =t 1Swy, +1Swy = O (ga 270)
W, = O (mod 15)
W, WA o wA T 0O (mod 2)
N =~ 0 (mod 6)
W = (O (mod 36)
These congruences can be simplified but are left in this form in order

to demmstrate the correspondence with the Primal Model. If the congruences
are all expressed modulus 1080 we have the same ccef ficients as in the

Primal Model.

The optimal solution to this model is:

Wy = o, Wy = 0, w3 = 36, Objective = -2 leading to the optimal solution
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to the original model:

Yo © 1, ¥y = 0, ¥, = 2, y3 = 0, yh =1, Objective = -2,

THE CORRESPONDENCE BETWEEN PRIMAL AND DUAL MODELS

Given a Primal model in the form P it is clearly possible to construct a
Dual model D. Whatsmore if we eliminate varisples from P and the

corresponding constraints from D as described in sections 3 and L this

correspondence is shown to be maintained.

Unfortunately given a Dual model D the Primal model P is not defined

uniquely. For example the (infeasible) Dual model:
Maximise g6y
' 30
= o
s.t. 1Z'C{Eﬁ S

g = O (mod 6)
Y T O (mod 15)

has alternative Primal models.
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s.t. 7L G x = F6 + S C; 4/7,6«1

Ex = 6 + A | (mod 6)
(€ i—o‘\f‘—ﬂ‘v(’-!? i = 3 ul al (mod 15)
(€ 0,1 ]

gince in both models the congruences together imply that the inequality

can be treated as a congruence modulus 30.

FURTHER OBSERVATIONS

In a subsequent paper it is hoped to investigate the relationship between
the solutions of the Primal and Dual models. This relationship is

clearly not straightforward given the ambiguity in the Primal Model

corresponding to the particular Dual.

Another area for further investigation is the form of the value function

determined by the solution to the Primal model. The elimination of
variables is obviously unchanged for any right-hand-side coefficients.
Therefore the optimal value of the objective function can be given in terms
of these right-hand-side coefficients using a disjunction of inequalities

and congruences.,
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