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Abstract

ARCH/GARCH representations of financial series usually attempt to model

the serial correlation structure of squared returns. While it is undoubtedly true

that squared returns are correlated, there is increasing empirical evidence of

stronger correlation in the absolute returns than in squared returns (Granger,

Spear and Ding 2000). Rather than assuming an explicit form for volatility, we

adopt an approximation approach; we approximate the γ-th power of volatility

by an asymmetric GARCH function with the power index γ chosen so that the

approximation is optimum. Asymptotic normality is established for both the

quasi-maximum likelihood estimator (qMLE) and the least absolute deviations

estimator (LADE) estimators in our approximation setting. A consequence of

our approach is a relaxation of the usual stationarity condition for GARCH

models. In an application to real financial data sets, the estimated values for

γ are found to be close to one, consistent with the stylised fact that strongest

autocorrelation is found in the absolute returns. A simulation study illustrates

that the qMLE is inefficient for models with heavy-tailed errors, while the

LADE estimation is more robust.

Key words: autoregressive conditional heteroscedasticity, financial returns, least ab-

solute deviation estimation, leverage effects, quasi-maximum likelihood estimation,

Taylor effect.
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1 Introduction

Let {Xt} be a strictly stationary time series defined by a volatility model

Xt = σtεt, (1.1)

where {εt} is a sequence of independent and identically distributed random variables

with mean 0 and variance 1, σt ≥ 0 is Ft−1-measurable, and Ft−1 is the σ-algebra

generated by {Xt−k, k ≥ 1}. Furthermore, we assume that εt is independent of

Ft−1, and both Xt and εt have probability density functions. In financial time

series, {Xt} is typically the (log) returns of an observed price; our aim is to explain

and forecast the volatility of the returns. A GARCH model assumes the conditional

second moments follow the recursive equation

σ2
t = E(X2

t |Xt−1,Xt−2, · · · ) = Var(Xt|Ft−1) = c+

p∑

i=1

biX
2
t−i +

q∑

j=1

ajσ
2
t−j ,

(1.2)

where c > 0 and bi, aj are non-negative; see Engle (1982), Bollerslev (1986) and

Taylor (1986, chapter 3). Under the condition
∑

i bi +
∑

j aj < 1, (1.2) admits the

representation

σ2
t = E(X2

t |X2
t−1,X

2
t−2, · · · ) = d0 +

∞∑

j=1

djX
2
t−j , (1.3)

where di ≥ 0 are some constants; see, for example, (4.35) of Fan and Yao (2003).

Thus, a GARCH model effectively assumes a linear autoregressive structure for

the squared returns X2
t . Therefore the stronger the autocorrelation of X2

t is, the

better σ2
t would be explained by X2

t−1,X
2
t−2, · · · for a correctly specified GARCH

model. While most financial squared returns are significantly auto-correlated, such

an autocorrelation is typically weak. On the other hand, there is growing empiri-

cal evidence that stronger autocorrelation exists in other functions of returns; see

Granger, Spear, and Ding (2000) and references therein. In fact, absolute returns

|Xt| often exhibit stronger autocorrelation than squared returns. Furthermore, we

may question whether a linear autoregressive structure for X2
t is realistic.

This paper puts forward approximations to the volatility function that exploit

the stronger autocorrelation in the γ-th power of absolute returns, for some γ ∈
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(0, 2]. We do not impose any explicit form on σt. Instead we seek the index γ

for which a GARCH-like model provides the best approximation for σγ
t . More

specifically, we approximate σγ
t by an asymmetric GARCH function

ξt,γ ≡ c+

p∑

i=1

bi{|Xt−i| − diXt−i}γ +

q∑

j=1

ajξt−j,γ (1.4)

= c+

p∑

i=1

bi|Xt−i|γ{1 − di sgn(εt−i)}γ +

q∑

j=1

ajξt−j,γ,

where the parameters c, bi, aj are non-negative, and di ∈ (−1, 1). We then choose

γ ∈ (0, 2] so that the approximation is optimum in a certain sense; see section 2.2.

The restriction γ ≤ 2 is not essential and is imposed to avoid higher order moment

conditions on Xt. The presence of asymmetric parameters di is to reflect the so

called leverage effect in financial returns; see Ding, Engle, and Granger (1993).

Proposition 1 in Appendix A indicates that equation (1.4) admits a unique strictly

stationary solution

ξt,γ =
c

1 − ∑q
j=1 aj

+

p∑

i=1

bi(|Xt−i| − diXt−i)
γ (1.5)

+

p∑

i=1

bi

∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

aj1 · · · ajk
(|Xt−i−j1−···−jk

| − diXt−i−j1−···−jk
)γ

with E(ξt,γ) < ∞, provided that {Xt} is strictly stationary with E|Xt|γ < ∞, and

θ ≡ (c, b1, · · · , bp,
a1, · · · , aq, d1, · · · , dp)

τ ∈ Θ, where

Θ =
{

(c, b1, · · · , bp, a1, · · · , aq, d1, · · · , dp)
∣∣∣ c, bi, aj > 0, di ∈ [−1+δ0, 1−δ0],

q∑

j=1

aj < 1
}
,

(1.6)

and δ0 ∈ [0, 1) is a small constant. We restrict di to be in a closed interval contained

in (−1, 1) to avoid some technical difficulties; see (C.5) in appendix C.

Attempts to make use of the stronger autocorrelation of power functions of re-

turns for modelling volatility may be traced back to Ding et al (1993). In fact, the

asymmetric power GARCH (APGARCH) model proposed by Ding et al (1993) is

(1.4) with ξt−j,γ replaced by σγ
t−j for j = 0, 1, · · · , q; see also (B.1) and proposition 2

in appendix B. Hence an APGARCH model assumes that the γ-th power of the
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volatility function σγ
t is of the form of the right hand side of (1.5). We argue that the

approximation paradigm adopted in this paper has at least two advantages over the

assumption of an exact APGARCH model. First, it brings the relevant statistical

theory one step closer to reality since any statistical model is merely an approxima-

tion under most circumstances. Second, the condition for the stationarity has been

relaxed from
∑p

i=1 biE{(|εt| − diεt)
γ} +

∑q
j=1 aj < 1 (proposition 2 in appendix B)

for APGARCH models to the condition
∑

1≤j≤q aj < 1 (proposition 1 in appendix

A) for APGARCH approximation. This relaxation is of practical relevance since the

estimated bi and ai for financial data often sum up to 1 or beyond. By accepting

that our model is only an approximation, we admit explicitly the possibility that

parameters beyond the admissible bound may result from inadequacy of the model,

in addition to the possibility of a non-stationary data generating process. The relax-

ation of the stationarity condition is due to the fact that the approximation process

ξt,γ is defined and caused by Xt but not vise verse.

Statistical inference for the GARCH model and its variants is predominantly

quasi-maximum likelihood estimation (qMLE), facilitated by treating εt in (1.1) as

a normal random variable. It is well documented that when εt is heavy-tailed such as

E(ε4t ) = ∞, the qMLE for GARCH models suffers from slow convergence rates and

complicated asymptotic distributions (Hall and Yao 2003), (Mikosch and Straumann

2003), (Straumann and Mikosch 2003), (Straumann 2005). On the other hand,

least absolute deviations estimation (LADE) based on a log-transformation enjoys

standard root-n convergence rate regardless of whether εt is heavy-tailed or not

(Peng and Yao 2003); see also Horvath and Liese (2004). We consider both qMLE

and LADE for parameters c, bi, di, aj and γ in (1.4) in section 2. In addition, a new

estimator for γ is proposed, based on minimizing serial dependence in the residuals

from the fitted volatility function. The asymptotic properties of the estimators for

c, bi, di, aj are presented in section 3. In considering the asymptotic properties of

qMLE and LADE for GARCH models, existing work assumes an exact model for

the volatility function; see for example, Hall and Yao (2003), Peng and Yao (2003)

and Mikosch and Straumann (2003). The asymptotic theory in section 3 is new; we

consider estimators of the parameters of an optimal approximation to the volatility

function rather than estimators of the parameters of the volatility function itself.

Application of our method to four financial return series in section 4 indicates
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that a better approximation to the volatility function is obtained by using the γ-th

power in place of the squared returns. The fact that estimates of γ are always close

to 1 coincides with empirical evidence indicating that the strongest autocorrelation

is found in absolute returns. Note that a γ-th power GARCH model implies a linear

autoregressive structure for |Xt|γ ; cf. (1.3). A larger autocorrelation of |Xt|γ leads

to a better (linear) autoregressive fitting. Ding, Engle, and Granger (1993) observe

that qMLE for γ is inefficient when εt is heavy-tailed. A simulation study in section 5

confirms this observation and indicates that LADE is robust to the distribution of

errors.

An APGARCH model may be viewed as a member of the so-called augmented

GARCH class of Duan (1997). Theoretical properties such as stationarity, mixing

properties, and higher order moment properties for APGARCH models are studied

by, among others, He and Teräsvirta (1999), Carrasco and Chen (2002), and Ling

and McAleer (2002). Applications of APGARCH models are reported in McKenzie

and Mitchell (2002), Conrad and Karanasos (2002) and Brooks, Faff, McKenzie,

and Mitchell (2003). Hagerud (1997) considers a statistical test for asymmetry

under APGARCH models. We derive a simple condition for stationary APGARCH

processes in appendix B, which includes a result of Ling and McAleer (2002) as a

special case.

2 Methodology

2.1 Estimation of c, bi, aj, di for a given γ

2.1.1 Least absolute deviations estimator

To facilitate the LADE, we adopt a different parametrization. Namely we drop the

assumption Eε2t = 1 in (1.1). Instead we assume that the median of |εt| is equal to

1. Hence the median of |εt|γ is equal to 1 for any γ > 0. Note that σt defined in (1.1)

differs under the two parameterisations by a constant independent of t. This affects

the parameters in ξt,γ as follows; c and all bi differ by a common multiplicative

constant under the two parametrisation while di and aj remain unchanged.

Let X1, · · · ,Xn be observations. First we assume γ is known. Then an estimator
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for θ is obtained by the least absolute deviations method as follows:

θ̃ ≡ θ̃
(γ)

= arg min
θ

n∑

t=ν

∣∣∣|Xt|γ −c−
p∑

i=1

bi(|Xt−i|−diXt−i)
γ −

q∑

j=1

ajξt−j,γ(θ)
∣∣∣, (2.1)

where ν ≡ νn > 1 is a large integer, and ξt,γ(θ) ≡ ξt,γ defined in (1.5). In practice,

we let Xk ≡ 0 for any k ≤ 0 in (1.5). The sum in the above expression is taken from

t = ν to alleviate the effect of this truncation. See condition (A5) below.

We see from (1.1) that |Xt|γ = σγ
t +σγ

t (|εt|γ−1) ≡ σγ
t +et, and the conditional me-

dian of et is 0 under the specified parametrisation. Hence σγ
t = arg minaE

{∣∣|Xt|γ −
a
∣∣ ∣∣Ft−1

}
. Furthermore when σγ

t = ξt,γ(θ0), it holds almost surely that

θ0 = arg min
θ
E

{∣∣|Xt|γ − ξt,γ(θ)
∣∣
∣∣∣Ft−1

}
= arg min

θ
E

{∣∣|Xt|γ − ξt,γ(θ)
∣∣}.

This motivates the estimator (2.1). Note that {et} is not a sequence of independent

random variables and its (conditional) heteroscedasticity may compromise the per-

formance of θ̃. However, if we define e†t = log(|εt|) = log(|Xt|) − γ−1 log(σγ
t ) then

e†t has median 0 and {e†t} is an i.i.d. sequence. Therefore, it holds that

σγ
t = arg min

a>0
E

{∣∣ log |Xt| −
1

γ
log a

∣∣ ∣∣Ft−1

}
.

This leads to the estimator

θ̂1 ≡ θ̂
(γ)

1 = arg min
θ

n∑

t=ν

∣∣∣ log |Xt| −
1

γ
log

{
c+

p∑

i=1

bi(|Xt−i| − diXt−i)
γ +

q∑

j=1

ajξt−j,γ(θ)
}∣∣∣

= arg min
θ

n∑

t=ν

∣∣∣ log |Xt| −
1

γ
log{ξt,γ(θ)}

∣∣∣, (2.2)

where ξt,γ is given in (1.5). Peng and Yao (2003) showed that in the context of

estimation for GARCH models, the estimators of the type θ̂1 enjoy better asymptotic

properties than those of type θ̃ in the sense that θ̂1 is asymptotically unbiased while

θ̃ is typically a biased estimator. See also Theorem 1 below.

2.1.2 Quasi-maximum likelihood estimation

An approximate qMLE may also be entertained based on an additional assumption

that εt in (1.1) are independent N(0, 1) random variables, therefore is constructed

under the standard parametrization implied by Eε2t = 1. The resulting estimator is

θ̂2 ≡ θ̂
(γ)

2 = arg min
θ

n∑

t=ν

[
X2

t /{ξt,γ(θ)}2/γ + 2γ−1 log{ξt,γ(θ)}
]
. (2.3)
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2.2 Estimation of γ

The estimators θ̂
(γ)

1 and θ̂
(γ)

2 naturally facilitate estimation of γ. For example,

with the least absolute deviations estimator θ̂
(γ)

1 , we may choose γ ∈ (0, 2] which

minimises
n∑

t=ν

Dt(θ̂
(γ)

1 , γ),

where

Dt(θ, γ) =
∣∣∣ log |Xt| −

1

γ
log{ξt,γ(θ)}

∣∣∣.

With the MLE θ̂
(γ)

2 , we may treat γ as an additional parameter and estimate it by

maximising the profile likelihood function derived from (2.3).

Our goal is to estimate the volatility function σt; a good estimate should ensure

the residuals ε̂t = Xt/σ̂t contain little information about Ft−1, where σ̂t denotes an

estimator for σt. We construct an alternative method for estimating γ based on this

idea. Let θ̂
(γ)

be an estimator for the parameters θ of ξt,γ , which may be either θ̂
(γ)

1

or θ̂
(γ)

2 . Define residuals

ε̂
(γ)
t = Xt/{ξt,γ(θ̂

(γ)
)}1/γ , t = ν, · · · , n. (2.4)

If ε̂
(γ)
t is a good estimator for εt, E{|ε̂(γ)

t |I(A)} ≈ E|ε̂(γ)
t |P (A) for any A ∈ Ft−1.

This suggests a choice of γ̂ ∈ (0, 2] which minimises

R(γ) ≡ sup
B∈B

1

n− ν + 1

∣∣∣
n∑

t=ν

{|ε̂(γ)
t | − ε̄(γ)}I(Xt ∈ B)

∣∣∣, (2.5)

where ε̄(γ) is the sample mean of {|ε̂(γ)
t |}, Xt = (Xt−1, · · · ,Xt−k)τ for some pre-

scribed integer k ≥ 1, and B consists of some subsets in Rk. Statistics of this type

have been used for model checking by, for example, Stute (1997), Chen and An

(1997), Koul and Stute (1999), and Polonik and Yao (2005). In practice, we may

use either the LADE θ̂
(γ)

1 or the qMLE θ̂
(γ)

2 as θ̂
(γ)

in (2.4). We may choose B con-

sisting of the sets with balls centered at the origin as their images under the mapping

x → S−1/2(x − X̄), where X̄ and S denote, respectively, the sample mean and the

sample covariance matrix of {Xt}. When the distribution of Xt is symmetric, those

sets are approximately the minimum-volume sets (Polonik and Yao 2005).
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Without assuming a true model, the so-called true value of γ needs to be clarified.

From (2.5), the value to be estimated by γ̂ is

γ0 = arg min
γ∈(0,2]

(
sup
B∈B

∣∣E[{|εt| − E|εt|}I(Xt ∈ B)]
∣∣
)
,

which is assumed to be unique. When Xt is indeed an APGARCH process, γ0 is

the true value of the power index.

3 Theoretical properties

We always assume in this section that γ ∈ (0, 2] is known. The asymptotic properties

of the estimator γ̂ is more complicated and will be investigated in a follow-up paper.

3.1 Asymptotic normality of LADEs

We introduce some notation first. Let Ut(θ) be the derivative of ξt,γ(θ) with respect

to θ. Then it holds for θ ∈ Θ that

E{|Utℓ(θ)/ξt,γ(θ)|k} <∞, for any k > 0, 1 ≤ ℓ ≤ 2p+ q + 1, (3.1)

see the first paragraph in appendix C below. In the expression above, Utℓ denotes

the ℓ-th component of Ut. Define Zt(θ) = log |Xt| − γ−1 log{ξt,γ(θ)}. Then the

derivative of Zt with respect to θ is Żt(θ) = −Ut(θ)/{γξt,γ(θ)}. Put

Σ =

∞∑

k=−∞
E

[
Żt(θ

0)Żt+k(θ0)τ sgn{Zt(θ
0)Zt+k(θ

0)}
]
, Σ0 = E

{
Żt(θ

0)Żt(θ
0)τ

∣∣Zt(θ
0) = 0

}
,

where θ0 is specified in condition (A2) below.

Some regularity conditions are now in order.

(A1) The process {Xt} is strictly stationary and α-mixing with the

mixing coefficients satisfying condition limn→∞ n8+ǫ0α(n) = 0 for some

ǫ0 > 0. Furthermore, E|Xt|γ < ∞.

(A2) There exists a unique θ0 ≡ θ0
γ ∈ Θ for which

θ0 = arg min
θ
E

[∣∣ log |Xt| −
1

γ
log{ξt,γ(θ)}

∣∣]. (3.2)
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(A3) The matrix Σ0 is nonsingular.

(A4) The density function f of γZt(θ
0) is positive and continuous at 0.

The conditional density function g(z|u) of Zt(θ
0) given Żt(θ

0) = u is

uniformly Lipschitz continuous at z = 0 in the sense that

|g(z|u) − g(0|u)| ≤ C|z|, for all |z| < δ1,

where C, δ1 > 0 are constants, and C does not depend on u. Further,

sup
u
g(0|u) <∞.

(A5) As n→ ∞, ν/n→ 0 and ν/ log n→ ∞.

The mixing condition in (A1) is required to establish asymptotic normality. To-

gether with (3.1), it also ensures that Σ is well-defined; see Theorem 2.20(i) of Fan

and Yao (2003). When σγ
t ≡ ξt,γ(θ0), we may drop this mixing assumption, since

the asymptotic normality is entailed by the resulting martingale differences structure

(Davis and Dunsmuir 1997; Peng and Yao 2003). On the other hand, the condition

for an APGARCH(p, q) process to be strictly stationary is given in proposition 2

in appendix B. Proposition 5 of Carrasco and Chen (2002) characterises the condi-

tion for β-mixing APGARCH(p, q) processes with exponential decaying coefficients,

which implies the α-mixing. The assumption of positive parameters in (A2) ensures

the property (3.1); see also (1.6). Similar conditions are employed by, for example,

Hall and Yao (2003) and Peng and Yao (2003). Note that Zt(θ
0) = log |εt| in the

case where σγ
t ≡ ξt,γ(θ0); (A4) can then be replaced by the condition that the den-

sity function of log |εt| is continuous at zero. (A5) requires ν → ∞ at appropriate

speeds as n → ∞, which ensures that the truncation Xt ≡ 0 for all t ≤ 0 does not

alter the asymptotic property of the estimator.

Theorem 1. Let conditions (A1) – (A5) holds and δ0 ∈ (0, 1) in (1.6). For any

positive random variable M > 0, there exists a local minimiser θ̂1 defined by (2.2)

but with the minimization taken over ||θ − θ0 − η/
√
n|| ≤M/

√
n only and Xk ≡ 0

for all k ≤ 0, for which

n1/2(θ̂1 − θ0) → N
(
0,Σ−1

0 ΣΣ−1
0 /{2γf(0)}2

)
(3.3)

in distribution, where η ∼ N
(
0,Σ−1

0 ΣΣ−1
0 /{2γf(0)}2

)
is a random vector.
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Remark 1. In the case that σγ
t ≡ ξt,γ(θ0), condition (A1) may be removed while the

condition
∑

j aj < 1 implied implicitly in (A2) should be replaced by the condition
∑

i biE(|εt| − diεt)
γ +

∑
j aj < 1; see proposition 2 in appendix B. The latter

ensures that the equations (1.1) and (1.4), with ξt,γ(θ0) replaced by σγ
t , defines a

unique stationary solution {Xt} with E(|Xt|γ) < ∞. Now [Żt(θ
0)sgn{Zt(θ

0)}] is a

martingale difference, and Σ0 = Σ = E
[
Żt(θ

0)Żt(θ
0)τ

]
.

Remark 2. Kernel-based estimation of covariance matrix such as Σ above has been

discussed by Newey and West (1987), Newey and West (1994), Andrews (1991) and

Andrews and Monahan (1992); see also Wooldridge (1994). For instance, a simple

Newey-West’s Bartlett kernel estimator has the form

Σ̂ = Γ̂0 +

LT∑

j=1

(1 − j

LT + 1
)(Γ̂j + Γ̂′

j), (3.4)

where Γ̂j = 1/T
∑T

t=1 Żt(θ
0)Żt+j(θ

0)τ sgn{Zt(θ
0)Zt+j(θ

0)}, j = 0, 1, 2, · · · are the

sample covariance matrices. LT is called the bandwidth of the kernel (Newey and

West, 1987). In practice, Σ0 may be estimated through some non-parametric re-

gression methods, such as Nadaraya-Watson estimator. Moreover, f(0) can be given

straightway by the kernel density estimation of γZt(̂(θ1)) at 0.

The proof of theorem 1 is given in appendix C.

3.2 Asymptotic normality of qMLEs

Although we continue to use the notation defined above, the parameters are now

defined under a different parametrisation entailed by the condition E(ε2t ) = 1; see

the discussion in section 2.1.2.

Write U̇t(θ) = ∂Ut(θ)/∂θτ . Put

Σ1 =

∞∑

k=−∞
E

[Ut(θ
0)Ut+k(θ0)τ

ξt,γ(θ0)ξt+k,γ(θ0)

{ X2
t

ξt,γ(θ0)2/γ
− 1

}{ X2
t+k

ξt+k,γ(θ0)2/γ
− 1

}]
,

Σ2 = E
[{(

1 +
2

γ

) X2
t

ξt,γ(θ0)2/γ
− 1

}Ut(θ
0)Ut(θ

0)τ

ξt,γ(θ0)2
+

{
1 − X2

t

ξt,γ(θ0)2/γ

} U̇t(θ
0)

ξt,γ(θ0)

]
,

where θ0 is given in (B2) below. We list some regularity conditions now.
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(B1) The process {Xt} is strictly stationary and α-mixing with the mix-

ing coefficients satisfying condition
∑

j≥1 j
2+ǫ0α(j)1−2/δ < ∞ for some

ǫ0 > 0. Furthermore, E|Xt|2δ <∞, where δ > 2 is a constant.

(B2) Condition (A2) holds with (3.2) replaced by

θ0 = arg min
θ
E[X2

t /{ξt,γ(θ)}2/γ + 2γ−1 log{ξt,γ(θ)}]. (3.5)

(B3) The matrix Σ2 is nonsingular.

Theorem 2. Under conditions (B1) – (B3) and (A5), there exists a local minimiser

θ̂2 within radius r of θ0 for which

n1/2(θ̂2 − θ0) → N
(
0, Σ−1

2 Σ1Σ
−1
2

)

in distribution, as n→ ∞, where r > 0 is a sufficiently small but fixed constant.

Remark 3. In case that σγ
t ≡ ξt,γ(θ0), condition (B1) may be replaced by condition

E(ε4t ) < ∞ while the condition
∑

j aj < 1 in (1.6) be replaced by the condition
∑

i biE(|εt| − diεt)
γ +

∑
j aj < 1; see also remark 1. Now note

Σ1 = {E(ε4t ) − 1}E
[Ut(θ

0)Ut(θ
0)τ

ξt,γ(θ0)2

]
, Σ2 =

2

γ
E

[Ut(θ
0)Ut(θ

0)τ

ξt,γ(θ0)2

]
.

Especially when γ = 2, the above theorem reproduces Theorem 2.1(a) of Hall and

Yao (2003). See also Berkes, Horváth, and Kokoszka (2003) and Straumann and

Mikosch (2003).

Remark 4. Comparing theorems 1 and 2, we can see that the asymptotic normality

for the qMLE requires higher order moment conditions than that for the LADE. In

fact, the condition that E(|εt|4−ǫ) <∞ for any ǫ > 0 is necessary for the asymptotic

normality of θ̂2 (Hall and Yao 2003), and is not required for that of θ̂1.

We omit the proof of theorem 2, since it is technically less involved than that of

theorem 1, and is similar to the proof of theorem 5.1(a) of Hall and Yao (2003).

4 Real data examples

This section applies the volatility approximating procedures of section 2 to the re-

turns of two real financial data sets; namely the daily closing prices of S&P500 index
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in 3 January 1928 — 30 August 1991 analyzed extensively by Ding et al. (1993),

and the daily closing prices of the IBM stock in 3 January 1962 – 30 December 1997

analyzed in Tsay (2001). Returns are defined as Rt = log(pt) − log(pt−1), where pt

is the price or the index at time t. See Figure 1 (a) and (b) for the plots of these

two time series.

Ding et al (1993) compare the auto-correlation functions of |Rt|γ with different γ-

values and found that absolute returns (i.e. with γ = 1) are the most autocorrelated

series. Figure 1 (c) and (e) show the sample autocorrelations of the squared return

and absolute return of S&P500 data, respectively. The later obviously has a much

stronger autocorrelation structure than the former. Similar phenomena has been

observed in Figure 1 (d) and (f) for the returns of IBM stock. For further empirical

evidence of the stronger autocorrelation of absolute returns, see Granger and Ding

(1995) in which this phenomenon is called the Taylor effect after Taylor (1986). To

explore this effect in modelling volatilities, Ding et al (1993) fitted an APGARCH

model to the S&P500 data using qMLE method and obtained 1.43 as an estimate

for γ.

We apply the method proposed in section 2 to approximate the conditional

volatility of the mean-adjusted returns Xt = Rt − R̄, where R̄ is the sample mean.

We take Xt = σtεt and approximate σγ
t by an asymmetric power GARCH(1,1)

function,

ξt,γ = c+ b1{|Xt−1| − d1Xt−1}γ + a1ξt−1,γ .

We set ν = 21. For each of γ = 0.1, 0.2, · · · , 1.9, 2.0, we estimate c, a1, b1, d1 by LAD

and calculate the R(γ). Plots of R(γ) with k = 2 for these two data sets are given

in Figure 2. For the S&P500 data, R(γ) achieves its minimum value at γ = 0.9,

while for the IBM data, the minimum point of R(γ) is at γ = 1.2. Results for other

k-values are similar and are not reported here to save the space. The LAD estimates

and their standard errors are listed in table 1. Note that, for the S&P data, our γ

estimate is substantially smaller than that obtained by Ding et al (1993).

5 Simulation study

The results of section 4 suggest that qML may overestimate the power parameter

γ. In this section we perform a simulation study to verify this observation. We
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choose γ = 1 and set the other parameter values to be close to those fitted to the

S&P500 data by full-LAD, that is, a1 = 0.9, b1 = 0.05, c = 10−4 and d1 = 0.5.

We simulate 500 instances of an APGARCH(1,1) process with 1000 observations

and t3 distributed errors. Here t3 denotes a t-distribution on 3 degrees of freedom.

All parameters are estimated for both qML and full-LAD objective functions. We

take ν = 21 as in section 4 and, in order to ensure fair comparison, optimisation is

performed by golden section search in both cases. The experiment is repeated with

t4 and standard normal errors.

Figure 3 shows boxplots of the estimates of the power parameter γ across three

error distributions for both estimation methods. For error distributions with heavy

tails, that is, t3 and t4 it is clear that LAD out-performs qML. There is a marked

worsening of qML performance going from εt ∼ t4 to εt ∼ t3, that is, a marked

worsening as the weight in the tails of the error distribution increases. Figure 3 also

provides evidence of slight bias in qML estimates for γ when the error distribution

is non-Gaussian. In both εt ∼ t4 and εt ∼ t3 cases, over 55% of the mass of the

empirical distribution for qML estimator is above the true value, γ = 1. Similar

behaviour is seen across estimates for ARCH, GARCH and asymmetry parameters.

The performance of LAD is robust to the distribution of the errors while qML is

inefficient for heavy tailed distributions.

A Stationary APGARCH approximation

Proposition 1. Let {Xt} be a strictly stationary process with E|Xt|γ < ∞, and

{εt} be a sequence of independent and identically distributed random variables. Let

θ ∈ Θ given in (1.6) with δ0 ∈ [0, 1). Then ξt,γ defined in (1.5) is the unique strictly

stationary solution of equation (1.4) with E|ξt,γ | <∞.

Proof. For di ∈ [−1, 1], E|Xt−i−j1−···−jk
|γ{1 − disgn(εt−i−j1−···−jk

)}γ ≤ 2γE|Xt|γ .
Hence the expectation of the multiple sum on the RHS of (1.5) is bounded from

above by

2γE|Xt|γ
p∑

i=1

bi

q∑

j=1

aj

/(
1 −

q∑

j=1

aj

)
.

Since all the terms are non-negative, the infinite sum on the RHS of (1.5) converges

almost surely to a random variable with finite expectation. Hence ξt,γ defined by
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(1.5) is a well-defined strictly stationary process with E(ξt,γ) <∞. Now substituting

ξt−j,γ on the RHS of (1.4) by (1.5) leads to the RHS of (1.5). Therefore ξt,γ defined

in (1.5) is a solution of (1.4).

To prove the uniqueness, let {ξ′t,γ} be a strictly stationary solution of (1.4) with

E|ξ′t,γ | < ∞. For any integer ℓ ≥ 1, we iterate (1.4) (with ξ′t,γ) ℓ times and it leads

to

ξ′t,γ = c
ℓ∑

k=0

( q∑

j=1

aj

)k
+

p∑

i=1

bi|Xt−i|γ{1 − disgn(εt−i)}γ

+

p∑

i=1

bi

ℓ∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

aj1 · · · ajk
|Xt−i−j1−···−jk

|γ{1 − disgn(εt−i−j1−···−jk
)}γ

+

q∑

j1=1

· · ·
q∑

jℓ=1

aj1 · · · ajℓ
ξ′t−j1−···−jℓ,γ

.

Hence

E|ξt,γ − ξ′t,γ | ≤
( q∑

j=1

aj

)ℓ{ c

1 − ∑q
j=1 aj

+ 2γE(ξt,γ)

p∑

i=1

bi + E|ξ′t,γ |
}
.

Let Aℓ = {|ξt,γ − ξ′t,γ | > 1/ℓ}. It holds that

P (Aℓ) ≤ ℓE|ξt,γ − ξ′t,γ | ≤ ℓ
( q∑

j=1

aj

)ℓ{ c

1 − ∑q
j=1 aj

+ 2γE(ξt,γ)

p∑

i=1

bi + E|ξ′t,γ |
}
.

Thus
∑

ℓ≥1 P (Aℓ) <∞. It follows from the Borel-Cantelli lemma (see, for example,

Theorem 3.2.1 in Chow and Teicher 1997) that P (Aℓ, i.o.) = 0. Since Aℓ ⊂ Aℓ+1,

it holds that P (Aℓ) = 0 for any ℓ ≥ 1. Hence ξt,γ = ξ′t,γ a.s.. This completes the

proof.

B Stationarity of APGARCH(p, q) processes

Ding et al (1993) introduce an asymmetric power GARCH(p, q) model

Xt = σtεt, σγ
t = c+

p∑

i=1

bi|Xt−i|γ{1 − disgn(εt−i)}γ +

q∑

j=1

ajσ
γ
t−j , (B.1)

where {εt} is a sequence of independent and identically distributed random variables

with mean 0 and 0 < E|εt|γ < ∞, γ ∈ (0, 2], c > 0, bi, aj ≥ 0 and di ∈ (−1, 1) are
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parameters. The stationarity condition for APGARCH(p, q) models are stated in

proposition 2 below. It is implied by proposition 3 which deals with a more general

form of volatility models. Proposition 2 resembles the stationarity condition for the

standard GARCH models in Chen and An (1998). Note that we require the strictly

stationary solution of the finite moment E|Xt|γ , which simplifies the condition for

the existence of such a solution substantially. Proposition 2 was established by Ling

and McAleer (2002) for the special case d1 = · · · = dp.

Proposition 2. The necessary and sufficient condition for (B.1) defining a unique

strictly stationary process {Xt, t = 0,±1,±2, · · · } with E|Xt|γ <∞ is

p∑

i=1

biE{(|εt| − diεt)
γ} +

q∑

j=1

aj < 1. (B.2)

We consider now a general form of volatility model

Yt = ρtψ(εt), ρt = ϕ0 +
∞∑

i=1

ϕi(εt−i)ρt−i, (B.3)

where {εt} is a sequence of independent and identically distributed random variables,

ϕ0 > 0 is a constant, ψ(·) and ϕi(·) are non-negative, and E{ψ(εt)} < ∞. The

form of model (B.3) is general. It contains, for example, (B.1) as a special case

with Yt = |Xt|γ , ρt = σγ
t , ψ(x) = |x|γ , ϕi(x) = bi(|x| − dix)

γ + ai. (We assume

that bp+j = aq+j = 0 for any j ≥ 1.) Although the form (B.3) is different from

ARCH(∞) model introduced by Robinson (1991), its stationarity may be established

in the similar manner. In fact the proof of proposition 3 below adopted the idea of

Giraitis, Kokoszka, and Leipus (2000); see also section 2.7.1 of Fan and Yao (2003).

Proposition 3. Equation (B.3) admits a unique strictly stationary solution

Yt ≡ ϕ0ψ(εt)
{

1 +
∞∑

ℓ=1

∑

1≤i1,··· ,iℓ<∞
ϕi1(εt−i1) · · ·ϕiℓ(εt−i1−···−iℓ)

}
, t = 0,±1,±2, · · ·

(B.4)

with |EYt| <∞ if and only if

∞∑

i=1

E{ϕi(εt)} < 1.
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In fact, EYt = ϕ0E{ψ(εt)}/[1−
∑

i≥1E{ϕi(εt)}], and ρt is a function of {εt−1, εt−2, · · · }
only.

Proof. The necessity follows directly from taking expectation at the both sides of

(B.4), and the fact |EYt| <∞. We show the sufficiency below.

It follows from (B.3) that, for any integer k ≥ 1,

Yt = ϕ0ψ(εt) + ψ(εt)

∞∑

i=1

ϕi(εt−i)ρt−i

= ϕ0ψ(εt)
{

1 +
∞∑

i=1

ϕi(εt−i)
}

+ ψ(εt)
∞∑

i=1

∞∑

j=1

ϕi(εt−i)ϕj(εt−i−j)ρt−i−j

= ϕ0ψ(εt)
{

1 +

k∑

ℓ=1

∑

1≤i1,··· ,iℓ<∞
ϕi1(εt−i1) · · ·ϕiℓ(εt−i1−···−iℓ)

}

+ ψ(εt)
∑

1≤i1,··· ,ik+1<∞
ϕi1(εt−i1) · · ·ϕik+1

(εt−i1−···−ik+1
)ρt−i1−···−ik+1

. (B.5)

Let Y ′
t be the random variable defined on the right-hand-side of (B.4). Then Y ′

t ≥ 0

a.s.. Note that for any ℓ ≥ 1,

E
{ ∑

1≤i1,··· ,iℓ<∞
ϕi1(εt−i1) · · ·ϕiℓ(εt−i1−···−iℓ)

}
=

∑

1≤i1,··· ,iℓ<∞

ℓ∏

j=1

E{ϕij (ε1)} =
{ ∞∑

i=1

Eϕi(ε1)
}ℓ
.

Thus 0 ≤ Y ′
t < ∞ a.s., E(Y ′

t ) = ϕ0E{ψ(ε1)}/{1 − ∑
i≥1Eϕi(ε1)}, and {Y ′

t } is

strictly stationary. It is easy to verify that Y ′
t fulfils (B.3).

To show the uniqueness, let {Yt} be a strictly stationary solution of (B.3) with

|EYt| < ∞. We will show now that Yt = Y ′
t a.s. for any fixed t. By (B.5) it holds

for any k ≥ 1,

|Yt − Y ′
t | ≤ ψ(εt)

∑

1≤i1,··· ,ik+1<∞
ϕi1(εt−i1) · · ·ϕik+1

(εt−i1−···−ik+1
)|ρt−i1−···−ik+1

|

+ ϕ0ψ(εt)
∞∑

ℓ=k+1

∑

1≤i1,··· ,iℓ<∞
ϕi1(εt−i1) · · ·ϕiℓ(εt−i1−···−iℓ).

Hence,

E|Yt − Y ′
t | ≤

[
E|Y1| +

ϕ0Eψ(ε1)

1 − ∑∞
i=1Eϕi(ε1)

]{ ∞∑

i=1

Eϕi(ε1)
}k+1

.

Now using the same argument as showing ξt,γ = ξ′t,γ a.s. in the proof of proposition 1

above, we may show that Yt = Y ′
t a.s.. This completes the proof.
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C Proof of Theorem 1

The basic idea of the proof is similar to Davis and Dunsmuir (1997), although

technically it is more involved under current context; see also Pan, Wang, and Yao

(2005). We use the same notation as in section 3.1. Furthermore for u ∈ R2p+q+1,

put

Sn(u) =
n∑

t=ν

{|Zt(θ
0+n−1/2u)|−|Zt(θ

0)|}, S∗
n(u) =

n∑

t=ν

{|Zt(θ
0)+n−1/2uτ Żt(θ

0)|−|Zt(θ
0)|},

and

S(u) = γf(0)uτΣ0u + uτN , (C.1)

where N ∼ N(0,Σ). We also write Yt,i = |Xt|γ{1 − disgn(εt)}γ . Recall Ut(θ) is

the the derivative of ξt,γ(θ) with respect to θ. Then the 2p + q + 1 components of

Ut(θ) can be expressed as follows.

Ut,1(θ) =
{
1 −

q∑

ℓ=1

aℓ

}−1
,

Ut,1+i(θ) = Yt−i,i +
∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

aj1 · · · ajk
Yt−i−j1−···−jk,i (C.2)

Ut,1+p+j(θ) =
c

(
1 − ∑p

ℓ=1 aℓ

)2 +

p∑

ℓ=1

bℓYt−ℓ−j,ℓ (C.3)

+

p∑

ℓ=1

bℓ

∞∑

k=1

(k + 1)

q∑

j1=1

· · ·
q∑

jk=1

aj1 · · · ajk
Yt−ℓ−j−j1−···−jk,ℓ,(C.4)

Ut,1+p+q+i(θ) = −γbiYt−i,i
sgn(εt−i)

1 − disgn(εt−i)
(C.5)

− γbi

∞∑

k=1

q∑

j1=1

· · ·
q∑

jk=1

aj1 · · · ajk
Yt−i−j1−···−jk,i

sgn(εt−i−j1−···−jk
)

1 − disgn(εt−i−j1−···−jk
)
,

where i = 1, · · · , p, j = 1, · · · , q. Note that all c, bi, aj are positive and di ∈ [−1 +

δ0, 1 − δ0], and all the terms occurred on the RHS of (C.2) – (C.5) are contained

(with a different but positive coefficients) on the RHS of (1.5). Using the same

argument as in section 2.5 of Hall and Yao (2003), we may show that (3.1) holds.
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For integer s ≥ 1, let C(Rs) be the space of the real-valued continuous functions

on Rs, topologized by the separating family of seminorms

pm(f) = sup{|f(x)| : x ∈ Km}

where {Km 6= ∅,m ≥ 1} is an increasing sequence of compact sets such that Km lies

in the interior of Km+1 and Rs = ∪∞
m=1Km. Define a metric on C(Rs) as follows

d(f, g) = max
1≤m<∞

2−mpm(f − g)

1 + pm(f − g)
.

Then {C(Rs), d} is a complete and separable metric space Rudin (1991, p. 33). For

probability measures Pn, P on C(Rs), we say that Pn converges weakly to P in

C(Rs) if
∫
fdPn →

∫
fdP for any bounded and continuous function f defined on

C(Rs). For random functions Sn, S defined on C(Rs), we say that Sn converges in

distribution to S if the distribution of Sn converges weakly to that of S in C(Rs)

(Billingsley 1999). We denote by ||v|| the Euclidean norm for a vector v.

We always assume that conditions (A1) – (A5) hold and δ0 ∈ (0, 1) in (1.6). We

first prove Theorem 1 under the assumption that we also observed Xk for all k ≤ 0,

which splits into three lemmas below. Finally we show that the same asymptotic

result holds with the truncation Xk ≡ 0 for all k ≤ 0.

Lemma 1. Let û∗ be the minimizer of S∗
n(u). Then û∗ → N(0, Σ−1

0 ΣΣ−1
0 /{2γf(0)}2)

in distribution. In fact S∗
n(u) converges in distribution to S(u) in C(R2p+q+1).

Proof. We will show that for any u ∈ R2p+q+1,

S∗
n(u) = uτNn + γf(0)uτΣ0u + op(1), (C.6)

where Nn → N in distribution, where N is defined as in (C.1). Note that the

quadratic function S(u) has the minimizer −{γf(0)}−1Σ−1
0 N , and S∗

n(u) is a convex

function. Now the asymptotic normality of û∗ follows from the Basic Corollary of

Hjort and Pollard (1993). By the convexity lemma (see, for example, Lemma 1 of

Hjort and Pollard 1993), the term op(1) in (C.6) is uniform in u over any compact

sets in R2p+q+1. This implies that the probability measures of S∗
n(u), for u ∈

R2p+q+1, are tight. By Theorem 7.1 of Billingsley (1999) that S∗
n(u) converges in

distribution to S(u) in C(R2p+q+1).
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Now we prove (C.6). By the identity

|z − y| − |z| = −y sgn(z) + 2(y − z){I(0 < z < y) − I(y < z < 0)}, z 6= 0

(see Davis and Dunsmuir 1997), we have

S∗
n(u) = n−1/2

n∑

t=ν

uτ Żt(θ
0)sgn{Zt(θ

0)}

+ 2

n∑

t=ν

{−n−1/2uτ Żt(θ
0) − Zt(θ

0)}I{0 < Zt(θ
0) < −n−1/2uτ Żt(θ

0)}

+ 2
n∑

t=ν

{n−1/2uτ Żt(θ
0) + Zt(θ

0)}I{0 > Zt(θ
0) > −n−1/2uτ Żt(θ

0)}.

Write the three terms on the right-hand side of the above expression as, respectively,

I1, I2 and I3. Then (C.6) follows immediately from the following three assertions:

(i) I2 → γf(0)uτE[Żt(θ
0)Żt(θ

0)τI{uτ Żt(θ
0) < 0}|Zt(θ

0) = 0]u in prob-

ability,

(ii) I3 → γf(0)uτE[Żt(θ
0)Żt(θ

0)τI{uτ Żt(θ
0) > 0}|Zt(θ

0) = 0]u in

probability, and

(iii) I1 ≡ uτNn → N(0,uτΣu) in distribution.

To simplify notion, we write Zt = Zt(θ
0) and Żt = Żt(θ

0). The proofs for (i)

and (ii) are similar. We only show (i). To this end, let ψ(w, z) be the joint density

function of (uτ Żt, Zt), and ψ(z|w) and ψ(w) be the corresponding conditional and

marginal densities. A simple Taylor expansion of ψ(z|w) around z = 0 leads to

EI2 = 2(n − ν + 1)

∫

0<z<−w/
√

n
(−w/√n− z)ψ(w, z)dwdz

= 2(n − ν + 1)

∫ 0

−∞
ψ(w)dw

∫ −w/
√

n

0
(−w/√n− z)ψ(0|w)dz +Rn

=

∫ 0

−∞
w2ψ(0, w)dw + o(1) +Rn

= γf(0)E{(uτ Żt)
2I(uτ Żt < 0)|Zt = 0} + o(1) +Rn, (C.7)

where Rn, due to condition (A4), may be bounded as follows:

|Rn| ≤ Cn

∫ 0

−∞
ϕ(w)dw

∫ −w/
√

n

0
(w/

√
n+ z)zdz = C1E{|uτ Żt|3}/

√
n = O(1/

√
n),
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see (3.1). In the above expression, C and C1 are some positive constants. This,

together with (C.7), implies

EI2 → γf(0)E{(uτ Żt)
2I(uτ Żt < 0)|Zt = 0}. (C.8)

Similarly to (C.8), we may show that for any k ≥ 2,

E
∣∣(n−1/2uτ Żt + Zt)I(0 < Zt < −n−1/2uτ Żt)

∣∣k = O
(
n−(k+1)/2

)
. (C.9)

To show Var(I2) → 0, we employ the small-block and large-block arguments as

follows. We partition {ν, ν + 1, · · · , n} into 2kn + 1 subsets with large blocks of size

ln, small blocks of size sn, and the last remaining set of size n− ν + 1− kn(ln + sn),

where kn = [(n − ν + 1)/(ln + sn)]. We write accordingly

I2 =

kn∑

j=1

Aj +

kn∑

j=1

Bj +R, (C.10)

where

Aj =

jln+(j−1)sn+ν∑

t=(j−1)(ln+sn)+ν

(n−1/2uτ Żt + Zt)I(0 < Zt < −n−1/2uτ Żt),

Bj =

j(ln+sn)+ν∑

t=jln+(j−1)sn+ν

(n−1/2uτ Żt + Zt)I(0 < Zt < −n−1/2uτ Żt).

Put

ln =
[√

n/ log n
]
, sn =

[
n1/4/ log n

]
. (C.11)

Then kn = O
(√
n log n

)
. Now it follows from (C.9) that

E
( kn∑

j=1

Bj

)2
≤ C

k2
ns

2
n

n3/2
→ 0,

and E(R2) ≤ Cl2n/n
3/2 → 0. On the other hand, it follows from proposition 2.5(i)

of Fan and Yao (2003) that

Var
( kn∑

j=1

Aj

)2
≤ knE(A2

1) + 2

kn−1∑

i=1

(kn − i)
∣∣Cov(A1, Ai+1)

∣∣ (C.12)

≤ C
knl

2
n

n3/2
+ 16kn

kn−1∑

i=1

α(isn)1/2(EA4
1)

1/2 ≤ C
knl

2
n

n3/2
+ C

knl
2
n

n5/4

kn−1∑

i=1

α(isn)1/2

≤ C
knl

2
n

n3/2
+ C

k2
nl

2
n

n5/4
α(sn)1/2 → 0. (C.13)
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The limit on the right hand side of the above expression is ensured by condition (A1).

Therefore we conclude that Var(I2) → 0, which, together with (C.8), imply (i).

To show (iii), we note the fact that for any given u ∈ R2p+q+1, the inequality

E(I1) + E(I2 + I3) ≥ 0 (C.14)

holds for all large values of n; see the definition of S∗(u) and condition (A2). Note

that E(I2+I3) → γf(0)uτΣ0u ≥ 0 (see (C.8)), andE(I1) = uτ [n1/2E(Żtsgn(Zt)}]{1+
o(1)}. Hence n1/2E{Żtsgn(Zt)} → 0, in order that (C.14) holds for all large values

of n with any given u. Now we have proved that E(I1) → 0.

We apply the decomposition (C.10) for I1, that is,

I1 =

kn∑

j=1

(A′
j +B′

j) +R′,

with

A′
j =

uτ

n1/2

jln+(j−1)sn+ν∑

t=(j−1)(ln+sn)+ν

Żt sgn(Zt), B′
j =

uτ

n1/2

j(ln+sn)+ν∑

t=jln+(j−1)sn+ν

Żt sgn(Zt),

and where ln and sn are specified in (C.11). Recall Żt = −Ut(θ
0)/{γξt,γ(θ0)}.

Based on (3.1), we may show in the same manner as for (C.12) that

Var
( kn∑

j=1

B′
j

)
= O

{kns
2
n

n
+
kns

2
n

n

kn−1∑

j=1

α(jln)1/2
}

= O
{kns

2
n

n
+
k2

ns
2
n

n
α(ln)1/2

}
→ 0.

It is easy to see that Var(R′) = O(l2n/n) → 0. Hence

I1 =

kn∑

j=1

A′
j + op(1) ≡ Qn + op(1). (C.15)

Now

Var(Qn) = knVar(A′
1) + 2

kn−1∑

j=1

(kn − j)Cov(A′
1, A

′
1+j).

Note that

knVar(A′
1) =

knln
n

uτE(Ż1Ż
τ
1 )u +

2knln
n

uτ
ln−1∑

j=1

(1 − j/ln)E{Ż1Ż
τ
1+jsgn(Z1Zj+1)}u

→ uτE(Ż1Ż
τ
1 )u + 2uτ

∞∑

j=1

E{Ż1Żj+1sgn(Z1Z1+j)}u = uτΣu.
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See, for example, Theorem 2.20(i) of Fan and Yao (2003). On the other hand, it

follows from proposition 2.5(i) of Fan and Yao (2003) and condition (A1) that

kn−1∑

j=1

(kn − j)|Cov(A′
1, A

′
1+j)| ≤ C

k2
nl

2
n

n
α(sn)1/2 → 0.

Hence we have proved that

Var(Qn) → uτΣu. (C.16)

Now we employ a truncation argument to establish the asymptotic normality for

Qn. Write

ŻL
t = ŻtI(||Żt|| ≤ L), ŻR

t = ŻtI(||Żt|| > L).

Let QL
n and QR

n be defined in the same manner as Qn with Żt replaced by, re-

spectively, ŻL
t and ŻR

t . Similar to the arguments leading to (C.16), we may show

that

Var(QL
n) → uτΣLu, Var(QR

n ) → uτΣRu,

where ΣL and ΣR are defined in the same manner as Σ with Żt replaced by, re-

spectively, ŻtI(||Żt|| ≤ L) and ŻtI(||Żt|| > L). It is easy to see that as L → ∞,

ΣL → Σ, and therefore ΣR → 0. Put

Mn =
∣∣E exp(itQn) − exp(−t2uτΣu/2)

∣∣,

where i =
√
−1. It is easy to see that

Mn ≤ E
∣∣ exp(itQL

n){exp(itQR
n ) − 1}

∣∣ +
∣∣E exp(itQL

n) −
kn∏

j=1

E exp(itAL
j )

∣∣

+
∣∣

kn∏

j=1

E exp(itAL
j ) − exp(−t2uτΣLu/2)

∣∣

+
∣∣ exp(−t2uτΣLu/2) − exp(−t2uτΣu/2)

∣∣, (C.17)

where AL
j is defined in the same manner as A′

j with Zt replaced by ZL
t . For any

given ǫ > 0, the first term on the right-hand side of (C.17) is bounded by

E
∣∣ exp(itQR

n ) − 1
∣∣ = O

{
Var(QR

n )
}

(as n→ ∞),

which may be smaller than ǫ/2 for all sufficiently large n as long as we choose

L = L(ǫ) large enough; see, for example, section 2.7.7 of Fan and Yao (2003), and
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Masry and Fan (1997). The last term is also smaller than ǫ/2 by choosing L large.

By proposition 2.6 of Fan and Yao (2003), the second term on the right hand side

of (C.17) is bounded by 16knα(sn −ν), which converges to 0 due to condition (A.1).

To prove that the third term on the right hand side of (C.17) converges to 0, we

may prove an equivalent limit:

kn∑

j=1

AL
j → N(0,uτΣLu/2)

in distribution while treating {AL
j } as a sequence of independent random variables.

The latter is implied by the Lindeberg condition

kn∑

j=1

E{(AL
j )2I(|AL

j | > ωuτΣLu)} → 0,

for any ω > 0; see, for example, Chow and Teicher (1997, p.315). Note |AL
j | ≤

(ln/n
1/2)(||u||2 + L2) ≤ 2(||u||2 + L2)/ log n → 0. Hence (|AL

j | > ωuτΣLu) is an

empty set for all large n. Therefore the limit above holds. We have shown that

Qn → N(0,uτΣu). Now assertion (iii) follows from (C.15). This completes the

proof of Lemma 1.

Lemma 2. For any compact set K ⊂ R2p+q+1, sup
u∈K |Sn(u) − S∗

n(u)| → 0 in

probability.

Proof. Let S∗∗
n (u) =

∑
ν≤t≤n{|Zt(θ

0)+n−1/2uτ Żt(θ
0)+ 1

2nuτ Z̈t(θ
0)u| − |Zt(θ

0)|},
where the Hessian matrix

Z̈t(θ) =
1

γ

{Ut(θ)Ut(θ)τ

ξt,γ(θ)2
− U̇t(θ)

ξt,γ(θ)

}
,

and U̇t(θ) = ∂Ut(θ)
∂θτ . It follows from (3.1) that for θ ∈ Θ all the elements of

Ut(θ)Ut(θ)τ/ξt,γ(θ)2 have finite moments. In the same vein, we may show that

all the elements of U̇t(θ)/ξt,γ(θ) also have finite moments. Note that

|Sn(u) − S∗∗
n (u)| =

n∑

t=ν

∣∣|Zt(θ
0) + n−1/2uτ Żt(θ

0) +
1

2n
uτ Z̈t(θ

0)u| − |Zt(θ
0 + n−1/2u)|

∣∣

≤
∣∣∣uτ

{ 1

2n

n∑

t=ν

{Z̈t(θ
0) − Z̈t(θ

∗)}
}
u

∣∣∣,
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where θ⋆ is between θ0 and θ0 + n−1/2u. Hence Sn(u) − S∗∗
n (u) → 0 in probability

uniformly on compact sets. Similar to Lemma 1, we may show that S∗
n(u)−S∗∗

n (u) →
0 in probability uniformly on compact sets. Hence Lemma 2 holds.

Lemma 3. Sn(u) → S(u) in distribution in C(R2p+q+1).

Proof. For any small ǫ > 0, let m0 = − log(ǫ/2). Then 2−m < ǫ/2 for any m ≥ m0.

Lemma 2 implies that for any ǫ0 > 0, it holds P{pm0
(Sn − S∗

n) ≥ ǫ/2} < ǫ0 for all

sufficiently large values of n. Note that

d(Sn, S
∗
n) ≤ max

1≤m≤m0

2−mpm(Sn − S∗
n)

1 + pm(Sn − S∗
n)

+ max
m>m0

2−mpm(Sn − S∗
n)

1 + pm(Sn − S∗
n)

≤ max
1≤m≤m0

pm(Sn − S∗
n) +

ǫ

2
≤ pm0

(Sn − S∗
n) +

ǫ

2
.

Hence it holds that for all sufficiently large n,

P{d(Sn, S
∗
n) > ǫ} ≤ P{pm0

(Sn − S∗
n) > ǫ/2} < ǫ0.

Therefore d(Sn, S
∗
n) → 0 in probability. This together with Lemma 1 imply that

Sn(u) → S(u) in distribution in C(R2p+q+1).

Proof of Theorem 1. It follows from Lemma 3 and Skorokhod’s representation

theorem (Pollard 1984, p.71-73) that there exist random functions Tn and T in

C(R2p+q+1) for which d(Tn, T ) → 0 almost surely, while Tn has the same distribution

of Sn, and T has the same distribution of S. Hence there exists a set Ω with

P (Ω) = 1, and for any ω ∈ Ω,

sup
u∈K

|Tn(u, ω) − T (u, ω)| → 0 (C.18)

for any compact set K. Note S(u, ω) is convex in u and it has unique minimizer

η = −{γf(0)}−1Σ−1
0 N . Denote by η∗ the minimizer of T (u). Then η∗ and η have

the same distribution. For any given positive random variable M , let

η∗
n = arg min

||u−η∗||≤M
T ∗

n(u).

We now show that η∗
n(ω) → η∗(ω) for any ω ∈ Ω. Suppose it does not hold. Then

there exists a subsequence {n′} such that η∗
n′(ω) → η′(ω) 6= η∗(ω). Note that

0 ≤ Tn′{η∗(ω), ω} − Tn′{η∗
n′(ω), ω} = Tn′{η∗(ω), ω} − T{η∗(ω), ω}

+ T{η∗(ω), ω} − T{η∗
n′(ω), ω} + T{η∗

n′(ω), ω} − Tn′{η∗
n′(ω), ω}

= T{η∗(ω), ω} − T{η∗
n′(ω), ω} + o(1) → T{η∗(ω), ω} − T{η′(ω), ω} < 0.
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This contradiction shows that η∗
n(ω) → η∗(ω) for any ω ∈ Ω. Note that the two

inequalities in the above expression follow from the definitions of η∗
n and η∗, the

limits are guaranteed by (C.18). Define

ηn = arg min
||u−η||≤M

Sn(u).

Then ηn → η in distribution. Therefore the required CLT holds.

Note in all the proofs so far, we assume that we observe Xt for all t ≤ 0. Below

we show that the same conclusion holds even with the truncation Xt ≡ 0 for all

t ≤ 0. To this end, it suffices to show that

sup
θ∈Θ0

n∑

t=ν

∣∣∣ log
ζt,γ(θ)

ξt,γ(θ)

∣∣∣ = op(1),

where Θ0 ⊂ Θ is a ball with a small but fixed radius and centred at θ0, and ζt,γ(θ)

is defined as the same as ξt,γ(θ) but with Xt replaced by 0 for all t ≤ 0. Hence we

only need to show that

sup
θ∈Θ0

n∑

t=ν

p∑

i=1

bi

∞∑

k=1

∑

1≤j1,··· ,jk≤q

j1+···+jk≥t−i

aj1 · · · ajk
|Xt−i−j1−···−jk

|γ{1−disgn(εt−i−j1−···−jk
)}γ = op(1).

This is true because of E|Xt|γ <∞ and the fact that for any δ > 0 and 1 ≤ i ≤ p,

P
{

sup
θ∈Θ0

n∑

t=ν

∞∑

k=1

∑

1≤j1,··· ,jk≤q

j1+···+jk≥t−i

aj1 · · · ajk
|Xt−i−j1−···−jk

|γ{1 − disgn(εt−i−j1−···−jk
)}γ > δ

}

≤ Cn sup
θ∈Θ0

∞∑

k=1

∑

1≤j1,··· ,jk≤q

j1+···+jk≥ν−i

aj1 · · · ajk
≤ Cn sup

θ∈Θ0

∑

k≥(ν−p)/q

( q∑

j=1

aj

)k → 0.

The limit above is guaranteed by (A5). This completes the proof for theorem 1.
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Table 1: LAD Estimation Results of the Volatility Functions

γ ĉ× 104 â1 b̂1 d̂1 R(γ)

0.9 0.9146 0.9345 0.0464 0.4961 0.0138

S&P (0.2417) (0.0086) (0.0062) (0.0967)

500 2.0 0.0032 0.9104 0.0265 0.2442 0.0159

(0.0008) (0.0113) ( 0.0041 ) (0.0687)

1.2 0.7239 0.9211 0.0398 0.2558 0.0077

IBM (0.2693) (0.0174) (0.0087) (0.1179)

2.0 0.0097 0.9376 0.0178 0.1811 0.0094

(0.0040) (0.0133) (0.0041) (0.0936)

Note: Standard errors in parentheses were calculated as suggested in Remark

2 in Section 3.1. Newey-West’s (1987) Bartlett kernel method was used to

estimate Σ with bandwidth LT = T 1/3. The matrix Σ0 was estimated by

the Nadaraya-Watson kernel regression with Gaussian kernel and bandwidth

h = 0.05 × Range(Zt(θ̂
0

)). The value f(0) was estimated using kernel density

with Gaussian kernel and the simple reference bandwidth (see, for example,

(5.9) of Fan and Yao 2003).
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Figure 1: Time series plots of (a) S&P500 and (b) IBM stock daily return. (c)
and (d) are the auto-correlations of their squared returns, and (e) and (f) are auto-
correlation of their absolute returns.
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Figure 2: Plots of R(γ) functions of (a) S&P500 data and (b) IBM data.
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Figure 3: Estimated values of power parameter γ using Gaussian qML and full-LAD
for t3, t4 and normal errors when true value is 1
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