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Abstract

We propose an adaptive varying-coefficient spatio-temporal model for data observed irreg-

ularly over space and regularly in time. The model is capable of catching possible nonlinearity

(both in space and in time) and nonstationarity (in space) by allowing the autoregressive co-

efficients to vary with both spatial location and an unknown index variable. We suggest a

two-step procedure to estimate both the coefficient functions and the index variable, which

is readily implemented and can be computed even for large spatio-temporal data sets. Our

theoretical results indicate that in the presence of the so-called nugget effect, the errors in

the estimation may be reduced via the spatial smoothing – the second step in the proposed

estimation procedure. The simulation results reinforce this finding. As an illustration, we

apply the methodology to a data set of sea level pressure in the North Sea.

Key words: β-mixing, kernel smoothing, local linear regression, nugget effect, spatial smoothing,

unilateral order.
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1 Introduction

The wide availability of data observed over time and space, in particular through inexpensive

geographical information systems, has stimulated many studies in a variety of disciplines such as

environmental science, epidemiology, political science, demography, economics and geography. In

these studies, the geographical areas (e.g. counties, census tracts) are taken as units of analysis,

and specific statistical methods have been developed to deal with the spatial structure reflected in

the distribution of the dependent variable; see e.g. Ripley (1981), Anselin (1988), Cressie (1993),

Guyon (1995), Stein (1999) and Diggle (2003) for systematic reviews of these and related topics.

In this paper we are concerned with spatio-temporal data which are measured or transformed

to a continuous scale and observed irregularly over space but regularly over time. Data sets of this

form exist extensively. It may be environmental monitoring stations located irregularly in some

region, but with measurements taken daily; see for instance Fotheringham et al. (1998), Brunsdon

et al. (2001), Fuentes (2001), Zhang et al. (2003). Applications in spatial disease modelling may

be found in Knorr-Held (2000), Lagazio et al. (2001).

Our model is of the form

Yt(s) = a {s, α(s)τXt(s)} + b1{s, α(s)τXt(s)}
τXt(s) + εt(s), (1.1)

where Yt(s) is the spatio-temporal variable of interest, and t is time, s = (u, v) ∈ S ⊂ R
2 is a

spatial location. Moreover, a(s, z) and b1(s, z) are unknown scalar and d×1 functions, α(s) is an

unknown d× 1 index vector, {εt(s)} is a noise process which, for each fixed s, forms a sequence of

i.i.d. random variables over time, and Xt(s) = {Xt1(s), · · · , Xtd(s)}
τ consists of time-lagged values

of Yt(·) in a neighbourhood of s and, possibly, some exogenous variables. Throughout the paper

we use τ to denote the transpose of a vector or a matrix. We let both the regression coefficient b1

and the intercept a depend on the location s, as well as on the index variable α(s)τXt(s), to catch

possible nonstationary features over space. Model (1.1) is unilateral in time and, therefore, it can

be easily simulated in a Monte Carlo study. Furthermore it is readily applicable to model practical

problems. Those features make the model radically different from purely spatial autoregressive

models (Yao and Brockwell 2006). Also note that at a given location s, the coefficient functions

are univariate functions of α(s)τXt(s). Therefore only one-dimensional smoothing is required in

estimating those coefficients. (See Section 2.2.1 below).

Model (1.1) is proposed to model nonlinear and nonstationary spatial data in a flexible manner.

Note that the literature on spatial processes is overwhelmingly dominated by linear models. On
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the other hand, many practical data exhibit clearly nonlinear and nonstationary features. For

example, in our analysis of the daily mean sea level pressure (MSLP) readings in Section 5, the

original time series at each location is non-linear. Figure 3 below displays the plots for the MSLP

data at five randomly selected locations. There are roughly three high pressure periods within

the time span concerned. In the middle column of Figure 3, the correlation structure of the

differenced series in the high pressure periods is different from that of the low pressure periods

and the transition periods. This naturally calls for a nonlinear model with varying coefficients

depending also on the past values of the variables from the neighbourhood locations. Such a

dynamics cannot result in a Gaussian marginal distribution, as indicated in the plots on the right

column in Figure 3. The estimated densities are more peaked than the normal distribution, the

accumulation of density mass around zero being due to the high pressure activity.

Model (1.1) is a spatial extension of the adaptive varying-coefficient linear model of Fan

et al. (2003), see also Xia and Li (1999). Due to the spatial non-stationarity of the model, we adopt

an estimation strategy involving two steps, which also facilitates the parallel computation over

different locations. First, for each fixed location s, we estimate the varying coefficient functions

a and b1 and the index vector α based on the observations at the location s only. This is a

time series estimation problem. Our estimation is based on local linear regression. The second

step is to apply spatial smoothing to pool together the information from neighbourhood locations.

Asymptotic properties of our estimators have been established, which indicate that in the presence

of the so-called ‘nugget effect’, the spatial smoothing will reduce the estimation errors. (See also

Lu et al. 2008). Our simulation study reinforces this finding.

As far as we are aware, this is the first paper to address spatio-temporal nonlinear dependence

structures with spatial nonstationarity and non-Gaussian distributions. Earlier work on nonlinear

and/or non-Gaussian spatial models includes, among others, Matheron (1976), Rivoirard (1994),

Chilès and Delfiner (1999, Chapter 6), Hallin et al. (2004a, 2004b), Biau and Cadre (2004), Gao

et al. (2006), Lu et al. (2007).

The structure of the paper is as follows. We introduce our methodology in Section 2. Illus-

tration with simulated examples are reported in Section 3. In Section 5 there is an application

to a data set of sea level pressure in the North Sea, for which the index variable may be viewed

as an analogue of a spatial principal component used in the so-called EOF analysis for climate

time series. The asymptotic properties are reported in Section 4, with the regularity conditions

deferred to an appendix.
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2 Methodology

2.1 Identification

Model (1.1) is not identifiable. In fact, it may be equivalently expressed as

Yt(s) = [a{s, α(s)τXt(s)} + κ{s, α(s)τXt(s)}α(s)τXt(s)]

+ [b1{s, α(s)τXt(s)} − κ{s, α(s)τXt(s)}α(s)]τ Xt(s) + εt(s), (2.1)

for any real-valued function κ(·). To overcome this problem, we may assume that the last com-

ponent of α(s) is non-zero, the first non-zero component of α(s) is positive, and ||α(s)||2 = 1.

Based on those assumptions, Fan et al. (2003) impose the condition that the last component of

b1 is 0 in (1.1). Put b1 = (bτ , 0)τ . This effectively reduces (1.1) to the form

Yt(s) = a{s, α(s)τXt(s)} + [b{s, α(s)τXt(s)}]
τ X̆t(s) + εt(s), (2.2)

where X̆t(s) = {Xt,1(s) · · · , Xt,d−1(s)}
τ . In fact, α, a and b in (2.2) are now identifiable as

long as the regression function E{Yt(s)|Xt(s) = x} is not of the form ατxβτx + γτx + c, where

β, γ ∈ R
d, c ∈ R

1 are constants only related to s; see Theorem 1(b) of Fan et al. (2003). Note

that (2.1) reduces to (2.2) by setting κ(s, z) = b1d/αd, where b1j and αj denote, respectively, the

j-th component of b1(s, z) and α(s).

A disadvantage of the form (2.2) is that all the components of Xt(s) are not on an equal footing,

which may cause difficulties in model interpretation. This may be particularly problematic when

Xt(s) consists of neighbour variables of Yt(s). One possible remedy is to impose an orthogonal

constraint in the model instead, that is

Yt(s) = a⋆{s, α(s)τXt(s)} + b1{s, α(s)τXt(s)}
τXt(s) + εt(s), α(s)τb1(s, z) = 0. (2.3)

In fact such an orthogonal representation may be obtained from (2.2) with

a⋆(s, z) = a(s, z) + α(s)(b(s, z)τ , 0)z and b1(s, z) = (b(s, z)τ , 0)τ − α(s)(b(s, z)τ , 0)α(s) (2.4)

while α(s) remains unchanged. Note the condition α(s)τb1(s, z) = 0 is fulfilled as ||α(s)||2 = 1.

Furthermore, (2.3) is an equivalent representation of (2.2), and it is identifiable as long as (2.2)

is identifiable. To see this, we first note that (2.2) may be deduced from (2.3) by letting

a(s, z) = a⋆(s, z) +
b1d

αd
z and b(s, z) = (b11, · · · , b1,d−1)

τ −
b1d

αd
(α1, · · · , αd−1)

τ . (2.5)
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This is effectively to write the first equation in (2.3) in the form of (2.1) with (a, κ) replaced by

(a⋆, b1d/αd). Moreover, as α(s)τb1(s, z) = 0 and ||α(s)||2 = 1, it follows from the second equality

in (2.5) that

(b(s, z)τ , 0)α(s) =
d−1∑

j=1

αjb1j −
b1d

αd

d−1∑

j=1

α2
j = −αdb1d −

b1d

αd
(1 − α2

d) = −
b1d

αd
.

Hence the d-component b1d of b1(s, z) is identifiable when model (2.2) is identifiable. This,

together with (2.5), implies that all the other components of b1(s, z) as well as a⋆(s, z) are also

identifiable.

Since the orthogonal constraint ατb1 = 0 in (2.3) poses further technical complication in

inference, in the sequel we proceed with the identifiable model (2.2), assuming that the first non-

zero element of α(s) is positive. Only for the real data example in section 5, we present the fitted

model in the form (2.3) via the transformation (2.4).

2.2 Estimation

With the observations {Yt(si), Xt(si)} for t = 1, · · · , T and i = 1, · · · , N , we estimate a,b and

α in model (2.2) in two steps: (i) For each fixed s = si, we estimate them using the time series

data {Yt(s),Xt(s), t = 1, · · · , T} only. (ii) By pooling the information from neighbour locations

via spatial smoothing, we improve the estimators obtained in (i). The second step also facilitates

the estimation at a location s with no direct observations (i.e. s 6= si for 1 ≤ i ≤ N).

2.2.1 Time Series Estimation

For a fixed s, we estimate the direction α(s) and the coefficient functions a(s, ·) and b(s, ·). Fan

et al. (2003) proposed a backfitting algorithm to solve this estimation problem. We argue that

with modern computer power, the problem can be dealt with in a more direct manner even for

moderately large d such as d between 10 and 20. Note that once the direction α(s) is fixed, the

estimators for a and b may be obtained by one-dimensional smoothing over α(s)τXt(s) using, for

example, the standard kernel regression methods.

We consider the estimation for α(s) first. If the coefficient functions a and b were known, we

may estimate α by solving a nonlinear least squares problem; see (2.7) below. Since a and b are

unknown, we may plug in their appropriate estimators instead. By doing so, we will have used

the same observations twice. Note that those estimators themselves are functions of α. Hence a

cross-validation approach will be employed to mitigate the effect of the double use of the same
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data set. For any α(s), define the leave-one-out estimators ǎ−t(s, z) = ǎ and b̌−t(s, z) = b̌, where

(ǎ, b̌) minimises

1

T − 1

∑

1≤j≤T

j 6=t

{
Yj(s) − a − bτ X̆j(s)

}2
Kh{α

τ (s)Xj(s) − z}, (2.6)

where Kh(·) = h−1K(·/h), K(·) is a kernel function and h > 0 is a bandwidth. Then we choose

α̂(s) and h which minimise

R(α, h) =
1

T

T∑

t=1

[
Yt(s) − ǎ−t{s, α

τXt(s)} − b̌−t{s, α
τXt(s)}

τ X̆t(s)
]2

w{ατXt(s)}, (2.7)

where w(·) is a weight function which controls the boundary effect. In the above definition for the

estimator α̂(s), we used the Nadaraya-Watson estimators ǎ and b̌ in (2.6) to keep the function

R(α, h) simple. The asymptotic property of the estimator α̂(s) has been derived based on the

results of Lu et al. (2007); see (4.11) in section 4 below. The minimisation of R(·) may be carried

out using, for example, the downhill simplex method (section 10.4 of Press et al. 1992).

Once α(s) = α̂(s) is known, we may estimate a and b using univariate local linear regression

estimation. To this end, let (â, b̂, ĉ, d̂) be the minimisers of

1

T

T∑

j=1

[
Yj(s) − a − c(Zj − z) − {b − d(Zj − z)}τX̆j(s)

]2
Kh̄(Zj − z), (2.8)

where Zt = α̂(s)τXt(s), and a different bandwidth h̄ from the h in (2.6) will be used. Note that

both h and h̄ are depending on T . The estimators for the functions a(s, ·) and b(s, ·) at z are

defined as â(s, z) = â and b̂(s, z) = b̂.

2.2.2 Spatial smoothing

Although we do not assume stationarity over space, improvement in estimation of a,b and α over

s may be gained by extracting information from neighbourhood locations, due to the continuity

of the functions concerned. Zhang et al. (2003) showed for the model they considered that it

was indeed the case in the presence of the nugget effect (Cressie, 1993, § 2.3.1). See also Lu

et al. (2008). Furthermore, the spatial smoothing provides a way to extrapolate our estimators

to the locations at which observations are not available.

Let W (·) be a kernel function defined on R
2. Put Wh̃(s) = h̃−2W (s/h̃), where h̃ > 0 is a

bandwidth depending on the size N of spatial samples. The bandwidth h̃ is different from both
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h and h̄ in the last subsection. Based on the estimators obtained above for each of the locations

s1, · · · , sN , the spatially smoothed estimators at the location s0 are defined as

α̃(s0) =
N∑

j=1

α̂(sj)Wh̃(sj − s0)
/ N∑

j=1

Wh̃(sj − s0), (2.9)

ã(s0, z) =
N∑

j=1

â(sj , z)Wh̃(sj − s0)
/ N∑

j=1

Wh̃(sj − s0), (2.10)

b̃(s0, z) =
N∑

j=1

b̂(sj , z)Wh̃(sj − s0)
/ N∑

j=1

Wh̃(sj − s0). (2.11)

2.3 Bandwidth selection

Fan et al. (2003) outlined an empirical rule for selecting a bandwidth in fitting non-spatial varying-

coefficient regression models. Below we adapt that idea to determining bandwidths h̄ in (2.8) and

h̃ in (2.9) – (2.11). Note that the bandwidth h in (2.7) is selected, together with α̂(s), by cross-

validation.

We first deal with the selection of h̄ in (2.8). Let

CV1(h̄) =
1

T

T∑

t=1

[
Yt(s) − ǎ−t,h̄{s, α̂

τXt(s)} − b̌−t,h̄{s, α̂
τXt(s)}

τ X̆t(s)
]2

w{α̂τXt(s)}, (2.12)

where ǎ−t,h̄{s, z} and b̌−t,h̄{s, z} are the leave-one-out estimators defined as in (2.8) but with the

term of j = t removed from the sum. Under appropriate regularity conditions (c.f. Lu, Tjøstheim

and Yao, 2007), it holds that

CV1(h̄) = c0 + c1h̄
4 +

c2

T h̄
+ oP (h̄4 + T−1h̄−1).

Thus, up to first order asymptotics, the optimal bandwidth is h̄opt = (c2/4Tc1)
1/5. In practice,

the coefficients c0, c1 and c2 will be estimated from solving the least squares problem

min
c0,c1,c2

q∑

k=1

{
CV1k − c0 − c1h̄

4
k − c2/(T h̄k)

}2
, (2.13)

where CV1k = CV1(h̄k) obtained from (2.12), and h̄1, · · · , h̄q are q prescribed bandwidth values.

We let h̄ = (ĉ2/4T ĉ1)
1/5 when both ĉ1 and ĉ2 are positive. In the likely event that one of

them is nonpositive, we let h̄ = arg min1≤k≤q CV1(h̄k). This bandwidth selection procedure is

computationally efficient as q is moderately small, i.e. we only need to compute q CV-values; see

Remark 2(c) in Fan et al. (2003). Furthermore the least squares estimation (2.13) also serves as

a smoother for the CV bandwidth estimates. Also see Ruppert (1997).
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The bandwidth h̃ in (2.9) – (2.11) may be determined in the same manner. For example, for

the estimator (2.9), the CV function is defined as

CV2(h̃) =
1

N

N∑

i=1

[
α̂(si) − α̃

−si,h̃
(si)

]2
,

which admits the asymptotic expansion

CV2(h̃) = d0 + d1h̃
4 +

d2

Nh̃2
+ oP (h̃4 + N−1h̃−2).

The resulting bandwidth is of the form h̃ = {d̂2/(2Nd̂1)}
1/6.

The CV bandwidth selection has been extensively studied in the literature. In the sense of

mean integrated squared error (MISE) the relative error of a CV-bandwidth is higher than that

of, for example, a plug-in method of Ruppert et al. (1995). However there is a growing body of

opinion (e.g., Mammem, 1990; Jones, 1991; Härdle & Vieu, 1992; and Loader, 1999) maintaining

that the selection of bandwidth should be targeted at estimating the unknown function instead

of the ideal bandwidth itself. Therefore, one should seek a bandwidth minimising the integrated

squared error (ISE) rather than the MISE, i.e., focusing on loss rather than risk. From this point

of view, the CV-bandwidth performs reasonably well (Hall and Johnstone, 1992, page 479). In

time series context, the argument for why cross-validation is an appropriate selection method for

the bandwidth can be found in Kim and Cox (1996), Quintela-del-Ŕıo (1996) and Xia and Li

(2002), among others.

3 A simulated example

Consider a spatio-temporal process

Yt+1(sij) = a{sij , Zt(sij)} + b1{sij , Zt(sij)}Yt(sij) + b2{sij , Zt(sij)}Xt(sij) + 0.1εt(sij)

defined on the grid points sij = (ui, vj), where

a(sij , z) = 3exp
{ −2z2

1 + 7(ui + vj)

}
, b1(sij , z) = 0.7 sin{7π(ui + vj)}, b2(sij , z) = 0.8z,

Zt(sij) =
1

3
{2Yt(sij) + 2Xt(sij) + Xt(si,j+1))}, Xt(sij) =

2

9

1∑

k=−1

1∑

ℓ=−1

et(si+k,j+ℓ),

and all εt(sij) and et(sij) are independent N(0, 1) random variables. Observations were taken

over N = 64 grid points {(ui, vj), 1 ≤ i, j ≤ 8}, where ui = vi = (i − 1)/8 with T = 60 or

7



100. For each given s = sij , we estimated the curves a(s, ·), b1(s, ·) and b2(s, ·) on the 11 grid

points zℓ = −0.5 + 0.1(ℓ − 1) (ℓ = 1, · · · , 11), as well as the index α(s) = (α1(s), α2(s), α3(s))
τ ≡

(2/3, 2/3, 1/3)τ , which is independent of s. The accuracy of the estimation is measured by the

the squared estimation errors:

SEE{α̂j(s)} = {α̂j(s) − αj}
2, j = 1, 2, 3,

SEE{â(s)} =
1

11

11∑

ℓ=1

{â(s, zℓ) − a(s, zℓ)}
2,

SEE{b̂k(s)} =
1

11

11∑

ℓ=1

{b̂k(s, zℓ) − bk(s, zℓ)}
2, k = 1, 2.

For each setting, we replicated the experiments 10 times. The SEE over the 64 grid points are

collectively displayed as boxplots in Figure 1 for T = 60, and in Figure 2 for T = 100 (i.e. each

of the boxplots is based on 10 × 64 = 640 SEE values). It is clear that the estimates defined in

section 2.2.1 are less accurate than those defined in section 2.2.2. In fact the gain from the spatial

smoothing is substantial. The plots also indicate that the estimation becomes more accurate when

T increases.

The improvement from the spatial smoothing is due to the fact that the functions to be es-

timated are continuous in s. If we view the observations {Yt(sij), Xt(sij)} as a sample from a

spatio-temporal process with s varying continuously over space, the sample paths of such an un-

derlying process are discontinuous over space, as both εt(s) and et(s) are independent at different

locations no matter how close they are. The spatial smoothing pulls together the information on

the mean function from neighbour locations. It is intuitively clear that there would not be any

gains from such a ‘local pulling’ if the sample realisations of both Xt(·) and εt(·) are continuous

in s. The improvement may be obtained when the observations pulled together bring in different

information, which is only possible when the sample realisations are discontinuous. The theory

developed in next section indicates that the spatial smoothing may indeed improve the estimation

when the ‘nugget effect’ is present, which results in the discontinuity in sample realisations as a

function of s. See also Lu et al. (2008) for more detailed discussions regarding the asymptotic

theory with or without nugget effect.
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Figure 1: Simulation with T = 60 – Boxplots for the SEEs of the three components of α (Panel
A), and the varying coefficient functions (Panel B): (a) a(·), (b) b1(·), (c) b2(·). The plots for the
estimates defined in section 2.2.1 are labelled as ‘Non-SS’, and the plots for the spatial smoothing
estimates are labelled as ‘SS’.
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Figure 2: Simulation with T = 100 – Boxplots for the SEEs of the three components of α (Panel
A), and the varying coefficient functions (Panel B): (a) a(·), (b) b1(·), (c) b2(·). The plots for the
estimates defined in section 2.2.1 are labelled as ‘Non-SS’, and the plots for the spatial smoothing
estimates are labelled as ‘SS’.
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4 Asymptotic properties

The improvements due to the spatial smoothing have been illustrated via simulation in Section 3.

In this section, we derive the asymptotic bias and variance of the estimators (2.9) – (2.11), which

also show the benefits from spatial smoothing in the presence of the so-called nugget effect. Note

that those asymptotic approximations are derived without the stationarity over space. On the

other hand, the asymptotic normality for the time series estimators defined in Section 2.2.1 may

be derived from Theorems 3.1 and 3.2 of Lu et al. (2007). We introduce some notation first.

We always assume the true index α(s) ∈ B for all s ∈ S, where

B ={β = (β1, · · · , βd)
τ ∈ R

d : ‖β‖ = 1, the first non-zero element is positive,

and the last element is non-zero with |βd| ≥ ǫ0}, (4.1)

and ǫ0 > 0 is a fixed constant. Put Xt(s) = (1, X̆t(s)
τ )τ = (1, Xt1(s), · · · , Xt,d−1(s))

τ , and

g(s, z, β) = [E{Xt(s)X
τ
t (s)|β

τXt(s) = z}]−1E{Xt(s)Yt(s)|β
τXt(s) = z},

where the matrix inverse is ensured by Assumption C6 in the appendix. We denote the derivatives

of g as follows:

ġz(s, z, β) = ∂g(s, z, β)/∂z, ġβ(s, z, β) = ∂g(s, z, β)/∂βτ , g̈z(s, z, β) = ∂2g(s, z, β)/∂z2.

When β = α(s), we will often drop α(s) in g{s, z, α(s)} and its derivatives if no confusion arises.

It therefore follows from (2.2) that g{s, z}τ = g{s, z, α(s)}τ = {a(s, z),b(s, z)τ}. Further, we let

Zt(s) = α(s)τXt(s), and define

Γ(s) = E[g̃(s)τ
Xt(s)Xt(s)

τ g̃(s)w{Zt(s)}], (4.2)

where g̃(s) = ġz{s, Zt(s), α(s)}Xt(s)
τ + ġβ{s, Zt(s), α(s)}.

Let αj(s) and α̈j(s) be the j-th component of α(s) and its second order derivative matrix with

respect to s, respectively. Recall that h = hT and h̄ = h̄T are the two bandwidths used for time

series smoothing in Section 2.2.1, and h̃ = h̃N is the bandwidth for spatial smoothing in Section

2.2.2. Put µ2,K =
∫

u2K(u) du, µ2,W =
∫
S
uuτW (u)du and ν0,K =

∫
K2(u) du, where K and W

are the two kernel functions used in our estimation.

Now we are ready to present the asymptotic biases and variances for the spatial smoothing

estimators α̃(s0), ã(s0) and b̃(s0), which are derived when T → ∞. The key is to show that the
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time series estimators α̂(s), â(s) and b̂(s) converge uniformly in s over a small neighbourhood of

s0, which is established using the results in Lu et al. (2007). Naturally the derived asymptotic

approximations for the biases and variances of α̃(s0), ã(s0) and b̃(s0) depend on N , and those

approximations admit more explicit expressions when N → ∞. Note we write aN ≃ bN if

limN→∞ aN/bN = 1.

Theorem 4.1 Let conditions C1 – C10 listed in the Appendix hold. Assume that s0 ∈ S and

f(s0) > 0, where f(·) is given in condition C8. Then as T → ∞, it holds that

α̃(s0) − α(s0) = B1,N (s0)h
2(1 + oP (1)) + B2,N (s0)

+ T−1/2 {V1,N (s0) + V2,N (s0)} η(s0)(1 + oP (1)),

where η(s0) is a d × 1 random vector with zero mean and identity covariance matrix,

B1,N (s) ≃ −
1

2
Γ−1(s)E[g̃(s)τ

Xt(s)Xt(s)
τ g̈z{s, Zt(s), α(s)}w{Zt(s)}]µ2,K , (4.3)

B2,N (s) ≃
1

2
h̃2 (tr [α̈1(s)µ2,W ] , · · · , tr [α̈d(s)µ2,W ])τ , (4.4)

and V1,N (s0) and V2,N (s0) are two d × d matrices, satisfying

V1,N (s)Vτ
1,N (s) ≃ (σ2

1(s) + σ2
2(s))Γ

−1(s)V(s, s)Γ−1(s)

{
1

Nh̃2
f(s)−1

∫
W 2(u)du

}
, (4.5)

V2,N (s)Vτ
2,N (s) ≃ σ2

1(s)Γ
−1(s)V1(s, s)Γ

−1(s). (4.6)

In the above expressions, Γ(s) is defined in (4.2), and σ2
1(s) and σ2

2(s) are defined in C2, and V

and V1 in C3 in the Appendix.

Let ϑ̃(s0, z) ≡ (ã(s0, z), b̃(s0, z)τ )τ and ϑ(s, z) ≡ (a(s, z),b(s, z)τ )τ . Denote by ϑj(s, z) the

j-th component of ϑ(s, z), and ϑ̈s,j(s, z) its second derivative matrix with respect to s. Denote

by ϑ̈z(s, z) = (äz(s, z), b̈z(s, z)τ )τ the second order derivatives with respect to z.

Theorem 4.2 Let the conditions of Theorem 4.1 hold, and h̄ = O(T−1/5). Let the density

function of α(s0)
τXt(s0) be positive at z. Then as T → ∞, it holds that

ϑ̃(s0, z) − ϑ(s0, z) = B3,N (s0, z)h̄2(1 + oP (1)) + B4,N (s0, z)

+
{

(T h̄)−1/2V3,N + T−1/2V4,N

}
ξ(s0)(1 + oP (1)),

12



where ξ(s0) is a d × 1 random vector with zero mean and identity covariance matrix,

B3,N (s0, z) ≃
1

2
µ2K ϑ̈z(s0, z), (4.7)

B4,N (s0, z) ≃
1

2
h̃2

(
tr

[
ϑ̈s,1(s0, z)µ2,W

]
, · · · , tr

[
ϑ̈s,d(s0, z)µ2,W

])τ
, (4.8)

and V3,N and V4,N are two d × d matrices, satisfying

V3,NVτ
3,N ≃ (σ2

1(s0) + σ2
2(s0))ν0,KA−1(s0, z)f−1

Z (s0, z)

{
1

Nh̃2
f−1(s0)

∫
W 2(s)ds

}
, (4.9)

V4,NVτ
4,N ≃ σ2

1(s0)(A
−1(s0, z)A1(s0, s0; z, z)A−1(s0, z))f−2

Z (s0, z)f∗(s0, z). (4.10)

where σ2
1(s) and σ2

2(s) are defined in (C2), and A(s, z) = A(s, s, z, z) and A1(s, s, z, z) in (C5)

in the Appendix.

Remark. (i) In the above theorems, (4.3), (4.4), (4.7) and (4.8) are approximate biases whereas

(4.5), (4.6), (4.9) and (4.10) are approximate variances.

(ii) In the presence of nugget effect specified in C2 and C3 in the Appendix, the spatial

smoothing estimators α̃(s0), ã(s0, z) and b̃(s0, z) have smaller asymptotic variances than the

corresponding time series estimators α̂(s0), â(s0, z) and b̂(s0, z). In fact using the results in Lu

et al. (2007), we may deduce that

α̂(s) − α(s) = B1(s)h
2(1 + oP (1)) + T−1/2A1(s)η(s)(1 + oP (1)), (4.11)

where B1(s) is as defined in Theorem 4.1, and

A1(s)A
τ
1(s) = (σ2

1(s) + σ2
2(s))Γ

−1(s)V(s, s)Γ−1(s),

and that

ϑ̂(s, z) − ϑ(s, z) = B3(s, z)h̄2(1 + oP (1)) + (T h̄)−1/2A3(s, z)ξ(s)(1 + oP (1)), (4.12)

where B3(s, z) is as defined in Theorem 4.2, and

A3(s, z)Aτ
3(s, z) = (σ2

1(s) + σ2
2(s))ν0,KA−1(s, z){fZ(s, z)}−1.

Comparing (4.11) and (4.12) with Theorems 4.1 and 4.2, respectively, we note that both (4.5) and
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(4.9) tend to 0, and the asymptotic variances of the spatial smoothing estimators are therefore

much smaller.

(iii) In the case of no nugget effect (i.e. σ2
2(s0) = 0 in C2, A0(s0, z) = A2(s0, s0, z, z) ≡ 0

and V2(s0, s0) = 0 in C3), spatial smoothing cannot reduce the asymptotic variance of the time

series estimators α̂(s0), â(s0) and b̂(s0). See also Lu et al. (2008). This is due to the fact

that the spatial smoothing uses effectively the data at locations within a distance h̃ from s0.

Due to the continuity of the function γ1(·, ·) stated in C2, all the εt(s)
′s from those locations

are asymptotically identical. We argue that asymptotic theory under this setting presents an

excessively gloomy picture. Adding a nugget effect in the model brings the theory closer to reality

since in practice the data used in local spatial smoothing usually contain some noise components

which are not identical even within a very small neighborhood. Note that the nugget effect is

not detectable in practice since we can never estimate γ(s + ∆, s) defined in (6.1) below for ||∆||

less than the minimum pairwise-distance among observed locations. See also Remark 3 of Zhang

et al. (2003).

The proofs of Theorems 4.1 and 4.2 are included in an extended version of this paper available

at http://stats.lse.ac.uk/q.yao/qyao.links/paper/spatioVLM.pdf.

5 A real data example

We illustrate the proposed methodology with a meteorological data set.

5.1 Data

We analyze the daily mean sea level pressure (MSLP) readings measured in units of Pascal in an

area of the North Sea with longitudes from 20 degrees East to 20 degrees West and latitudes from

50 to 60 degrees North. This area is heavily influenced by travelling low pressure systems. The

grid points are of size 2.5×2.5 degrees with total number of 17×5 = 85 spatial locations. The time

period is winter 2001-2002 with 100 daily observations at each location starting from 1 December

2001. The data are provided by the National Centers for Environmental Prediction-National

Center for Atmospheric Research (NCEP-NCAR). This type of data is commonly used in climate

analysis, and more detailed information about the data can be found in Kalnay et al. (1996).

Trends are not removed, and therefore the original time series of mean sea level pressure (MSLP)

at each location is generally non-stationary, and we have chosen to work with the differenced
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series (daily change series). Figure 3 displays some plots for MSLP data at five randomly selected

locations. We denote the daily changes of MSLP as Yt(sij) = Yt(ui, vj), t = 1, · · · , 99, ui =

60− (i− 1)× 2.5 with i = 1, · · · , 5, and vj = −17.5+ (j − 1)× 2.5 with j = 1, 2, · · · , 17. From the

middle column of Figure 3, the daily change series of MSLP, Yt(s), looks approximately stationary

at each site.

The contour plots of the daily changes are given in Figure 4 for the time period t = 1 to t = 20.

These plots show the difference from one day to another as a function of spatial coordinate. For

the high pressure period (approximately t = 8 to t = 16) it is seen that for most spatial locations

there are small changes, corresponding to the fact that a high pressure system is fairly stable in

time and in space. The zero-contour of no change is also seen to be fairly stable running in the

north-south direction roughly in the middle of this area. Just prior to t = 8, positive pressure

gradients are dominating corresponding to the build-up of the high pressure system, whereas

negative gradients are dominating after t = 16, when the high pressure system is deteriorating.

5.2 Varying coefficient modelling

Now we model the daily changes Yt(s) by the varying coefficient model (1.1) with

Xt(sij)
τ = (Yt−1(si−1,j), Yt−1(si+1,j), Yt−1(si,j−1), Yt−1(si,j+1), Yt−1(sij)), (5.1)

i.e. X(sij) consists of the lagged values at the four nearest neighbours of the location sij , and

the lagged value at sij itself. We only use the time lag 1 since the autocorrelation of the daily

change data is weak. It is clear that this specification does not require that the data are recorded

regularly over the space. With X(sij) specified above, (1.1) is now of the form

Yt(sij) =a(sij , Zt(sij)) + b1(sij , Zt(sij))Yt−1(si−1,j) + b2(sij , Zt(sij))Yt−1(si+1,j) (5.2)

+b3(sij , Zt(sij))Yt−1(si,j−1) + b4(sij , Zt(sij))Yt−1(si,j+1) + b5(sij , Zt(sij))Yt−1(si,j) + εt(sij)

with Zt(sij) = α(sij)
τXt(sij), α(sij)

τ = (α1(sij), α2(sij), α3(sij), α4(sij), α5(sij)) and bτ =

(b1, b2, b3, b4, b5). The estimation was based on data from 45 locations: Yt(sij) = Yt(ui, vj),

t = 1, · · · , 99, i = 2, 3, 4, and j = 2, · · · , 16, owing to the boundary effect in space. The band-

widths were selected using the methods specified in Section 2.3, in which we let q = 10 and

take h̄k = CT h̄ck with CT = std(Zt)(99)−1/5 and std(Zt) being the sample standard deviation of

{Zt = α̂τXt(s)}
99
t=1 at location s, and h̄ck = 0.1k for k = 1, 2, · · · , q. The estimated a(z), b1(z),

b2(z), b3(z), b4(z) and b5(z) at 45 locations, together with their averages (over the 45 locations),

are plotted in Figure 5 without spatial smoothing, and Figure 6 with the spatial smoothing.
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Figure 3: Modelling of MSLP data – Column on the left: the time series plots of the daily MSLP
series in 1 December 2001 – 10 March 2002. Middle column: the daily changes of MSLP. Column
on the right: the estimated density function (solid curves) of the daily changes together with the
the normal density with the same mean and variance (dashed curves).
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Figure 4: Modelling of MSLP data – The contour plots of the daily MSLP changes {Yt(s)} for
the first 20 days (i.e. t = 1, · · · 20). 17



If the meteorological data could be described linearly, the functions displayed in Figures 5 and

6 would be constant. But clearly they are not. If these plots are continued for higher and lower

values of z, the asymptote turns out to be roughly horizontal. This means that in a low pressure

situation the system behaves roughly as a linear system, but not in the high pressure zones

(z ≈ 0) and the transition zones. This indicates that altogether the weather system is nonlinear.

In another context it would be of interest to try to give a detailed meteorological interpretation

of the curves. But since this is a general paper, we satisfy ourselves by noting the following: 1)

z ≈ 0: This corresponds to a high pressure situation primarily. The curves for bi, i = 1, . . . , 5,

have their maximum/minimum at zero, the negative and positive peak values roughly balancing

out, and given that the Xt-variables stay around zero for a high pressure situation, the effect is

that Yt stays around zero, and the high pressure continues. 2) z < 0: This is the situation when

a high pressure deteriorates, or when new low pressure areas are coming in. It is seen that there

are only small contributions from the north (b1), east (b4) and the site itself (b5), but a main

positive contribution from west (b3) having the effect of maintaining a negative difference in Xt.

It is tempting to interpret this as having to do with low pressure systems coming primarily from

the west in the North Sea.

The contour plots (not shown) of the estimated index ατX(s) resemble the patterns of Figure

4; indicating that it catches the major spatial variation of Y (s). Furthermore there were little vari-

ation in the index vector α(s) over the space. The average value is ᾱτ = (−0.367,−0.252, 0.174, 0.219, 0.851).

Note that the last component of the index vector is substantially greater than all the others, in-

dicating the dominating role of the lagged value from the same site; see (5.1). We plot the 45

estimated index time series Zt(s) in Figure 7(a), together with the first principal component series

γ(t) = λτ
1Yt where λ1 is the first principal component of the data (explaining about 46% of the

total variation). Note that the oscillatory patterns of γ(t) and the estimated index series Zt(s) are

similar. The high pressure areas can again be identified as regions where the Zt(s)-series are close

to zero, building up a high pressure area corresponds to positive Zt(s) (but not conversely), and

deterioration to negative Zt(s) (but not conversely). There does not seem to be a corresponding

regularity for the γ(t) series, which is sometimes taken as a representative index for the North

Atlantic Oscillation (NAO) on another time scale.
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Figure 5: Modelling of MSLP data – The estimated curves (dotted lines) of 45 locations together
with the averaged curve (solid line) for (a) a(·), (b) b1(·), (c) b2(·), and (d) b3(·), (e) b4(·), and (f)
b5(·). No spatial smoothing applied in estimation.
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Figure 6: Modelling of MSLP data – The spatial-smoothed estimated curves (dotted lines) of 45
locations together with the averaged curve (solid line) for (a) a(·), (b) b1(·), (c) b2(·), and (d)
b3(·), (e) b4(·), and (f) b5(·).
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Figure 7: MSLP data – (a) Time series plots of the 45 estimated index series (dotted lines) and the global spatial
index series (i.e. the first principle component series, solid line, scaled down by 3). (b) Absolute one-step ahead
forecasting errors, averaged over 45 locations, over the period of 11 – 30 March 2002.

5.3 Forecasting comparisons

To further assess the capability of model (5.2), we compared its post-sample forecasting perfor-

mance with those of other models including linear one. We used the adaptive varying-coefficient

model (AVCM) fitted from the above for one-step ahead prediction for the 20 MSLP values in

the period of 11 – 30 March 2002 over the 45 locations. Also included in the comparison are

the LINEAR model which may be viewed as a special case of AVCM with constant coefficient
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Table 1: Mean absolute predictive errors (MAPE) of the four different models

Model AVCM LINEAR MEAN LAST-DAY

MAPE 494.1 553.0 1052.8 599.9

Table 2: Mean absolute predictive errors (MAPE) of AVCM with different bandwidths

(a) h̄c = h̄0c, h̃ = h̃0:

h h0 − 4 h0 − 1 h0 + 1 h0 + 4

MAPE 499.9 496.8 498.9 508.7

(b) h = h0, h̃ = h̃0:

h̄c h̄0c − 0.4 h̄0c − 0.1 h̄0c + 0.1 h̄0c + 0.4

MAPE 523.3 494.1 496.2 495.0

(c) h = h0, h̄c = h̄0c:

h̃ h̃0 − 0.4 h̃0 − 0.1 h̃0 + 0.1 h̃0 + 0.4

MAPE 505.2 495.3 493.9 493.3

functions, the MEAN forecast which forecasts the future based on the mean of the past values

from 1 December 2001 onwards, and the LAST-DAY forecast which forecasts tomorrow’s value by

today’s value. The absolute forecasting errors, averaged over the 45 space locations, are plotted in

Figure 7(b). The mean absolute predictive errors (MAPE), over the 45 space locations and the 20

days of 11 – 30 March 2002, are listed in Table 1. Overall our adaptive varying-coefficient model

outperforms the other three simple models. This lends further support to the assertion that the

dynamic structure of the MSLP is nonlinear and it cannot be accommodated, for example, in a

linear dynamic model.

In the above comparison, the bandwidths used in fitting AVCM were selected using the meth-

ods specified in Section 2.3. Over the 45 locations, the selected values for h, h̄c in h̄ = CT h̄c and

h̃ are around, respectively, 15, 0.6 and 0.7. To examine the sensitivity of the AVCM forecasting

on the bandwidths, we repeat the above exercises with the bandwidths shifted from the selected

values. We denote by h0, h̄0c and h̃0 the selected values of h, h̄c and h̃ using the methods specified

in Section 2.3. Table 2 lists the MAPE of the AVCM with different bandwidths. Comparing with

Table 1, the MAPE of the AVCM varies with the bandwidths used in the estimation, but the
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variation is not excessive. Further the AVCM always offers better prediction than the three other

models.

6 Appendix: Regularity conditions

We list below the regularity conditions, among which C4(i,ii), C5-C7 and C9-C10 are basically

inherited from Lu, Tjøstheim and Yao (2007) in the time series context.

C1. For each s, {εt(s), t ≥ 1} is a sequence of independent and identically distributed random

variables. The distribution of εt(s) is the same for all s ∈ S. Further, for each t >

1, {εt(s), s ∈ S} is independent of {(Yt−j(s),Xt+1−j(s)), s ∈ S and j ≥ 1}. The spatial

covariance function

γ(s1, s2) ≡ Cov{εt(s1), εt(s2)} (6.1)

is bounded over S2.

C2. For any t ≥ 1 and s ∈ S,

εt(s) = ε1,t(s) + ε2,t(s) (6.2)

where {ε1,t(s), t ≥ 1, s ∈ S} and {ε2,t(s), t ≥ 1, s ∈ S} are two independent pro-

cesses, and both fulfill the conditions imposed on εt(s) in C1 above. Further, γ1(s1, s2) ≡

Cov{ε1,t(s1), ε1,t(s2)} is continuous in (s1, s2) (we will denote σ2
1(s1) = γ1(s1, s1)), and

γ2(s1, s2) ≡ Cov{ε2,t(s1), ε2,t(s2)} = 0 if s1 6= s2, and σ2
2(s) = γ2(s, s) > 0 is continuous.

C3. (i) A(s, s′; z1, z2) ≡ E{Xt(s)Xt(s
′)τ |Zt(s) = z1, Zt(s

′) = z2} = A1(s, s
′; z1, z2)+A2(s, s

′; z1, z2),

where A1(s, s
′; z1, z2) is continuous, and A2(s, s; z1, z2) is a positive definite matrix. Further,

A2(s, s
′; z1, z2) = 0 if s 6= s′, and A0(s, z) ≡ A2(s, s; z, z) is continuous.

(ii) Set Vt(s) = Wt(s)−Bt(s)Xt(s), where Bt(s) = E{Wt(s)Xt(s)
τ |Zt(s)}[E{Xt(s)Xt(s)

τ |Zt(s)}]
−1

and Wt(s) = Xt(s)ġz({s, Zt(s)}
τ
Xt(s). Then V(s1, s2) ≡ E[Vt(s1)Vt(s2)

τw{Zt(s1)}w{Zt(s2)}] =

V1(s1, s2)+V2(s1, s2), where V1(s1, s2) is continuous, V2(s1, s2) = 0 if s1 6= s2, and V2(s, s)

is positive-definite and continuous.

C4. (i) g(s, z, β) is twice continuously differentiable with respect to s, and α(s) is twice contin-

uously differentiable. Also in the expression

R(a(·),b(·), β) = E

{(
Yt − a(βτXt) − b(βτXt)

τ X̆t

)2
w(βτXt)

}
,
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differentiation with respect to β and the expectation are exchangeable.

(ii) The density function fβτ
Xt(s)(s, z) of βτXt(s) is continuous. For any fixed s ∈ S, it

is uniformly bounded away from 0 for z ∈ [−L, L] and β ∈ B, where L > 0 is a constant.

Furthermore, the joint probability density function of (βτXt0(s), βτXt1(s), · · · , βτXtk(s))

exists and is bounded uniformly for any t0 < t1 < · · · < tk and 0 ≤ k ≤ 2(r − 1) and β ∈ B,

where r > 3d is a positive integer.

(iii) Denote by fZ,Z(s1, s2; z1, z2) the joint density function of Zt(s1) and Zt(s2). Then

fZ,Z(s1, s2; z, z) is continuous in z, and it converges to f∗(s, z) as ||si − s|| → 0 for i = 1, 2.

C5. E|Yt(s)|
̺r < ∞ and E‖Xt(s)‖

̺r < ∞. Furthermore, it holds for some ̺ > 6 and r given in

C4 that supβ∈B E|Yt(s) − g(s, βτXt(s), β)τ
Xt|

̺r < ∞.

C6. Matrix E (Xt X
τ
t |β

τXt = z) is positively definite for z ∈ [−L, L] and β ∈ B.

C7. For each fixed s ∈ S, the time series {(Yt(s),Xt(s)), t ≥ 1} is strictly stationary and β-

mixing with the mixing coefficients satisfying the condition β(t) = O(t−b) for some b >

max{2(̺r + 1)/(̺r − 2), (r + a)/(1 − 2/̺)}, where r and ̺ are specified in (C4) and (C5),

and a ≥ (r̺ − 2)r/(2 + r̺ − 4r).

C8. There exists a continuous sampling intensity function (i.e. density function) f defined on S

for which N−1
∑N

i=1 I(si ∈ A) →
∫
A f(s)ds for any measurable set A ⊂ S.

C9. W (·) is a symmetric density function on R
2 with bounded support. K(·) is a bounded and

symmetric density function on R
1 with bounded support SK . Furthermore, |K(x)−K(y)| ≤

C|x − y| for x, y ∈ SK and some 0 < C < ∞.

C10. As N → ∞, h̃ → 0 and Nh̃2 → ∞. As T → ∞, Th4 = O(1), Th3+3d/r → ∞, and

lim infT→∞ Th
2(r−1)a+(̺r−2)

(a+1)̺ > 0 for r given in C4, ̺ given in C5 and a, b given in C7. Fur-

thermore, there exists a sequence of positive integers mT → ∞ such that mT = o((Th)1/2),

Tm−b
T → 0 and mT h

2(̺r−2)
2+b(̺r−2) > 1.

Conditions C1 and C2 were introduced in Zhang et al. (2003). C2 manifests the so-called

nugget effect in the noise process when σ2
2(s1) > 0. The concept of nugget effect was introduced

by G. Matheron in early 1960’s. It implies that the variogram E{εt(s1) − εt(s2)}
2 does not

converge to 0 as ‖s1 − s2‖ → 0, or equivalently, the function γ̃(s) ≡ γ(s1 + s, s1) is not continuous

at s = 0 for any given s1 ∈ S. Note that ε1,t(s) in (6.2) represents so-called system noise which
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typically has continuous sample realisation (in s), while ε2,t(s) stands for microscale variation

and/or measurement noise; see Cressie (1993, section 2.3.1). Condition C3 represents the possible

nugget effect in the regressor process Xt(s). Note that when Xt(s) contains some lagged values

of Yt(s), C3 may be implied by C2.

The function f∗(s, ·) in C4(iii) may not be the density function of Zt(s) due to the nugget

effect; see the discussion below (3.1) in Lu et al. (2008). Other smooth conditions in C4 and the

moment conditions in C5 are standard, though some of them may be reduced further at the cost

of an increase of the already lengthy technical arguments. C6 is not essential and is introduced

for technical convenience.

C7 imposes the β-mixing condition on the time series. The complex restriction on the mixing

coefficients is required to ensure that the time series estimators α̂(s), â(s) and b̂(s) converge

uniformly in s. Further discussion on mixing time series may be found in, for example, Section 2.6

of Fan and Yao (2003).

C8 specifies that the asymptotic approximations in the spatial domain are derived from the

fixed-domain or infill asymptotics (Cressie, 1993, Section 3.3).

The conditions on W and K in C9 and h̃ in C10 are standard for nonparametric regression.

More sophisticated conditions on the bandwidth h in C10 are required to ensure the uniform

convergence of the time series estimators.
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