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Econometric Theoryl7, 2001 984-1024 Printed in the United States of America

SECOND-ORDER APPROXIMATION
FOR ADAPTIVE REGRESSION
ESTIMATORS

OLIVER LINTON
London School of Economics
and
Yale University

ZHIJIE XIAO
University of lllinois at Urbana-Champaign

We derive asymptotic expansions for semiparametric adaptive regression estima-
tors In particular we derive the asymptotic distribution of the second-order ef-
fect of an adaptive estimator in a linear regression whose error density is of
unknown functional formWe then show how the choice of smoothing param-
eters influences the estimator through higher order tefmsethod of bandwidth
selection is defined by minimizing the second-order mean squared Afeoex-
amine both independent and time series regress@slso extend our results to

a t-statistic Monte Carlo simulations confirm the second order theory and the
usefulness of the bandwidth selection method

1. INTRODUCTION

In estimation problems where a Gaussian assumption on the underlying distri-
bution of the data is inapproprigténe so-called adaptive estimator provides an
alternative to the conventional Gaussian maximum likelihood estini&tbE )

by replacing the Gaussian density function with a nonparametric estimate of
the score function of the log-likelihoodt has been proven that an efficiency
gain over the MLE can be achieved by adaptive estimators in many economet-
ric models Adaptive estimation was first studied by Stéit956, who consid-

ered the problem of estimating and testing hypotheses about a parameter in the
presence of an infinite dimensional “nuisance” parameBeran (1974 and
Stone(1975 considered adaptive estimation in the symmetric location model
whereas Bicke(1982 extended this to linear regression and other moddis
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latter work provided a starting point for much future work in this afdanski
(19849 studied adaptive estimation in nonlinear mod&geiss (1987) consid-
ered stationary and invertible autoregressive moving aveiaB&1A ) models
Steigerwald 1992 studied linear regression with ARMA err@nd Linton(1993
considered the case of linear regression with autoregressive conditional hetero-
skedasticity(ARCH). Jeganathaii1995 extended the theory to nonstationary
models with ii.d. error, and Hodgsor{1998 further studied this case but with
ARMA errors

Much of this literature has been devoted to first-order theoretical results
and has used devices from mathematical statissush as sample splitting
and discretizationthat do not appeal to practitioness we argued elsewhere
(Linton, 1999, the first-order asymptotics by no means always provide a good
approximation to the sampling behavior of the semiparametric estimdtors
confirmation of this see the simulation evidence in Hsieh and Mafisk&7).
Furthermore computing the semiparametric estimates requires the selection
of a smoothing parametdr, called the bandwidththat determines the effec-
tive degree of parameterization taken by the nuisance function for given sam-
ple sizen. Although the first-order approximation does not reflect the choice
of h(n), the finite sample performance of the estimators depends greatly on
the choice of bandwidth

We shall use higher order expansions as a means to solve some of the prob-
lems presented by the first-order theoigher order expansions have a long
history of application in econometri¢gsege among othersSargan 1976 Phil-
lips, 1978 Rothenberg1984). Applications of higher order approximations to
bandwidth choice in semiparametric models have been studied by HHaite
Marron and Tsybakow1992, Linton (1995 1996 1998, Linton and Xiao
(1997, Nishiyama and Robinsof1997), Powell and Stokef1996), and Xiao
and Phillips(1996 among othersln this paperwe derive higher order expan-
sions for an adaptive estimator in linear regressia do not require the error
to be symmetrically distributedn fact, we show how choices of smoothing
parameters influence the semiparametric adaptive estimator by deriving the as-
ymptotic distribution of the second-order effeThis distribution reflects the
bandwidth and kernel used and suggests a method of bandwidth cigce
develop rule-of-thumb plug-in bandwidth selection methods for the estimation
problem that are convenient to implement and reasonably insensitive to the true
underlying densityWe also extend the analysis to tteatio and to the case of
regressors that are not strictly exogenaollse adaptive estimator is quite prom-
ising relative to other semiparametric procedures because the nonparametric
estimation only involves one dimensional smoothing and so does not suffer from
the curse of dimensionalityn this casethe kernel procedures we employ can
work well provided they are implemented appropriatdlige main purpose of
our asymptotic approximations is to show how the semiparametric adaptive es-
timator is affected by the smoothing parameters to a higher order and to pro-
vide the tools to effect good implementatiofhroughout we allow the error
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density to be zero at the boundawhich is required to make the situation “reg-
ular” This necessitates the use of a trimming functidfe use the smooth trim-
ming adopted in Andrew&1995 and Ai (1997).

The paper is organized as followBhe model and estimators are described
in the next sectionResults of the expansion are given in SectigraBd the
details of these expansions can be found in the ApperdiSection 4 we give
some extensions to dependent regressorstatdtistics Bandwidth selection
is discussed in Section I Section 6 we provide a small Monte Carlo exper-
iment that evaluates the effectiveness of the second-order approximagion
tion 7 concludes

For notationwe usef /) to denote théth derivative of a functior and for a
function g of functionsay, ..., aq, define the linear differential operator

d

dJ
Dqg(ab',ad)(x) = E a: (a17'7ad)(x)aj(q)(x)
=1 98

We also let|A| denote the Euclidean norm of the array= (a;,
as|Al = (ZaZ i )Y2

i.) defined

.....

.....

2. THE MODEL AND ESTIMATOR

We consider the problem of estimatif®y& RP in the following regression
model

Y =BT + &, i=1...,n, 1)
wherex; andeg; satisfy the following assumptions

Al. & andx; are independent and identically distribut@d.d.) random vari-
ables and are mutually independertirthermoreE(x;) = 0, Q, = E(x, X/) is
positive definite and for somey > 0 we haveE[| x||**"] < co.

A2. g has Lebesgue densitys), which has support sugp) = [a, a], where
aanda are unknown boundary parameters that satisfy < a < a < oo and
f(e) > 0on(aa).

A3. The density functiori(-) has uniformly bounded continuous partial de-
rivatives up to the order, andf (" (g) is Lipschitz continuous ona, a); i.e.,
there exists a constantsuch that for alle, ¢* € (a, a), we have

[T (e) —f(e*)| =cle —&*].

Because we do not impose any additional restrictions on the density function
of &, we cannot separately identify an intercepherefore we shall absorb the
intercept into the error densityvhich can have arbitrary mepand assume for
convenience that the regressors are mean zero iOAL other assumptions on
the covariates are very weak
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In A2 we assume thdt(e) has bounded supporEven though the second-
order analysis on adaptive regression estimators can be extended to the case
with unbounded supparour discussion in this paper is confined to the bounded
support casepartly for simplification and partly for some technical reasons
We discuss this point further latésee Remark 5 in Section.3Vhenf is strictly
positive on[a, a], the situation is nonregulam some caseshis can lead to
inconsistency of solutions of the likelihood score equations but perhaps to the
potential for improved rates of convergence for other estimaldrerefore we
shall make an additional assumption

A4. f(e) and its firsto — 1 derivatives vanish & anda, wheread @ (a) #
0 andf @ (a) # 0 for some integep with 2 <p <.

Assumption A4 guarantees that the denditsanishes at the boundary at a
sufficiently fast rate so that the properties of regular estimation.Haldhis
case one cannot estimai@ at a rate better than roat-See Akahira and Takeu-
chi (1995 for a discussion of this issu@his assumption also implies that the
Fisher information

1(f) = f€’(s)2f(8)d8,

where{(g) = logf(e), exists as do various other integrals used subsequently

In the sequel we shall |g8, be the true parameter valuéthe densityf were
known, the MLE of 8o, denotedB, could be obtained by setting the following
average score function

1 n
s(B) = s(B;f) = R_le(ﬁ;f)

" (6 (8)
“n 2 Tep) S

equal to zerpassuming an interior solution of courdéerg for any parameter
valueg, & (B8) = y; — BTx. This method works well in regular situations but
can lead to inconsistent estimates in some cases of interest(forusdiscus-
sion of this issugsee Bickel 1975. An alternative method is given by taking
one Newton—Raphson step from a preliminary roatensistent estimatog.
That is let

Bnr= B+ Z(B;F) s(B; ),

whereZ is a consistent estimate of the information matfix= Q1 (f). For
example

(2)

. " @B (e’
f)= — T —
T(B: 1) n.zzlx'x' f&(B)  fe(h)?
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This method has been investigated in Rothenberg and Leeliti@ég) and
Bickel (1979. It is first-order equivalent to the MLE when the MLE is consis-
tent and it has the added advantage of working in certain nonregular cases
where the MLE is inconsistentn econometrics it is common to refer to the
estimator as linearized maximum likelihood or two-stepereas the statistical
literature uses one-stejm the regression case we stutlyere are many prelim-
inary rootn consistent estimatorg.g., the ordinary least squares estimator
Whenf is unknown we have to replace it by a nonparametric estinfasay
and we thereby obtain the estimated average score function

" (e (,8))
E

= f(s (B))
The semiparametric profile likelihood estimatBp, sets3(3) equal to zero

Similar to the case wheffeis known a one-step Newton—Raphson estimator of
B can be obtained from a preliminary ronteonsistent estimatgs,

. 3
. @)

.. 12 -
3(B) = s(B;f) = EZIS(B;U= -

Bnr= B+ I(B; ) 's(B; ), (4)
where

5 ) = 1S f"(e(B)  f(e(B)?

TB0 =5 2 [ fi(ei(B) fi<si<B>>2}

We shall work with this one-step estimatén important ingredient in our es-

timator is the error density estimaftewe consider the following leave-one-out
kernel estimates of (t) andf’(t) at the pointt = &(8) using the residuals

g;(B) as data

i (B)— &
fa8) = g —1)h ZK(M)
n j#i n

(n - Jg Kn,(£i(B) — &(B)),

. i(B) —&(B)
(& (B)) = 1)h22 <M>

n j#i

- > K (&(B) — &(B))

BRCEET R R
whereK,, (t) = K(t/h,)/h, andK;, (t) = K'(t/h,)/h3. Herg K(-) is the kernel
function whose properties are given in Assumption which follows whereas
h,, is the bandwidth parametdn principle, we may consider more general de-
vices that use different bandwidth parameters in the estimatibaradf '. How-
evet the additional smoothing parameter brings substantial complication to the
higher order analysjsand we consider the simple case where the shynis
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used in estimating andf’ (also see the subsequent discussion on trimining
Asymptotic results for the bias and variance in these nonparametric density es-
timates are given in the AppendiXhe estimator can be computed using only
matrix computationswhich makes it very fast

As in some other applications of kernel regression estimatbesrandom
denominatof; can be small and may cause technical difficuftgr this reason
we trim out smallf; as do Bickel(1982 and Manski(1984 (for a more recent
discussionalso see Ai1997) . However trimming brings an additional param-
eter into the estimation and complicates the higher order expansions

We consider the following smoothed trimmirigndrews 1995 Ai, 1997).
Let g(-) be a density function that has suppfdil], g(0) = g(1) = 0, and let

()
gb(x)_bg b_ 5

whereb is the trimming parametetheng,(x) has support ofib,2b]. Letting

Gp(X) =f_ Ov(2)dz,

we have

0, Xx<Db

Gp(X) = f O(2)dz, b=x=2b
1, ) X > 2b.
For exampleif we consider the following Beta density
g(z) = B(k+ 1) 1zK(1 - 2)% 0=z=1,
for some integek, whereB(Kk) is the beta function defined by
B(k) = I'(K)%T'(2k), I' (k) is the Euler gamma function

then it can be verified that fdo = x = 2b

B )2 (k1)2 x— b\
Gb(X)—B(k-i-l) l{(Zk-f—l)! _I_Eo(k_|)!(k+|+1)!< b )

X_b k+1+1
><<1— b) } (5)

which is a(2k + 1)th order polynomial in(x — b)/b. The functionG,(x) is con-
tinuously differentiable of0,1]. This property is important because it allows
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us to use standard Taylor series argumewtsereas indicator function trim-
ming would preclude thisMe now estimate the average score funciidnby

TN
5.(B) = _H E fTXi Gp( 1), (6)
i=1 T

and the information matrix by

- 1.n ﬁ// f"i'l 2 -
Io(B;t) = _EZXiXiT[T_ (T> :|Gb(fi),

f

wheref; = fi(¢;(B)) andf! = f'(&;()). Thus we estimatg by the following
one-step Newton—Raphson estimator

B =B+ I,(B: ) *5,(B: ). (7)
We study the higher order property of the adaptive estim@tgiven in (7).

We make the following assumptions on the kernel functdn) and the trim-
ming parameteb.

A5. The kernelK has supporf—1,1] and is symmetric about zero and sat-
isfies [K(u)du = 1. It is twice differentiable on its support ail’ is Lipschitz
continuouswhereask’(0) = 0. Furthermorethere exists an even positive in-
tegerg with 2 < g = r — 3 such that

fuiK(u)du: 0, i=1...,0-1, and fqu(u)duio.

A6. The trimming functionGy(x) is (L + 1)th order differentiable for some
L > 4. In addition h — 0 andnh%/logn — oo, b — 0, andh/b — 0 asn — oo.

These assumptions are similar to those used in the existing liter&tate
that becauséd is of larger magnitude thah, our estimator will not suffer
from boundary biagfor a discussion of boundary issyesee Miller 1988
pp. 32-36.1

Define for any functiorK and integeiq

—1)d 12
patk) = 5 [uka |K||2={f K<u>|2du} .

q

These notations will be used in the following sections for higher order
asymptotics

3. THE EXPANSION

Making a Taylor series expansion §f(3) abouts,(3,) and collecting terms
we obtain
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\/ﬁ([;) - ﬁo) = fn(ﬁo)il\/ﬁgn(ﬁo)
+{Z () — Zo(Bo) 1INN&,(Bo)
+{I+ Z,(B) 15 (BINN(B — Bo), 8)

where8* is an intermediate poing,(8) = &,(B,f), andZ,(B) = Z.(B, f),
whereass,(8) = 95,(8)/08. A first-order analysis shows tha¥ns,(8,) =
0O,(1) andZ,(Bo) 1= O,(1). Note that in the parametric cadmth terms in(8)
would beO,(n~*2). In our casgthis is true apart from some “trimming terths
which turn out to be of smaller order than our leading trimming tefse® the
discussion that follows Specifically we obtain in the Appendix that

(B = Bo) = Z(Bo) *VN&(Bo) + T) + O,(n~Y/2), 9)

where7, is a small trimming term

We next derive an approximation ,(8,) *Vns,(B,). The random vari-
ablesAy = Z,(Bo) — Z andAg = Vn{5,(B,) — S(Bo)}, which are functions of
nonparametric estimates of the residual densities and their derivadisesow
the two key elements in the expansi@oth quantities can be decomposed into
the sum of different terms that are functions of the bias and variance effects in
estimating the densitigsand their derivativesWe show in the Appendix that

1
AS=TS+Op(hq)+Op<W>, (10)

Ay = Ty + Oy(h) + op< +0,(n"2), (11)

1
where 7 and 7 are op(1) trimming effects(and note thatZ; from (9) is of
smaller order tharfg and 7). These terms depend on the paramétand on
the boundary behavior of the densitieg. By a geometric series expansion of
Zn(Bo) "t aboutZ ! we obtain

To(Bo) t = Tnt — Lo AR Tt 4 0p(8,) =T — T ATt + 0y(8y),

wheres,, = max{hﬁ,l/\lnhﬁ} is larger tham~ %2 Herg Z, = —s'(,), and by
the central limit theorem for independent random variables we obtairf{hat
T + Op(n~Y2). This yields that

\/ﬁ(,é —Bo) =Z7*Nns(By) + T AR T Nns(By) + T A+ Op(5n)~ (12)

We then obtain the following stochastic expansion of the standardized estimator

V(B —By) = Xo+ T+ hiB + (13)

1
——= V+0,(5,),
\/n_hﬁ p( n)

whereX,, B, andV are zero mea®,(1) quantities andl'is anop(1) quantity
These quantities are defined in the Appendierg X, = Z-1Vns(,) is the
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leading term7is the trimming effectB reflects the bias effect in nonparamet-
ric density estimationandV reflects the variance effect in the nonparametric
estimation The random variableX,, 7, and B are all mean zero and sums of
i.i.d. random variableswhereasV is a degeneratdJ-statistic Note that
VN(B — Bo) = Xo + Oy(n~Y2), where is the infeasible estimator g8, so
that

Vn(B—B)=T+hiB+ % +0,(8,).

The trimming effect7 is ano,(1) quantity whose magnitude is determined
jointly by the trimming parametédp and the rate that the densityapproaches
zero on the boundarput does not to first order depend on the bandwidth pa-
rameterh, in the nonparametric density estimatidile are now ready to state
the main result of the paper

THEOREM 1 Suppose that Assumptions A1-A6 hold and dencte7 +
h3B + V/\/nhﬁ. We hae the following results

(1a) If nh?9%2 — o, then
h=9(r = 7) = N(0,3,),
where
3= piKZMIZ P+ T MT T MRT H + 27 T MT T MLT Y]

with 7= Q1 (f) and M; = Q,var[Det P (e)], Mz = QucoM Dl P (e), ¢V (e)],
Mz = —QXE[Dq(f(z)(e)].
(1b) If nh29+3 25 0, then

nY2h%2(r — T) = N(0,3,),

where3, = |K'|3Z71S, 7 with S; = Q. (a — a).
(1c) If hy = yn=¥a+3 for somey with 0 < y < oo,

n¥@a+3 (r — 7) = N(O,3),

wheres = y243, + y 733,

(2) Finally,

~

b=(e=V/2eT = N(0,3), (14)

wheres = ¢(p,a,a, f)Q, and¢(o, a4, f) depends on both the trimming func-
tion and the boundary behavior of the density. In particular, if we use the trim-
ming function (5),

¢(o,aaf)=clo)[ 2@ +f(@Ye],

where dp) is a coefficient depending amand G.
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Remarks
1. To minimize the “smoothing effeg¢twe should seth,, = yn=v29*3 go that the
second-order bias and variance effects are balangedhe “in probability” mag-

nitude ofr — 7'is minimized Note that

f (a+d f@f@

Dt = T
f (at+2) f@f@ FOT f@+ry f@f @
D L? = -—— —2— -— .
q f f2 f [ f f2 }
The termsM;, j = 1,2,3, arise from the bias of the nonparametric estimétasd

', whereas the tern$; comes from the variance ¢f. Both terms are positive
and the overall effect is to increase variance above the first-order limiting vari-
ance of3.

2. The magnitude of the variance of the trimming effectQgéb(¢~Y/2), which in-
creases witth and which is of larger order than? under our assumption¥he
limiting variance of the trimming effect is given ky4); this depends on both the
trimming function and the boundary behavior of the density function in a compli-
cated mannemeverthelessthe limiting variance of the trimming effect can be
consistently estimated without knowledge of the parametspecifically be=/2¢
can be estimated by

n fN/ 5 2 B
%2{[ (')} [1Gb<fi)]2}. (15)

f(&)

3. Whenf is strictly positive on[a, ], the situation is nonregulaand there is the
potential for improved rate of convergence by other estimatarshis casethe
two-step estimatof may not necessarily have adaptive propertigdeast when
a > —oo or a < oo, because it has too slow a rate of convergersgecifically
whenf is known it is possible to obtain estimates with faster rate of convergence
However g is consistent and asymptotically normal under our conditions in this
case Of course trimming is no longer neede@nd the untrimmed estimator then
has the stochastic expansi¥g + hiB + V/\[n_h?, + 0p(8n).

4. In the regular casehe two-step estimatgs has the exact same second-order ef-
fect as the profile likelihood estimat@for a similar resultsee Lintor) 1998.

5. Finally we consider what happens when the error support is unbouAdaddi-
cated in the analysis in the Appendir this casethe second-order variance ef-
fect involves terms such as X' ,1/f(e;) (which is related to theS; term
defined previouslythat do not satisfy a law of large numberd iias unbounded
support like the Gaussian distributiom fact, this random sequence grows to in-
finity in probability at a rate determined by the tails of the distributiom the
Gaussian cas¢he rate is logarithmicThus the order in probability of the second-
order terms will be larger and will depend on the tails of the distributideo,
whether a central limit theorem for these terms operates remains to he seen



994 OLIVER LINTON AND ZHUIE XIAO

4. EXTENSIONS
4.1. t-Statistic

In this section we derive the second order expansions-fatio statisticsCon-
sider the linear hypothesidy: c'8 = ¢, wherec is ap X 1 vector of constants
andc, is a scalarThe correspondingrstatistic is

c’B - ¢ _ c’B — ¢

— T JAS - _ ~ ~\ *

Sec™B)  AIn"icTZ,(B) c

Under the null hypothesis that’8 = c,, t is asymptotically standard normal
and first-order equivalent to the correspondiigeasible MLE basedt-ratio

c'Vn(B —B)
\Ne'Z ¢

whereZ = —s'(3). Under our conditions

{=

t_:

~ . 1
[CTIn(ﬁ)_J'C]_l/Z — [CTI_]'C]_]‘/Z _ 5 [CTI—lc]—B/ZCTI—lAHI—lC

+ higher order terms (16)
whereA is defined by(11). Denote the second-order effectas=t — t and
the 0,(1) trimming effect ad,. We have the following result

THEOREM 2 Suppose that Assumptions A1-A6 hold and that=h
yn~Y2a3 for somey with 0 < y < oo. Then, under &,

nY@a+td (z —t ) = N(0,02),

where
c'sc
0-t2 = c’T tc - Yzqﬂﬁ(K)
{ CT"ZT*M,T*cc"T *MzT ¢ 3 < chlMgIlc>2}
X + - .
(c"Z1c)? 4 c'Z '

The rate of convergence fat — t, is the same as for — 7, but the asymp-
totic variance is slightly differentreflecting the estimation of the asymptotic
variance of. The trimming terms are similar to those in Theorem 1

4.2. Time Series Regressors

In this section we extend our second-order analysis to more general models
where the regressors contain lagged disturbances and thus are serially corre-
lated In particular we consider the case where the regresser (Xiy, ..., Xjp) "
satisfies Assumption Al
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Al'. The stochastic proceg$s;} satisfies

X =X+ > Wiy, WhereW = (q,...,¢p) " 17)
k=1

wherex;*, g; are ii.d. random variables and are mutually independEntther-

moreg there exists g with 0 < p < 1 such thatjy| < p* for all j,k. We

require also thaE(x;) = 0, thatQ, = E(x; x") is positive definiteand that for

somen > 0, we haveE[|x||**"] < co.

This setting is general enough to include leading cases in time series models
such assay stationary ARMA time series regression modéler examplewe
consider the case of a first-order univariate autoregressive regression described
as follows

yt :Byt*l—’_st’ tzo’la""n’ (18)

where|B| < 1 and{e;} are ii.d. random variables with mean zero and finite
variances? and satisfy Assumptions A1-A3 in SectionThen regressiolil8)
corresponds to the special case in mod&)sand (17) with x* = 0, and ¥, =
ng*l.

The semiparametric adaptive estimais still consistent and asymptoti-
cally normal for this specification of the covariate procéssimilar expansion
for B can be performedThe following theorem summarizes the higher order
effects

THEOREM 3 Suppose that Assumptions’Ahd A2—A6 hold and thath=
yn~¥2at3 for somey with 0 < y < oo. Then,

n¥@a+3) (7 — T) = N(0,3%),

where

5 = Y29 (K)
X[ZTH M AT P+ T M I MGT Y+ 2T T MT T M,T 1]
+y PIKBT IS T

whereZ, My, M,, M are defined as in Theorem 1 with, = E(xx*T) +
o2 (21 W) and

r= ag<2 > \Ifulfilj> E*[Dy¢™].

i=0j=1
Remarks
1. The second-order effects are similar in Theorem 3 to those in Theoyémt In

model(17) the serial correlation in the regressors brings additional terms into the
second order effecthese additional terms are summarizedifThey arise from
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autocorrelations within some of the “bias related” terMéen e is symmetric
about zeroI" = 0, becaus&D,¢ @ is an odd function fog an even integer

2. In the special case thaf = 0 and¥, = 8<% |B] < 1, we reduce to the case of
autoregression of order oniee., X; = Y;_1, Of,

Ve = BYi—1 t+ &, t=0,1,...,n,

andZ, M,, M,, M3 are defined as in Theorem 1 with, = 02/(1 — B?),
whereas
2
r=o? A
15

EZ[Dq€(D(8)].

5. BANDWIDTH SELECTION

The results in the previous sections can be used to select bandwidth parameter
h, for the semiparametric estimat@rand t-ratio. Here we just consider the
estimator in the.i.d. setting although similar comments apply to the test sta-
tistic and to the dependent data desifhe higher order effects generally de-
pend on the bandwidth parameters and the trimming procedioeever
although in principle joint optimization over the trimming and bandwidth pa-
rameters may be considerdgtlie analysis would be substantially more compli-
cated not least because there is only a lower boundboin this paperwe
confine our attention to the effect of bandwidth and keep the choice of trim-
ming parameter fixedOur analysis is not the best over all possibilitiaew-
ever it provides a second best choj@nd our analysis shows how the estimator
is affected by these parametevée shall try to minimize the second-order term

7 — T = hdB + n"Y¥2h;¥2Y, which is mean zero and has asymptotic variance

3(hy) = h39ug(K)
X [T IMT 4+ T IMGT I MGT L + 27 M T M,T ]

+ nhe K521, 771

= h29Q, + — Q,.

nhg
Specifically we define an optimal bandwidth as one that minimizes some scalar-
valued convex loss function defined on the second-order mean square error ma-
trix 3(h,). If the loss function is denoted d$3.), then by Taylor expansion

we obtain the following optimal bandwidth formula

T 1/(29+3)
opt _ [ 31 ved(Qy} ] n-1/2a+3)

" | 2qved Q) (19)
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wherel = 9l (0)/dvecS. Replacing the unknown quantitiésQ,, and @, in the
bandwidth formula by their estimatésQ,, Q,, we obtain a feasible optimal
bandwidth choice

One way of estimating the optimal bandwidth parameter is the plug-in method
We consider the following rule-of-thumb method for bandwidth selection as in
Silverman(1986 and Andrews1991). We specify a parametric model for the
error structurd f,(-;6),0 € O}, and estimators of these parame,teimoted9
are used to obtain prellmlnary estimates of the density functig(ns@) and
their derlvatlvesf(”( :0). These preliminary estimates are then plugged into
the formulae ofzZ, M, M,, M3, andS; to get estimates of thenhet

. f(6:6) 1
7=z xT|
nz“lu@ml

W RGN BRI CICHIN
M= - E X; XiT pﬁ + P — P 5
ni= fo(&i;0) fo(&50)

23 BEDRE0 G 60)
ni=y t fp(él;g)3 ’

L1 fy(8;0) 197D (5;;6) f(8130)%f9(8;50)
My= = D)X | T | = | ,
ni= fp(si;e) fp(si;e)

R WO 20:0)] [ 26800490 (5:0)
MSZ_ExlxiT : ~ . A - ’ ApAZ
ni=a fo(€i30) fo(&i30)
12 2 (8;30)2F9(8;;0)? fo'(830)F9(&;;0)
+ =S T P ADAS ) APAZ ,
ni= fo(&i50) fo(&i50)
. 12 1
S — T—
Yon 2 fo(2i:6)’

wheres, =y, — B7%. Then letQ, and Q, be estimated by pluggln@ MJ,
and S, into the corresponding formulag/hen the parametric specification is
correct these estimates are consisteMtore generally they will be not far
from the truth Plugging them into formuld19), we get an estimate of the
optimal bandwidthUnder further conditionghis data-based method is second-
order efficient in the sense that the corresponding effget 7 has the same
asymptotic distribution as,  — 7. See Linton(1998 for a similar result

We now discuss further the choice of trimming paramedeippose we take
b = hl™" for somen > 0. Then under Assumptions A1-A6 wittp > 2, we
obtain the following expansion

N 1
Vn(B — Bo) = Xo + hr(11717)(971)/2g'ft) + hiB + W V+ Op(5n),



998 OLIVER LINTON AND ZHUIE XIAO

where 7, B, and V are all O,(1). The bias related ternmiB is of smaller
order than the trimming terjrand the optimal choice di, will now trade off
h(l-m(e~1/2e7 againsty/4/nh. The optimal choice of, would be

h* = y(o,a 4, f)n-e/4e—(e-Dn-1)

whose rate depends anandp, the first of which is arbitrary and the second of
which is unknown Note also that this bandwidth may not satisfy the restric-
tions in A6 for some values of. Therefore this method is not appealing

If the trimming term is of some concerone can estimate it using5) and
correct standard errors accordingly

6. MONTE CARLO RESULTS

We conducted a Monte Carlo experiment to evaluate the second-order theory
of the semiparametric adaptive regression estimawesshow by simulation
how the semiparametric estimators are affected by the choices of smoothing
parameters in finite sampl&Ve evaluate the effect of a bandwidth selection
criterion that minimizes the second-order mean squared error and the sampling
performance of estimators that use different bandwidth choices

The model used for data generation was the following

Vi = BX + g, (20)

with 8 = 1 andx; i.i.d. standard normal variate$wo different specifications
of & were consideredn the first casge; are ii.d. t-distributions with degree
of freedom 5 and truncated at10. The second case considers the centered
i.i.d. Beta4,4) variates whose probability density vanishes on the boundary and
is thus consistent with the requirements for regular estimats@e Devroye
(1995 for a discussion on generating Beta random variallleégse two spec-
ifications of the residuals are denoted D@Pand DGR2) in our analysisThe
second-order effects for these examples are also calcylezaders are re-
ferred to an early version of this papgrinton and Xiaq 1998 for the formu-
lae Two sample sizes are tried = 100, 200. In our experimentx; andg; are
independent of each otheand the number of replications is 500 in each case

The sampling performances of both the ordinary least sqé&reS) estima-
tor and the semiparametric adaptive estimators were examined for each case
For the adaptive estimatahe following kernel function was used in the semi-
parametric estimatiarK (u) = 15(1 — u?)?1(]u| = 1)/16. For purpose of com-
parison) we also considered the MLEvhich uses knowledge of the density
function In particular we calculated the two-step Newton—Raphson estimator
from the OLS preliminary estimator

Because we are especially interested in the effect of smoothing parameters
on the finite sample performance of the adaptive estimatbfferent choices
of bandwidth parameters were considered and comp#eaexamined the prop-
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erties of the adaptive estimators with optimal bandwidth selection and several
fixed bandwidth choicedDifferent trimming parameter values were used in the
Monte Carlo experimentand the effects of trimming parameter value on the
sample performance of these estimators were also examined

Denoting thgth replication of estimatadp asb( j ), we calculated in each case
the (averagg bias(R™* Eijlb( i) — 1), the median biagmedian ofb — 1), the
variance(R"* 3%, (b(j) — b)?), the mean squared erréR * 37, (b(j) —
1)2), and the interquartile rang@QR = the 75% quantile—the 25% quaniile
whereR is the number of replications

Table 1 provides the simulation results for the nonregular case wheme
i.i.d. truncatedt-distributions whose density is strictly positive on its bounded
support Both n = 100 andn = 200 are reported/Ne calculated the OLS esti-
mator the MLE, and the adaptive estimators using optimal bandwidi$),
which was close t0.035 and fixed bandwidth valuds= 0.01, 0.03, 0.05, 0.1,
in each case without any trimmingror this casgewe can see that the mean
squared errors of the MLEhe adaptive estimator with optimal bandwigdémd
the OLS estimator are closealthough small difference does exiSubstantial
difference can be found among adaptive estimators using different bandwidth
values From these results we can see the influence of bandwidth choice on the
adaptive estimator

Table 2 reports the results for DGB whereg; are ii.d. Beta4,4) random
variates andh = 100 The results for then = 200 case are similaBesides the

TABLE 1. Simulation results where, are ii.d. truncatedt-distributions

Estimators Bias Median Bias  Variance MSE IQR
n =100
OLS estimator M0176 —0.00144 00302 00303 Q0810
MLE: 2-step from OLS 0316 —0.00166 00294 00294 Q0798
ADAP1: optimal band 0320 —0.00178 00294 00294 Q0801
ADAP2: h=0.1 0.04815 —0.00132 12063 12086 00958
ADAP3: h = 0.05 000406 —0.00267 00612 Q0612 Q1207
ADAP4: h = 0.03 —0.00238 —0.00209 00437 Q0437 Q0823
ADAP5: h = 0.01 —0.01958 —0.00239 02617 02621 Q0853
n= 200
OLS estimator M0251 —0.00163 00135 00139 Q0810
MLE: 2-step from OLS M0254 —0.00208 00131 00135 Q0812
ADAP1: optimal band @M0246 —0.00131 00132 00136 Q0801
ADAP2: h=0.1 0.00372 —0.00166 00297 Q0304 Q0799
ADAP3: h = 0.05 000255 —0.00239 00139 00145 Q0852
ADAP4: h = 0.03 —0.0027 —0.00178 00131 00136 00801

ADAPS: h = 0.01 —0.0021 —0.00207 00172 00178 Q0958
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TABLE 2. Simulation results wherg; are ii.d. Beta4,4) random variates

Estimators Bias Median Bias Variance MSE IQR
b = 0.005
OLS estimator —0.00251 —0.00214 0000385 0000391 (00254

MLE: 2-step from OLS -0.00213 —0.00132 0000319 (0000323 00243
ADAP1: optimal band —0.00250 —0.00154 0000369 0000375 00253

ADAP2: h=0.01 —0.00253 —0.00174 0000372 (0000379 00250

ADAP3: h = 0.003 —0.00236 —0.00084 0000372 (0000378 00238

ADAP4: h = 0.001 —0.00253 —0.00186 0000376 0000382 00249
b =0.05

OLS estimator —0.00251 —0.00214 0000385 (000391 00254

MLE: 2-step from OLS —0.00213 —0.00132 0000327 0000332 00243
ADAPL: optimal band —0.00279 —0.00262 0000382 0000390 00242

ADAP2: h = 0.01 —0.00262  —0.00247 0000390 (0000397 00257
ADAP3: h = 0.003 —0.00264 —0.00244 0000386 0000393 (00258
ADAP4: h = 0.001 —0.00249 —0.00208 0000408 0000414 (00263

OLS, MLE, and adaptive estimator with optimal bandwidirhich was close
to 0.006 we also considered the adaptive estimators with fixed bandvhigth
0.001 0.003 0.01 We use the trimming functiot5) and the following two
values of trimming parametéx 0.005 and (05, corresponding to the two parts
of Table 2 Alternative choices of the trimming parameters were traatl the
results are quantitatively similarhese results confirm the previous finding from
Table 1 that the finite sample performance of the adaptive estimator is affected
by the choice oh. We also see that the efficiency gain from using the density
information is relatively higher for DGR). A comparison within Table 2 indi-
cates that the choices of trimming parameter values have important influence
on the finite sample performance

In summarythese Monte Carlo results illustrated the influence of choices of
smoothing parameters on the finite sample performance of the semiparametric
adaptive regression estimatpend confirms the effectiveness of the second
order theory

7. CONCLUSION

The results of this paper readily extend to the multivariate SUR case wehere

is a vectoysee Jeganathdt995 and Hodgsori1998 for first-order theoryln

this case the corresponding second-order randi&*9+2 which worsens with
dimensionsOur results also extend to the nonlinear regression function case as
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in Manski (1984. Finally, whene; has higher order dependence xnit may
still be possible to justify our results provided that

f'(e) _
E{xi fe) ] =0

This would happen for example if the conditional distributionspffx; were
symmetric about zer&see Hodgsoii1999 for a first-order result in this direc-
tion. However in cases where ARCH effects are stroiignay be preferable to
work with the adaptive ARCH estimator of Lintqd993.

NOTE

1. In any casgthe density and its derivatives are zero at the boundaryhat the bias would be
O(h?) were we to be estimating there
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APPENDIX

We shall use the notatiof (-) to denotek; (- |5 ), whereF = {&;;Xy,..., Xn}. Note that
the Lebesgue density af(8) = & — (B — Bo) "Xi, denotediz(-;3), is the convolution
of f with the density or probability mass function xf We shall just treat explicitly the
case wherg; has a Lebesgue denstity because the discrete case is simiNwote that if
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x has unbounded suppothen so does;(8). Let K\ (u) = (1/h}*HK ) (u/hy), j =
0,1,2.

LEMMA 1. Forj = 0,12, we have as i~ oo,
(i) _ (D) hq (a+j) a a
Ei[Kpn) (&i(B) — &/(B)] =T (i(B)) + ol fs' (& (B)) | uIK(u)du+ o(hg),
(A1)

. 1 . .
E,[Ky) (21 (B) = &(B))?] = peE] fo(ei (BNIK Y [5+ o(hy &™) (A-2)

uniformly in S= {i: f(&;) = b} N {B:]8 — Bol = c/v/n} with probability one. Here,
fa(u) = [T (U= (B = Bo) ™) fu(x)dx.

LEMMA 2. Suppose that Assumptions A1-A6 hold. Then, fo0j1,2,

- _ ) logn
nHji%w lﬂ;gl f5(ei(B)) — f5(ei(B))| = Op(h8) + Op<,/ nhﬁ;H),

(A.3)

sup _ max| £57(e,(8) — 1" (e, (BN Gul11) = Ophd) + Oy [T,
18—Bol=c/~ 1=i=n £ £ o PRSP { nh@tt )

(A.4)

In the remainder of this section we wrifg f, of; /98, andof,’ /08 (at the trueBy) in
terms of their probability limits and correction terms involving “bias terms” and “vari-
ance term$ We decomposé (&;) — f(g;) in the following way

fﬂi(&) —fle) =1 ﬁ(si) - Ei{ﬂ(si M+ [Ei{ﬂ(ei )} —fle)]=Vi + B, (A.5)
where
- h3

E{fi(g)} = Ei{Khn(si g ="1(g) + q_r; f(Q)(si)fqu(U)dU+ o(hg)

by identity of distribution and Lemma. Likewise the derivative estimate can be writ-

ten as follows

fr="F(e)=1"(e) +[Ef(e) —f'(e)]+[f(e) —Efi(e)]=F"(&) + B +V,
(A.6)

where

B (00 = mg SEIKA G = 0)) = (o) 2 19206, [ Uk (wdu+ ol
j#i !

using integration by parts
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For the derivatives with respect @pof the density estimatesve have

i (&1(B)) 1
Z—B_n— Jth(su £) (X — X;),
off(e(B) 1

B R EK e — &) (X — %),

and we make the following decomposition
of; (s (B)) _ [ {af(s (B))} f] +[8f(si(ﬁ)) 3 _{af(si(ﬁ))}]
' B ' B
+V, (A7)

I
=
UJI

where

fi' = _E(X x)f' (&) =f'(e) (X = %) = =% f'(&;) + Op(n~2),

]#I

B = _Z(X X ) E Ky, (& _8j)_f_i,

J#I

ha -
= (&) (X —x) + q_r: f(Q+l)(8i)quK(U)dU(>_(—i =) —f" +o(hi)

ha
==X a f(q“)(ei)fqu(u)du+ o(hd) + O,(n~%2),

wherex_; = 1/(n — 1) 3, ; = Op(n~2). Finally,

of; (8 (B)) s [ {af (& (ﬁ))} f_i”:| N |:af~i,(8i(,3)) B Ei{aﬁ’(si(ﬁ))}]
B B
=f"+B'+V", (A.8)
where
fr = nT E(X x) " (&) =1"(g)(X_; — %) = —x f"(g) + Oy(n"?),
j#i

= X)E K (g — &) — f

J#I

hd _
=f"(g) (X —x) + q_T f(Q+2)(8i)quK(U)dU(X—i —x) — 1" +o(hi)

hd
=% q—T f(‘”z)(ei)fqu(u)dqu o(hg) + O,(n~%/2).
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As to the stochastic terms i#.5)—(A.8), we have for example

1
P 2 (Xj - Xi)(xj - x)E [Kﬁn(si - 8])2] -[E Kp. (& — & )2}

Ei [\7i’\7i,-r] = (n _ 1)2 L
j#i

= % E[(x — x)(x; = x)TIE [Kp (8 — £))2]+ O(n~1) = O(n~*h,3).

In conclusion B;, B/, B/, B/ are Op(hy) uniformly ini. The stochastic term¥;,V/,

V', andV,” are mean zero sums of independent random variables with probability or-
ders O,(n~2h;%2), O,(n"Y2h;¥2), O,(n"Y2h ¥2), and O,(n~*?h,*?), respec-
tively, which follows from Lemma 1

Proof of Lemma 1. We first use the law of iterated expectations to write
& K (5(8) = 581 - [ | [ = 81100 01 )0

We work on the inner integraGiven the moment conditions in assumption A1 and the
bandwidth conditions in Agand when|8 — Bo| = ¢/v/n, we have(see the proof of
Lemma 2 max.<i=n|(8 — Bo) T(xi — X;)| = 0,(b¥/?). Notice that orSwe havef (&;) = b;
thus for small values of (g;), & — a or a — &; are of ordelb™? by A4. Under Assump-
tion A6, they are larger in order of magnitude thnAs a result by a change of vari-
ableg; — u= (& — & — (B — Bo) (X — X;))/hn, we have the following approximation

1
thn(si(,B) —&(B))f(g)dg ~ flf(ei —(B=Bo)"(x — X;) + uh,)K(u)du

on S The following Taylor expansion dfarounde; = & — (B — Bo) (X — ;) is valid
forg=r

N (uh:,)q

f(er + uhy) = (&) + uhy ' (87) + - f@(g)

(uhy)9 (* .
+ —ql ga-t) {f“‘)(ai]-‘ + tuh,) — f(&j)}dt
: 0
by Dieudonn&1969 Theorem 814.3). Therefore
hd
thn(ei(,B) — &(B)f(g)de; = f(ef) + q_'; f<q)(8iT) quK(U)dU+ Ri,

where by Assumption A4 uniformly in i with probability one

q
_n

‘Rij| = q

fqu(u)J; a1 —t)9 1 f @ (g +tuh,) — @ (g)}dtdu

= Chg+1

fuq*lK(u)du
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for some constant, by Lipschitz continuity off (9. The final step is to integrate with
respect td,—the integrals are finite because of Assumptions A1-A3
As for the derivativeswe use integration by partsvhich is justified by Assumption

A4). We have e.g.,
& (B) — &(B) &(B) —&(B)

fhz < - & >f(8j)d8j ff (5) ( . & )dsj

Jf/(siT-F uh,)K(u)du.

We can then apply the same Taylor expansion as previpoths/time off " arounde;.
|

Proof of Lemma 2. The proof follows from an extension of Silverm&h978, as
treated in Andrewg1995. In the second part of the theoremote thatGy(|f;|) ex-
cludes observations too close to the boundaoythat we can apply the usual Taylor
series expansion to treat the bias terinsthe first part of the theorentihe bias terms
are small because the dendind its derivatives up to order— 1) is zero at the bound-
ary. With regard to the stochastic part in both theoremsiform convergence over
follows from Masry(1996 Theorem 2. We concentrate on the uniformity with respect
to B. We first show that ArA] = o(1) for anyc, — oo, where

i i I
A—{ sup [TV (e(B) — E{ T3 (i (B} > c, nﬁﬁl}

IB=Bol=c/~n

The proof is made more complicated by the fact that we have not assumed that the
support ofx; is finite so that the density functioi could have unbounded support—or
more relevantlythe range of the evaluation points; (38)}{_, increases as — co. De-

fine the events

Ca(d) = {IL‘F‘SXn Ix] =< anb”@}.

Then by Assumption Alwe have
Pr{C3(d)] = nPrl]x ]| > dn*/2b*2]

Ellx "]

d4tn2+tn2p@tn/e

-0, (A.9)

i.e., max<i=n||x;|/n*¥2b%2 = 0,(1). We shall restrict attention tg N Cn(d), which can
be justified by the argument that [R4] = Pr[.A N C] + Pr[C¢] for any eventA.

Write 8 = 8o + b//n for any8 € N, (c) = {B:|B — Bo| = c/Nn}. BecauseV,(c)
is compact it can be covered by a finite number of cubgsvith centersB, = B¢ +
b, //n having sides of length(L), for| =1,..., L. Note thats(L) = O(L~P). We take

n p/2
L(m) = (h?’logn) ’
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We now make a standard decomposition

sup |57 (e,(B) — E{ 5" (&1 (B)}]
Ni(c)

= max sup |f3"(&(B) — 3" (e(B))

1=I=L A ()Nl
+ max| 57 (e,(B) — B (57 (e (8]

+ max sup |E{fs"(si(B))} — E{fs" (& (B}

1=l=L Np(e)Nly
=Q;+Qx+ Qs

By the Lipschitz condition on the kernel and the Cauchy—Schwarz inequakthave
for any B € Ny(c) N 1y,

iKm(a(ffnh—sj(ﬁ.))_Km(emm;sj(m)’

j+1
ha

<

hj(irz 1@2)51 l&i(B1) — &(B)]

C
= — — max | X;
s 18— 1 max|x

(L) ¢ <h3logn>l/2_ <Iogn >1/2

- h|j]+2 hrj1+2 n n hﬁj +1

for some constant (which can be different from expression to expresgiwith proba-
bility tending to one by(A.9). This gives a bound oi®; similar to (3.21) in Masry
(1996. The Bonferroni inequality and an exponential bound are used to @ga$pe-
cifically, for any A > 0, we have

Pr| max |5 (e;(8) — E{ T (e (B)H > A |

)\2
=2L(n)exp| ————— |, (A.10)

2(2 o2+ mA)

i=1

wherem = ¢/nhi** is a bound on the random variable

1 (& (B —&(B) o &(B) —&(B)
Zy= e |:K(J)<%>—EiK(”< I n i\PI >:|

anda? = ¢/n*h2*1 = var[Z,,]. We takeA = ¢,\/logn/nha*1. Note that theX L, o2
term in the denominator dfA.10) dominates whemh,/logn — co. It now follows that
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the right hand side ofA.10) is o(1), provided the constants are taken large enough
Finally, the termQs is bounded in the same way 5.

Proof of Theorem 1. By a Taylor series expansion &f(/3) abouts,(3,), we have
$(B) = %:(Bo) + SH(B*) (B — Bo),
whereg,(B8) = 9%,(B)/dB andB* is an intermediate poinThus
VR(B = Bo) = Z,(B)*[NVNS,(Bo) + Si(B*)NA(B = Bo)] + VN(B — Bo)
= Tn(Bo) NN, (Bo)
H{Za(B) = Tn(Bo) M 1NNS,(Bo) + {1 + Zo(B) '8, (B*)INN(B — Bo).

Noticing that§,(8*) = §,(Bo) + 5/ (B**)(B* — Bo), a first-order analysis shows that
§/(B™) = Op(1), with limit Q,E{f"/f — 3f"f'/()2 + 2(f/f)3}. Also observing the
fact that3 — Bo = Op(n~Y2), andB* is an intermediate point betwegsy and 3, we
haves,(8*) = §,(8o) + Op(n~¥2). In addition

a i 1O f(si(Bo)
§.(Bo) = —Zn(Bo) n izzl)(i X' (e (Bo)

(i (&1 (Bo)) i (£i(Bo)).

The second term(1/n) >, x; X" g, ( f,) ()%, is a higher order term that depends on
the trimming parameter and on the boundary behavior of the dendijes similar
argument used elsewhere in this pape can show that it ig,(b@~1/22). In particu-
lar, notice that for small enough, |g,(f)| = b~ % the leading term is asymptotically

)2
E |:Xi X' ( f]lg_) On( fi):|
f'(e)?
= Qxf [ fgs; Oy f(s))] 1(b=f(e) =2b)f(e)de
a+d;
~ Qxf c(a)(e —a)*? Vg, (f(e))de

+ Qxfai “c(a)e - a2 Vg, (f(e))de

a-5,
at

a+d; a-5,
= Qxbl[c(g)f (e — Q)z(gil)d&‘ + C(a)f (e — 3)2(91)d8:|
a—é,

a+d;

= O,b *[c(a) + c(a)]bZe~ Ve

= o(ble~1/2e),
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whered, 8,, 51, 5, are defined as ifA.15) and (A.16), which follow. Thus we have
{1+ Zo(B) '$(BINN(B — Bo) = Ty + Op(n2),

where7 is a trimming effect of ordeo,(b'e~/22), ~ ~
For {Z,(8)™* — Z.(Bo) " 1}NVN5,(By), first, it can be shown thal,(8) — Zn(Bo) =
O,(n~Y2). Using the results given previously in this Appendixe have

fNi(si (,é)) - f~i(si (8o))

1 ~
= m;{Khn[(Si —g)+(B— ﬁ)T(Xj = x)] — Ky [& — &1}

~ _thn(s, 8])(Xj _Xi)T(,é_B)

n-17
~ —x1'(e) (B~ B)
= 0,(n"¥2),
and similarly
T(6,(B) — £/ (s(Bo)) = —% £ (&) (f — B) = Oy(n~V/2).

Thus using the definition ofZ,(8, f), we can show thaf,,(3) — Za(Bo) = Op(n~Y?).
In addition Vns,(By) = Op(1). Thus by a geometric expansion we have

{Za(B) = Z(Bo) 1NN, (Bo) = Op(n~Y2).
We now develop the expansions of the score function and the He8giatefinition

(8 (,30))

VNS (Bo) = 2  T(e: (o))

X Gp(f7).

For simplicity we denoteGy( fj) asG;. For the denominator

11 fle)—fe) {f(e)—f(e))?
fe) fen  fe? |t e
where

—{ f~(8i) - f(&‘i )}3

Re = e (e
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SubstitutingB; + V; for f(e;) — f(g) andf’(g;) + B/ + V' for f'(&;(Bo)) and Taylor
expandingwe get

(& (Bo))
(£i(Bo))

\/ﬁSn(.Bo) == Z X Gp( ﬁ)

5/-
_"1

A 3[ 1 BV BV
\/ﬁizl f(e) f(ai)z f(Si)3 z

X [ /(&) + Bl + V1% Gy( f)

S PR Py
S ETERE O
RG-S M
T L
+E 3 o BxG 3 B G
+ %sz)ve + = 3 g Uk
11
= 2‘6 M; + Remainder terms
where the remainder term equals
R, L Plellfe)—fe® o (A11)

Vn 5 f(e)3f (&) ‘
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and

Mo= _Tizl ff((s>) X M= %éf?ﬁ)xié‘;

M T BT O T S T A B

M= w2 ff((sf) MG M= %éf(iz B %G
Mg = %éf(\;’)z BxG; Mg= %éf(z{)zv,xié,,
My, = %é ff/((:)) x[1-G].

1011

The leading termMg = (—=1/Nn) 2 (F/(g)/f(g;))%;, is of orderQOp(1). We now ver-
ify the orders of the other termBirst we show thaGy( f;) can be replaced b@,( f;) =

G;. If we perform a first-order expansion @®y( f;) aroundf; we obtain

max|Gb(f)

1=i=n

Gy ()l gi)f]'gb( f)(fi =)l

1
= - flf b
<br2\ [1( )

1
= = max| f ~ f1(f, = b){1+ 0,1},

wheref; is an intermediate point betweérandf;. Note that the second equality follows
from Lemma 2 part 1, and Assumption A6The last term iso,(1) under our conditions

We also need further expansions

L—1

1
-Gy(f) = =g

Gy( ) 2 & (=) + e () (f - f)h

whose properties can be similarly derived
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We verify that under Assumption A8/, is of orderO,(bte~1/2¢). We have

s
M1, \/—g f(e) X [1— Gyp(f)]
1 210 f( _ :
+ﬁ§€—§ ( xgﬁ(fi)(fi—fi)*
ERE R TCY R
+ vn L! ; f(e) X gb (F)(fi—f)-

It can be shown that under the assumptjons

r

X [1-Gy(f)] (A.12)

is the leading term and is of ord@,(b¢~/2¢). Notice thatx; are mean zero and
{x,& -, are generated as ai.d. sample We only need to calculate the second mo-
ment of (A.2), which is

13| e |, B f'(e)
(28]t et o] el 2] - o]

Notice that Assumptions A2—A4 imply that in a small neighborhood arajnd

1
f(e) ~ o f@(a)(e — a)%, (A.13)

f'(e) = f@(@)(e —a)°* (A.14)

1
(0= 1)

fora=e = a+ 6 andé is small Similar results hold in small neighborhoods around
Thus if we use the trimming function given bi), noting thatGy(x) is a polynomial in
(x — b)/b, it can be shown that

f'(e) |?
E{[ (o) ] [l_Gb(fi)]z}

atd, a+8, [ 2k+2
~ j Co(@)(e — @) ?de +f |: Z ¢ (a)(e — a)'e2p! :| de

a+g; =1

a a-5, [ 2k+2
+ Lﬂ%co(a)(&‘ —a)2 2de +L i |: 2 c(a)(e — a)|g—2bl_|:| de,

5, | =1
where
ol \Ve 20! \Ve
§1=(f@@)) b éz:(f@(a)) b (A19)
_ o! Ve _ 20! \Ve
51=<f<9)(5)> b 52=<f<@><a>> b (A-16)
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andc (a) are functions of (?)(a) andp. By calculating the integraJsve obtain that

E{[ f’(s)} [1- Gy( fi)]z} ~ ¢(p,8,8 f)ble~ Ve,
f(e)

where

¢(0,8,8f) = c(o)[ f@(a)Ve + @ (a)¥e],

wherec(p) is a coefficient that depends @n In genera|

' 2
E{[ff((e)} [1—Gb(fi)]2}:qu(g,g,a,f)b(gfl)/g.
€)

We now calculate the magnitude of

LA e )
T2 T e -0 =01 -1
and

1ATE) ., oy

vn L!izzl f(g) X Gp (fi)(fi —fi)"

The random variable

T§ xgb(f><f f)

is mean zerpand its second moment is

10 (e) B (&)
Eg[f( )] XX [go( f)2(F —1)2 = nE[f()

by iterated expectationdlotice that for small enough

} [go(f)12(fi = )3

lgp(f)l =b~%  foranyi,

andgp(-) has support ofib,2b]. By an application of Lemma,2ve have
f'(e) |? ¢

E| —— | [a(f)I*(fi—f)?
f(s)

f'(g) z —f =
m:| I(b=f =2b)

for some constant;. Under Assumptions A2 and Adve can use the approximations
(A.13) and(A.14) and thus

=c,;(h*+nth tlog n)sz[

s 2
E[ - ((8'))} [Gb(1)1%(f; = £)? = c(h + n~*h~logn)b~¢+ /e = o(ble~2Ve),
i



1014 OLIVER LINTON AND ZHWUJIE XIAO

Thus
1 n f/( i) ~ )
T2 e K (1) = oo 2)

1 12 i -
02 f<88'> X G (F)(fi =f)" = op(b»~2/20), for ¢ =1,...,L —1.
ti=1 i

f'(g)
(&)

X oo (F)(f =)

Il
[
—

for some constants,

/8)

f(e)

% o (F)(ff =)t

1 1.-
HTE§

il L(b=f; = 2b).

max|f
=n

bL+1\/_ f( )

Notice thath/b — 0 asn — oo andf; is an intermediate poinby the result of Lemma,2

f'(g
(=) % o0 (F)(f =)t

/

C n
= —— max|f - Z
1=i=n —

‘ 1b=* = 2b){1+ 0,(D)},

and

max | f; — f|- = O,(h*9 + n"~2h~"/2log"n).
1=i=n

Thus for L > 4,

/

x g (F)(f =)t

= op(b(gfl)/Zg).

l n
HTL—E
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The next two terms aril; andM,. Letting z®? denotezz' for any vectorz, we have
. ®2
]

> % G ]

fi' f.B; B
If_szlz X iXI;rGin:|
1 i 'k

h2a n f_(q+1) 2
= E{%Z{ If :| XiXiTGiZMq(K)Z}
h2a n f'lf_((]) 2
+E{ = 2{ — ] X X G2 f1q(K)?

2h2a n f_,f>(q)f>(q+1) 2
_E{ nn 2[; XiXiTGiZMq(K)Z +o(h3%)

i=1 fi®

= O(h39).

For M,, we write

\,—Zf(s) ~ 1)(.2125”’

whereé;; = {K{, (& — &) — E K}, (& — £)}x G /f (&) satisfiesE; &; = 0. Furthermore

~ LS S S S Elg &1

E[M,MJ] 3
N” i=1k=1j+i s#k

n
— > > E[&; &1+ smaller terms
i=1j#i

n

— X D E[K;, (& — )]G X" f (&) 2 + smaller terms

|:11#|
nl > 11# ff —aK < )f(s) 2f (&) f(g;)de; de;
1

- ? |21,§ h~ J‘J‘K,(U)zf(ai)flf(si — uh)dudk;

o)
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The magnitudes of other terms follow by straightforward moment calculatimss
cause the random variables ddestatistics of various orderswhose moments exist
For examplefor

RSt
Yo" W & )2

X Vi G,
note that this is of the fornEY,.; ¢n(Z;,Z;), where

2.2y —~_ ) G[K(—si_8j>—EK<si_8j>]
en(Z;, j)inh\/ﬁ f(Si)2Xi i h i h )

which satisfiess; ¢n(Zi, Z;) = 0 andEjen(Z;, Z;) = 0. Furthermore

E[gon(zi ) Zj )@n(zi ’ Zj )T]

_ l f,(si) 2 TA2 8i_8j Si_Sj 2
- (e ot (552) e (552 )
- LQ E f/(Si) 2 1 GZ K Si_sj _EK si—sj 2
- n%h2 % f(e) | f(g)% h i h

- C f/(si) 2 1 & T & 2

~ nh? QE[( f(e) ) f(e;)2 G‘2K< h > }

f'(g)\* 1 BN
= nB_Cthﬂ< f((:))> f(o)? GfK(*) et e

1
=0( - xb™ Ve,
<n3h )

where the last line follows because

f e 2de = O(b~Y2).
b

1/e
And thus
M3 = 0,(n~Y2h~¥2),

Similarly, it can be verified that the rest of the terms are of ordgin~*h~%2) or
0op(h9).
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For R, by the Cauchy—Schwarz inequalitye obtain that

~|_f' 6 _ 1/2 1_ n f~'(8i) 2 e
Gi} X n.El{ f(ai)}xixi G,

2 | f i 2
R, =Cqy max ———
IRl = ¢} max ——

’

wherec is a constantand we have
1.0 f~'(8i) 2 e H
z _ XTG | = 0. (1
nlEl{ f(ai)}xlxl i p()
|f, - f|G
max

1=i=n £

Thus |Rnz||? is of orderOy(h®¥~2 + n~%2h~3/2p~3(logn)3) and under Assumption
A6, is of smaller order of magnitude thad,(h? + n~*/2h~%2),
We now turn toAy = Z,(B8o) — Z. Notice that

n _[of' (/0B [ T'(e)of(s)/0B
EXGb””[ T ’( T )]i“‘"

Expanding each of the estimates in the square brackets to the thirdvwerimave

= 0,(b~®h® + b=®n~3h~3(log n)°®).

1
7. - _Z
n

13 " " " Bi + \/l (BI + \/I)2 &
I(BO)___ZXI[f +B +V] re 2 3 Gb(fl)
ni=y | fi fi
12 -
+ HEXi{(fi’J’_Bi’J’_Vi')(fi"i' Bf + V)
i=1
E Bi+\/i+3(Bi+Vi)2 6.(F)
2T £ B
1 i G (F) f_lrr N EIH N _i” f_IN Eirr Bi _IH BI
= —— X : — — _ — —
Ni=1 B f| fl fi f|2 I f|2 f|2
ﬂ/r B// V V //V f_i"
— —\/ - B-2
fi2 1 fiz f2 fi3 1
+ qu2+2 f BV,
e E
1.0 - r £/ f'_rVr f_rE_r BB/ BV
+ = G f + I | + | | + | | + | |
n 2 O ){ R e A
CV BV WY KR B
fiz fi2 fi2 i3 i fi3

f'\Vi'B; f B/ B; fi' B Vi’ fir
f;3 - ;2 2 f2 5

AV A AV 1= AV VY
f;3 f;2 - ;2 ? 2

frf_ f r fi’f-i’
+3—5-B2+3—V2+6— BV ¢,
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where we have writtefy = f(&;), etc, for convenienceAfter collecting terms and drop-
ping higher order terms

_ 1N fi” fil 2 16 16
Io(Bo) = = 2% x| — =1+ + X Z2,=1,+ X Z,
Ni=1 fi f; (=0 (=0
where
1 ] 12 ]2
Zo=—=-2 % x| — [+ =2 x| — |,
° ni:El o [ i ] ni§1 o |:fi ]
1N _ Bi” 1.0 _ f'lu
Zy=—= 2 %G| —|+-2%G| 5B |,
1N _ _i/ 1" flr o 2 n _ fi, Ir
+ =2 %5G| B |+=2,% =BG ——2>x6G|——=B8|,
nZLI ||:fi |:| nZ‘?L |fi i i nzl ||: fi i
1 n _ \7//
22:__2XiGi|:_l:|,
ni= i
1 _[fr o0 _[ff
Zi==->xG| SVi|-=2xG| =V |
3 nZLXI I|:fi |:| nZLXI ||: I3 i
1 n _ f_i/Vi/ 1 n _ f|,\7|/
Zy=— 2, %G , Zs=— 2, %G ,
4 nigl i ||: fiz :| 5 nz— |: fi2
1 n _ EI// Bi 1 n _ Bi, Ei, 3 n _ fllf_i/ Bi2
Zg=— 2. %G +-2,%G +-2,%6G
6 nigl i~ fiz nigl i~ fiz ni—gl i~ fi4
n f_/B/B 1 n f_~”BZ 2 n f/_/B
_ G [ Bt A G i (R G i Pi |,
izzlXI B nuglxI bl ni:21XI B
1 n _ _I”BI
Z,= — ;
7 nZLXIGI fiz :|,
1 n _ Vi/Bi/ 2 n _ _I,Vi,Bl
Zs=->x6 -=3x6 ,
8 nZLXI i fi2 niglxl i fi3
18 BV 22 _ BV
Zo=—2>,%G -—= 2> %G ,
9 nzl i~ fi2 nZL i i fi3
1N _ \/igi” 2 n _ ﬁ”B|\/|
Zio=—-2%G -=-2%G
10 nlgl i ||: fi2 :| nz‘. i i fi3
20 ~fvB 28 WBV 62 _ BV,
nizzlI bOfe nizzlI B nizzlI I fi*
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l n _ VI/\/i/ 1 n _ \/I”VI
Zy, = aleGl[ fi2 :|’ 1332X|G||: f|2 s
3 n _ fi’fl, 1 n _ f_i”
Zio,=~- 2 %G V2| = =D x G| 5 V2|,
12 nigl i ||: fi4 i :| nigl i ||:fi i
22 IR AAVARVA 20 JO AAVARV
214___EXiG| |f|3 ., 215___ZXiG| : |3 -,
ni=; i niz; fi

n ” 1] 2
Zys= %Exixf{ff‘—_ + [:—'] }{1 G}

Combining the expansions f&x(8o) andZ,, notice thatZ, = Z + O,(n~Y/2). Drop-
ping higher order termsve get
11

16 11
V(B —Bo) =TI 1> M +Il< > Ze>112 M;
= =0 i—o

j=0

=T Mg+ Z My +Z My, + T M, + T2, 7 M,

+Z7Z16Z Mg + 0,(5,)

= Xo+ T+ hdB + V+0,(8,), (A.17)

1
Jre
wheres, = max{h3,n"¥2h, %2} whereas
Xo = ™M,

T=T "My +7 12,7 M,
B=h;4T M, + 7 17,7 M,},
Y = nY2h¥21 1M,

whereZ; = E(Z,), and (A.17) follows becauseZ; = Z; + O,(hin~*?) by a central
limit theorem for independent random variablBsirthermorenote that the terns, be-
ing a sum of mean zero independent random varialsissfies a central limit theorem
For the trimming effectZ, as we shown in the expansion of the score functtbe first
term Z~My,, is of orderO,(b‘e~1/22). By a similar argumentit can be verified that
Z71Z167 Mg is Op(b'2~Y/2) and thus of smaller order of magnitude than the leading
term

We haveE(r — 7) = 0, and

E(r—7)(r—T)" = h29E(BB") + EOVVT)

nhd
= T EMMNT t+ T 12, T *EMMI)Z 1272

+ 2T EEM, M) T 1ZIT 1 + T EE(MyMI)T L
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Previous calculation gives th&(M,;M]) = h29M,; + o(h2%). Also, we have
E(MgMJ) = Z andE(M; MJ) = haM, + o(hd). Finally,

12 4 10 £ 1.0 fr
G I

;1 [ff’ i]

f(e) @2 F1(e) @D ()
_hﬁ““(Km*{E[ ) ]_ [ (o) ]

f’(s)zf@(e) f(2)(8)f(q)(8)
+2E[ () ]_E[ (o2 H

Y
PR

DII—‘
DII\J

+ o(hy)
= —h3pq(K) 0Dy €@ (&) + o(hg)
and

E[M,M]] ~ EEh ffK'(u)Zf(eo-lf(si — uh)dud;

i=1j#i
1 -1 ’ 2
= WQXE]‘(S) K’ (u)“du.

We now apply De Jong’61987) central limit theorem for degenerate weightetatistics
to the scalar quantitg"M, for any vectorc, and the result follows by an application of
the Cramer—Wold device u

Proof of Theorem 2. For linear hypothesibly: ¢ = ¢y, the correspondintystatistic
is
c’B—c,  CcB-c

sec"B) q'n—lcTzA'n—lc’

whereZ, = —8'(p) is the estimator of the information matrixnder the null hypoth-
esis thatt '8 = ¢,

._cn(B-B)

Under our conditionsc™Z;, *c = ¢T[~&' (,8 )] 7tc + Op(n~Y2). Because = —5'(Bo) =
7 + 0,(n"Y/2), the expansions dfc"Z, *c] 2 and \/_(,8 B) can be written as

=

—

(A.18)

N 1
[cTZ,;rc] Y2 =[c"T %] V2 - > [cTZ71c]~%2c"T7*A,,Z ¢ + higher order terms

(A.19)
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and
Nn(B—B) =[Z *+Z *A,Z *]Vns(B,) + higher order terms (A.20)

whereAy is defined by(11). The expansions afy and\n3(3,) are given in the proof
of Theorem 1 Substituting these expansions a#d19) and (A.20) into (A.18), it can
be verified thatafter dropping higher order terms

11 16 10
f=[c"Z %] Y3z * ( > Mi> +[cTZTtc] V3cTzt ( >z )Il < > |v|i>
i=0 i=1 i=0

- % [cTZTc] 372 [chl <i1261 Z > Ilc} ¢’z <|1210 M, ) + higher order terms
=[c"Z tc] V2cTZ *ns(By) + [cTZ ] V2T My,

+[c"Z7c] Y2c"T 12,7 M, — %[cTI’lc]’3/2[CTI’1216I’1C]CTI’1M0

+[cTZ7c]™Y2cTZ M, + [¢"T 2] V2cTT71Z, 7 My

- % [cTZ 'c] ¥%c"T 12,7 'cc"T ™M,

+ [cTZ71c]~¥2¢TZ M, + higher order terms

whereM; andZ; are defined in the proof of Theorem Thus thet-statistic can be ex-
panded as the sum of a leading tefm'Z ~*c] ¥2c"Z *ns(B8,), and

1. =[c"Z7 1] Y2cTZ My, + [cTZT 1c] Y2cTT 12,67 My
- %[CTZ‘lc]‘3/2[CTZ‘lzlef‘lc]cTZ‘lMo
+[c"Z7 ] Y2c"Z M + [cTT 2] V2T Z, 7 Mg
- %[CTZ_lc]_3/ZCTI_1211_1CCTI_1MO
+ [cTZ7c]~Y2cTT M,

The termr; can be decomposed into a trimming effect

t, =[c"Z ] V2c"T "My, + [c"T 2] V2cTT 712,677 M,
1
-5 [cTZ %] ®?[c"T1Z,sZ *c]c"T M,
and the nonparametric estimation biases and variances effect
[cTZ %] Y2cTT M, + [c"Z2c] Y2c"Z1Z, 7'M,
1 T7—-1~71-3/2,T7—1 —1ArT7T—1
—E[CI c]™¥2c'717'Z2,Z 7 'cc’I7 M,

+ [cTZ71c]Y2cTZT M,
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which is mean zeroand it can be verified that
E(r, —t,)% = h23{[c"Z %] *(c"Z *M,Z )
+[c"Z ] Hc"T T MZT T MLT o)
- ;1 [cTZ '] 2(c"Z *M3T *c)?
+2[c"Z7c] U "I IML,T IMZT 1)
—[c"Z %] 2(c"Z *M,LZ ) (c"T ML T o)}
+nh3[c"Z ] X c"T715,7 o),
giving the result in Theorem.2 n

Proof of Theorem 3. The steps of expansions for the adaptive estimator of models
(1) and(17) are very similar to those in the previous sectiblotice thatx* ande; are
i.i.d. and are mutually independent and that the analysis foxithgart is basically the
same as those given earlier in this Appendike only thing that is substantially differ-
ent from the previous section lies on the parf_; ¥e,_, which has serial correla-
tion. Specifically the expansioriA.17) holds with the same included terms and the same
magnitude of approximation errcfhe two main differences arise in the properties of
M; andM,.

Note that( f'(e)/f (&)X is @ martingale difference sequence because

frled |
E|: f(er) :| -
for any regular density. Therefore
®2
E(MoMT) ZE[ ff((s‘)) ] = 1(F)E(xxT)

by stationarity and the assumption about the procedsurthermore Z, = E(Z;) +
0p(N~%2), just as in the.i.d. case
Note that

B/ !
E{f - f—z}x Gi{L+ o} = hing(K) = 2 (&)X G{1+o(1)},
where
fOrD(g) _ f(g)f 9 (g)

f(ai) fz(&‘i)

n(g) =

is not a martingalgbecauseéE[7(s;)] # 0. However whenf is symmetric about zero it
is a martingale because it is an odd functibnany caseE(M;) = 0 andM, satisfies a
central limit theorem for mixing processdadeed

n ®2
E(MlMlT)=h2q,qu)E[ 2 s)XiGi:|

%hﬁqMS(K)E[- > n(si)xin(ek)XJ],
Nik=1
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where
1
[ Eln (&)X XT} = E[7?(&)]Qy,
1 2 n—1n—i
E[E ZE ”I(Si)xiﬂ(sk)XkT] == 2 Eln(e)xin(ei)x’ ]
i#k ni=ir=1
2 n—1n—i oo oo
= PORA
i=1r=1j=0¢=0
X E["](Si)si—l—j77(8i+r)3i+r—1—e]
2 n—1n—i oo
:E <~ :120 V1o Wy E[W(S )]E[”fl(8|+r)]E[8| 1—c]

= 2E?[n(g)]o2 = 2{2 g r+€q,€}

= 2E2[n(e0? 3, 3 e W+ 0l

Similarly, we can show that

ha AR (&)
E(M; M{ )—_Mq(K )2 X E [n(S) Ton % Gi X Gk]{1+0(1)}
i—1k=1 &k

f (g+1) f ’ £ f_(q) £
= hdpq(K)QE -
n Mg (K) { Ft T

The second main departure is in the term

MZ 1)\/— EZ gu

J#I

(n

{Kn.(ei — &) — E K}, (&; — )% G; /T (&).
( 1)\/_ g hn hn i
Note thatM, is not necessarily mean zero because wheni, Ky, (s; — &) can be
correlated withx;.

However

> 2 E[K; (5 — )% G /f(&))]

1
E(MZ) = (n—l)\/ﬁi

n i—1

Z W, E[Kr’.n(si - Sj)si—(/f(ei )]

2 Z i— E[Kﬁn(si - 8])81 /f(&)]

T (n-1vn £
E[f (g1)e; /f(g) + O] & 5
(n—Dn EZKE“'

= 0o(n¥2).
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Furthermorevar(M,) is the same as for the associatédli sequencégsee Fan and L.i
1996. Let M; = M, — E(M,), where

M; = 1)\/3225.1,

i=1j#i

(n

where fu & — E(&). Therefore it can be verified that the leading term in
EMM;M;T) = (1/(n — 1)?n) 2L, 34 2h-q Der E(5€77) is given as follows

1)2n |211§ E[Kh (& — ] )]2<k21\[,k8i—k>(szqus-r8i—s) f(si)’z

= m ZL% lZL E[KY (s — &)]2 (W W e ) f(e) 2

Zg [qun(si _Sj)]z(‘l’k €| W)™ 2

" (n—1?n
In this expectationif j # i — k, we get 02X ¥ W) (1/(n — 1)2n) >, X
i+ E[K} (&i — €)]?f (&) "2 and forj = i — k, there is correlation betweesf and

Ki (& — €j), and we get
( 1)2 |2]_J§E[Kh (sl_sj)] (\I} q}T sj)f(g)
For the first term

i 1
(g >(n 1)%n EEE[Kﬁn(Si _8j)]2f(€i)_2

i=1j#i

i 1
—aj<k21x1ka1fg> (=1 2 1J¢| ffh K’ ( >f(8) zf(é‘)f(&‘j)d&),d&‘]

f(i > “1en Z >h- ffK’(u)zf(si)‘lf(si — uh)dud;

i=1j#i

~ oﬁ( > %%) e 2 2 Ef(e)” 1fK/(u>2du
k=1 i=1j#i

~ i(r (2 \Ifk\Ifk) Ef(s)’le’(u)Zdu.

nh3

Notice thatX; ¥, ; ¥_; %L, = O(n), and it follows that

1)2n22E[Kh (e = &) (% 4T ef)f(e) 2 = O(n"2h"3).
i=1j#i

The central limit theorem follows from Theoreml12of Fan and Li(1996. |



