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WHITTLE ESTIMATION
OF ARCH MODELS

LIIIUUUDDDAAASSS GIIIRRRAAAIIITTTIIISSS AAANNNDDD PEEETTTEEERRR M. ROOOBBBIIINNNSSSOOONNN
London School of Economics

For a class of parametric ARCH models, Whittle estimation based on squared
observations is shown to be!n-consistent and asymptotically normal+ Our con-
ditions require the squares to have short memory autocorrelation, by comparison
with the work of Zaffaroni~1999, “Gaussian Inference on Certain Long-Range
Dependent Volatility Models,” Preprint!, who established the same properties on
the basis of an alternative class of models with martingale difference levels and
long memory autocorrelated squares+

1. INTRODUCTION

Conditional heteroskedasticity arises in much analysis of economic and finan-
cial time series data+ Even series that appear not to be autocorrelated may ex-
hibit dependence in their squares, a notable example being daily asset returns+
For a covariance stationary process, xt , t 5 0,61, + + + , suppose that, almost surely,

E~xt 6Ft21! 5 0, (1.1)

ht 5 E~ yt 6Ft21! 5 c0 1 (
j51

`

cj yt2j , (1.2)

where

yt 5 xt
2 (1.3)

and Ft is the s-field of events generated byxs, s # t+ The requirement
c0 . 0,cj $ 0, j $ 1, ensures positivity of the conditional varianceht , whereas
convergence conditions on thecj will be imposed in the sequel+ The xt are
observable in some applications, whereas in others they could be innovations
in a time series model or regression errors+

In casecj Þ 0 for somej . 0, we say thatxt has autoregressive conditional
heteroskedasticity~ARCH!+ The original ARCH process is the ARCH~ p! pro-
posed by Engle~1982!, wherein for knownp, cj 5 0 for all j . p+ Bollerslev
~1986! proposes the more general GARCH~ p,q! process in which
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ht 5 v 1 (
j51

p

aj yt2j 1 (
j51

q

bj ht2j + (1.4)

Formally, ht generated by~1+4! is seen to be a special case of~1+2!, with c0 5
v0~1 2 b~1!!, and, for j . 0, cj is the coefficient ofz j in the expansion of
a~z!0~1 2 b~z!!, where

a~z! 5 (
j51

p

aj z j, b~z! 5 (
j51

q

bj z j+ (1.5)

In the literature the termARCH is not now restricted toht that are quadratic in
xt , as in~1+2! and~1+4!, but applies also to the wide variety of other nonlinear
forms that have been found to be of interest; further information can be found
in several reviews of the subject, for example, Bollerslev, Chou, and Kroner
~1992!+ Nevertheless, Engle’s ARCH~ p! and Bollerslev’s GARCH~ p,q! have
attracted considerable theoretical attention, notably Nelson’s~1990a! demon-
stration of convergence to diffusion process used in the option pricing litera-
ture, in addition to being featured in countless empirical studies, and the present
paper focuses on the quadratic ARCH model~1+2! and its special cases+

The general “ARCH~`!” form ~1+2! is considered by Robinson~1991! in a
hypothesis testing context+ Following Engle’s~1982! and Weiss’s~1986! La-
grange multiplier~LM ! tests of no-ARCH against ARCH~ p! alternatives, Rob-
inson~1991! justifies the asymptotic validity ofx2 LM tests of no-ARCH against
arbitrary finite parameterizations of thecj in ~1+2!, where, for some explicitly
or implicitly defined functionscj ~u!, j $ 1, of a p 3 1 column vectoru, we
havecj ~u0! 5 cj , j $ 1, for some unknownu0 [ Rp+ Robinson~1991! also
justifies joint tests of no-autocorrelation inxt and no-ARCH in this context, in
addition to tests of no-autocorrelation inxt ~cf+ ~1+1!! that are robustified to
allow for the presence of general conditional heteroskedasticity as represented
by ~1+2!, without parameterizing thecj + On the other hand, Robinson and Henry
~1999! have found circumstances when robustification is unnecessary: when
the xt are innovations of a possibly long memory series they showed that a
certain semiparametric estimate of the memory parameter of the latter can have
the same limiting distribution under~1+1! and ~1+2! as whenxt has constant
conditional variance+ Giraitis, Kokoszka, and Leipus~2000! have derived suf-
ficient conditions for the existence of a stationary solution of~1+2! when thecj

are constrained to be non-negative, under which they also established a central
limit theorem for partial sums ofyt + Their conditions effectively requireyt to
have short memory autocorrelation+

None of these papers discusses parameter estimation in the setup described
in the previous paragraph+ However, the maximum likelihood estimate~MLE !
based on the assumption of conditionally Gaussianxt , which was considered
by Engle ~1982! and Bollerslev~1986! for the ARCH~ p! and GARCH~ p,q!
models, extends readily to~1+2!+ Given observationsxt , t 5 1, + + + , n, the log-
likelihood is, apart from an additive constant, approximately
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,n~u,c! 5 2
1

2 (
t51

n Hlog ht
*~u,c! 1

yt

ht
*~u,c!J , (1.6)

where

ht
*~u,c! 5 c 1 (

j51

t21

cj ~u!yt2j (1.7)

and c is any admissible value ofc0+ We describe~1+6! as only approximate
becauseht

*~u,c! is not equivalent toEu,c~ yt 6xt21, + + + , x1!; other conventions
can be used, which effectively correspond to different proxies for the unobserv-
ablext , t # 0, and given suitably rapid decay of thecj numerical differences
should be slight for largen+ In fact ~1+6! was the basis for the ARCH~`! LM
tests of Robinson~1991!+

The MLE of u0,c0 is given by

Du, Dc 5 arg max,n~u,c!, (1.8)

where the optimization is carried out over a suitable subset ofRp11+ To con-
duct inference, the limiting distribution of Du, Dc is of interest+Weiss~1986! shows
that Du, Dc is !n-consistent and asymptotically normal in the case of the
ARCH~ p! model for finitep, whereas Lee and Hansen~1994! and Lumsdaine
~1996! establish the same properties in the case of the GARCH~1,1!, wherep 5
q 5 1 is known a priori in~1+4!+ The asymptotic theory of these authors makes
significantly weaker assumptions than the conditional Gaussianity motivating
Du, Dc, so that,n~u,c! is viewed as a quasi-log-likelihood+ Unfortunately, the analy-

sis becomes considerably more complicated in the GARCH~ p,q! model ~1+4!
for generalp andq, and no corresponding results seem yet to be available here,
let alone for other parameterizations of the ARCH~`! ~1+2!+ Bollerslev and Wool-
dridge ~1993! derive the limit distribution in general models under high-level
conditions but do not verify these for the GARCH~ p,q!+ Fortunately, the
GARCH~1,1! model~and the IGARCH~1,1!, wherea1 1 b1 5 1 in ~1+4!!, also
covered in the asymptotics of Lee and Hansen~1994! and Lumsdaine~1996!,
have themselves proved useful in modeling a variety of data series+ On the other
hand these simple models will not always suffice, and one would like an asymp-
totic theory of inference that covers not only the general GARCH~ p,q! ~1+4! but
also other parameterizations of~1+2!, in particular ones that permit greater per-
sistence than~1+4!+ Under ~1+4!, yt has autocovariances that decay exponen-
tially ~see Bollerslev, 1986!, but there is empirical evidence of sample
autocovariances that decay more slowly~see, e+g+, Ding, Granger, and Engle,
1993!, and it is possible to choosecj in ~1+2! to describe only a power law de-
cay, for example+

In such models, other methods of estimation may afford an easier asymptotic
theory+ In particular, because a principal stylized fact motivating models for
conditional heteroskedasticity is the autocorrelation in squaresyt , a fairly nat-
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ural approach matches theoretical and sample second moments of theyt , in the
same way as if one were dealing with a linear autocorrelated series+ This prompts
consideration of Gaussian or Whittle estimation based on theyt , an idea that
is far from new in relation to processes with conditional heteroskedasticity+
Harvey~1998! and Robinson and Zaffaroni~1997, 1998! employ it for certain
stochastic volatility and nonlinear moving average processes, whereas Zaf-
faroni ~1999! has established consistency and asymptotic normality of Whittle
estimates in the latter case+ Indeed the idea is not new in the GARCH case,
especially as Bollerslev~1986! points out thatyt generated by~1+4! have an
ARMA ~max~ p,q!,q! representation, albeit with conditionally heteroskedastic
innovations+

To fix ideas, rewrite ~1+2! as

yt 5 c0 1 (
t51

`

cj yt2j 1 nt , (1.9)

wherent 5 yt 2 ht are martingale differences+ Assumingxt is a fourth-order
stationary sequence~for which conditions are given subsequently!, yt has spec-
tral density

f ~l! 5
s2

2p
g~l!, 2p , l # p, (1.10)

where

g~l! 5 *12 (
j51

`

cj e
ijl*

22

(1.11)

and

s2 5 E~nt
2! 5 E~xt

4! 2 E~ht
2!+ (1.12)

Notice thatE~nt
26Ft21! 5 E~xt

46Ft21! 2 ht
2 Þ s2, so thent do not behave like

an independent sequence up to second moments+ Nevertheless we can consider
Whittle-type procedures originally designed for processes with the latter desir-
able property+

Consider the objective function

wn~u! 5 (
j51

n21 I ~l j !

g~l j ;u!
, (1.13)

whereI ~l! is the periodogram of theyt ,

I ~l! 5
1

2pn *(
t51

n

yt e
itl*

2

, (1.14)
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l j 5 2pj0n, and~cf+ ~1+11!!

g~l;u! 5 *12 (
j51

`

cj ~u!eijl*
22

+ (1.15)

Then we define the estimate

Zu 5 arg min
Q

wn~u!, (1.16)

whereQ is a compact subset ofRp+ The discrete frequency form is preferred
over others such as the continuous form and the actual Gaussian likelihood,
as a result of the direct use it makes of the fast Fourier transform and of
g~l;u!, which is usually explicitly specified, for example in the ARCH~ p! and
GARCH~ p,q! models, where, following Bollerslev~1986!, we have from~1+4!
and~1+5!

g~l! 5
6a~eil ! 2 b~eil !62

612 b~eil !62
+ (1.17)

Another feature of the discrete frequency form~1+13! is that mean-correction
of yt is taken care of by omission of summandsj 5 0 ~andn!+

Asymptotic theory for various Whittle forms has been given by Hannan
~1973!, Dzhaparidze~1974!, and various subsequent authors, from the 1970’s
onward+ Although the techniques used by these authors are relevant to our set-
ting, the central limit theorem for quadratic forms~e+g+, sums of finitely many
sample autocovariances! that is involved in the proof of asymptotic normality
has not previously been checked in the case of squares of ARCH sequences+
Like Hannan~1973! and others, we requireyt to have short memory autocorre-
lation, but in our case it cannot be linear in conditionally homoskedastic mar-
tingale differences nor is it known to satisfy suitable mixing conditions, so that
a direct proof of asymptotic normality of quadratic forms of ARCH squares is
provided+ The main results are presented, with discussion, in the following sec-
tion, with the bulk of the proof left to Section 3+

It is important to point out the drawbacks of Whittle estimation in an ARCH
setting+ The term Zu has a different limiting variance fromDu, in view of the
work of Lee and Hansen~1994! and Lumsdaine~1996!, so that at least when
thext are conditionally Gaussian it is asymptotically less efficient thanDu+ More-
over, whereas in the context of Hannan~1973! theyt can be Gaussian, so that Zu
has the same limit distribution as the Gaussian MLE, it is impossible for our
squaresyt to be Gaussian+ Therefore the objective functionwn~u! cannot pos-
sibly approximate the actual log-likelihood for any conceivable distribution of
the xt , and so in no circumstances canZu be asymptotically efficient+ As a re-
lated point, the limiting covariance matrix ofZu is considerably more compli-
cated in our setting than both that ofDu, ~1+8!, and of Zu in the setting of Hannan
~1973!, essentially as a result of the conditional heteroskedasticity in the inno-
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vationsnt + Moreover, Whittle estimation based on the squaresyt is less well
motivated in our ARCH models than in the stochastic volatility and nonlinear
moving average models considered by Harvey~1998! and Robinson and Zaf-
faroni ~1997, 1998!, because in their cases the actual likelihood, under any par-
ent innovation distribution, is relatively intractable computationally, let alone
theoretically, whereas the MLE Du for ~1+4! is relatively easy to compute+ More-
over, Harvey ~1998! and Robinson and Zaffaroni~1997, 1998! envisage long
memory in the squares, when Whittle estimation has the desirable feature of
compensating for possible lack of square integrability of the spectrum, so as to
produce!n-consistency and asymptotic normality+ Our asymptotics only han-
dles short memory in theyt , and so Whittle estimation plays a less special role:
a variety of estimates, including simple method of moment estimates in the
GARCH~ p,q! case, can be!n-consistent and asymptotically normal, and in-
deed over part of the parameter space they could even be more efficient thanZu+
As a final drawback, we require finiteness of at least eighth unconditional mo-
ments ofxt , unlike in the work by Lee and Hansen~1994! and Lumsdaine~1996!
on Du, whereas a body of opinion believes that fourth moments are infinite in
much financial data+ These considerations may well restrict practical interest in
Zu, and certainly we can identify no circumstances in which it might be pre-

ferred on theoretical grounds toDu in the case of ARCH~ p! and GARCH~1,1!
models, where rigorous asymptotic theory forDu is available, as indeed it is for
adaptive estimates~see Linton, 1993; Drost and Klassen, 1997!+ However, at
least until such theory can be extended to the general GARCH~ p,q! and other
cases of~1+2!, it is to be hoped that our study ofZu will fill some gap and add
to our knowledge of the performance of Whittle estimation in nonstandard
situations+

2. MAIN RESULTS

We introduce first an assumption, one version of which~J 5 4! will be em-
ployed in our proof of consistency ofZu and another, stronger version~J 5 8! in
our proof of asymptotic normality+

Assumption 1~J!+ For t 5 0,61, + + + ,

xt 5 ht
102«t , (2.1)

where the«t are strictly stationary and ergodic with finiteJth moment and,
almost surely,

E~«t 6Ft21! 5 0, (2.2)

E~«t
26Ft21! 5 1, (2.3)

E~«t
2j 6Ft21! 5 m2j , j 5 2, + + + , J02+ (2.4)
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for constantsm2j , whereasht is given by~1+2! with

c0 . 0, cj $ 0, j $ 1, (2.5)

6mJ 620J (
j51

`

cj , 1+ (2.6)

Properties~2+1!–~2+3! imply the conditional moment restrictions~1+1! and
~1+2!+ With ~2+4!, they indicate that«t behaves like an independent and iden-
tically distributed~i+i+d+! sequence up toJth moments+ Property~2+5! implies
ht . 0, as earlier noted, whereas, when J 5 4, ~2+5! is sufficient for ~2+1! to
have a unique covariance stationary solution foryt , in terms of«s, s # t, by a
slight extension of the argument of Giraitis et al+ ~2000!+ It also follows from
Assumption 1~4!, as in Giraitis et al+ ~2000!, that, definingg~ j ! 5 Cov~ y0, yj !,

g~ j ! $ 0, j $ 0, (
j50

`

g~ j ! , `+ (2.7)

This in turn implies thatyt has short memory in the sense thatf ~l! is bounded+
Consequently, the present paper does not cover long memory autocorrelation
in yt +

The remaining conditions for consistency are essentially taken from Hannan
~1973!+

Assumption 2+

~i! Q in ~1+16! is compact+
~ii ! u0 [ Q ands2 . 0+

~iii ! For all u [ Q

E
2p

p

log g~l;u!dl 5 0+ (2.8)

~iv! g~l;u!21 is continuous in~l,u! [ @2p,p# 3 Q+
~v! The set$l : g~l;u! Þ g~l;u0!% has positive Lebesque measure, for all u [ Q0$u0% +

THEOREM 2+1+ Under Assumptions 1(4) and 2, as nr `

Zu rp u0+ (2.9)

Proof+ Assumption 1~4! and ~2+8! imply the representationyt 2 Eyt 5

(j50
` aj ht2j , where (j50

` aj
2 , ` and $hj % is a sequence of uncorrelated,

homoskedastic variables+ On the other hand we also haveyt 5 f ~«t ,«t21, + + + !
for measurablef+ Thus ~cf+ Stout, 1974, Theorem 3+5+8! ergodicity of $«j % im-
plies ergodicity ofyt + The proof now follows from that of Theorem 1 of Han-
nan ~1973!+ n
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For the central limit theorem, we introduce the following assumption+

Assumption 3+

~i! u0 is an interior point ofQ+
~ii ! In a neighborhood ofu0, ~]0]u!g21~l;u! and~]20]u]u '!g21~l;u! exist and are

continuous inl andu+
~iii ! ~]0]u!g21~l;u0! [ Lip~h!, h . 1

2
_ +

~iv! The matrix

W 5
1

2p
E

2p

p ] log g~l;u0!

]u

] log g~l;u0!

]u '
dl (2.10)

is nonsingular+

The proof of the following theorem~see Corollary 3+1 of Section 3! implies
that under our conditionsyt has fourth cumulant spectrumf ~l,v,n!, for l,v,n [
~2p,p# , given by

f ~l,v,n! 5
1

~2p!3 (
j, k,,52`

`

e2ijl2ikv2i,n Cum~ y0, yj , yk, y, !, (2.11)

where the final factor in the summand is the cumulant ofy0, yj , yk, y,, and also
that the matrix

V 5
2p

s2 E
2p

p E
2p

p ]g~l;u0!21

]u

]g~v;u0!21

]u '
f ~l,2v,v!dldv (2.12)

is finite+

THEOREM 2+2+ Under Assumptions 1(8), 2, and 3, as nr `

n102~ Zu 2 u0! rd N~0,2W21 1 W21VW21!+ (2.13)

The proof of Theorem 2+2 is considerably longer than that of Theorem 2+1 as
a result of the central limit theorem we establish for quadratic forms ofyt + Thus
the proof appears in the following section+ Meanwhile, we discuss implications
of Theorems 2+1 and 2+2+

Remark 2+1+ The form of asymptotic covariance matrix in the theorem is
standard in the literature on Whittle estimation in the absence of Gaussianity or
linearity assumptions~see, e+g+, Robinson, 1978; Chiu, 1988; and in a more
specialized setting, Cameron and Hannan, 1979!+ Of course in the event, im-
possible under the present circumstances, that yt were Gaussian, V would van-
ish becausef ~l,v,n! would identically vanish+ The termV would also vanish
in the likewise impossible circumstances thatyt were linear in martingale dif-
ference innovations whose first four conditional moments are constant because
then~from, e+g+, Brillinger, 1975, p+ 39! f ~l,2v,v! is proportional tog~l!g~v!
and ~2+8! holds+ Unfortunately we have no reason to believe thatV 5 0 under
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our ARCH model, an unattractive feature of Whittle estimation in this context+
Presumably Assumption 1~8! imposes structure onf ~l,2v,v! and hence onV,
but we have not analyzed this+

Remark 2+2+ Thus Theorem 2+2 is only useful in inference ifV, and alsoW,
can be consistently estimated+ A consistent estimate ofW is easily shown to be

ZW 5
1

n (
j51

n21 ] log g~l j ; Zu!

]u

] log g~l j , Zu!

]u '
+ (2.14)

An estimate ofV was proposed by Taniguchi~1982! and one of 2W 1 V by
Chiu ~1988!, both of which can readily be used along with~2+14! in estimating
2W21 1 W21VW21+ However, these authors established consistency of their
estimates under Brillinger-mixing conditions, and we have no evidence that these
hold under our ARCH model+ A proof of consistency under our setup would
likely be very lengthy; indeed the corresponding proofs of Taniguchi~1982!
and Chiu~1988! were almost entirely omitted as a result of pressure of space+
Mean square consistency, the property considered by these authors, would un-
fortunately require finiteness of sixteenth moments ofxt , a dubious proposition
in the case of much financial data+

Remark 2+3+ Theorem 2+2 is silent about limit distributional behavior when
~2+6! holds withJ 5 4 ~when Zu is consistent! but not in the more limited situa-
tion whenJ 5 8+ Moreover, though~2+5! and~2+6! only restrictu0, they should
ideally be reflected in our choice ofQ+ This is problematic because, despite the
scale restriction~2+3!, m4 andm8 are unknown because we have imposed no dis-
tributional assumption on«t + For Gaussian«t , m4

102 . 1+732 andm8
104 . 3+2+ In

this case we can compare~2+6! with the necessary and sufficient conditions for
finiteness ofJth moments of GARCH~1,1! xt due to Bollerslev~1986! ~his «t is
our xt !+ In particular, for J5 4 ~2+6! gives 3a1

2 1 2+3102a1b1 1 b1
2 , 1, whereas

Bollerslev’s condition is 3a1
2 1 2a1b1 1 b1

2 , 1+ For the MLE Du, only a1 1
b1 , 1 is needed+ Notice that Whittle estimation based on squares could doubt-
less be justified under many other assumptions besides ARCH ones, when~2+6!
would not be relevant; indeed not only has this been done under an alternative
stochastic volatility model by Zaffaroni~1999!, but, unlike the MLE described
in the previous section, the uncorrelatedness of levels property~1+1! is not es-
sential; for example, xt , and thusyt , could be strongly mixing at the same rate+

Remark 2+4+ Recent empirical evidence suggests that in many financial data
sets sample autocorrelations decay more slowly than the exponential rate pre-
scribed by GARCH~ p,q! models+ Although ~2+7! rules out long memory, Gi-
raitis et al+ ~2000! showed that it permits

g~ j ! ; c1 j 2z asj r `, c1 . 0, z . 1, (2.15)

and that this occurs when

cj ; c2 j 2z, asj r `, c2 . 0+ (2.16)
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We could thus takeu 5 ~u1,u2!' and

g~l;u! 5 *12 ~u1 2 1!u2 (
j51

`

j 2u1eijl*
22

, (2.17)

where the trueu2 is upper-bounded by unity because(j51
` j 2u1 is nearly

~u1 2 1!21, whereasm4 andm8 are at least unity+ Clearly ~2+17! satisfies~2+8!,
and we conjecture that it satisfies our other conditions for suitableu1,u2, though
the lack of a closed form representation of the infinite series in~2+17! is a
practical disadvantage+ Automatic truncation of this series, similar to that in
~1+6! and ~1+7!, is embodied in the alternative Whittle objective function to
~1+13!,

(
t52

n Hyt 2 Sy 2 (
j51

t21

cj ~u!~ yt2j 2 Sy!J2

, (2.18)

where Sy 5 n21 (t51
n yt + Box and Jenkins~1971! considered~2+18! in the con-

text of ARMA estimation, where thecj decay exponentially, but it seems pos-
sible to show that the minimizer of~2+18! has the properties of Theorems 2+1
and 2+2 in the case of~2+17!+ Alternatively, ~2+15! can be described by the al-
ternative model

g~l;u! 5 expHu2Spu121 2 6l 6u1

u1
DJ , u1 .

3

2
, u2 . 0, (2.19)

which is convenient for use in~1+13!+ For u1 , 3, ~2+19! has a peak atl 5 0
that is finite but not very smooth, thus approaching long memory behavior+With
u1 5 2 a priori, ~2+19!, or a continuous time version thereof, was considered by
Lumley and Panofsky~1964! in modeling atmospheric turbulence, and in con-
nection with Whittle estimation by Robinson~1978!, and also by Chiu~1988!
in connection with an alternative method of estimation+ For u1 5 2, it is readily
shown that ifu2 is the true value

g~ j ! @ ~u2 1 j 2!21, all j, (2.20)

satisfying~2+15! for z 5 2+ For 3
2
_ , u1 , 2 an analytic formula is unavailable,

but from Yong~1974, Theorem III-31! we deduce that

g~ j ! ; c3 j 2u1, asj r `, c3 . 0+ (2.21)

The requirementu1 . 3
2
_ in ~2+19! is to satisfy Assumption 3~iii !+ It is easily

seen that the remaining relevant parts of Assumptions 2 and 3 are satisfied,
though we are unable to check~2+5! or ~2+6!, the Kolmogorov–Wiener formu-
lae admitting no closed form solution+ Note that Assumptions 2 and 3 will also
be satisfied if we generalize~2+19! by multiplying it by a factor corresponding
to theg for an ARMA model with standard parameterization, or a Bloomfield
~1973! model; though undoubtedly many members of this family will not sat-
isfy ~2+5! and ~2+6!, nevertheless its practical usefulness in modeling financial
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and other data may be worth exploring+ Some spectral models do not satisfy
~2+8! in that the prediction error variances2 is not an explicitly known func-
tion of the parameters inf ~see ~1+10!!, as for example when ARCHxt are
observed subject to measurement error, and it is the squares of these noise-
corrupted observations that are analyzed+ In such cases we could replace
wn~u! by

(
j51

n21Hlog f ~l j ;t! 1
I ~l j !

f ~l j ;t!J , (2.22)

wheret is the full set of spectral parameters and the extension of our asymp-
totic properties forwn~u! is standard+

Remark 2+5+ Undoubtedly the asymptotic properties of Theorems 2+1 and
2+2 will hold for other versions of Whittle estimation under~2+8!, besides~1+13!
and~2+18!+We have stressedwn~u! because it both exploits the fact thatg~l;u!
is more often a known, convenient form than formulae for autocovariances or
autoregressive coefficients and makes ready use of the fast Fourier transform,
which can significantly aid the processing of long financial time series+ We
can show that alternative estimates that are not of the Whittle family but are
also functions of quadratic forms ofyt are!n-consistent and asymptotically
normal, for example, simple method of moments estimates such as that for
~2+19! in Robinson~1978!+ Also, as in Robinson~1978!, it is possible to show
that a single Newton-type step from such an estimate, based on the objective
function wn~u!, will achieve the limiting variance of Theorem 2+2+ Unfortu-
nately, however, in the present circumstances we cannot assert that this nec-
essarily corresponds to an efficiency improvement in view of the Whittle
approach’s guaranteed inefficiency under current circumstances; whether mat-
ters are made better or worse will typically depend on the actual values of the
true parameters, no general efficiency ordering of these inefficient estimates
being possible+ We have chosen to study Whittle estimation based on squares
because of the relative difficulty of a general asymptotic theory to cover the
maximum likelihood approach described in Section 1 and also because of the
immediate availability ofg~l;u! in ARCH models of form~1+2! and the fa-
miliarity of the method and availability of software to workers in time series
analysis+

3. PROOF OF THEOREM 2.2

By-now-familiar arguments from the literature on Whittle asymptotics of Han-
nan~1973! and subsequent authors leave us with the task of establishing that

n102n 'E
2p

p ]

]u
g~l,u0!21~I ~l! 2 EI ~l!!dl nd N~0,s2! (3.1)
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for any non-nullp 3 1 vectorn, with s2 5 n 'Vn+ With

d~ j ! 5 n 'E
2p

p ]

]u
g~l,u0!21eijldl

the left side of~3+1! is n2102Qn, where

Qn 5 (
t,s51

N

d~t 2 s!~Xt Xs 2 E~Xt Xs!!,

where

Xt 5 yt 2 Eyt +

We shall in fact establish~3+1! under the mild requirement

(
t52`

`

d~t !2 , `, (3.2)

which is equivalent to square integrability of~]0]u!g~l,u0!21, whereas Assump-
tion 3~iii ! implies that~see Zygmund, 1979, p+ 240!

(
t52`

`

6d~t !6 , `+

From Giraitis et al+ ~2000! and Nelson, ~1990b!, yt has the unique second-order
stationary solution

yt 5 c0H«t
2 1 (

j151

`

cj1«t
2«t2j1

2 1 c0 (
j1, j251

`

cj1cj2«t
2«t2j1

2 «t2j12j2
2

1 (
j1, j2, j351

`

cj1cj2cj3«t
2«t2j1

2 «t2j12j2
2 «t2j12j22j3

2 1 {{{J (3.3)

after relaxing the i+i+d+ assumption on«t of these authors+ Writing jt 5 «t
2,

Xt 5 c0 (
l50

`

~ml ~t ! 2 Eml ~t !!,

wherem0~t ! 5 jt and

ml ~t ! 5 (
j1, + + + , j l51

`

cj1 + + +cj l jt jt2j1 + + +jt2j12{{{2j l

5 (
j l,{{{,j1,t

`

ct2j1cj12j2 + + +cj l212j l jt jj1 + + +jj l , ~l $ 1!+ (3.4)

WHITTLE ESTIMATION 619



Therefore

Qn 5 c0
2 (

l, k50

`

Qn
~l, k! , (3.5)

where

Qn
~l, k! 5 (

t,s51

n

d~t 2 s! :ml ~t ! ::mk~s! :

with the definition: x :5 x 2 Ex+ Hence

Var~Qn! 5 c0
4 (

k1, + + + , k450

`

Cov~Qn
~k1, k2! ,Qn

~k3, k4! !+ (3.6)

By Lemma 3+2, ~3+21!, which follows,

n21 6Cov~Qn
~k1, k2! ,Qn

~k3, k4! !6 # CH(
t

d2~t !J@~k1 1 1! + + + ~k4 1 1!# 2D1
k11{{{k4

(3.7)

uniformly in n, k1, + + + , k4 with D1 5 m8
104 (j51

` cj , so that from~3+6!,

n21 Var~Qn! # CS(
k50

`

~k 1 1!2D1
kD4

, `, (3.8)

and thus the series~3+5! converges inL2+
Put

Qn
~l, k! 5 Vn

~l, k! 1 Rn
~l, k! ,

where

Vn
~l, k! 5 (

t,s51

n

d2~t 2 s! :ml
2~t ! ::mk

2~s! :

and

ml
2~t ! 5 (

j l,{{{,j1,t

`

ct2j1
2 cj12j2

2 + + +cj l212j l
2 jt jj1 + + +jj l

with

d2~t ! :5 d~t !1~6 t 6# L!; ct
2 :5 ct 1~1 # t # L!,

whereL . 0 is a fixed large number+ Now write

Qn
2 5 c0

2 (
l, k50

L

Vn
~l, k! ; Qn

1 5 c0
2 (

l, k50

L

Rn
~l, k! 1 c0

2 (
l, k50 :max~l, k!.L

`

Qn
~l, k! (3.9)
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so that

Qn 5: Qn
2 1 Qn

1 +

The proof of~3+1! now follows immediately from Proposition 3+1 and Lemma
3+1, which appear subsequently, where the former result also uses the auxiliary
Lemma 3+2+

LEMMA 3 +1+ Let Assumption 1(8) and (3.2) hold. Then for any fixed L. 1,

n2102~Qn
2 2 EQn

2! n N~0,sL
2! ~n r `!, (3.10)

where

sL
2 r s2 ~L r `!+ (3.11)

Proof+ We shall consider decompositions of the form

Yn 5 (
t51

n

vt 1 Rn (3.12)

for given sequenceYn, with vt a sequence of martingale differences andTn a
remainder satisfying

ERn
2 5 O~1!+ (3.13)

With some abuse of notation, but for ease of presentation, we shall employ the
same notationvt , Rn, even when the form ofYn changes+ We show later that
Yn 5 Qn

2 2 Qn
2 has a decomposition~3+12! where

vt 5 ~jt 2 Ejt ! ft 1 ~jt
2 2 Ejt

2!gt , Evt2 , `, (3.14)

where ft 5 f ~jt21,jt22, + + + ,jt2K !, gt 5 g~jt21,jt22, + + + ,jt2K !, Eft
2 , `,

Egt
2 , `, and f, g are polynomials withK $ 1+ Clearly,

E~vt 6jt21,jt22, + + + ! 5 0

almost surely, and by the same argument as in the proof of Theorem 2+1, vt is
also stationary and ergodic+ It follows that by Theorem 23+1 of Billingsley ~1968!

n2102 (
t51

n

vt n N ~0,Ev02! ~n r `!,

so given~3+12! and~3+13!,

n2102~Qn
2 2 EQn

2! n N ~0,Ev02! ~n r `!

and

n21 Var~Qn
2! r sL

2 [ Ev02 ~n r `!,
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to prove~3+10!+ By ~3+22! of Lemma 3+2, which follows

n21 Var~Qn
2!

5 (
k1, + + + , k450

L

n21 Cov~Vn
~k1, k2! ,Vn

~k3, k4!!

r (
k1, + + + , k450

L H (
u, v, k52`

`

d~u!d~v!Cov~:mk1

2 ~0! ::mk2

2 ~u! :, :mk3

2 ~k! ::mk4

2 ~k 1 v! :!J
5 sL

2+

From relations~3+21!–~3+23! of Lemma 3+2, which appears subsequently, it fol-
lows easily that

sL
2 r (

k1, + + + , k450

` H (
u, v, k52`

`

d~u!d~v!Cov~:m0
~k1! ::mu

~k2! :, :mk
~k3! ::mk1v

~k4! ! : J
5 (

u, v, k52`

`

d~u!d~v!Cov~X0 Xu,Xk Xk1v ! , ` ~L r `!,

to prove~3+11!+ It remains to establish~3+12! and ~3+13! for Yn 5 Qn
2 2 EQN

2 +
From ~3+9! it suffices to considerYn 5 Vn

~l, k! 2 E @Vn
~l, k! # for arbitrary l, k+ Be-

caused2~t ! 5 0 if 6 t 6 . L, we have

Vn
~l, k! 5 (

t,s51

n

d2~t 2 s! :mk
2~t ! ::ml

2~s! :

5 FVn
~l, k! 1 Rn,

where

FVn
~l, k! 5 (

t51

n

(
s:6s2t 6#L

@ + + + # , Rn 5 2(
t51

n

(
s:6s2t 6#L,s#0 or s.n

@ + + + # +

Because

ERn
2 # max

t
6d~t !62ES(

t51

L

(
s52L

0

6mk
2~t !ml

2~s!61 (
t5n2L

L

(
s5n11

n1L

6mk
2~t !ml

2~s!6D2

# max
t
6d~t !628L2~Emk

2~0!2!102~Eml
2~0!2!102 , `

and FVn
~l, k! is a linear combination of finitely many sumsTn~v! :5

(t51
n :mk

2~t ! ::ml
2~t 2 v! : it suffices to establish~3+12! and ~3+13! for Yn 5

Tn~v!+ By definition

:mk
2~t ! :5 (

j1, + + + , jk51

L

cj1 + + +cjk~jt jt2j1jt2j12j2 + + +jt2j12 + + +2jk

2 E @jt jt2j1jt2j12j2 + + +jt2j12 + + +2jk# !+
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BecauseE @jt jt2j1jt2j12j2 + + +jt2j12 + + +2jk# does not depend ont, Tn~v! can be
written as the sum of a constant not depending ont and a linear combination of
the finitely many sums

sn~u1, + + + ,uk* ! 5 (
t51

n

jt2u1
jt2u2

+ + +jt2uk*

with 1 # k* # k 1 l, whereu1 # u2 # + + + # uk* and noui can be repeated in
~u1, + + + ,uk* ! more than twice+ Therefore it suffices to show thatsn~u1, + + + ,uk* !
admits the decomposition of type~3+12!:

sn~u1, + + + ,uk* ! 2 E @sn~u1, + + + ,uk* !#

[ (
t51

n

: jt2u1
jt2u2

jt2u2
+ + +jt2uk*

:5 (
t51

n

vt 1 Rn+ (3.15)

We prove this by induction+ Let k* 5 1+ Then

: sn~u1! :5 (
t51

n

~jt2u1
2 Ejt2u1

! 5 (
t51

n

~jt 2 Ejt ! 1 Rn,

where

Rn 5 (
t51

n

~jt 2 Ejt ! 2 (
t51

n

~jt2u1
2 Ejt2u1

!+

Clearly ~3+15! and~3+13! hold+
It remains to show that~3+15! and ~3+13! hold for k* 5 p $ 2 if they hold

for k* 5 1, + + + , p 2 1+ Indeed, if u1 , u2 then E @jt2u1
jt2u2

+ + +jt2uk*
# 5

E @jt2u1
#E @jt2u2

+ + +jt2uk*
# and

jt2u1
jt2u2

+ + +jt2uk*
2 E @jt2u1

jt2u2
+ + +jt2uk*

#

5 ~jt2u1
2 E @jt2u1

# !jt2u2
+ + +jt2uk*

1 E @jt2u1
# : jt2u2

+ + +jt2uk*
: +

(3.16)

Becauseu1 , u2 # + + + # uk* , the sum overt of the first term on the right
satisfies~3+15!:

(
t51

n

~jt2u1
2 E @jt2u1

# !jt2u2
+ + +jt2uk*

5 (
t51

n

~jt 2 E @jt # !jt2~u22u1! + + +jt2~uk*2u1! 1 Rn,

where clearlyERn
2 5 O~1! andE~jt2~u22u1! + + +jt2~uk*2u1! !

2 , `+ For the sums

(t51
n : jt2u2

+ + +jt2uk*
: from the second term of~3+16!, ~3+13! holds by as-

sumption+ If u1 5 u2 thenu2 , u3 # + + + # uk* , E @jt2u1
jt2u2

jt2u3
+ + +jt2uk*

# 5
E @jt2u1

2 #E @jt2u3
+ + +jt2uk*

# , and

jt2u1
jt2u2

jt2u3
+ + +jt2uk*

2 E @jt2u1
jt2u2

jt2u3
+ + +jt2uk*

#

5 ~jt2u1

2 2 E @jt2u1

2 # !jt2u3
+ + +jt2uk*

1 E @jt2u1

2 #jt2u3
+ + +jt2uk*

,

which gives~3+15! by assumption+ n
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PROPOSITION 3+1+ Let Assumption 1(8) and (3.2) hold. Then

n21 VarQn
1 r 0 ~L r `!

uniformly in n.

Proof+ From ~3+9!,

VarQn
1 # 2c0

4HVarS (
l, k50

L

Rn
~l, k!D1 VarS (

l, k50 :max~l, k!.L

`

Qn
~l, k!DJ 5: qn

~1! 1 qn
~2! ,

so it suffices to show that

n21qn
~ j ! r 0 ~L r `!, ~ j 5 1,2! (3.17)

uniformly in n $ 1+ For j 5 2, the bound~3+21! of Lemma 3+2, which follows,
gives

n21qn
~2! 5 n21c0

4 (
k1, k250:max~k1, k2!.L, max~k3, k4!.L

`

Cov~Qn
~k1, k2! ,Qn

~k3, k4! !

# CH(
k5L

`

~k 1 1!2D1
kJH(

k50

`

~k 1 1!2D1
kJ3

r 0 ~L r `! (3.18)

uniformly in n $ 1 becauseD1 , 1+
We now prove~3+17! for j 5 1+ Denoteml

1~t ! 5 ml ~t ! 2 ml
2~t !, :ml

1~t ! :5
ml

1~t ! 2 Eml
1~t !, andd1~t ! 5 d~t ! 2 d2~t !+ Write

Rn
~l, k! [ (

t,s51

n

@d~t 2 s! :ml ~t ! ::mk~s! :2d2~t 2 s! :ml
2~t ! ::mk

2~s! :#

5 (
t,s51

n

d1~t 2 s! :ml ~t ! ::mk~s! :1 (
t,s51

n

d2~t 2 s! :ml
1~t ! ::mk~s! :

1 (
t,s51

n

d2~t 2 s! :ml
2~t ! ::mk

1~s! :

5: rn
~l, k!~1! 1 rn

~l, k!~2! 1 rn
~l, k!~3!+

Then

qn
~1! # 3HVarS (

l, k50

L

rn
~l, k!~1!D1 VarS (

l, k50

L

rn
~l, k!~2!D1 VarS (

l, k50

L

rn
~l, k!~3!DJ +

It remains to show that

n21 VarS (
l, k50

L

rn
~l, k!~ j !Dr 0 ~L r 0!, j 5 1,2,3, (3.19)
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uniformly in n+ Set

gj1, + + + , j l
~l ! 5 cj1 + + +cj l 1~ j1 $ 1, + + + , j l $ 1!,

gj1, + + + , j l
2, ~l ! 5 cj1

2 + + +cj l
2 ; gj1, + + + , j l

1, ~l ! 5 gj1, + + + , j l
~l ! 2 gj1, + + + , j l

2, ~l ! +

If l 5 0 definegj1, + + + , j l
~l ! 5 gj1, + + + , j l

2, ~l ! 5 1, gj1, + + + , j l
1, ~l ! 5 0+

Then

rn
~l, k!~1! 5 (

t,s51

n

d1~t 2 s!gt2j1, j12j2, + + + , j l212j l
~l ! gs2s1,s12s2, + + + ,sk212sk

~k!

3 ~j J 2 Ej J!~jS 2 EjS!,

rn
~l, k!~2! 5 (

t,s51

n

d2~t 2 s!gt2j1, j12j2, + + + , j l212j l
1, ~l ! gs2s1,s12s2, + + + ,sk212sk

~k!

3 ~j J 2 Ej J!~jS 2 EjS!,

rn
~l, k!~3! 5 (

t,s51

n

d2~t 2 s!gt2j1, j12j2, + + + , j l212j l
2, ~l ! gs2s1,s12s2, + + + ,sk212sk

1, ~k!

3 ~j J 2 Ej J!~jS 2 EjS!,

wherej J 5 jt jj1 + + +jj l , jS 5 jsjs1
+ + +jsk

, J 5 $t, j1, + + + , j l % , S 5 $s,s1, + + + ,sk% +
We have

n21 VarS (
l, k50

L

rn
~l, k!~ j !D 5 n21 (

k1, + + + , k450

L

Cov~rn
~k1, k2!~ j !, rn

~k3, k4!~ j !!,

j 5 1,2,3+

By Lemma 3+2, ~3+21!

Cov~rn
~k1, k2!~1!, rn

~k3, k4!~1!!

# C (
t[Z

~d1~t !!2 )
l51

4

$66g~kl ! 661~kl 1 1!2~Ej0
4!kl 04%,

Cov~rn
~k1, k2!~2!, rn

~k3, k4!~2!!

# C (
t[Z

~d2~t !!2 66g1, ~k1! 66166g1, ~k3! 66166g~k2! 66166g~k4! 661

3 )
l51

4

$~kl 1 1!2~Ej0
4!kl 04%,

Cov~rn
~k1, k2!~3!, rn

~k3, k4!~3!!

# C (
t[Z

~d2~t !!2 66g2, ~k1! 66166g2, ~k3! 66166g1, ~k2! 66166g1, ~k4! 661

3 )
l51

4

$~kl 1 1!2~Ej0
4!kl 04%,
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where66{661 denotes theL1 norm ~see~3+20!, which follows!+ Because

66g2, ~k! 661 # 66g~k! 661 5 (
j1, + + + jk51

`

cj1 + + +cjk 5S(
j51

`

cjDk

,

66g1, ~k! 661 # (
p51

k

(
j1, + + + , jk51

`

cj1 + + +cjk1~ jp $ L! # S(
j$L

cjDkS(
j51

`

cjDk21

,

andD1 5 m8
104 (j51

` cj , 1, we have

n21 VarS (
l, k50

L

rn
~l, k!~1!D # CS (

6 t 6$L

d2~t !DS(
k50

`

~k 1 1!2D1
kD4

r 0

~L r 0!,

n21 VarS (
l, k50

L

rn
~l, k!~ j !D # CF(

t[Z

d2~t !GF(
j$L

cjGS(
k50

`

~k 1 1!3D1
kD4

r 0

~L r 0!; j 5 2,3

to prove~3+19!+ n

We now provide the auxiliary Lemma 3+2 used in the proof of Proposition 3+1+

LEMMA 3 +2+ Define the quadratic forms

Zn 5 (
t,s51

n

d~t 2 s!Yt
~k1! Ys

~k2! , Zn
' 5 (

t,s51

n

d~t 2 s!Yt
~k3! Ys

~k4! ,

where k1, + + +k4 $ 0,

Yt
~ki ! 5 (

jki
,{{{,j1,t

gt2j1, j12j2, + + + , jki212jki

~ki ! ~jt jj1 + + +jjki
2 Ejt jj1 + + +jjki

!, i 5 1, + + + ,4,

and Yt
~0! 5 jt.

Suppose that for i5 1, + + + ,4, (3.2) holds and

66g~ki ! 661 5 (
j1, + + + , jki

[Z

6gj1, + + + , jki

~ki ! 6 , `+ (3.20)

Then

6n21Cov~Zn,Zn
' !6 # CS(

t

d2~t !D)
i51

4

$66g~ki ! 661~ki 1 1!2~Ej0
4!ki 04%, (3.21)

where C. 0 does not depend on n, g~ki ! , and d.
Moreover,

n21 Cov~Zn,Zn
' ! r (

u, v, k52`

`

d~u!d~v!Cov~Yu
~k1! Y0

~k2! ,Yk
~k3! Yk1v

~k4! ! , ` (3.22)
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as nr `, and

(
t3, t452`

`

6Cov~Yt1
~k1! Yt2

~k2! ,Yt3
~k3! Yt4

~k4! !6 # C )
i51

4

$66g~ki ! 661~ki 1 1!2~Ej0
4!ki 04%

(3.23)

uniformly in k1, k2.

Proof+ Set

c~t1, + + + , t4! :5 Cov~Yt1
~k1! Yt2

~k2! ,Yt3
~k3! Yt4

~k4! !+

Because

in :5 n21 Cov~Zn,Zn
' ! 5 n21 (

t1, + + + , t451

n

d~t1 2 t2!d~t3 2 t4!c~t1, + + + , t4! (3.24)

it follows that for n $ 2

6 in6 # (
t1, + + + , t451

n

~d2~t1 2 t2! 1 d2~t3 2 t4!!6c~t1, + + + , t4!6+ (3.25)

Suppose that~3+23! holds+ Then

6 in6 # C (
t52`

`

d2~t !Ssup
t1, t2

(
t3, t451

`

6c~t1, + + + , t4!61 sup
t3, t4

(
t1, t251

`

6c~t1, + + + , t4!6D
# C (

t52`

`

d2~t ! )
i51

4

$66g~ki ! 661~ki 1 1!2~Ej0
4!ki 04% , `+

Thus~3+21! holds+ From ~3+24! and~3+23! ~3+22! follows easily+
It remains to show~3+23!+ Put Jp 5 $ jp,0, jp,1, + + + , jp, kp

% , p 5 1, + + + ,4+ We can
write c~t1, + + + , t4! as

c~t1, + + + , t4! 5 (
~ j !

)
p51

4

gtp2jp,1, jp,12jp,2, + + + , jp, kp212jp, kp

~kp! Cov~: j J1 :: j J2 :, : j J3 :: j J4 :!,

where the sum(~ j ! is taken over indexes~ j ! 5 ~ jp,0, + + + , jp, kp
: p 5 1, + + + ,4!

such thatjp, kp
, + + + , jp,1 , jp,0 [ tp, p 5 1, + + + ,4; j Jp 5 jjp,0jjp,1 + + +jjp, kp

and
: j Jp :5 j Jp 2 Ej Jp for j 5 1, + + + ,4+

Using the Cauchy inequality it is easy to verify that

6Cov~: j J1 :: j J2 :, : j J3 :: j J4 :!6 # 2 )
i51

4

~E6 : j Ji : 64!104 # 32)
i51

4

~E6j Ji 64!104

# 32l4
4 l4

k11{{{1k4, (3.26)

wherel4 5 ~Ej0
4!104 [ ~E«0

8!104+
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Now observe that

Cov~: j J1 :: j J2 :, : j J3 :: j J4 :!

[ E @: j J1 :: j J2 :: j J3 :: j J4 :# 2 E @: j J1 :: j J2 :#E @: j J3 :: j J4 :# 5 0 (3.27)

in both the following cases

~a! The setsJ1 ø J2 and J3 ø J4 do not have common elements, because
then from condition ~2+4! it follows that E @: jJ1 :: jJ2 :: jJ3 :: jJ4 :# 5
E @: jJ1 :: jJ2 :#E @: jJ3 :: jJ4 :# +

~b! Ji ù ~øl51:lÞi
4 Jl ! 5 B for somei 5 1, + + + ,4, because then condition~2+4! implies

E @: jJ1 :: jJ2 :: jJ3 :: jJ4 :# 5 E @: jJi :#EF )
l51:lÞi

4

: jJl :G5 0,

E @: jJi :: jJl :# 5 E @: jJi :#E @: jJl :# 5 0 ~i Þ l !+

Suppose neither~a! nor ~b! is satisfied+ Then the index~ j ! 5 ~J1, J2, J3, J4!
has at least one of the following properties+

~1! J3 ù ~J1 ø J2! Þ B andJ4 ù ~J1 ø J2! Þ B ~when we write~ j ! [ M1!; or
~2! J3 ù ~J1 ø J2! Þ B andJ4 ù J3 Þ B ~when we write~ j ! [ M2!; or
~3! J4 ù ~J1 ø J2! Þ B andJ3 ù J4 Þ B ~when we write~ j ! [ M3!+

Using ~3+26! we get

6c~t1, + + + , t4!6 # 32l4
4 l4

k11{{{1k4 (
~ j ![M1øM2øM3

* )
p51

4

gtp2jp,1, jp,12jp,2, + + + , jp, kp212jp, kp

~kp! *+
Therefore~3+23! follows if we show that forj 5 1,2,3

T ~i ! ~t1, t2! :5 (
t3, t451

`

(
~ j ![Mi

* )
p51

4

gtp2jp,1, jp,12jp,2, + + + , jp, kp212jp, kp

~kp! *
# ~~k1 1 1! + + + ~k4 1 1!!2 )

p51

4

66g~kp! 661+ (3.28)

By definition of M1,

T ~1! ~t1, t2! # (
~3,u![I3;~4, v![I4

(
~i, l !, ~i ', l ' ![I1øI2

3 H (
t3, t451

`

(
jp, kp

,{{{,jp,1,tp:p51, + + + ,4
1~ j3,u 5 j i, l , j4, v5 j i ', l ' !

3 )
p51

4

6gtp2jp,1, jp,12jp,2, + + + , jp, kp212jp, kp

~kp! 6J +
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Taking the sum overt4; j4,s,1 # s # k4~s Þ v! and then overt3, j3,s' ,1 # s' #
k3~s Þ u! we obtain

T ~1! ~t1, t2! # (
~3,u![I3;~4, v![I4

(
~i, l !, ~i ', l ' ![I1øI2

H66g~k3! 66166g~k4! 661 (
jp, kp

,{{{,jp,1,tp:p51,2

)
p51

2

6gtj2jp,1, jp,12jp,2, + + + , jp, kp212jp, kp

~kp! 6J
# H (

~3,u![I3;~4, v![I4

(
~i, l !, ~i ', l ' ![I1øI2

1J 66g~k1! 661 + + + 66g~k4! 661

# $~k1 1 1! + + + ~k4 1 1!%2 66g~k1! 661 + + + 66g~k4! 661+

Thus~3+28! holds for i 5 1+
Similarly using the definition ofM2, we obtain

T ~2! ~t1, t2! # (
~3,u![I3;~4, v![I4

(
~i, l ![I1øI2, ~i

', l ' ![I3

H (
t3, t451

`

(
jp, kp

,{{{,jp,1,tp:p51, + + + ,4
1~ j3,u 5 j i, l , j4, v5 j i ', l ' !

)
p51

4

6gtp2jp,1, jp,12jp,2, + + + , jp, kp212jp, kp

~kp! 6J +
Taking the sum overt4; j4,s,1 # s # k4~s Þ v! and then overt3; j3,s' ,1 # s' #
k3~s Þ u! we obtain~3+28!:

T ~2! ~t1, t2! # (
~3,u![I3;~4, v![I4

(
~i, l ![I1øI2, ~i

', l ' ![I3

H66g~k3! 66166g~k4! 661 (
jp, kp

,{{{,jp,1,tp:p51,2

)
p51

2

6gtp2jp,1, jp,12jp,2, + + + , jp, kp212jp, kp

~kp! 6J
# $~k1 1 1! + + + ~k4 1 1!%2 66g~k1! 661 + + + 66g~k4! 661+

The proof of~3+28! for T ~3!~t1, t2! is similar to that forT ~2!~t1, t2!+ n

COROLLARY 3+1+ Suppose that Assumption 1(8) holds. Then

(
u, v52`

`

6Cov~: yt :: ys :, : yu :: yv :!6 , ` (3.29)
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and

(
u, v52`

`

6Cum~ yt , ys, yu, yv !6 , ` (3.30)

uniformly in t,s.

Proof+ By Lemma 3+2, ~3+23!,

(
u, v52`

`

6Cov~: yt :: ys :, : yu :: yv :!6

# c0
4 (

u, v52`

`

(
k1, + + + , k450

`

6Cov~:mk1
~t ! ::mk2

~s! :, :mk3
~u! ::mk4

~v! :!6

# C (
k1, + + + , k450

`

$~k1 1 1!2+ + + ~k4 1 1!2~E @j4# !~k11{{{1k4!04% 5 C (
k50

`

D1
k , `+

Because

Cov~: yt :: ys :, : yu :: yv :! 5 Cum~ yt , ys, yu, yv !

1 g~t 2 u!g~s2 v! 1 g~t 2 v!g~s2 u!

and(t[Z6g~t !6 , `, this and~3+29! give ~3+30!+ n
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