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WHITTLE ESTIMATION
OF ARCH MODELS

LiubAs GIRAITIS AND PETER M. ROBINSON
London School of Economics

For a class of parametric ARCH modeWhittle estimation based on squared
observations is shown to bén-consistent and asymptotically norm&ur con-
ditions require the squares to have short memory autocorreldiyooomparison

with the work of Zaffaroni(1999 “Gaussian Inference on Certain Long-Range
Dependent Volatility Model$ Prepriny, who established the same properties on
the basis of an alternative class of models with martingale difference levels and
long memory autocorrelated squares

1. INTRODUCTION

Conditional heteroskedasticity arises in much analysis of economic and finan-
cial time series datéEven series that appear not to be autocorrelated may ex-
hibit dependence in their squay@snotable example being daily asset returns
For a covariance stationary procegsst = 0,+1,..., suppose thatlmost surely

E(x|F-1) =0, (1.1)

hy = E(Y|Fioe) = o + > Ui Yijs (1.2)
=1

where

Y = X7 (1.3)

and F is the o-field of events generated bys, s = t. The requirement
o> 0,4 = 0, ] = 1, ensures positivity of the conditional varianieg whereas
convergence conditions on thg will be imposed in the sequeThe x; are
observable in some applicatignshereas in others they could be innovations
in a time series model or regression errors

In casey; # 0 for somej > 0, we say thak; has autoregressive conditional
heteroskedasticityARCH). The original ARCH process is the ARGId) pro-
posed by Engl€¢1982, wherein for knownp, ¢; = 0 for all j > p. Bollerslev
(1986 proposes the more general GARQpbiq) process in which
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Leverhulme Trust Personal Research ProfessorShigthank the referee for a careful readidgidress corre-

spondence toPeter M Robinson Department of Economicd.ondon School of Economigd.ondon WC2A
2AE, United Kingdom

608 © 2001 Cambridge University Press ~ 0266-4666 $950



WHITTLE ESTIMATION 609

p q
h=o+ X Y+ > Bih. (1.4)
j=1 =1

Formally, h, generated by1.4) is seen to be a special case(tf2), with o =
w/(1 — B(1)), and for j > 0, ¢; is the coefficient ofz! in the expansion of
a(2)/(1 — B(z)), where

p q
a(z) = 2 oz}, B(2) =2 Bz (1.5)
j=1 j=1

In the literature the termPARCHis not now restricted td, that are quadratic in
X¢, as in(1.2) and(1.4), but applies also to the wide variety of other nonlinear
forms that have been found to be of interdatther information can be found
in several reviews of the subjedbr example Bollersley Chou and Kroner
(1992. NeverthelessEngle’s ARCH p) and Bollerslev’s GARCHKip,q) have
attracted considerable theoretical attentinotably Nelson’s(1990a demon-
stration of convergence to diffusion process used in the option pricing litera-
ture, in addition to being featured in countless empirical studa@sl the present
paper focuses on the quadratic ARCH mo@eP) and its special cases

The general “ARCHco)” form (1.2) is considered by Robinsofi99) in a
hypothesis testing contexollowing Engle’s(1982 and Weiss's(1986 La-
grange multiplieLM ) tests of no-ARCH against ARCHb) alternativesRob-
inson(1991) justifies the asymptotic validity of? LM tests of no-ARCH against
arbitrary finite parameterizations of thig in (1.2), wherg for some explicitly
or implicitly defined functionsy;(6), j = 1, of ap X 1 column vectord, we
have;(6y) = ¢, j = 1, for some unknowrg, € RP. Robinson(1991) also
justifies joint tests of no-autocorrelation ¥ and no-ARCH in this contexin
addition to tests of no-autocorrelation ¥a (cf. (1.1)) that are robustified to
allow for the presence of general conditional heteroskedasticity as represented
by (1.2), without parameterizing the;. On the other handRobinson and Henry
(1999 have found circumstances when robustification is unnecessdrgn
the x; are innovations of a possibly long memory series they showed that a
certain semiparametric estimate of the memory parameter of the latter can have
the same limiting distribution undei.1) and (1.2) as whenx; has constant
conditional varianceGiraitis, Kokoszka and Leipus(2000 have derived suf-
ficient conditions for the existence of a stationary solutiorilo?) when they;
are constrained to be non-negativader which they also established a central
limit theorem for partial sums of;. Their conditions effectively requirg, to
have short memory autocorrelation

None of these papers discusses parameter estimation in the setup described
in the previous paragraphowever the maximum likelihood estimatéMLE)
based on the assumption of conditionally Gaussiarwhich was considered
by Engle (1982 and Bollerslev(1986 for the ARCH(p) and GARCH p,q)
models extends readily tq1.2). Given observations,, t = 1,...,n, the log-
likelihood is apart from an additive constaragpproximately
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1 n
€.(0,¢) = _E Z{Iogh (0,y) + he (Z zﬂ)} (1.6)
where
t—1
hi (6,4) = ¢ + 2 4 (0)y: (1.7)
j=1

and ¢ is any admissible value af,. We describe(1.6) as only approximate
becauseh;(6,) is not equivalent tdEy ,(Vi|X—1,..., X1); other conventions
can be usedwhich effectively correspond to different proxies for the unobserv-
ablex,, t = 0, and given suitably rapid decay of tlyg numerical differences
should be slight for large. In fact (1.6) was the basis for the ARClb) LM
tests of Robinsor(1991).

The MLE of 6y, ¢ is given by

6,4 = argmaxt,,(6,y), (1.8)

where the optimization is carried out over a suitable subs®"f'. To con-
duct inferencethe limiting distribution ofg, i is of interest Weiss(1986 shows
that 4, is vn-consistent and asymptotically normal in the case of the
ARCH(p) model for finitep, whereas Lee and Hans€¢h994) and Lumsdaine
(1996 establish the same properties in the case of the GAR{N wherep =
g = 1is known a priori in(1.4). The asymptotic theory of these authors makes
significantly weaker assumptions than the conditional Gaussianity motivating
6,1, so thatl,(6,) is viewed as a quasi-log-likelihoodnfortunately the analy-
sis becomes considerably more complicated in the GAR&& model (1.4)
for generalp andg, and no corresponding results seem yet to be available here
let alone for other parameterizations of the AR@GH (1.2). Bollerslev and Wool-
dridge (1993 derive the limit distribution in general models under high-level
conditions but do not verify these for the GARCp| q). Fortunately the
GARCH(1,1) model(and the IGARCH1,1), wherea, + 8, = 1 in (1.4)), also
covered in the asymptotics of Lee and Han$&894) and Lumsdaing¢1996),
have themselves proved useful in modeling a variety of data s€iethe other
hand these simple models will not always suffiaad one would like an asymp-
totic theory of inference that covers not only the general GARGId) (1.4) but
also other parameterizations (@f2), in particular ones that permit greater per-
sistence tharil.4). Under(1.4), y, has autocovariances that decay exponen-
tially (see Bollersley 1986, but there is empirical evidence of sample
autocovariances that decay more slowdge e.g., Ding, Grangey and Engle
1993, and it is possible to choosg in (1.2) to describe only a power law de-
cay, for example

In such modelsother methods of estimation may afford an easier asymptotic
theory In particular because a principal stylized fact motivating models for
conditional heteroskedasticity is the autocorrelation in squgtess fairly nat-
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ural approach matches theoretical and sample second momentsypfiththe
same way as if one were dealing with a linear autocorrelated s€hmssprompts
consideration of Gaussian or Whittle estimation based onythan idea that
is far from new in relation to processes with conditional heteroskedasticity
Harvey (1998 and Robinson and Zaffaro1997 1998 employ it for certain
stochastic volatility and nonlinear moving average procesatereas Zaf-
faroni (1999 has established consistency and asymptotic normality of Whittle
estimates in the latter caskndeed the idea is not new in the GARCH case
especially as Bollersley1986 points out thaty; generated by1.4) have an
ARMA (max(p,q),q) representatignalbeit with conditionally heteroskedastic
innovations

To fix ideas rewrite (1.2) as

Yo = tho + 2 U Yooy + vy, (1.9
=1

wherev, = y; — h, are martingale differencegssumingx; is a fourth-order
stationary sequendgor which conditions are given subsequenthy has spec-
tral density

2

F) = —g(\), -—m<A=m, (1.10)
2

where
0 -2

g(A) = ’1— > el (1.11)
j=1

and

o2 = E(v2) = E(x%) — E(h2). (1.12)

Notice thatE(v2| F_;) = E(x}| F/_1) — hZ # 02, so ther, do not behave like
an independent sequence up to second mommletgertheless we can consider
Whittle-type procedures originally designed for processes with the latter desir-
able property

Consider the objective function

n—1 |()‘)
w,(0)=> —, 1.13
2 G0y 19
wherel ()) is the periodogram of thg,
1 n 12
[(A) = — | D y e, (1.14)
27Tn t=1
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Aj = 27j/n, and(cf. (1.11))

oo -2
g(A;0) = ‘1 — > i (0)e’ (1.15)
j=1
Then we define the estimate
6 = arg minw,(6), (1.16)
]

where® is a compact subset &@P. The discrete frequency form is preferred
over others such as the continuous form and the actual Gaussian likelihood
as a result of the direct use it makes of the fast Fourier transform and of
g(A;0), which is usually explicitly specifiedfor example in the ARCKlp) and
GARCH( p,q) models where following Bollerslev(1986), we have from(1.4)
and(1.5)

_|a(e™) = BEM?
g()\) - |1—,8(e”)\2

Another feature of the discrete frequency fofl3) is that mean-correction
of y, is taken care of by omission of summarjds 0 (andn).

Asymptotic theory for various Whittle forms has been given by Hannan
(1973, Dzhaparidzg1974), and various subsequent authdirem the 1970’s
onward Although the techniques used by these authors are relevant to our set-
ting, the central limit theorem for quadratic fornag., sums of finitely many
sample autocovariancethat is involved in the proof of asymptotic normality
has not previously been checked in the case of squares of ARCH sequences
Like Hannan(1973 and otherswe requirey, to have short memory autocorre-
lation, but in our case it cannot be linear in conditionally homoskedastic mar-
tingale differences nor is it known to satisfy suitable mixing conditj@asthat
a direct proof of asymptotic normality of quadratic forms of ARCH squares is
provided The main results are present@dth discussionin the following sec-
tion, with the bulk of the proof left to Section.3

It is important to point out the drawbacks of Whittle estimation in an ARCH
setting The term@ has a different limiting variance frord, in view of the
work of Lee and Hansef1994 and Lumsdain€1996), so that at least when
thex, are conditionally Gaussian it is asymptotically less efficient thaviore-
over, whereas in the context of Hann&to73 they, can be Gaussiaso thatd
has the same limit distribution as the Gaussian MItEs impossible for our
squaresy; to be GaussianTherefore the objective functiow,(#) cannot pos-
sibly approximate the actual log-likelihood for any conceivable distribution of
the x,, and so in no circumstances cérbe asymptotically efficientAs a re-
lated point the limiting covariance matrix of is considerably more compli-
cated in our setting than both that&f(1.8), and ofé in the setting of Hannan
(1973, essentially as a result of the conditional heteroskedasticity in the inno-

(1.17)
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vationsr;. Moreovey Whittle estimation based on the squasgss less well
motivated in our ARCH models than in the stochastic volatility and nonlinear
moving average models considered by Har¢&998 and Robinson and Zaf-
faroni (1997, 1998, because in their cases the actual likelihomader any par-
ent innovation distributionis relatively intractable computationalliet alone
theoretically whereas the MLH for (1.4) is relatively easy to comput&lore-
over, Harvey (1998 and Robinson and Zaffaroiil997 1998 envisage long
memory in the squaresvhen Whittle estimation has the desirable feature of
compensating for possible lack of square integrability of the spectsoras to
producey/n-consistency and asymptotic normali@ur asymptotics only han-
dles short memory in thg, and so Whittle estimation plays a less special:role
a variety of estimatesncluding simple method of moment estimates in the
GARCH(p,q) case can bevn-consistent and asymptotically normahd in-
deed over part of the parameter space they could even be more efficiert than
As a final drawbackwe require finiteness of at least eighth unconditional mo-
ments ofx;, unlike in the work by Lee and Hanséh994) and Lumsdaingé1996

on d, whereas a body of opinion believes that fourth moments are infinite in
much financial datarhese considerations may well restrict practical interest in
6, and certainly we can identify no circumstances in which it might be pre-
ferred on theoretical grounds #in the case of ARCKp) and GARCH1,1)
models where rigorous asymptotic theory féris available as indeed it is for
adaptive estimatetsee Linton 1993 Drost and Klassenl997). However at
least until such theory can be extended to the general GARGH and other
cases 0f1.2), it is to be hoped that our study éfwill fill some gap and add

to our knowledge of the performance of Whittle estimation in nonstandard
situations

2. MAIN RESULTS

We introduce first an assumptipnng version of whichlJ = 4) will be em-
ployed in our proof of consistency éfand anotherstronger versioriJ = 8) in
our proof of asymptotic normality

Assumption 1J). Fort=0,=1,...,
X = h¥?g,, (2.1)

where theg, are strictly stationary and ergodic with finitkh moment and
almost surely

E(e| A1) = 0, (2.2)
E(ef| A1) = 1, (2.3)
E(Stzj |'rt71) = /"L2j9 J = 2""5‘]/2- (24)
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for constantsu,;, whereash, is given by(1.2) with

o> 0, Y =0, i=1 (2.5)
|waPP gy < L. (2.6)
j=1

Properties(2.1)—(2.3) imply the conditional moment restrictior4.1) and
(1.2). With (2.4), they indicate that, behaves like an independent and iden-
tically distributed(i.i.d.) sequence up tdth moments Property(2.5) implies
h, > 0, as earlier notedwhereaswhenJ = 4, (2.5) is sufficient for(2.1) to
have a unique covariance stationary solutionyfotin terms ofes, s=<t, by a
slight extension of the argument of Giraitis et €000. It also follows from
Assumption 14), as in Giraitis et al(2000, that definingy(j) = Cov(yp, Y;),

y())=0, =0, EOV(J')<OO- (2.7)
i<

This in turn implies thay; has short memory in the sense théi) is bounded
Consequentlythe present paper does not cover long memory autocorrelation
in y;.

The remaining conditions for consistency are essentially taken from Hannan
(1973.

Assumption 2

(i) ®in (1.16) is compact
(i) 6o € ® ando? > 0.
(iii) Forallo € 6

f logg(A;0)da = 0. (2.8)
(iv) g(A;0)~1is continuous in(A,0) € [—a, 7] X O.
(v) The sefA:g(A;0) # g(A;600)} has positive Lebesque measu all § € ©/{6}.

THEOREM 21. Under Assumptions 1(4) and 2, as# oo
6 =, 6. (2.9)

Proof Assumption 14) and (2.8) imply the representatiory, — Ey;, =
> oaym;, Where 37 qa” < oo and {n;} is a sequence of uncorrelated
homoskedastic variable®n the other hand we also haye= f(g, &_1,...)
for measurabld. Thus(cf. Stout 1974 Theorem 35.8) ergodicity of{g;} im-
plies ergodicity ofy;. The proof now follows from that of Theorem 1 of Han-
nan(1973. u
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For the central limit theorepwe introduce the following assumption

Assumption 3

(i) 6o is an interior point of®.
(i) In a neighborhood oy, (9/00)g~1(A;6) and(0%/0006')g~1(A;0) exist and are
continuous inA andé.
(i) (9/06)g~*(A;60) € Lip(n), n > 3.
(iv) The matrix

We if” alogg(A;6,) alogg(A;6,)
T om ), 90 00’

dA (2.10)

is nonsingular

The proof of the following theorerfsee Corollary 3 of Section 3 implies
that under our conditiong has fourth cumulant spectrui\, o, v), for A, w,v €
(—m, ], given by

(o]

R e*ij)\*ik(u*i{’l/ Cum . 211
27)3 j’k’;::_oo um(Yo, ¥ Yis Ye)s ( )

where the final factor in the summand is the cumulany®f;, vk, Ye, and also
that the matrix

2 T (7™ 9g(A;0p)t 9g(w;6,) L
vz_’Zf f 9lAsbo) ~ 99(w:6) f(A,—o,w)dAdw (2.12)
o2) ). a0 30’

f(Aw,v) =

is finite.
THEOREM 22. Under Assumptions 1(8), 2, and 3, as#oo
nY2(6 — 6y) =4 N(0,2W 1 + W Iyw1). (2.13)

The proof of Theorem .2 is considerably longer than that of Theorerh &8s
a result of the central limit theorem we establish for quadratic fornys. dthus
the proof appears in the following sectiagleanwhile we discuss implications
of Theorems 2 and 22.

Remark 21. The form of asymptotic covariance matrix in the theorem is
standard in the literature on Whittle estimation in the absence of Gaussianity or
linearity assumptionsgsee e.g., Robinson 1978 Chiu, 1988 and in a more
specialized settingCameron and Hannaii979. Of course in the evenim-
possible under the present circumstantleaty, were Gaussiarn would van-
ish becausé (A, w,») would identically vanishThe termV would also vanish
in the likewise impossible circumstances tlyatvere linear in martingale dif-
ference innovations whose first four conditional moments are constant because
then(from, e.g., Brillinger, 1975 p. 39) f(\A,—w, w) is proportional tay(A)g(w)
and(2.8) holds Unfortunately we have no reason to believe tWat 0 under
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our ARCH model an unattractive feature of Whittle estimation in this context
Presumably Assumption(&) imposes structure off A, —w, w) and hence oW,
but we have not analyzed this

Remark 22. Thus Theorem 2 is only useful in inference ¥/, and alsow,
can be consistently estimatel consistent estimate o/ is easily shown to be

do LS 2logg(;;0) dlogg(r;,6)

>

2.14
ni=; a0 a0’ (2.14)

An estimate ofV was proposed by Taniguclii982 and one of ¥V + V by
Chiu (1988, both of which can readily be used along wi{th14) in estimating
2wt + W-IvW~1, However these authors established consistency of their
estimates under Brillinger-mixing conditigrend we have no evidence that these
hold under our ARCH modelA proof of consistency under our setup would
likely be very lengthy indeed the corresponding proofs of Tanigu¢h®82

and Chiu(1988 were almost entirely omitted as a result of pressure of space
Mean square consistendpe property considered by these autheveuld un-
fortunately require finiteness of sixteenth moments,0f dubious proposition

in the case of much financial data

Remark 23. Theorem 22 is silent about limit distributional behavior when
(2.6) holds withJ = 4 (when#d is consistentbut not in the more limited situa-
tion whenJ = 8. Moreover though(2.5) and(2.6) only restrictd,, they should
ideally be reflected in our choice @f. This is problematic becauséespite the
scale restrictiori2.3), w4 andug are unknown because we have imposed no dis-
tributional assumption os,. For Gaussia;, u3/? = 1.732 anduy* = 3.2. In
this case we can compa(26) with the necessary and sufficient conditions for
finiteness ofJth moments of GARCKIL 1) x; due to Bollersle1986 (his ¢; is
ourx,). In particular for J = 4 (2.6) gives 3v? + 2.3%2a, 8, + B2 < 1, whereas
Bollerslev’s condition is &% + 2a,8, + 8% < 1. For the MLE®, only a; +
B1 < 1is neededNotice that Whittle estimation based on squares could doubt-
less be justified under many other assumptions besides ARCH whega(2.6)
would not be relevantndeed not only has this been done under an alternative
stochastic volatility model by ZaffaroriL999, but, unlike the MLE described
in the previous sectigrthe uncorrelatedness of levels propefiyl) is not es-
sentiaj for example x;, and thusy;, could be strongly mixing at the same rate

Remark 24. Recent empirical evidence suggests that in many financial data
sets sample autocorrelations decay more slowly than the exponential rate pre-
scribed by GARCHp,q) models Although (2.7) rules out long memoryGi-
raitis et al (2000 showed that it permits

v(j)~c )¢ asj— oo, c, >0, l>1 (2.15)
and that this occurs when

g~ Cj % asjooo, >0 (2.16)
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We could thus také = (64,6,)" and

oo -2
g(x;0) = [1— (6, —1)6, > [~ "™ (2.17)
j=1
where the truet, is upper-bounded by unity becau$g”,j " is nearly
(6, — 1), whereasu, and ug are at least unityClearly (2.17) satisfies(2.8),
and we conjecture that it satisfies our other conditions for suitabt, though
the lack of a closed form representation of the infinite serieg2i7) is a
practical disadvantagéutomatic truncation of this seriesimilar to that in
(1.6) and (1.7), is embodied in the alternative Whittle objective function to
(1.13),

n t—1 2
EZ{yt—y—_Ele(e)(ytj —37)}, (2.18)
t= j=

wherey = n"* 3L, y,. Box and Jenking1971) considered2.18) in the con-
text of ARMA estimation where they; decay exponentiallybut it seems pos-
sible to show that the minimizer ¢2.18) has the properties of Theoremdl 2
and 22 in the case 0f2.17). Alternatively (2.15) can be described by the al-
ternative model

() e
g(A;0) = expi b, —— )¢, 0,> —, 6, >0, (2.19)
0, 2

which is convenient for use ifil.13). For 6; < 3, (2.19) has a peak at = 0
that is finite but not very smoothhus approaching long memory behavMfith
0, = 2 a priori (2.19), or a continuous time version there@fas considered by
Lumley and Panofsky1964) in modeling atmospheric turbulencand in con-
nection with Whittle estimation by Robinsda978, and also by Chil1988
in connection with an alternative method of estimatibar 6, = 2, it is readily
shown that iff, is the true value

y(J) o (6, +)2)74  all], (2.20)

satisfying(2.15) for £ = 2. For 3 < #; < 2 an analytic formula is unavailable
but from Yong(1974 Theorem I11-3) we deduce that

v(j) ~c3j % asj— oo, c;> 0. (2.21)

The requiremen®; > 3 in (2.19) is to satisfy Assumption @i). It is easily
seen that the remaining relevant parts of Assumptions 2 and 3 are satisfied
though we are unable to che€R5) or (2.6), the Kolmogorov-Wiener formu-

lae admitting no closed form solutioNote that Assumptions 2 and 3 will also

be satisfied if we generaliz@.19) by multiplying it by a factor corresponding

to theg for an ARMA model with standard parameterizatian a Bloomfield
(1973 model though undoubtedly many members of this family will not sat-
isfy (2.5) and(2.6), nevertheless its practical usefulness in modeling financial
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and other data may be worth explorinrgome spectral models do not satisfy
(2.8) in that the prediction error varianee? is not an explicitly known func-
tion of the parameters if (see(1.10)), as for example when ARCH, are
observed subject to measurement ereord it is the squares of these noise-
corrupted observations that are analyzéd such cases we could replace
Wn(6) by

n—1

1(A})
logf (A7) + ——— .
2{09 (Aj; )+f(/\j;7)}’ (2.22)

j=1
wherer is the full set of spectral parameters and the extension of our asymp-
totic properties fomw,(6) is standard

Remark 25. Undoubtedly the asymptotic properties of Theoremnis @nd
2.2 will hold for other versions of Whittle estimation undé:8), besideg1.13)
and(2.18). We have stressedt, () because it both exploits the fact thgr; 6)
is more often a knownconvenient form than formulae for autocovariances or
autoregressive coefficients and makes ready use of the fast Fourier trapnsform
which can significantly aid the processing of long financial time segs
can show that alternative estimates that are not of the Whittle family but are
also functions of quadratic forms of are v/n-consistent and asymptotically
normal for example simple method of moments estimates such as that for
(2.19) in Robinson(1978. Also, as in Robinsor(1978), it is possible to show
that a single Newton-type step from such an estimb#ésed on the objective
function w,(#), will achieve the limiting variance of Theorem2 Unfortu-
nately howevey in the present circumstances we cannot assert that this nec-
essarily corresponds to an efficiency improvement in view of the Whittle
approach’s guaranteed inefficiency under current circumstamdesther mat-
ters are made better or worse will typically depend on the actual values of the
true parametersno general efficiency ordering of these inefficient estimates
being possibleWe have chosen to study Whittle estimation based on squares
because of the relative difficulty of a general asymptotic theory to cover the
maximum likelihood approach described in Section 1 and also because of the
immediate availability ofg(A;6) in ARCH models of form(1.2) and the fa-
miliarity of the method and availability of software to workers in time series
analysis

3. PROOF OF THEOREM 2.2

By-now-familiar arguments from the literature on Whittle asymptotics of Han-
nan (1973 and subsequent authors leave us with the task of establishing that

N2y’ F % 9(A,80)"2(1(A) — EI(A))dA =4 N(0,0°2) (3.1)
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for any non-nullp X 1 vectory, with o2 = v'Vv. With

d(j) = v'fﬂ 9 g(A, 6,) telirda
.00 270

the left side of(3.1) is n~Y2Q,, where

N
Q= 2 dt— 9 (X Xs— E(X X)),

t,s=
where
Xi =Y — EY.

We shall in fact establisfB.1) under the mild requirement
> d(t)? < oo, (3.2)
t=—o0

which is equivalent to square integrability @/90)g(A, 6,) 1, whereas Assump-
tion 3(iii ) implies that(see Zygmund1979 p. 240

S 1d(t)] < .

t=—00

From Giraitis et al(2000 and Nelson(1990b, y; has the unique second-order
stationary solution

jo'e] o0
_ 2 2.2 2.2 .2
Yi = ‘ﬁo{*‘% + 2 b,efe, t o 2 by, e ), 8-,

j1=1 j1j2=1
o0
2.2 2 2
+ X l¢11¢12¢138t & B iy -i-is T } (3.3)
J1,)2,)37=

after relaxing the.i.d. assumption om; of these authorsriting &, = &2,

X, = %I%(m. (t) — Em(1)),

wheremg(t) = & and

[o’e}

m;(t) ; 11//1'1---l//j,ftft—jlmft—jl—--.—j.
=

JETRRRS

2 YW g, (=), (3.4)

j<---<jp<t
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Therefore

[e’e]

Q=g 2 Q¥,

I,k=0
where
n
QL0 = > d(t—s):m(t)::my(s):
t,s=1

with the definition: x:= x — Ex. Hence

[ee]

Var(Q,) = § Cov(Qlfske) Qlkeke)),
Ky,...,Kq=0

STRRE

By Lemma 32, (3.21), which follows

n~*|Cov(Q!), Qi )| = C{E d2<t>}[<k1 +1)... (kg + 1)]2De" ks
t

uniformly in n,ky,..., ks with Dy = ug* 3%, ¢, so that from(3.6),
e 4

n~1var(Q,) = C< > (k+ 1)2D1k> < oo,
k=0

and thus the serig®.5) converges ir_2.
Put

QU =y (k) 4 RUK)
where

\VASLUE i d (t—s):m (t)::mc(s):

ts=1

and

m (1) = i o ¥inip Vi1 6165 €
ji<-<ip<t

with

d () :=dO1(tl=L); ¢ =hll=t=L),

whereL > 0 is a fixed large numbeNow write

L L <)

Qv =u§ 2 Va"Y; Qi =¢s X RMW+y§ > Qhw

I,k=0 I,k=0 I,k=0:max(l, k)>L

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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so that
Qn=:Qy +Qn.

The proof of(3.1) now follows immediately from PropositionBand Lemma
3.1, which appear subsequentlyhere the former result also uses the auxiliary
Lemma 32.

LEMMA 3.1. Let Assumption 1(8) and (3.2) hold. Then for any fixed I,

nY2(Q, — EQ,) = N(0,0%) (N — o0), (3.10)
where
ol —o? (L — o0). (3.11)

Proof We shall consider decompositions of the form
n
Y,= > v +R, (3.12)
t=1
for given sequenced,, with v, a sequence of martingale differences apdc
remainder satisfying
ERZ2=0(1). (3.13)

With some abuse of notatipbut for ease of presentatipwe shall employ the
same notationy, R,, even when the form o¥,, changesWe show later that
Y, = Q, — Q, has a decompositiof8.12) where

v = (& — BE)f + (62— EED)ay, Ev? < oo, (3.14)

Where ft = f(ft—l;ft—Z’“"g[—K)’ gt = g(gt—l’ gt—Z"'-’gt—K)’ Eft2 < o,
Eg? < oo, andf, g are polynomials withK = 1. Clearly,

E(Ut|§t—l’§t—27--~) =0

almost surelyand by the same argument as in the proof of TheorelniR is
also stationary and ergodid follows that by Theorem 23 of Billingsley (1968

n
n~¥2> v, = N(0,Evd) (n = o),
t=1

so given(3.12) and(3.13),
n~2(Q, —EQ)) = N(0,Ev§)  (n—> )
and

n~tvar(Q,) — o2 =Ev? (n > ),
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to prove(3.10). By (3.22) of Lemma 32, which follows
n~*Var(Qy)

= 2 n*l Cov(vn(kl- kZ),Vn(l(S‘k"))

L oo
- > 0{ > d(wd(v)Cov(: my, (0) :: my,(u) =, : My, (K) :: (K + v) :)}

u,v,k=—o0

From relationg3.21)—(3.23) of Lemma 32, which appears subsequenilyfol-
lows easily that

2 > { 2 d(u)d(v)Cov(: my¥ :: mke) :, ﬁkS)::mﬂ‘i‘Z):}

Ky,..os ks=0 | u,v,k=—c0

=S dWd() CoV(Xo X XeXers) <00 (L = 00),

u,v, k=—o00

to prove(3.11). It remains to establisf3.12) and (3.13) for Y, = Q,, — EQy.
From (3.9) it suffices to conside¥, = V."K — E[V."¥] for arbitraryl, k. Be-
caused(t) = 0 if |t| > L, we have

V(0 = é d (t—s):mg(t)::m(s):

t,s=1
= VO +R,,
where
n n
=> > [...] 2 > [...].
t=1s|s—t|=L t=1s|s—t|=L,s=0ors>n
Because

L n+L 2
ER§<max|d(t)|2E<2 S omcmi(s)+ > D [me(t)m; (s)|)
t=1s=-L t=n—L s=n+1
= max{ d(t)[*8L*(Em (0)*)*(Emy (0)*)? < o
t
and V9 is a linear combination of finitely many sum3,(v)

S0, om(t)m(t — v): it suffices to establist{3.12) and (3.13) for Y, =
T.(v). By definition

M) i= X 71‘//1'1---‘/’jk(gtftfilftfjrjz---ftfir...fjk
- E[ftft—hft—hﬂz"'ft—i1—---—1k])‘
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BecauseE[ & &, &y, —j,---&—j,— ... —j ) does not depend of) T,(v) can be
written as the sum of a constant not depending and a linear combination of
the finitely many sums

n
Sp(Ug, ..., Ug) = 2 Y ERTY S
t=1

with 1 = k* = k + |, whereu; = u, = ... = u,- and nou; can be repeated in
(ug,...,u) more than twiceTherefore it suffices to show that(u,...,u.-)
admits the decomposition of tyd8.12):

Sh(Ug, ..., Us) — E[S,(Ug, ..., Upr)]
= E :ft—ulft—uzft—uz-”‘ft—uk* = E v T R, (3.15)
t=1 t=1

We prove this by inductianLet k* = 1. Then

:Sn(ul) = Zl(é:tful - Egtful) = El(ft - Eé:t) + Rn’
t= t=

where

Rn = ;(ft —E&) - gl(ft—ul - Eft—u1)~

Clearly (3.15) and(3.13) hold.

It remains to show thaf3.15) and(3.13) hold for k* = p = 2 if they hold
for k* = 1,...,p — 1 Indeed if u; < u, then E[&,_, & ,...&y.] =
E[gt—ul]E[é:t—uz"'ft—uk*] and
ftfulé‘:tfuz-nftfuk* - E[ftfulftfuzn'gtfukx]

= (ft—ul - E[ft—ul])ft—uz . --ft—uk* + E[St—ul] : ft—uz ---ft—uk‘ e
(3.16)

Becauseu; < u; = ... = U, the sum ovett of the first term on the right
satisfies(3.15):

Zl(ft—ul - E[ft—ul])gt—uz .. -ft—uk*

= tz}:l(ft - E[ft])ft*(uzful) ~~'§tf(uk¥fu1) + Rn’

where clearlyERZ = O(1) andE(&;_(u,-u,) -- - &t (ue—uy)? < oo. For the sums
D1 €y, .- €y, from the second term of3.16), (3.13) holds by as-
sumption If u; = Uy thenu, < us= ... = U, E[E_ &6, Eroue ] =
E[ftzful]E[gtfug,"'ftfuk*]’ and
§t7U1§t7U2§t7U3"'§t7Uk* - E[ftful‘ftfuz‘ftfug---gtfuk*]

= (20, —E[E2 0 DEuy - Eiue TELEE W )é g€ v

which gives(3.15) by assumption u
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PROPOSITION 3L. Let Assumption 1(8) and (3.2) hold. Then
n~tvarQi — 0 (L > o)
uniformly in n.

Proof From(3.9),

L oo
VarQy = 21/;5‘{Var< > Rﬁ,"‘“) + Var( > Qﬁ,‘»”)} =:q +q?,
I, k=0 I, k=0:max(l,k)>L
so it suffices to show that
ng) -0 (L = o0), (j=212 (3.17)

uniformly inn = 1. Forj = 2, the bound(3.21) of Lemma 32, which follows
gives

o]

_ o ke, K Kas K
n~g = n"tyg > Cov(Q»!?, Qi)

kq, ko=0:max(ky, ko) >L, max(ks, ks)>L

o0 o 3
sc{Z(k+1)2D1kH2(k+1)2D';] 50 (Lo (3.18)
k=L k=0

uniformly in n = 1 becaus®, < 1.
We now prove(3.17) for j = 1. Denotem;” (t) = m(t) — m; (t),: m"(t) :=
my (t) — Em(t), andd™*(t) = d(t) — d~(t). Write

Rl = i [d(t—s):m(t)::m(s): —d (t—s):m (t)::m(s):]

t,s=1

= D di(t—9s):m(t)mgs):+ D d (t—s) :m'(t):ms):

t,s=1 t,s=1

n
+ D d(t—s):m (t):mi(s):
t,s=1
=:r0(1) + r90©2) +r9(3).
Then
L L L
ql = 3{Var< > r,ﬁ"")(l)> + Var( > r,ﬁ"k)(2)> + Var< > r,ﬁ"k>(3)>}.
I,k=0 I,k=0 I, k=0

It remains to show that

L
n1Var< > r,ﬁ'”(j)) -0 (L->0), j=123 (3.19)
I, k=0
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uniformly in n. Set

gl(lls)sll = l’blll?bhl(]lz 17'-~7j| = 1)7

.....

Then

O = 3 a9l X

t—=j1,J1—i2,-- s -1~ J|gs S1,S$1~ - Sk—17S«
t,s=1
X (§7 —E&7) (€5 - E£D),

(I,k) _ +,(1) (k)
(2 = tzld (C = 9O i F5 S0 510 S 1S
S=

X (¢7—EE7)(£° - E£D),

n

(I, k) - —(t — =, (1) +,(k)

Mn (3)_t21d (C = 9O, =i 955 S-S0 S 1S
=

X (§7 - E£Y)(6° - EE®),

Whereszé:t‘fjl §]| fs gsfsl fsk,‘]:{t,jl,---’jl}, S:{S’Sly,sk}
We have

L
n*l Var< 2 rél,k)(])) = nfl 2 Cov(r(kl kz)(J) r(k?. k4)(J))
Ky

I, k=0
i=123.
By Lemma 32, (3.21)
Cov(r Kk (1), r (ke ka) (1))

<Ct22(d (t))zl—[{\lg(k')lh(k. + 12BN,

Cov(r Kk (2) 1 (ks k) (2))

=C 3 (A )l1g"* l/lg** [l 1g™ [l/1g* [l

tez
4
X [TH(k +1)?(EE3) /4,
I=1
Cov(rak2)(3), r (ks k4)(3))

=C 3 @ )21g " |ullg~ ¢ [l/1g™ [l g~ [

tez

4
X I_l_ll{(kl +1)2(EEG)N /Y,
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where||- ||, denotes thé.! norm (see(3.20), which follows). Because

) s k
lg=®@l=1lg®lh= X lﬁjl---lﬁjk:(zkﬁ;),
- =]

j1--- k=l

nMg
\_/
el
.Bh

p=1j1,..., k=1 i=L

e ®L=S S . ¢jk1<jp2L>s(z¢,)(

andD; = uF* 32, ¢; < 1, we have

L o) 4
n1Var< > r,ﬁ'*k)(l)> = C( > dz(t)><2 (k+1)2D'1‘> -0
k=0

I,k=0 [t|=L

(L —0),

n-1Var< > rrs"“(j)) {2 d?—‘(t)} { > w,}( S (k+ 1>3D1k> -0
I, k=0 tez j=L k=0
(L—>0); j=23
to prove(3.19). [ |

We now provide the auxiliary LemmaZused in the proof of Propositioni3

LEMMA 3.2. Define the quadratic forms

n n
= X dt-9Y YR, = 3 dt- 9%V,

t,s=1 t,s=1

where k,...ks = 0,

(ki) _ (ki) .
Yt - 2 Gt—jsiriz. k-1~ Jk.(ftgll gk Eé:tgh gjk.)’ i=1....4

i< <ia<t

and Y2 = ¢,
Suppose that for+ 1,...,4, (3.2) holds and

19%1= X |gf“ | < 0. (3.20)

,,,,

Then

4
IntCouz, zp)| = (T ITHIg™ Ik + D*EED ). (3.2)

where C> 0 does not depend on g, and d.
Moreover,

nlCov(Z,Z)— > dud@)Cov(Y Y v v,y <o (3.22)

u,v,k=—c0
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as n— oo, and

(o]

4
S CovN Y V)] = CTT{11g% [la(k + D?(EEd) /)
i=1

t3, ty=—c0

(3.23)
uniformly in kg, K.
Proof Set
Clty,..., 1) 1= COV(Y VY Vv,

Because

n
in = n71 COV(Zn, Zlg) = nil 2 d(tl - t2)d(t3 - t4)C(t1, ey t4) (324)

ty,..., =1
it follows that forn = 2
i) = 2 (d%(t, —tp) + d?(t; — ty))|c(ty, ..., ts)]. (3.25)
.., ty=1

Suppose that3.23) holds Then

t=—o0 tty g ty=1 taty tg,t=1

||n|SC 2 dz(t)<SUp 2 |C(t1,...,t4)|+SUp 2 |C(t1""’t4)|>

0 4
=C 2 d*() [T{llg™ lla(k +1)?(B&5) "} < oo.

t=—o0

Thus(3.21) holds From (3.24) and(3.23) (3.22) follows easily
It remains to show3.23). PutJ, = {j,0.Jp1s---s1p. kp}, p=1,...,4 We can
write c(ty,...,t;) as

4
— (kp) R N N R R TI -L I
C(tla---at4) - % [l;[gtpfjpyl,jpyl—jpyz,...,jp’kp,l—jpykpCOV('g 1--§ 2-7-5 3--5 4')7
1) p=

where the sund(;, is taken over indexe§j) = (jp,o,...,jp,kp: p=1...,4
such tha, . < ... <jp1 <jpo=t,p=1...,4 & = &inobips - Eip, AN
&b = ¢h —Eghforj=1,...,4

Using the Cauchy inequality it is easy to verify that

4 4
[Cov(: g gk, gBughy| = 2]] (Bl 67119V = 32]] (E|£* )Y
i=1 i=1

= 24N\t (3.26)

where), = (E£$)Y* = (Es8)Y4
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Now observe that
Cov(: Mgz 1% g%
=E[EN gl gl gl —ELENnERELER:E%:]=0 (3.27)
in both the following cases

(@) The setsJ; U J, and J; U J, do not have common elementbecause
then from condition (2.4) it follows that E[:&héghlnglsgh:] =
E[: X g% ]E[ €% %],

(b) J N (Utq.d) = for somei = 1,...,4, because then conditigi2.4) implies

E[:&hugluglhagla]=E[ £ :]E[l_g l:fJ' :} =0,

E[&déd: ] =E[&Y]E[:¢Y:]=0 (i #1).

Suppose neithef@) nor (b) is satisfied Then the index j) = (J1, J,, J3, Js)
has at least one of the following properties

1) N JU L) #JandJ, N (I U Jp) # I (when we write(j) € M4); or
2 3N (JLU L) #JandJ, N I3 # J (when we write( j) € M,); or
3) N (LU ) #TandIs N Iy # D (when we write( j) € Ms).

Using (3.26) we get

[C(ty,..., t,)]| = 3224 X7+
(HEMIUMUMS;

4

IT gk . _ _
tpilp,lyJp,lijp.Z’~~~’Jp,kp7171p,kp

p=1

Therefore(3.23) follows if we show that foij = 1,2,3

TOL )= > >

t3,t,=1 (j)EM,;

4

IT g . . _ _
gtp_Jp,laJp,l_]p,Z,---,]p,kpfl_Jp,kp

p=1

4
= (kg +1)... (kg + 1) T lIg"® |l (3.28)
p=1
By definition of M,

TO(t,ty) = > >

B,weElz;4,v)El, (i), 1)eElUl,

X { > > Wisu=1lirsdaw=1lin1)

t3,t=1 o< <ip1<tpip=1,...,4

4
(ko)
X Hl ‘ gtpfjp,l»jp,lfjp,Za . --ajp, kpfl*jp,kp | } ‘
p=
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Taking the sum ovety; 45,1 = s = k4(s # v) and then ovets,j3 4,1 =8 =
ks(s # u) we obtain

TO(t,ty) = > >

B,weEls;4,v)El, (i), 1)elUl,

{|g<ks>||l||g<k4>||l >

jp’ kp< << p,1<tp:p:1’2

2

T A
tj7]p,1s]p,171p,2w~,Jp,kpflflp,kp

p=1

s{ > s 1}||g<k1>||1...||g<k4>||1

BueEls;d,v)El, (1), 1)elUl,
={(ky +1)...(ky + D}2|[g" ) |... [[g* ],

Thus(3.28) holds fori = 1.
Similarly using the definition ofM,, we obtain

T, t)= 3 >
(B, uElz:(4,0)El, (i,1)ELUILL, (i 1)ElS
oo
2 2 1(]3,u:Ji,I’l4,u:Ji’,|’)
3, 14=1 Jp i< <lp1<tp:p=1....4

4
V(T

tpflp,l»lp,lflp.zsqup,kpflflp,kp *
p=1

Taking the sum ovety; 4,1 = s = k4(s # v) and then ovets;js3 ¢, 1 =8 =
ks(s # u) we obtain(3.28):

T@(t,ty) = > >

B,wElz;(4,v)El, (i,1)ELUL, (i, 1")El;

{|g<ks>||1||g<k4>||l >

ip, K=" <jp1<tp:p=12

2
(kp)
pl;[l | gtpfjp,bjp,l*jp,z ----- jp, kpfl*jp,kp ‘ }
={(ky +1)...(kg + D}?|[ g™ |...[[g* ],
The proof of(3.28) for T®(ty,t,) is similar to that forT @ (ty, t,). [

COROLLARY 31. Suppose that Assumption 1(8) holds. Then

[e e}

> ICOVE Yy Yy, )] < oo (3.29)

u,v=—oo
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and

oo

> [Cum(ye, Vs, Y, Yo)| < 00 (3.30)

U,v=—00
uniformly in ts.

Proof By Lemma 32, (3.23),

> ICOVE Yt Yen Yy, o)l
u,v=—o0
=5 > > [Cov(:my, (1) :my(S) 1, s my (U) i my, (v) 2)]
uv=—00 Kq,..., k=0
=C XY Ak +D2%..(k+D*E[&] Nt T/ =C Y Df < 0.
Ki,..., ks=0 k=0
Because

Cov(:Ye:tYsi i Yuit Y, ) = Cum(yy, Y, Yus ¥o)
+y(t—uwy(s—v) +y(t—v)y(s—u)
andXcz|v(t)] < oo, this and(3.29) give (3.30). u
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