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Summary

This paper deals with the dimension reduction of high-dimensional time
series based on common factors. In particular we allow the dimension of time
series p to be as large as, or even larger than, the sample size n. The estima-
tion of the factor loading matrix and the factor process itself is carried out via
an eigenanalysis of a p× p non-negative definite matrix. We show that when
all the factors are strong in the sense that the norm of each column in the
factor loading matrix is of the order p1/2, the estimator of the factor loading
matrix is weakly consistent in L2-norm with the convergence rate indepen-
dent of p. This result exhibits clearly that the ‘curse’ is canceled out by the
‘blessing’ of dimensionality. We also establish the asymptotic properties of the
estimation when factors are not strong. The proposed method together with
their asymptotic properties are further illustrated in a simulation study. An
application to an implied volatility data set, together with a trading strategy
derived from the fitted factor model, is also reported.

Short Title: Estimation of Large Latent Time Series Factors.

Some key words: Convergence in L2-norm; Curse and blessing of dimensionality; Dimen-

sion reduction; Eigenanalysis; Factor model.
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1 Introduction

In the modern information age, analysis of large data sets is an integral part of both

scientific research and practical problem-solving. In particular, high-dimensional time se-

ries analysis is commonplace in many fields including, among others, finance, economics,

environmental and medical studies. For example, understanding the dynamics of the

returns of large number of assets is the key to asset pricing, portfolio allocation, and

risk management. Panel time series are frequently encountered in studying economic and

business phenomena. Environmental time series are often of a high dimension because

of the large number of indices monitored across many different locations. However the

standard multiple time series models such as vector AR or vector ARMA are not prac-

tically viable when the dimension of time series p is high, as the number of parameters

involved is in the order of p2. Furthermore, one may face a serious model-identification

problem in a vector ARMA model. In fact the vector ARMA model has hardly been used

in practice without further regularization in its matrix coefficients. Therefore dimension-

reduction is an important step in order to achieve an efficient and effective analysis of

high-dimensional time series data. In relation to the dimension-reduction for independent

observations, the added challenge here is to retain the dynamical structure of time series.

Modeling by common factors is one of the most frequently used methods to achieve

dimension-reduction in analyzing multiple time series. Early attempts in this direc-

tion include Anderson (1963), Priestley et al. (1974), Brillinger (1981) and Peña and Box

(1987). To deal with the situations when the number of time series p is as large as, or

even larger than, the length of the time series n, more recent efforts focus on the inference

when p goes to infinity together with n. See, e.g. Chamberlain and Rothschild (1983),

Chamberlain (1983), Bai (2003) Forni et al. (2000, 2004, 2005). Furthermore, in analyz-

ing economic and financial phenomena, most econometric factor models seek to identify

the common factors such that each of them affects the dynamics of most the original p

time series. These common factors are separated from the so-called idiosyncratic noise

components; each idiosyncratic noise component may at most affect the dynamics of a

few original time series. Note that an idiosyncratic noise series is not necessarily white

noise. The rigorous definition of the common factors and the idiosyncratic noise can

only be established asymptotically when the number of time series p goes to infinity; see

Chamberlain and Rothschild (1983) and Chamberlain (1983). Hence those econometric

factor models are only asymptotically identifiable when p → ∞. See also Forni et al.
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(2000).

We adopt a different and more statistical approach in this paper from a dimension-

reduction point of view. Our model is similar to those in Peña and Box (1987), Bai and Ng

(2002), Peña and Poncela (2006), and Pan and Yao (2008), and we consider the inference

when p is as large as, or even larger than, n. Different from the aforementioned econo-

metric factor models, we decompose the p-dimensional time series into two parts: the

dynamic part driven by low-dimensional factors and the static part which is a vector

white noise. Furthermore, we allow the future factors to depend on past (white) noise.

Such a conceptually simple decomposition is convenient for both model identification and

statistical inference. In fact, the model is identifiable for any finite p. Furthermore the

estimation for the factor loading matrix and the factor process itself is equivalent to an

eigenanalysis of a p× p non-negative definite matrix. Therefore it is applicable when p is

in the order of a few thousands. Our approach is rooted in the same idea on which the

methods of Peña and Poncela (2006) and Pan and Yao (2008) were based. However, our

method is radically different and is substantially simpler. For example, Peña and Poncela

(2006) requires the computation of the inverse of the sample covariance matrix for the

data, which is computationally costly when p is large, and is invalid when p > n. (See also

Peña and Box (1987).) Moreover, in contrast to performing eigenanalysis for one autoco-

variance matrix each time, our method only requires to perform one single eigenanalysis

on a matrix function of several autocovariance matrices, and it augments the information

on the dynamics along different lags. The method of Pan and Yao (2008) involves solv-

ing several nonlinear optimization problems, which is designed to handle non-stationary

factors and is only feasible for moderately large p. Our approach identifies factors based

on the autocorrelation structure of the data, which, we argue, is more relevant than the

least squares approach advocated by Bai and Ng (2002) and Bai (2003) in the context of

identifying time series factors.

The major theoretical contribution of this paper is to reveal an interesting and some-

how intriguing feature in factor modeling: the estimator for the factor loading matrix

of the original p-dimensional time series converges at a rate independent of p, provided

that all the factors are strong in the sense that the norm of each column in the factor

loading matrix is of order p1/2. Our simulation indicates that the estimation errors are

indeed independent of p. This result exhibits clearly that the ‘curse’ is canceled out by

the ‘blessing’ in dimensionality. In the presence of weak factors, the convergence rate of

3



the estimated factor loading matrix depends on p. In spite of this, we have shown that

the optimal convergence rate is obtained under some additional conditions on the white

noise, which include Gaussian white noise as a special case.

Although we focus on stationary processes only in this paper, our approach is still

relevant for the nonstationary processes for which a generalized autocovariance matrix is

well-defined; see remark 1(v) in section 3.

The rest of the paper is organized as follows. The model, its presentational issues and

the estimation method are presented in section 2. Section 3 introduces the asymptotic

properties of the proposed estimation method. Our simulation results are presented in

section 4. A detailed analysis of a set of implied volatility data is reported in section 5.

All technical proofs are relegated to section 6.

2 Models and estimation methodology

2.1 Factor models

Let y1, · · · ,yn be n p× 1 successive observations from a vector time series process. The

factor model assumes

yt = Axt + εt, (2.1)

where {xt} is a r × 1 unobserved factor time series which is assumed to be strictly

stationary with finite first two moments, A is a p × r unknown constant factor loading

matrix, r(≤ p) is the number of factors, and {εt} is a white noise with mean 0 and

covariance matrix Σε.

We introduce some notation first. For k ≥ 0, let Σx(k) = Cov(xt+k,xt), Σx,ε(k) =

Cov(xt+k, εt), and

Σ̃x(k) =
1

n− k

n−k∑
t=1

(xt+k − x̄)(xt − x̄)T , Σ̃x,ε(k) =
1

n− k

n−k∑
t=1

(xt+k − x̄)(εt − ε̄)T ,

where x̄ = n−1
∑n

t=1 xt, ε̄ = n−1
∑n

t=1 εt. The autocovariance matrices Σε(k), Σε,x(k),

and their sample versions are defined in a similar manner. Some assumptions on model

(2.1) are now in order.

(A) No linear combination of the components of xt is white noise.

(B) For k = 0, 1, · · · , k0, where k0 ≥ 1 is a small positive integer, Σx(k) is full-ranked.
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(C) For k ≥ 0, the cross autocovariance matrix Σx,ε(k) and the covariance matrix Σε

have elements of order O(1).

(D) Cov(εt,xs) = 0 for all s ≤ t.

(E) yt is strictly stationary and ψ-mixing with the mixing coefficients ψ(·) satisfying

the condition that
∑

t≥1 tψ(t)1/2 < ∞. Furthermore E{‖yt‖4} < ∞.

Assumption (A) is natural, as all the white noise linear combinations of xt should be

absorbed into εt. It implies that there exists at least one k ≥ 1 for which Σx(k) is full

ranked. Assumption (B) strengthens this statement for all 1 ≤ k ≤ k0, which entails that

the non-negative definite matrix L, defined in (2.4) below, has only r positive eigenvalues.

Assumption (C) is also a natural condition which ensures each element in Σx,ε(k) and Σε

behaves normally when p increases. Assumption (D) relaxes independence assumption

between {xt} and {εt}, which is present in most factor model literature. It allows future

factors to be correlated with past white noise. Finally, assumption (E) is not the weakest

possible. The ψ-mixing condition may be replaced by the α-mixing condition at the

expenses of more lengthy technical argument.

In this paper, we always assume that the number of factors r is known and fixed.

It is reasonable to assume r fixed while p → ∞, as model (2.1) is practically use-

ful only when r ¿ p. There is a large body of literature on the determination of r.

See, for example, Bai and Ng (2002, 2007), Hallin and Lǐska (2007), Pan and Yao (2008),

Bathia et al. (2010) and Lam and Yao (2010). We use the information criterion proposed

by Bai and Ng (2002) to determine r in our numerical examples in section 4.

2.2 Identifiability and factor strength

Model (2.1) is unchanged if we replace the pair (A,xt) on the RHS by (AH,H−1xt) for

any invertible H. However the linear space spanned by the columns of A, denoted by

M(A) and called the factor loading space, is uniquely defined by (2.1). Note M(A) =

M(AH) for any invertible H. Once such an A is specified, the factor process xt is

uniquely defined accordingly. We see the lack of uniqueness of A as an advantage, as we

may choose a particular A which facilitates our estimation in a simple and convenient

manner. Before we specify explicitly such an A in section 2.3 below, we introduce an

index δ to measure the strength of the factors. We always use the notation a ³ b to

denote a = OP (b) and b = OP (a).
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(F) A = (a1 · · · ar) such that ‖ai‖2 ³ p1−δ, i = 1, · · · , r, 0 ≤ δ ≤ 1.

(G) For each i = 1, · · · , r and δ given in (F), minθj ,j 6=i ‖ai −
∑

j 6=i θjaj‖2 ³ p1−δ.

When δ = 0 in assumption (F), the corresponding factors are called strong factors since

it includes the case where each element of ai is O(1), implying that the factors are shared

(strongly) by the majority of the p time series. When δ > 0, the factors are called

weak factors. In fact the smaller the δ is, the stronger the factors are. This definition is

different from Chudik et al. (2009) which defined the strength of factors by the finiteness

of the mean absolute values of the component of ai. One advantage of using index δ is to

link the convergence rates of the estimated factors explicitly to the strength of factors.

In fact the convergence is slower in the presence of weak factors. Assumptions (F) and

(G) together ensure that all r factors in the model are of the equal strength δ.

To facilitate our estimation, we use the QR decomposition A = QR to normalize the

factor loading matrix, so that (2.1) becomes

yt = QRxt + εt = Qft + εt, (2.2)

where ft = Rxt, and QTQ = Ir. Note that the pair (Q, ft) in the above model can be

replaced by (QU,UT ft) for any r × r orthogonal matrix U. In the following section we

will specify explicitly such a Q to be used in our estimation.

2.3 Estimation

For k ≥ 1, model (2.2) implies that

Σy(k) = Cov(yt+k,yt) = QΣf (k)QT + QΣf ,ε(k), (2.3)

where Σf (k) = Cov(ft+k, ft) and Σf ,ε(k) = Cov(ft+k, εt). For k0 ≥ 1 given in condition

(B), define

L =

k0∑

k=1

Σy(k)Σy(k)T

= Q

( k0∑

k=1

{Σf (k)QT + Σf ,ε(k)}{Σf (k)QT + Σf ,ε(k)}T

)
QT .

(2.4)

Obviously L is a p × p non-negative definite matrix. Now we are ready to specify the

factor loading matrix Q to be used in our estimation. Apply the spectral decomposition
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to the positive-definite matrix sandwiched by Q and QT on the RHS of (2.4), i.e.

k0∑

k=1

{Σf (k)QT + Σf ,ε(k)}{Σf (k)QT + Σf ,ε(k)}T = UDUT ,

where U is an r×r orthogonal matrix, and D is a diagonal matrix with the elements on the

main diagonal in descending order. This leads to L = QUDUTQT . As UTQTQU = Ir,

the columns of QU are the eigenvectors of L corresponding to its r non-zero eigenvalues.

We take QU as the Q to be used in our inference, i.e.

the columns of the factor loading matrix Q are the r orthonormal eigenvectors

of the matrix L corresponding to its r non-zero eigenvalues, and the columns

are arranged such that the corresponding eigenvalues are in the descending

order.

A natural estimator for the Q specified above is defined as Q̂ = (q̂1, · · · , q̂r), where

q̂i is the eigenvector of L̃ corresponding to its i-th largest eigenvalue, q̂1, · · · , q̂r are

orthonormal, and

L̃ =

k0∑

k=1

Σ̃y(k)Σ̃y(k)T , Σ̃y(k) =
1

n− k

n−k∑
t=1

(yt+k − ȳ)(yt − ȳ)T , (2.5)

where ȳ = n−1
∑n

t=1 yt.

Consequently, we estimate the factors and the residuals respectively by

f̂t = Q̂Tyt, et = yt − Q̂f̂t = (Ip − Q̂Q̂T )yt. (2.6)

3 Asymptotic theory

In this section we present the rates of convergence for the estimators Q̂ for model (2.2),

and also for the estimated factor Q̂f̂t. It goes without saying explicitly that we may

replace some q̂j by −q̂j in order to match the direction of qj. Denote by ‖M‖ the

spectral norm of a matrix M (i.e. the positive square root of the maximum eigenvalue

of MMT ), and denote by ‖M‖min the positive square root of the minimum eigenvalue of

MMT or MT M , whichever is a smaller matrix. For model (2.2), define

κmin = min
1≤k≤k0

‖Σf ,ε(k)‖min, κmax = max
1≤k≤k0

‖Σf ,ε(k)‖.

Both κmax and κmin may be viewed as the measures of the strength of the cross-correlation

between the factor process and the white noise.
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Theorem 1 Let assumptions (A) - (G) hold, and the r positive eigenvalues of matrix L,

defined in (2.4), be distinct. Then,

(i) ‖Q̂−Q‖ = OP (pδn−1/2) provided κmax = o(p1−δ) and pδn−1/2 = o(1), and

(ii) ‖Q̂−Q‖ = OP (κ−2
minκmax ·pn−1/2) provided p1−δ = o(κmin) and κ−2

minκmax ·pn−1/2 =

o(1).

Remark 1. (i) When all the factors are strong (i.e. δ = 0), Theorem 1(i) reduces to

‖Q̂ −Q‖ = OP (n−1/2) provided κmax/p → 0. The standard root-n rate might look too

good to be true, as the dimension p goes to infinity together with the sample size n. But

this is the case when ‘blessing of dimensionality’ is at its clearest. Note that the strong

factors pool together the information from most, if not all, of the original p component

series. When p increases, the curse of dimensionality is offset by the increase of the

information from more component series. The condition κmax/p → 0 is very mild. It

implies that the linear dependence between the factors and the white noise is not too

strong.

(ii) When δ > 0, Theorem 1(i) shows that the stronger the factors are, the faster the

convergence rate is. The condition κmax = o(p1−δ) ensures that the matrix Σf (k)QT +

Σf ,ε(k), in (2.4), is dominated by the first term.

(iii) Theorem 1(ii) represents the cases that there are strong cross-correlations between

the factors and the white noise, as κmin/p
1−δ → ∞. However this does not necessarily

imply a slow convergence rate in estimating Q. For instance, when κmax ³ p1−δ/2 ³ κmin

(see Lemma 1 in section 6 below), ‖Q̂ −Q‖ = OP (pδ/2n−1/2). This convergence rate is

even faster than the rate pδn−1/2. This is not surprising, as we assume that r is known

and we estimate Q by extracting the information on the autocorrelation of the data,

including the cross-autocorrelation between {ft} and {εt}. See the definition of L in

(2.4). However, this may create difficulties for estimating r; see the relevant asymptotic

results in Lam and Yao (2010).

(iv) The assumption that all the non-zero eigenvalues of L are different is not essential,

and is merely introduced to simplify the presentation in the sense that Theorem 1 now

can deal with the convergence of the estimator for Q directly. Otherwise a discrepancy

measure for two linear spaces has to be introduced in order to make statements on the

convergence rate of the estimator for the factor loading space M(A); see Pan and Yao

(2008).
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(v) Theorem 1 can be extended to the cases when the factor xt in model (2.1) is

non-stationary, provided that a generalized sample (auto)covariance matrix

n−α

n−k∑
t=1

(xt+k − x̄)(xt − x̄)T

converges weakly, where α > 1 is a constant. This weak convergence has been estab-

lished when, for example, {xt} is a two times integrated process (i.e. {xt} is I(2)) by

Peña and Poncela (2006). It can also be proved for other processes with linear trends,

random walk or long memories. In this paper we do not pursue further in this direction.

Some conditions in Theorem 1 may be too restrictive. For instance when p ³ n,

Theorem 1(i) requires δ < 1/2. This rules out the cases in the presence of weaker factors

with δ ≥ 1/2. The convergence rates in Theorem 1 are also not optimal. They can be

further improved under additional assumptions on εt as follows. Note that in particular,

both assumptions (H) and (I) are fulfilled when εt are independent and N(0, σ2Ip). See

also Péché (2009).

(H) Let εjt denote the j-th component of εt. Then εjt are independent for different t

and j, and have mean 0 and common variance σ2 < ∞.

(I) The distribution of each εjt is symmetric. Furthermore E(ε2k+1
jt ) = 0, and E(ε2k

jt ) ≤
(τk)k for all 1 ≤ j ≤ p and t, k ≥ 1, where τ > 0 is a constant independent of j, t, k.

Theorem 2 In addition to the assumptions of Theorem 1, we assume (H) and (I). If

n = O(p), then

(i) ‖Q̂−Q‖ = OP (pδ/2n−1/2) provided κmax = o(p1−δ) and pδ/2n−1/2 = o(1), and

(ii) ‖Q̂ − Q‖ = OP (κ−2
minκmax · p1−δ/2n−1/2) provided p1−δ = o(κmin) and κ−2

minκmax ·
p1−δ/2n−1/2 = o(1).

By comparing with Theorem 1, the rates provided in Theorem 2 are improved by a

factor p−δ/2. This also relaxes the condition on the strength of the factors. For instance,

when p ³ n, Theorem 2(i) only requires δ < 1 while Theorem 2(i) requires δ < 1/2.

Theorem 3 If all the eigenvalues of Σε are uniformly bounded from infinity (as p →∞),

it holds that

p−1/2‖Q̂f̂t −Axt‖ = p−1/2‖Q̂f̂t −Qft‖ = OP (p−δ/2‖Q̂−Q‖+ p−1/2). (3.7)
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Theorem 3 specifies the convergence rate for the estimated factors. When all factors are

strong (i.e. δ = 0), both Theorems 1 and 2 imply ‖Q̂−Q‖ = OP (n−1/2). Now it follows

Theorem 3 that

p−1/2‖Q̂f̂t −Axt‖ = OP (n−1/2 + p−1/2). (3.8)

This is the optimal convergence rate specified in Theorem 3 of Bai (2003). This opti-

mal rate is still attained when the factors are weaker (i.e. δ > 0) but the white noise

fulfils assumptions (H) and (I), as then Theorem 2(i) implies ‖Q̂−Q‖ = OP (pδ/2n−1/2).

Plugging this into the RHS of (3.7), we obtain (3.8).

4 Simulation

In this section, we illustrate our estimation method and their properties via two simulated

examples.

Example 1. We start with a simple one factor model

yt = Axt + εt, εtj ∼ i.i.d. N(0, 22),

where the factor loading matrix A is a p× 1 vector with 2 cos(2πi/p) as its i-th element,

and the factor time series is defined as xt = 0.9xt−1 + ηt, where ηt are independent

N(0, 22) random variables. Hence we have a strong factor for this model with δ = 0.

We set n = 200, 500 and p = 20, 180, 400, 1000. For each (n, p) combination, we generate

from the model 50 samples and calculate the estimation errors. The results are listed in

Table 1 below. Table 1 indicates clearly that the estimation error in L2 norm for Q̂ is

independent of p, as shown in Theorem 1(i) with δ = 0.

‖Q̂−Q‖ n = 200 n = 500
p = 20 .022(.005) .014(.003)
p = 180 .023(.004) .014(.002)
p = 400 .022(.004) .014(.002)
p = 1000 .023(.004) .014(.002)

Table 1: Means and standard errors (in brackets) of ‖Q̂−Q‖ for Example 1.

Example 2. We consider model (2.1) with three factors now (r = 3). We compare the

performance of our estimators with the principle component (PC) method of Bai and Ng
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(2002) under two different scenarios: (I) εt ∼ N(0, Ip), and (II) εt ∼ N(0,Σε), where Σε

has elements σij following the fractional Gaussian noise, defined by

σij =
1

2
((|i− j|+ 1)2H − 2|i− j|2H + (|i− j| − 1)2H),

and H ∈ [0.5, 1] is the Hurst parameter. We set H = 0.9 in (II) to simulate strong

cross-sectional dependence for the elements of εt, which violates the weak cross-sectional

dependence assumption in Bai and Ng (2002), but is allowed in our setting.

The factors are defined by

x1,t = −0.8x1,t−1 + 0.9e1,t−1 + e1,t,

x2,t = −0.7x2,t−1 + 0.85e2,t−1 + e2,t,

x3,t = 0.8x2,t − 0.5x3,t−1 + e3,t,

where ei,t are independent N(0, 1) random variables. For each column of A, we generate

the first p/2 elements randomly from the U(−2, 2) distribution; the rest are set to zero.

This increases the difficulty in detecting the signals from the factors. We then adjust the

strength of the factors by normalizing the columns, setting ai/p
δi/2 as the i-th column of

A with δ2 = δ3.

We estimate Q̂ either using the true number of factors r = 3, or r̂ obtained by

minimizing the BIC type of information criterion proposed in Bai and Ng (2002):

r̂ = arg minkIC(k) = arg mink log

(
p−1n−1

p∑
j=1

‖ε̂j‖2

)
+ k

(
p + n

pn

)
log

(
pn

p + n

)
.

We set n = 100, 200, 400 and p = 200, 400, 800. We use k0 = 4 in the definition of L̃

in (2.5). The first factor has strength index δ1 and the last two factors have strength

index δ2. For each combination of (n, p, δ1, δ2), we replicate the simulation 100 times, and

calculate the mean and the standard deviation of the root-mean-square error (RMSE):

RMSE =

(∑n
t=1 ‖Q̂f̂t −Qft‖2

pn

)1/2

.

We also use ŷ
(1)
n = Q̂f̂

(1)
n to forecast the factor Qft, where f̂

(1)
n is the one-step predictor

for fn derived from a fitted AR(4) model based on f̂1, · · · , f̂n−1. We then calculate the

mean and standard deviation of the factor forecast error (FFE) and the forecast error

(FE):

FFE = p−1/2‖ŷ(1)
n −Qfn‖, FE = p−1/2‖ŷ(1)

n − yn‖.
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(I): εt ∼ N(0, Ip) PC method Our method
δ1 = δ2 = 0 r̂ RMSE FFE FE r̂ RMSE FFE FE

n=100 p=200 3(0) .21(.005) 1.55(.76) 1.87(.62) 3.0(.2) .28(.02) 1.54(.75) 1.87(.62)

p=400 3(0) .19(.003) 1.61(.77) 1.93(.65) 3.1(.3) .27(.02) 1.61(.77) 1.94(.66)

p=800 3(0) .18(.003) 1.61(.82) 1.95(.71) 3.1(.3) .26(.02) 1.64(.87) 1.97(.76)

n=200 p=200 3(0) .17(.004) 1.58(.74) 1.90(.61) 3(0) .21(.008) 1.58(.74) 1.90(.61)

p=400 3(0) .15(.003) 1.44(.71) 1.80(.59) 3(0) .19(.01) 1.44(.70) 1.80(.59)

p=800 3(0) .14(.001) 1.28(.64) 1.67(.51) 3(0) .18(.01) 1.28(.64) 1.67(.51)

n=400 p=200 3(0) .15(.003) 1.47(.74) 1.82(.62) 3(0) .17(.004) 1.47(.74) 1.82(.62)

p=400 3(0) .12(.002) 1.59(.73) 1.92(.62) 3(0) .15(.004) 1.59(.73) 1.92(.62)

p=800 3(0) .11(.001) 1.37(.61) 1.73(.50) 3(0) .13(.004) 1.37(.61) 1.73(.50)

Table 2: Means and standard deviations (in brackets) of estimation errors and forecast

errors for Example 2: εt ∼ N(0, Ip), and all three factors are strong (δ1 = δ2 = 0).

It is clear from Table 2 that the information criterion for estimating r performed very

well on both methods under scenario (I). The PC method performs better in estimating

the factors, reflected by the smaller RMSE in most cases. As n increases the RMSE

for the two methods become closer. Moreover, the two methods perform equally well in

terms of the forecast errors. Table 3 shows the results under the same scenario when

the factors have different strength indices δ1 and δ2, and p = 2n. It is clear that r is

estimated very well even in the presence of weak factors, and the relative performance of

the two methods is about the same as in Table 2.

Table 4 shows the results under scenario (II). The information criterion leads to over-

estimation of r for both methods, with a more adverse effect for the PC. Our method

outperforms the PC method under this scenario in general for all the measures RMSE,

FFE and FE. This is well-expected since {εt} exhibits strong cross-sectional dependence,

which violates the condition imposed in Bai and Ng (2002).

Since r is overestimated in all cases in Table 4, we repeat the simulation with the

number of factors set at the true value r = 3. The results are reported in Table 5. Our

method outperforms the PC method in all cases except when δ1 = δ2 = 0. When all

factors are strong, the PC method can pick up the signals from all the three factors and

still gives better performance. However, in the presence of weaker factors coupled with

strong cross-sectional dependence of {εt}, the PC method cannot identify correctly the

signals from all the factors, evidenced by the sharp increase in RMSE and their large

standard deviations. On the other hand, our method can detect the presence of weaker

factors even under strong cross-sectional dependence.
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We repeat the above experiments with all the components of εt being i.i.d and each fol-

lows an AR(1) with parameter φ = 0.2. This creates weak serial correlation in {εt}. The

results are very similar to that in Table 2, and are therefore omitted. This demonstrates

that weak serial correlation in {εt} does not affect the performance of both methods.

(I): εt ∼ N(0, Ip) PC method Our method
δ1 = 0, δ2 = 1/4 r̂ RMSE FFE FE r̂ RMSE FFE FE

(n, p) = (100, 200) 3(0) .21(.006) 1.20(.55) 1.61(.43) 3.0(.1) .28(.02) 1.22(.54) 1.62(.43)

(n, p) = (200, 400) 3(0) .15(.003) 1.01(.44) 1.45(.32) 3(0) .19(.01) 1.01(.44) 1.46(.32)

(n, p) = (400, 800) 3(0) .11(.002) .89(.42) 1.37(.29) 3(0) .13(.005) .89(.42) 1.38(.29)

δ1 = 1/4, δ2 = 0 r̂ RMSE FFE FE r̂ RMSE FFE FE
(n, p) = (100, 200) 3(0) .21(.005) 1.31(.62) 1.68(.49) 3.0(.1) .28(.02) 1.31(.61) 1.68(.49)

(n, p) = (200, 400) 3(0) .15(.003) 1.38(.80) 1.76(.64) 3(0) .19(.01) 1.38(.80) 1.77(.65)

(n, p) = (400, 800) 3(0) .11(.001) 1.30(.72) 1.69(.58) 3(0) .13(.004) 1.30(.72) 1.69(.58)

δ1 = 0, δ2 = 1/2 r̂ RMSE FFE FE r̂ RMSE FFE FE
(n, p) = (100, 200) 3.0(.2) .22(.01) .79(.42) 1.30(.30) 3.0(.2) .27(.02) .80(.41) 1.30(.29)

(n, p) = (200, 400) 3(0) .15(.003) .77(.49) 1.32(.34) 3(0) .19(.008) .78(.49) 1.32(.33)

(n, p) = (400, 800) 3(0) .11(.002) .64(.41) 1.23(.27) 3(0) .13(.004) .64(.41) 1.23(.27)

Table 3: Means and standard deviations (in brackets) of estimation errors and forecast

errors for Example 2: εt ∼ N(0, Ip).

(II): εt ∼ N(0,Σε) PC method Our method
δ1 = 0, δ2 = 0 r̂ RMSE FFE FE r̂ RMSE FFE FE

(n, p) = (100, 200) 6.7(.6) .71(.04) 1.84(.79) 2.14(.69) 4.8(1.0) .63(.05) 1.73(.80) 2.03(.71)

(n, p) = (200, 400) 8.4(.6) .68(.02) 1.55(.69) 1.88(.61) 5.2(1.3) .57(.04) 1.48(.63) 1.82(.55)

(n, p) = (400, 800) 11.2(.7) .66(.02) 1.42(.76) 1.82(.63) 7.0(1.8) .54(.03) 1.35(.74) 1.77(.59)

δ1 = 0, δ2 = 1/4 r̂ RMSE FFE FE r̂ RMSE FFE FE
(n, p) = (100, 200) 6.8(.7) .72(.04) 1.18(.53) 1.57(.46) 4.7(.7) .64(.05) 1.07(.45) 1.48(.38)

(n, p) = (200, 400) 8.3(.6) .68(.02) 1.02(.46) 1.44(.37) 5.4(1.0) .58(.03) .96(.40) 1.40(.30)

(n, p) = (400, 800) 11.3(.6) .66(.02) .98(.43) 1.43(.35) 6.1(1.0) .54(.02) .93(.42) 1.40(.33)

δ1 = 1/4, δ2 = 0 r̂ RMSE FFE FE r̂ RMSE FFE FE
(n, p) = (100, 200) 6.6(.6) .71(.04) 1.47(.70) 1.83(.62) 4.7(.9) .63(.05) 1.30(.65) 1.71(.57)

(n, p) = (200, 400) 8.4(.6) .69(.02) 1.42(.80) 1.78(.68) 5.9(1.4) .59(.03) 1.38(.78) 1.74(.66)

(n, p) = (400, 800) 11.2(.6) .66(.02) 1.25(.65) 1.64(.54) 7.3(1.3) .55(.03) 1.25(.65) 1.64(.53)

δ1 = 0, δ2 = 1/2 r̂ RMSE FFE FE r̂ RMSE FFE FE
(n, p) = (100, 200) 6.7(.7) .71(.03) .96(.46) 1.42(.43) 4.7(1.0) .64(.04) .96(.47) 1.42(.44)

(n, p) = (200, 400) 8.4(.7) .68(.03) .84(.46) 1.30(.37) 5.6(1.1) .59(.03) .82(.46) 1.29(.35)

(n, p) = (400, 800) 11.2(.7) .66(.02) .88(.55) 1.36(.44) 10.7(4.1) .60(.05) .90(.56) 1.37(.45)

Table 4: Means and standard deviations (in brackets) of estimation errors and forecast

errors for Example 2: εt ∼ N(0,Σε).
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(II): εt ∼ N(0,Σε) PC method Our method
δ1 = 0, δ2 = 0 RMSE FFE FE RMSE FFE FE

(n, p) = (100, 200) .28(.08) 1.58(.74) 1.93(.62) .34(.07) 1.58(.74) 1.93(.63)

(n, p) = (200, 400) .16(.02) 1.44(.66) 1.80(.57) .20(.02) 1.44(.65) 1.80(.56)

(n, p) = (400, 800) .11(.02) 1.35(.71) 1.76(.56) .14(.02) 1.35(.71) 1.76(.56)

δ1 = 0, δ2 = 1/4 RMSE FFE FE RMSE FFE FE
(n, p) = (100, 200) .71(.13) 1.10(.43) 1.49(.39) .40(.15) 1.02(.45) 1.45(.37)

(n, p) = (200, 400) .68(.11) 0.99(.43) 1.43(.31) .23(.05) 0.91(.42) 1.37(.30)

(n, p) = (400, 800) .63(.12) 1.00(.41) 1.45(.34) .15(.02) 0.92(.40) 1.39(.32)

δ1 = 1/4, δ2 = 0 RMSE FFE FE RMSE FFE FE
(n, p) = (100, 200) .55(.21) 1.21(.57) 1.63(.48) .36(.10) 1.18(.58) 1.60(.48)

(n, p) = (200, 400) .54(.21) 1.31(.74) 1.68(.62) .22(.05) 1.26(.75) 1.65(.62)

(n, p) = (400, 800) .52(.22) 1.23(.67) 1.62(.54) .15(.03) 1.18(.66) 1.59(.53)

δ1 = 0, δ2 = 1/2 RMSE FFE FE RMSE FFE FE
(n, p) = (100, 200) .65(.03) .93(.43) 1.40(.40) .59(.10) .93(.42) 1.40(.39)

(n, p) = (200, 400) .60(.03) .82(.44) 1.29(.34) .51(.10) .81(.44) 1.29(.34)

(n, p) = (400, 800) .56(.02) .86(.56) 1.36(.45) .42(.12) .85(.56) 1.35(.44)

Table 5: Means and standard deviations (in brackets) of estimation errors and forecast

errors for Example 2: εt ∼ N(0,Σε), and the number of factors is fixed at r = 3.

5 Data Analysis : Implied Volatility Surfaces

We illustrate our method by modeling the dynamic behavior of IBM, Microsoft and Dell

implied volatility surfaces through the period 03/01/2006 − 29/12/2006 (250 days in

total). The data was obtained from OptionMetrics via the WRDS database. For each

day t we observe the implied volatility Wt(ui, vj) computed from call options. Here ui is

the time to maturity, taking values 30, 60, 91, 122, 152, 182, 273, 365, 547 and 730 for

i = 1, · · · , pu = 10 respectively, and vj is the delta, taking values 0.2, 0.25, 0.3, 0.35, 0.4,

0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, and 0.8 for j = 1, · · · , pv = 13 respectively. We collect

these implied volatilities in the matrix Wt = (Wt(ui, vi)) ∈ Rpu×pv . Figure 1 displays the

mean volatility surface of IBM, Microsoft and Dell in this period. It shows clearly that

the implied volatilities surfaces are not flat. Indeed any cross-section in the maturity or

delta axis display the well documented volatility smile.

It is a well documented stylized fact that implied volatilities are non-stationary (see

Cont and da Fonseca (1988), Fengler et al. (2007) and Park et al. (2009) amongst oth-

ers). Indeed, when applying the Dickey-Fuller test to each of the univariate time series

Wt(ui, vi), none of the pu × pv = 130 nulls of unit roots could be rejected at the 10%

level. Of course we should treat the results of these tests with some caution since we
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Figure 1: Mean implied volatility surfaces.

are performing a large number of hypothesis tests, but even still the evidence in favor of

unit roots is overwhelming. Therefore, instead of working with Wt directly, we choose

to work with ∆Wt = Wt −Wt−1. Our observations are then yt = vec{∆Wt}, where

for any matrix M = (m1, . . . ,mpv) ∈ Rpu×pv , vec{M} = (mT
1 , . . . ,mT

pv
)T ∈ Rpupv . Note

that yt is now defined over 04/01/2006 − 29/12/2006 since we lose an observation due

to differencing. Hence altogether there are 249 time points, and the dimension of yt is

p = pv × pu = 130.

We perform the factor model estimation on a rolling window of length 100 days,

defined from the i-th day to the (i + 99)-th day for i = 1, · · · , 150. The length of

the window is chosen so that the stationarity assumption of the data is approximately

satisfied. For each window, we compare our method with the PC method by estimating

the factor loading matrix and the factor series. For the i-th window, we use an AR model

to forecast the (i + 100)-th value of the estimated factor series x
(1)
i+100, so as to obtain a

one-step ahead forecast y
(1)
i+100 = Âx

(1)
i+100 for yi+100. We then calculate the forecast error

for the (i + 100)-th day defined by

FE = p−1/2‖y(1)
i+100 − yi+100‖.

5.1 Estimation results

In forming the matrix L̃ for each window, we take k0 = 5 in (2.5) , taking advantage

that the autocorrelations are not weak even at higher lags, though similar results (not

reported here) are obtained for smaller k0.

Figure 2 displays the average of each ordered eigenvalue over the 150 windows. The

left hand side shows the average of the largest to the average of the tenth largest eigenvalue

of L̃ for Dell, IBM and Microsoft for our method, whereas the right hand side shows the
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Figure 2: Averages of ordered eigenvalues of L̃ over the 150 windows. Left: Ten largest.

Right: Second to eleventh largest.

second to eleventh largest. We obtain similar results for the Bai and Ng (2002) procedure

and thus the corresponding graph is not shown.

From this diagram it is apparent that there is one eigenvalue that is much larger than

the others for all three companies for each window. We have done automatic selection

for the number of factors for each window using the IC criterion by Bai and Ng (2002)

introduced in Example 2 in section 4, and a one factor model is consistently obtained for

each window and for each company. Hence both methods choose a one factor model over

the 150 windows.

Figure 3: The cumulative FE over the 150 windows. Red dotted: Bai and Ng (2002)

procedure. Green: Taking forecast y
(1)
t+1 to be yt. Black: Our method.
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(a) Dell (b) IBM (c) Microsoft

Figure 4: Plot of return against the estimated factor for the first window. Black circle:

Our method. Red “+”: PC method.

Figure 3 displays the cumulative FE over the 150 windows for each method. We choose

a benchmark procedure (green line in each plot), where we just treat today’s value as

the one-step ahead forecast. Except for Dell where the PC method is doing marginally

better, our method consistently outperforms the benchmark procedure and is better than

the PC method for IBM and Microsoft.

5.2 A simple trading exercise

We use the one-step ahead forecast above to forecast the next day return of the three

stocks. Figure 4 shows the plots of return against the estimated factor for all three

companies for the data in the first window. Simple linear regression suggests that the

slope of the regression lines are significant. Hence we can plug in the one-step ahead

forecast of the factor into the estimated linear function to estimate the next day return.

All other windows for the three companies show linear pattern with similar plots, and

hence we can do this for all the 150 windows.

After forecasting the return of the (t + 1)-th day, if it is higher than that of the t-th

day, we buy $1; otherwise, we sell $1. Ignoring all trading costs, the accumulated return

is calculated at the end of the whole time period. This is done for our method and the PC

method. For the benchmark procedure, we calculated the average of the price of a stock

for the past 5 days, and compare that to the price today. If the average is higher than

the price today, we sell $1; otherwise we buy $1. We have two more similar benchmark
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procedures, which look at the average price of the past 10 and 15 days respectively.

Figure 5 shows the results for the three companies. Our method outperforms others

for IBM and Microsoft. For Dell, both the returns of our method and the PC method

stay flat for around the first 100 days, and then gradually go up to perform similarly to

other moving average benchmarks in the end.

(a) Dell (b) IBM

(c) Microsoft

Figure 5: Plot of accumulated returns over time. Black: Our method. Black dotted: PC

method. Red, Green and Blue lines are respectively benchmark procedure looking at 5,

10 and 15 days moving average price.
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6 Proofs

Before proving the theorems in section 3, we need to have three lemmas.

Lemma 1 Under model (2.2) with assumptions (A) - (G) in sections 2.1 and 2.2, we

have

‖Σf (k)‖ ³ p1−δ ³ ‖Σf (k)‖min, ‖Σf ,ε(k)‖ = O(p1−δ/2).

Proof. Model (2.2) is an equivalent representation of model (2.1), where

yt = Axt + εt = Qft + εt,

with A = QR and ft = Rxt. With assumptions (F) and (G), the diagonal entries of R

are all asymptotic to p
1−δ
2 (which is the order of ‖ai‖), and the off-diagonal entries are of

smaller order. Hence, as r is a constant, using

‖R‖ = max
‖u‖=1

‖Ru‖, ‖R‖min = min
‖u‖=1

‖Ru‖,

we can conclude that

‖R‖ ³ p
1−δ
2 ³ ‖R‖min.

This, together with Σf (k) = Cov(ft+k, ft) = Cov(Rxt+k,Rxt) = RΣx(k)RT for k =

1, · · · , k0, implies

p1−δ ³ ‖R‖2
min · ‖Σx(k)‖min ≤ ‖Σf (k)‖min ≤ ‖Σf (k)‖ ≤ ‖R‖2 · ‖Σx(k)‖ ³ p1−δ,

where we used assumption (B) to arrive at ‖Σx(k)‖ ³ 1 ³ ‖Σx(k)‖min, so that

‖Σf (k)‖ ³ p1−δ ³ ‖Σf (k)‖min.

We used the inequality ‖AB‖min ≥ ‖A‖min · ‖B‖min for any square matrices A and B,

which can be proved by noting

‖AB‖min = min
u6=0

uTBTATABu

‖u‖2
≥ min

u6=0

(Bu)TATA(Bu)

‖Bu‖2
· ‖Bu‖2

‖u‖2

≥ min
w 6=0

wTATAw

‖w‖2
·min

u6=0

‖Bu‖2

‖u‖2
= ‖A‖min · ‖B‖min. (6.1)

Finally, using assumption (C) that Σx,ε(k) = O(1) elementwisely, and that it has

rp ³ p elements, we have

‖Σf ,ε(k)‖ = ‖RΣx,ε(k)‖ ≤ ‖R‖ · ‖Σx,ε(k)‖F = O(p
1−δ
2 ) ·O(p1/2) = O(p1−δ/2),

where ‖M‖F := trace(MMT ) denotes the Frobenius norm of the matrix M . ¤
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Lemma 2 Under model (2.2) and assumption (E) in section 2.1, we have for 0 ≤ k ≤ k0,

‖Σ̃f (k)−Σf (k)‖ = OP (p1−δn−1/2), ‖Σ̃ε(k)−Σε(k)‖ = OP (pn−1/2),

‖Σ̃f ,ε(k)−Σf ,ε(k)‖ = OP (p1−δ/2n−1/2) = ‖Σ̃ε,f (k)−Σε,f (k)‖,

Moreover, ‖ft‖2 = OP (p1−δ) for all integers t ≥ 0.

Proof. From (2.1) and (2.2), we have the relation ft = Rxt, where R is an upper

triangular matrix with ‖R‖ ³ p
1−δ
2 ³ ‖R‖min (see the proof of Lemma 1). Then we

immediately have ‖ft‖2 ≤ ‖R‖2 · ‖xt‖2 = OP (p1−δr) = OP (p1−δ).

Also, the covariance matrix and the sample covariance matrix for {ft} are respectively

Σf (k) = RΣx(k)RT , Σ̃f (k) = RΣ̃x(k)RT .

Hence

‖Σ̃f (k)−Σf (k)‖ ≤ ‖R‖2 · ‖Σ̃x(k)−Σx(k)‖
= O(p1−δ) ·OP (n−1/2 · r)
= OP (p1−δn−1/2),

which is the rate specified in the lemma. We used the fact that the matrix Σ̃x(k)−Σx(k)

has r2 elements, with elementwise rate of convergence being O(n−1/2) which is implied by

assumption (E) and that {εt} is white noise. Other rates can be derived similarly using

the Frobenius norm as an upper bound. ¤
The following is Theorem 8.1.10 in Golub and Van Loan (1996), which is stated ex-

plicitly since our main theorems are based on this. See Johnstone and Arthur (2009)

also.

Lemma 3 Suppose A and A + E are n× n symmetric matrices and that

Q = [Q1 Q2] (Q1 is n× r, Q2 is n× (n− r))

is an orthogonal matrix such that span(Q1) is an invariant subspace for A (that is,

A· span(Q1) ⊂ span(A)). Partition the matrices QTAQ and QTEQ as follows:

QTAQ =

(
D1 0

0 D2

)
QTEQ =

(
E11 ET

21

E21 E22

)
.
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If sep(D1,D2) := minλ∈λ(D1), µ∈λ(D2) |λ−µ| > 0, where λ(M) denotes the set of eigenval-

ues of the matrix M , and

‖E‖ ≤ sep(D1,D2)

5
,

then there exists a matrix P ∈ R(n−r)×r with

‖P‖ ≤ 4

sep(D1,D2)
‖E21‖

such that the columns of Q̂1 = (Q1 +Q2P)(I+PTP)−1/2 define an orthonormal basis for

a subspace that is invariant for A + E.

In the proofs thereafter, we use ⊗ to denote the Kronecker product of matrices, and

σj(M) to denote the j-th singular value of the matrix M . Hence σ1(M) = ‖M‖. We use

λj(M) to denote the j-th largest eigenvalue of M .

Proof of Theorem 1. Under model (2.2), we have shown in section 2.3 that we have

LQU = QUD. Since U is an orthogonal matrix, we have

yt = Qft + εt = (QU)(UT ft) + εt,

so that we can replace QU with Q and UT ft with ft in the model, thus making LQ = QD,

where now D is diagonal with

D =

k0∑

k=1

{Σf (k)QT + Σf ,ε(k)}{Σf (k)QT + Σf ,ε(k)}T .

If B is an orthogonal complement of Q, then LB = 0, and
(

QT

BT

)
L(Q B) =

(
D 0

0 0

)
, (6.2)

with sep(D,0) = λmin(D) (see Lemma 3 for the definition of the function sep). We now

find the order of λmin(D).

To this end, define

Wf (k0) = (Σf (1), · · · ,Σf (k0)), Wf ,ε(k0) = (Σf ,ε(1), · · · ,Σf ,ε(k0)),

so that we have D = (Wf (k0)(Ik0 ⊗ QT ) + Wf ,ε(k0))(Wf (k0)(Ik0 ⊗ QT ) + Wf ,ε(k0))
T .

Hence, assuming first that κmax = o(p1−δ), we have

λmin(D) = {σr(Wf (k0)(Ik0 ⊗QT ) + Wf ,ε(k0))}2

≥ {σr(Wf (k0)(Ik0 ⊗QT ))− σ1(Wf ,ε(k0))}2

= {σr(Wf (k0))− σ1(Wf ,ε(k0))}2

³ σr(Wf (k0))
2 ³ p2−2δ,
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where we use ‖Σf (k)‖min ³ p1−δ from Lemma 1. On the other hand, if p1−δ = o(κmin),

then we have

λmin(D) ≥ {σr(Wf ,ε(k0))− σ1(Wf (k0)(Ik0 ⊗QT ))}2

= {σr(Wf ,ε(k0))− σ1(Wf (k0))}2

³ σr(Wf ,ε(k0))
2 ³ κ2

min.

Hence we have

max(κ2
min, p

2−2δ) = O(λmin(D)). (6.3)

Next, we need to find ‖EL‖, where we define EL = L̃ − L, with L̃ defined in (2.5).

Then it is easy to see that

‖EL‖ ≤
k0∑

k=1

{
‖Σ̃y(k)−Σy(k)‖2 + 2‖Σy(k)‖ · ‖Σ̃y(k)−Σy(k)‖

}
. (6.4)

Consider for k ≥ 1, using the results from Lemma 1,

‖Σy(k)‖ = ‖QΣf (k)QT + QΣf ,ε(k)‖ ≤ ‖Σf (k)‖+ ‖Σf ,ε(k)‖ = O(p1−δ + κmax). (6.5)

Also, for k = 1, · · · , k0, using the results in Lemma 2,

‖Σ̃y(k)−Σy(k)‖ ≤‖Σ̃f (k)−Σf (k)‖+ 2‖Σ̃f ,ε(k)−Σf ,ε(k)‖+ ‖Σ̃ε(k)‖
=OP (p1−δn−1/2 + p1−δ/2n−1/2 + ‖Σ̃ε(k)‖)
=OP (p1−δ/2n−1/2 + ‖Σ̃ε(k)‖).

(6.6)

Without further assumptions on {εt}, we have ‖Σ̃ε(k)‖ ≤ ‖Σ̃ε(k)‖F = OP (pn−1/2), which

implies from (6.6) that

‖Σ̃y(k)−Σy(k)‖ = OP (pn−1/2). (6.7)

With (6.5) and (6.7), we can easily see from (6.4) that

‖EL‖ = OP (p2−δn−1/2 + κmax · pn−1/2). (6.8)

Finally, no matter κmax = o(p1−δ) or p1−δ = o(κmin), we have from (6.8) and (6.3)

that

‖EL‖ = OP (p2−δn−1/2 + κmax · pn−1/2) = oP (max(p2−2δ, κ2
min))

= OP (λmin(D)) = OP (sep(D,0)),
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since we assumed hn = pδn−1/2 = o(1) in the former case, or κ−2
minκmax · pn−1/2 = o(1) in

the latter. Hence for sufficient large n, we have ‖EL‖ ≤ sep(D,0)/5. This allows us to

apply Lemma 3 to conclude that there exists a matrix P ∈ R(p−r)×r such that

‖P‖ ≤ 4

sep(D,0)
‖(EL)21‖ ≤ 4

sep(D, 0)
‖EL‖,

and Q̂ = (Q + BP)(I + PTP)−1/2 is an estimator for Q. Then we have

‖Q̂−Q‖ = ‖(Q(I− (I + PTP)1/2) + BP)(I + PTP)−1/2‖
≤ ‖I− (I + PTP)1/2‖+ ‖P‖
≤ 2‖P‖,

and using (6.3) and (6.8),

‖P‖ = OP

(
p2−δn−1/2 + κmax · pn−1/2

max(κ2
min, p

2−2δ)

)
=

{
OP (pδn−1/2), if κmax = o(p1−δ);

OP (κ−2
minκmax · pn−1/2), if p1−δ = o(κmin).

This completes the proof of the theorem. ¤

Proof of Theorem 2. Under assumptions (H) and (I), if we can show that

‖Σ̃ε(k)‖ = OP (pn−1), (6.9)

then (6.6) becomes

‖Σ̃y(k)−Σy(k)‖ = OP (p1−δ/2n−1/2 + pn−1) = OP (p1−δ/2n−1/2),

where we use the assumption pδ/2n−1/2 = o(1). This rate is smaller than that in (6.7) by

a factor of pδ/2, which carries to other parts of the proof of Theorem 1, so that the final

rates are all smaller by a factor of pδ/2. Hence, it remains to show (6.9).

To this end, define 1k the column vector of k ones, and

Er,s = (εr, · · · , εs) for r ≤ s.

Since the asymptotic behavior of the three sample means

ε̄ = n−1E1,n1n, (n− k)−1E1,n−k1n−k, (n− k)−1Ek+1,n1n−k

are exactly the same as k is finite and {εt} is stationary, in this proof we take the sample

lag-k autocovariance matrix for {εt} to be

Σ̃ε(k) = n−1(Ek+1,n − (n− k)−1Ek+1,n1n−k1
T
n−k)(E1,n−k − (n− k−1E1,n−k1n−k1

T
n−k))

T

= n−1Ek+1,nTn−kE
T
1,n−k,

23



where Tj = Ij − j−11j1
′
j. Then under conditions (H) and (I),

‖Σ̃ε(k)‖ ≤ ‖n−1/2Ek+1,n‖ · ‖Tn−k‖ · ‖n−1/2E1,n−k‖
= λ

1/2
1 (n−1ET

k+1,nEk+1,n) · λ1/2
1 (n−1ET

1,n−kE1,n−k)

= OP ((1 + (pn−1)1/2) · (1 + (pn−1)1/2))

= OP (pn−1),

where the second last line follows from Theorem 1.3 of Péché (2009) for the covariance

matrices n−1ET
k+1,nEk+1,n and n−1ET

1,n−kE1,n−k, and the last line follows from the assump-

tion n = O(p). This completes the proof of the theorem. ¤

Proof of Theorem 3. Consider

Q̂f̂t −Qft = Q̂Q̂Tyt −Qft = Q̂Q̂TQft −Qft + Q̂Q̂T εt

= (Q̂Q̂T −QQT )ft + Q̂(Q̂−Q)T εt + Q̂QT εt

:= K1 + K2 + K3.

Using Lemma 2, we have

‖K1‖ = OP (‖Q̂−Q‖ · ‖ft‖) = OP (p
1−δ
2 ‖Q̂−Q‖).

Also, since ‖Q̂−Q‖ = oP (1) and ‖Q‖ = 1, we have K2 dominated by K3 in probability.

Hence we only need to consider K3. Now consider for Q = (q1, · · · ,qr), the random

variable qT
j εt, with

E(qT
j εt) = 0, Var(qT

j εt) = qT
j Σεqj ≤ λmax(Σε) < c < ∞

for j = 1, · · · , r by assumption, where c is a constant independent of n and r. Hence

qT
j εt = OP (1). We then have

‖K3‖ = ‖Q̂QT εt‖ ≤ ‖QT εt‖ =
r∑

j=1

(qT
j εt)

2 = OP (1).

Hence p−1/2‖Q̂f̂t −Qft‖ = OP (p−δ/2‖Q̂−Q‖+ p−1/2), which completes the proof of the

theorem. ¤
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