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Estimation of Large Precision Matrices

Through Block Penalization ∗

By Clifford Lam

Department of Operations Research and Financial Engineering

Princeton University, Princeton, NJ, 08544

This paper focuses on exploring the sparsity of the inverse covariance ma-
trix Σ−1, or the precision matrix. We form blocks of parameters based on
each off-diagonal band of the Cholesky factor from its modified Cholesky
decomposition, and penalize each block of parameters using the L2-norm in-
stead of individual elements. We develop a one-step estimator, and prove
an oracle property which consists of a notion of block sign-consistency and
asymptotic normality. In particular, provided the initial estimator of the
Cholesky factor is good enough and the true Cholesky has finite number of
non-zero off-diagonal bands, oracle property holds for the one-step estimator
even if pn À n, and can even be as large as log pn = o(n), where the data y
has mean zero and tail probability P (|yj| > x) ≤ K exp(−Cxd), d > 0, and
pn is the number of variables. We also prove an operator norm convergence
result, showing the cost of dimensionality is just log pn. The advantage of
this method over banding by Bickel and Levina (2008) or nested LASSO by
Levina et al. (2007) is that it allows for elimination of weaker signals that
precede stronger ones in the Cholesky factor. A method for obtaining an
initial estimator for the Cholesky factor is discussed, and a gradient projec-
tion algorithm is developed for calculating the one-step estimate. Simulation
results are in favor of the newly proposed method and a set of real data is
analyzed using the new procedure and the banding method.

Short Title: Block-penalized Precision Matrix Estimation.
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1 Introduction

The need for estimating large covariance matrices arises naturally in many scientific

applications. For example in bioinformatics, clustering of genes using genes expression

data in a microarray experiment; or in finance, when seeking a mean-variance efficient

portfolio from a universe of stocks. One common feature is that the dimension of the

data pn is usually large compare with the sample size n, or even pn À n (genes expression

data, fMRI data, financial data, among many others). The sample covariance matrix S

is well-known to be ill-conditioned in such cases. Even for Σ = I the identity matrix, the

eigenvalues of S are more spread out around 1 asymptotically as pn/n gets larger (the

Marĉenko-Pastur law, Marĉenko and Pastur, 1967). It is singular when pn > n, thus not

allowing an estimate of the inverse of the covariance matrix, which is needed in many

multivariate statistical procedures like the linear discriminant analysis (LDA), regression

for multivariate normal data, Gaussian graphical models or portfolio allocations. Hence

alternatives are needed for more accurate and useful estimation of covariance matrix.

One regularization approach is penalization, which is the main focus of this paper.

Sparse estimation of the precision matrix Ω = Σ−1 has been investigated by many re-

searchers, which is very useful in Gaussian graphical models or covariance selection for

naturally ordered data (e.g. longitudinal data, see Diggle and Verbyla (1998)). Mein-

shausen and Bühlmann (2006) used the L1-penalized likelihood to choose suitable neigh-

borhood for a Gaussian graph and showed that pn can grow arbitrarily fast with n for

consistent estimation, while Li and Gui (2006) considered updating the off-diagonal ele-

ments of Ω by penalizing on the negative gradient of the log-likelihood with respect to

these elements. Banerjee, d’Aspremont and El Ghaoui (2006) and Yuan and Lin (2007)

used L1-penalty to directly penalize on the elements of Ω, and develop different semi-

definite programming algorithms to achieve sparsity of the inverse. Friedman, Hastie and
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Tibshirani (2007) and Rothman et al. (2007) considered maximizing the L1-penalized

Gaussian log-likelihood on the off-diagonal elements of the precision matrix Ω, where the

Graphical LASSO and the SPICE algorithms are proposed respectively in their papers

for finding a solution, and the latter proved Frobenius and operator norms convergence

results for the final estimators.

Pourahmadi (1999) proposed the modified Cholesky decomposition (MCD) which fa-

cilitates greatly the sparse estimation of Ω through penalization. The idea is to decompose

Σ such that for zero-mean data y = (y1, · · · , ypn)T , we have for i = 2, · · · , pn,

yi =
i−1∑
j=1

φi,jyj + εi, and TΣTT = D, (1.1)

where T is the unique unit lower triangular matrix with ones on its diagonal and (i, j)th

element −φi,j for j < i, and D is diagonal with ith element σ2
i = var(εi). The optimization

problem is unconstrained (since the φij’s are free variables), and the estimate for Ω is

always positive-definite. With MCD in (1.1), Huang et al. (2006) used the L1-penalty on

the φi,j’s and optimized a penalized Gaussian log-likelihood through a proposed iterative

scheme, with the case pn < n considered. Levina, Rothman and Zhu (2007) proposed

a novel penalty called the nested LASSO to achieve a flexible banded structure of T,

and demonstrated by simulations that normality of data is not necessary, with pn > n

considered.

For estimating the precision matrix Ω for naturally ordered data, apart from the

nested LASSO, Bickel and Levina (2008) proposed banding the Cholesky factor T in

(1.1), with the banding order k chosen by minimizing a resampling-based estimation of

a suitable risk measure. The method works on estimating a covariance matrix as well.

While these two methods are simple to use, they cannot eliminate blocks of weak signals

in between stronger signals. For instance, consider a time series model

yi = 0.7yi−1 + 0.3yi−3 + εi,
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which corresponds to (1.1) with φi,2 = 0, φi,j = 0 for j ≥ 4. For example, this kind of

model can arise in clinical trials data, where response on a drug for patients follows a

certain kind of autoregressive process with weak signals preceding stronger ones. This

implies a banded Cholesky factor T, with the first and third off-diagonal bands being

non-zero and zero otherwise. Banding and nested LASSO can band the Cholesky factor

T starting from the fourth off-diagonal band, but cannot set the second off-diagonal band

to zero. And if these methods choose to set the second off-diagonal band to zero, then

the third non-zero off-diagonal band will be wrongly set to zero. Both failures can lead

to inaccurate analysis or prediction, in particular the maximum eigenvalue of a precision

matrix can then be estimated very wrongly. Clearly, an alternative method is required

in this situation. We present the block penalization framework in the next section and

more motivations and details of the methodology.

For more references, Smith and Kohn (2002) used a hierarchical Bayesian model to

identify the zeros in the Cholesky factor T of the MCD. Fan, Fan and Lv (2007), using

factor analysis, developed high-dimensional estimators for both Σ and Σ−1. Wu and

Pourahmadi (2003) proposed a banded estimator through smoothing of the lower off-

diagonal bands of T̂ obtained from the sample covariance matrix (implicitly, pn < n).

Then an order for banding of T̂ is chosen by using AIC penalty of normal likelihood

of data. Furrer and Bengtsson (2007) considered gradually shrinking the off-diagonal

bands’ elements of the sample covariance matrix towards zero. Bickel and Levina (2007)

and El Karoui (2007) proposed the use of entry-wise thresholding to achieve sparsity in

covariance matrices estimation, and proved various asymptotic results, while Rothman,

Levina and Zhu (2008) generalizes these results to a class of shrinkage operators which

includes many commonly used penalty functions. Wagaman and Levina (2007) developed

an algorithm for finding a meaningful ordering of variables using a manifold projection

technique called the Isomap, so that existing method like banding can be applied.
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The rest of the paper is organized as follows. In section 2, we introduce the model for

block penalization, and the motivation behind. A notion of sign-consistency, we name it

block sign-consistency, is introduced. Together with asymptotic normality, we call it the

oracle property of the resulting one-step estimator. An initial estimator needed for the

one-step estimator, with the block zero-consistency concept, is introduced in section 2.5.

A practical algorithm is discussed, with simulations and real data analysis in section 3.

Theorems 2(i) and 3 are proved in the Appendix. We refer the readers to the Supplement

of Lam (2008) for proofs of Theorems 2(ii) and 4.

2 Block Penalization Framework

2.1 Motivation

For data with a natural ordering of the variables, e.g. longitudinal data, or data with a

metric equipped like spatial data with Euclidean distance, if data points are remote in

time or space, they are likely to have weak or no correlation. Then T in equation (1.1),

and thus Ω, are banded. Banding and nested LASSO mentioned in section 1 are based

on this observation for obtaining a banded structure of the Cholesky factor T. See Figure

1(b) for a picture of a banded Cholesky factor.

Also, for variables within a close neighborhood, the dependence structure should be

similar. Equation (1.1) then says that coefficients on an off-diagonal band of the Cholesky

factor T are close to neighboring coefficients (see also Wu and Pourahmadi (2003)). This

means that we can improve our estimation if we can efficiently use neighborhood infor-

mation (along an off-diagonal band of T) to estimate the values of individual coefficients.

With these insights, we are motivated to use the block penalization method. In the

context of wavelet coefficients estimation, Cai (1999) introduced a James-Stein shrinkage
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rule over a block of coefficients, whereas Antoniadis and Fan (2001, page 966) were

the first to point out that such method can be regarded as a special kind of penalized

likelihood which penalizes on the L2 norm of a group of coefficients, and introduced

a separable block-penalized least squares for simple solutions. Both papers argue that

block thresholding helps pull information from neighboring empirical wavelet coefficients,

thus increasing the information available for estimating coefficients within a block. Yuan

and Lin (2006) introduced the same method, which they called the group LASSO, to

select grouped variables (factors) in multi-factor ANOVA and compare grouped version

of LARS and LASSO. Zhou, Rocha and Yu (2007) further introduced a penalty called

the Composite Absolute Penalty (CAP) to introduce grouping and a hierarchy at the

same time for the estimated parameters in a linear model.

Block penalization allows for a flexible banded structure in T since zero off-diagonal

bands can precede the non-zero ones. This is an advantage over banding of Bickel and

Levina (2008) and nested LASSO of Levina et al. (2007) as discussed in section 1.

Moreover, the block sign-consistency property in Theorem 2(i) implies a banded estimated

Cholesky factor T if the truth T0 is banded. See Figure 1 for a demonstration.

Figure 1: Pattern of zeros in the resulting estimator for T using (a)Block Penalization;
(b)Banding; (c)Nested LASSO; (d)LASSO
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2.2 Block penalization

As pointed out in Levina et al. (2007), the MCD in (1.1) does not require the normality

assumption of the data, and they introduce a least squares version for their penalization.

We also use such an approach, and define

Ln(φn) =
n∑

i=1

pn∑
j=2

(yij − yT
i[j]φj[j])

2, (2.1)

with yi[j] = (yi1, · · · , yi,j−1)
T , φn = (φT

2[2], · · · ,φT
pn[pn])

T , and φj[j] = (φj,1, · · · , φj,j−1)
T .

When pλn(·) is singular at the origin, the term-by-term penalty
∑pn

i=2

∑i−1
j=1 pλn(|φi,j|)

has its singularities located at each φi,j = 0, and the block penalty

J(φn) =

pn−1∑
j=1

pλnj
(‖`j‖), (2.2)

has its singularities located at `j = 0 for j = 1, · · · , pn − 1, where λnj = λn(pn − j)1/2,

`j = (φj+1,1, φj+2,2, · · · , φpn,pn−j)
T is the jth off-diagonal band of the Cholesky factor T

in (1.1), and ‖ · ‖ is the L2 vector norm. Hence this block penalty either kills off a whole

off-diagonal band `j or keeps it entirely (see also Antoniadis and Fan (2001)).

Combining (2.1) and (2.2) is the block-penalized least squares

Qn(φn) = Ln(φn) + nJ(φn). (2.3)

We will use the SCAD penalty function for pλ(·) in (2.2), defined through its derivative

p′λ(θ) = λ1{θ≤λ} + (aλ− θ)+1{θ>λ}. (2.4)

SCAD penalty is an unbiased penalty function which has theoretical advantages over

L1-penalty (LASSO). See Lam and Fan (2007) for more details. In fact, in Fan, Feng and

Wu (2007), the SCAD-penalized estimate of a graphical model is substantially sparser

than the L1-penalized one, which has spuriously large number of edges, partially due to
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the bias induced by L1-penalty and hence requiring a smaller λ that induces spurious

edges. With φ̂n, we estimate D in (1.1) by

σ̂2
1 = n−1

n∑
i=1

y2
i1, σ̂2

j = n−1

n∑
i=1

(yij − yT
i[j]φ̂j[j])

2, j = 2, 3, · · · , pn. (2.5)

2.3 Linearizing the SCAD penalty

Minimizing Qn(φn) in (2.3) poses some challenges. Firstly, Qn(φn) is not separable,

which makes our problem computationally challenging. Secondly, the SCAD penalty

complicates the computations as there are no easy simplifications of the problem like

equation (5) in Antoniadis and Fan (2001, page 966).

Zou and Li (2007) showed that linearizing the SCAD penalty leads to efficient algo-

rithms like the LARS to be applicable, and that sparseness, unbiasedness and continuity

of the estimators continue to hold (see Fan and Li (2001)). Following their idea, we

linearize each pλnj
(‖`j‖) in (2.2) at an initial value ‖`(0)

j ‖ so that minimizing (2.3) is

equivalent to minimizing, for k = 0,

Q(k)
n (φn) =

n∑
i=1

pn∑
j=2

(yij − yT
i[j]φj[j])

2 + n

pn−1∑
j=1

p′λnj
(‖`(k)

j ‖)‖`j‖, (2.6)

where we denote the resulting estimate by φ(k+1)
n . Parallel to Theorem 1 and Proposition

1 of Zou and Li (2007), we state the following theorem concerning convergence in iterating

(2.6) starting from k = 0.

Theorem 1 For k = 0, 1, 2, · · · , the ascent property holds for Qn w.r.t. {φ(k)
n }, i.e.

Qn(φ(k+1)
n ) ≥ Qn(φ(k)

n ).

Furthermore, let φ(k+1)
n = M(φ(k)

n ), so that M is the map carrying φ(k)
n to φ(k+1)

n . If

Qn(φn) = Qn(M(φn)) only for stationary points of Qn and if φ∗
n is a limit point of the

sequence {φ(k)
n }, then φ∗

n is a stationary point Qn.
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This convergence result follows from more general convergence results for MM (minorize-

maximize) algorithms. Hence starting from an initial value φ(0)
n , we are able to it-

erate (2.6) to find a stationary point of Qn. Note that even starting from the most

primitive initial value φj[j] = 0, the first step gives a group LASSO estimator since

p′λnj
(0) = λnj = λn(pn − j)1/2. Hence the second step gives a biased reduced estimator

of LASSO, as p′λnj
(‖`(k)

j ‖) = 0 for ‖`(k)
j ‖ > aλnj. In section 2.5 we show how to find a

good initial estimator which is theoretically sound, and iterating until convergence is not

always needed.

2.4 One-Step Estimator for φn

We now develop a one-step estimator to reduce the computational burden and prove that

such an estimator enjoys the oracle property in Theorem 2. The performance of this

one-step estimator depends on the initial estimator φ(0)
n . Define, for `j0 denoting the true

value of `j in T,

Jn0 = {j : `j0 = 0}, Jn1 = {j : `j0 6= 0}.

Definition 1 An initial estimator φ(0)
n is called block zero-consistent if there exists γn =

O(1) such that (a) P
(
maxj∈Jn0 ‖`(0)

j ‖/(pn − j)1/2 ≥ γn

) → 0 as n →∞, and (b) for the

same γn, P
(
minj∈Jn1 ‖`(0)

j ‖/(pn − j)1/2 ≥ γn

) → 1.

This definition is similar to the idea of zero-consistency introduced in Huang, Ma

and Zhang (2006), but we now define it at the block level, which concerns the average

magnitude of each element in the off-diagonal `
(0)
j . With this, we present the main

theorem of this section, the oracle property for the one-step estimator.

Theorem 2 Assume regularity conditions (A) - (E) in the Appendix, and the Cholesky

factor T0 of the true precision matrix Ω0 has kn < n non-zero off-diagonal bands. If the
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initial estimator φ(0)
n for Q

(0)
n in (2.6) is block zero-consistent, then the resulting estimator

φ̂n by minimizing (2.6) satisfies the following:

(i) (Block sign-consistency) P (A ∩ B) → 1, where A = {ˆ̀j = 0 for all j ∈ Jn0}, and

B = {sgn(φ̂j+k,k) = sgn(φ0
j+k,k) for all j ∈ Jn1, k so that φ0

j+k,k 6= 0}.

(ii) (Asymptotic normality) Let φn1 be the vector of elements of φn corresponding to

its non-zero off-diagonals. Then for a vector αn of the same size as φ̂n1 so that αn

has at most kn non-zero elements and ‖αn‖ = 1, if k4
n(log2(kn + 1))4/d/n = o(1),

we have

n1/2(αT
nHnαn)−1/2αT

n (φ̂n1 − φ0
n1)

D−→ N(0, 1),

where Hn is block diagonal with pn − 1 blocks. Its (j − 1)-th block is σ2
j0Σ

−1
j11, and Σj11 =

E(yi[j](1)yi[j](1)T ), where yi[j](1) contains the elements of yi[j] corresponding to the non-

zero off-diagonals’ elements of φ0
j[j].

From this theorem and regularity condition (C) in the Appendix, the size pn of the

covariance matrix can be larger than n. In particular, if kn is finite, the oracle property

still holds when log pn = o(n). This is useful for many applications with pn > n, when

the sample covariance matrix becomes singular, whereas Theorem 3 shows that as long

as the Cholesky factor is sparse enough, we can get an optimal estimator of the precision

matrix via penalization.

Theorem 3 Let T̂ be the one-step estimator as in Theorem 2, and D̂ be diagonal with

elements σ̂2
j as defined in (2.5), so that Ω̂ = T̂T D̂−1T̂. Then under regularity conditions

(A) - (E) in the Appendix, with Ω0 denoting the true precision matrix,

‖Ω̂−Ω0‖∞ = OP ((kn + 1)3/2(log pn/n)1/2),

‖Ω̂−Ω0‖ = OP ((kn + 1)5/2(log pn/n)1/2),

where ‖M‖∞ = maxi,j |mi,j|, and ‖M‖ = λ
1/2
max(MT M).
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We will demonstrate related numerical results in section 3. From this theorem, the

method of block penalization allows for consistent precision matrix estimation as long

as the cost of dimensionality log pn satisfies (kn + 1)5 log pn/n = o(1). In particular, if

kn is finite, we only need log pn/n = o(1) for consistent estimation. On the other hand,

provided the cost of dimensionality is not too large (e.g. pn = na for some a > 0, so

log pn = a log n and is negligible), we need kn = o(n1/3) for element-wise consistency.

2.5 Block zero-consistent initial estimator

We need a block zero-consistent initial estimator for finding an oracle one-step estimator

in the sense of Theorem 2. The next theorem shows that the OLS estimator T̃, where

the sample covariance matrix is S = T̃−1D̃(T̃−1)T using the MCD in (1.1), is block zero-

consistent when pn/n → const. < 1. When pn > n, S is singular and T̃ is not defined

uniquely. Since we envisage a banded true Cholesky factor T0 with most non-zero off-

diagonals close to the diagonal, we define T̃ by considering the least square estimators of

the regression

yi =
i−1∑

j=cni

φi,jyj + εi, (2.7)

where cni = max{bi − γnc, 1} with some constant 0 < γ < 1 controlling the number

of yj’s on which yi regresses. The rest of the φi,j’s are set to zero, recalling that even

starting from the most primitive initial value φj[j] = 0, the one-step estimator is a group

LASSO estimator since p′λnj
(0) = λnj = λn(pn − j)1/2.

Theorem 4 Assume regularity conditions (A) to (E) in the Appendix. Then the estima-

tor T̃ obtained through the above series of regressions is block zero-consistent, provided

all the true non-zero off-diagonal bands of T0 are within the first bγnc off-diagonal bands

from the main diagonal of T0.
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Remark : In high dimensional model selection, the condition of “irrepresentability”

from Zhao and Yu (2006), “weak partial orthogonality” from Huang et al. (2006) or the

UUP condition from Candès and Tao (2007) all describe the need of a weak association

between the relevant covariates and the irrelevant ones under the true model, for the

estimation procedures to pick up the correct sparse signals asymptotically. In our case,

with (1.1) as the true model, the association between the variables yi and y1, · · · , yi−1

for i = 2, · · · , pn is incorporated into the tail assumption of the yij’s, which is specified

in regularity condition (A). This assumption entails that the |φi,j|’s for i and j far apart

are small, so that the association between the relevant yi’s (corr. to φt,i 6= 0) and the

irrelevant yj’s (corr. to φt,j = 0) in model (1.1) are small.

In practice, for the series of regression described, we can continue to regress yi on the

next bγnc yj’s etc until all the φ̃i,j’s are obtained. We adapt this initial estimator in the

numerical studies in section 3.

Also in practice, the rate at which maxj∈Jn0 ‖`(0)
j ‖/(pn − j)1/2 converges to zero in

probability in definition 1 may not be fast enough for the OLS estimators. One way

to improve the quality of the OLS estimators is to smooth along the off-diagonals of

T̃. For instance, Wu and Pourahmadi (2003) smoothed along off-diagonals of the OLS

estimator T̃ to reduce estimation errors. This amounts to assuming that the coefficients

φi,i−j = fj,pn(i/pn), where fj,pn(·) is a smooth function defined on [0, 1]. We then calculate

the smoothed coefficients

φ̄j+k,k =

pn−j∑
r=1

wj(r + j, k + j)φ̃j+r,r,

where the weights wj(r + j, k + j) depends on the smoothing method. We use local

polynomial smoothing with bandwidth h → ∞ with h/pn → 0, so that var(φ̄j+k,k) =

O(n−1h−1) (See Wu and Pourahmadi (2003) and Fan and Zhang (2000) for more details.).
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2.6 Algorithm for practical implementation

Yuan and Lin (2006) proposed a group LASSO algorithm to solve problems similar to

(2.6). However, when pn is large, the algorithm is computationally very expensive. In-

stead, we adapt an idea from Kim, Kim and Kim (2006) and use a gradient projection

method to solve for the one-step estimator, which is computationally much less demand-

ing. Since minimizing (2.6) can be considered as a weighted block-penalized least squares

problem with weights wk
nj = np′λnj

(‖`(k)
j ‖)/λn, it can be formulated as:

minimizing Ln(φn) subject to
sn∑

j=1

wk
nj‖`j‖ ≤ M (2.8)

for some M ≥ 0. Since the further off-diagonal bands of T̃ are too short, in practice

we stack them together until it is of length of order pn. We then treat it as one block

in the above dual-like problem, and denote by sn the number of off-diagonals in T̃ after

stacking.

Assume for now that all the tuning parameters are known. Starting from an initial

value φ(0)
n and t = 1, the gradient projection method involves computing the gradient

∇Ln(φ(t−1)
n ) and defining b = φ(t−1)

n − s∇Ln(φ(t−1)
n ), where s is the stepsize of iterations

to be found in the next section. Denote by b(j) the jth block of b, with blocks formed

according to the off-diagonals `j of T, j = 1, · · · , sn. Then the main step of the algorithm

is to solve

φt
n = argminφn∈B‖b− φn‖2, with B =

{ sn∑
j=1

wk
nj‖`j‖ ≤ M

}
,

which is called the projection step. It can be easily reformulated as solving

min
Mj

sn∑
j=1

(‖b(j)‖ −Mj)
2 subject to

sn∑
j=1

wk
njMj ≤ M, Mj ≥ 0, (2.9)

where then `t
j = Mjb(j)/‖b(j)‖, and we iterate the above until convergence. Standard

LARS or LASSO packages can solve (2.9) easily, but we adapt a projection algorithm
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by Kim et al. (2006) which can solve the above even faster. In solving (2.9), we are

essentially projecting (‖b(1)‖, · · · , ‖b(sn)‖) onto the hyperplane
∑sn

j=1 wk
njMj = M with

Mj ≥ 0. The key observation is that if such projection has non-positive values on some

Mj’s, then the solution to (2.9) should have those Mj’s exactly equal zero. Hence we

can then recalculate the projection onto the reduced hyperplane until no more negative

values occur in the projection, and it is easy to see that at most sn such iterations are

needed to solve (2.9). In detail, we start at τ = {1, · · · , sn}, and calculate the projection

Mj = 1{j∈τ}
[
‖b(j)‖+

(
M −

∑
r∈τ

wk
nr‖b(r)‖

)
wk

nj/
∑
r∈τ

(wk
nr)

2
]

(2.10)

for j = 1, · · · , sn. We then update τ = {j : Mj > 0} and calculate the above projection

again until Mj ≥ 0 for all j.

2.7 Choice of tuning parameters

There are three tuning parameters introduced in the previous section, namely λn, M and

s. The small number s is a parameter for the gradient projection algorithm and it is re-

quired that s < 2/L, where L is the Lipchitz constant of the gradient of Ln(φn). It can be

easily shown that L = 2λ
1/2
max(S2

Y ), where SY = diag(
∑n

i=1 yi[2]y
T
i[2], · · · ,

∑n
i=1 yi[pn]y

T
i[pn]),

so that s < λ
−1/2
max (S2

Y ).

For the choice of M , note that for a suitable λn and that `j = `j0 in (2.8), we either

have wk
nj = 0 or `j0 = 0. Thus, the value of

∑sn

j=1 wk
nj‖`j0‖ is always zero. In view of this,

the oracle choice of M is actually zero. We adapt this choice in the numerical studies in

section 3.

For the choice of λn, we use a GCV criterion similar to the one used by Kim et al.

(2006). We find T̃ as defined in section 2.5, and smooth the off-diagonal bands of T̃ to

form T̄. Define Wj = diag(wk
nsn

/‖¯̀sn‖1T
j−sn

, wk
n(cnj−1)/‖¯̀cnj−1‖, · · · , wk

n2/‖¯̀2‖, wk
n1/‖¯̀1‖)

and Xj = (y1[j],y2[j], · · · ,yn[j])
T , where 1m denote the column vector of ones of length

14



m. The GCV-type criterion is to minimize

GCV(λn) =

pn∑
j=2

n
∑n

i=1(yij − yT
i[j]φ̄j[j])

2

(n− tr[Xj(XT
j Xj + λnWj)−1XT

j ])2
, (2.11)

where tr(·) denotes the trace of a square matrix. See Kim et al. (2006) for more details.

In practice we calculate GCV(λn) on a grid of values of λn and find the one that minimizes

GCV(λn) as the solution.

3 Simulations and Data Analysis

In this section, we compare the performance of block penalization (BP) to other regular-

ization methods, in particular banding of Bickel and Levina (2008) and LASSO of Huang

et al. (2006).

For measuring performance, the Kullback-Leibler loss for a precision matrix is used.

It has been used in Levina et al. (2007), defined as

LKL(Σ, Σ̂) = tr(Σ̂
−1

Σ)− log |Σ̂−1
Σ| − pn,

which is the entropy loss but with the role of covariance matrix and its inverse switched.

See Levina et al. (2007) for more details of the loss function. We also evaluate the

operator norm ‖Ω̂ −Ω0‖ for different methods to illustrate the results in Theorem 3 in

our simulation studies. The proportions of correct zeros and non-zeros in the estimators

for the Cholesky factors are reported.

3.1 Simulation analysis

The following three covariance matrices are considered in our simulation studies.

I. Σ1 = 0.8I.
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II. Σ2 : φi,i−1 = φi,i−2 = −0.6, φi,i−4 = φi,i−6 = −0.4, φi,j = 0 otherwise; σ2
j0 = 0.8.

III. Σ3 : φi,j = 0.5i−j, j < i; σ2
j0 = 0.1.

The covariance matrix Σ1 is a constant multiple of the identity matrix, which is considered

by Huang et al. (2006) and Levina et al. (2007). Σ2 is the covariance matrix of an AR(6)

process, which has a banded inverse. Σ3 is the covariance matrix of an MA(1) process.

It is itself tri-diagonal and has a non-sparse inverse. We investigate the performance of

BP in such a non-sparse case.

Regularity conditions (B) to (E) are satisfied for the three models by construction.

Since all three define stationary time series models in the sense of (1.1), condition (A) is

satisfied from Gaussian to general Weibull-distributed innovations.

We generated n = 100 observations for each simulation run, and considered pn =

50, 100 and 200. We used N = 50 simulation runs throughout. In order to illustrate

theoretical results and test the robustness of the BP method on heavy-tailed data, on top

of multivariate normal for the variables, we also consider the multivariate t3 for the vari-

ables, which violated condition (A). Tuning parameters for the LASSO and banding are

computed using 5-fold CV, while the parameter λn for the BP is obtained by minimizing

GCV(λn) in (2.11). We set the smoothing parameter h = 0.3 for local linear smoothing

along the off-diagonal bands for demonstration purpose. The constant γ and stacking

parameter sn mentioned in section 2.5 are set at 0.9 and pn − d2p1/2
n e respectively. In

fact we have done simulations (not shown) showing that smoothing along off-diagonals

for the initial estimator can improve the performance of the one-step estimator. All the

results below for the performance of BP are based on such smoothed initial estimators.

Also, all subsequent tables show the median of the 50 simulation runs, and the number

in the bracket is the SDmad which is a robust estimate of the standard deviation, defined

by the interquartile range divided by 1.349.
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Table 1: Kullback-Leibler loss for multivariate normal and t3 simulations.

Multivariate normal Multivariate t3

pn LASSO Banding BP LASSO Banding BP

Σ1 100 1.0(.1) 1.1(.8) 1.0(.1) 7.7(3.8) 10.7(9.3) 7.8(3.9)

200 2.1(.2) 2.4(3.4) 2.1(.2) 16.4(9.7) 22.9(18.8) 16.4(9.7)

Σ2 100 27.2(1.4) 11.1(6.5) 5.6(.5) 110.7(29.2) 57.7(21.1) 28.2(10.6)

200 264.6(39.9) 20.4(12.3) 11.5(.7) 789.5(132.0) 101.6(36.0) 54.7(14.2)

Σ3 100 8.8(.7) 7.8(9.7) 4.3(2.0) 40.2(7.6) 31.8(14.9) 19.8(7.9)

200 19.4(1.5) 24.9(83.4) 18.1(23.1) 99.6(23.6) 70.3(35.4) 56.3(26.0)

Not shown here, we have carried out comparisons between using GCV-based and 5-

fold CV-based tuning parameter λn for the BP method, and both performed similarly.

However, the GCV-based method is much quicker, and hence results of simulations are

presented with the GCV-based BP method only.

Table 1 shows the Kullback-Leibler loss from various methods for multivariate normal

and t3 simulations. We omit the case for pn = 50 to save space, but results are similar to

those for higher dimensions. In general the higher the dimension, the larger the loss is for

all the methods. On Σ1, all methods perform similarly as expected (sample covariance

matrix performs much worse and is not shown). However on Σ2, BP performs much

better for all pn considered, especially when multivariate t3 is concerned. The better

performance is expected, since BP can eliminate weaker signals that precede stronger

ones, but not particularly so for other methods. On Σ3, BP performs slightly better

on average, particularly for multivariate t3 simulations. For normal data, LASSO has

smaller variability, though.

To demonstrate results of Theorem 3, the operator norm of difference ‖Ω̂ −Ω0‖ for

different methods are summarized in Table 2. Clearly BP performs better in comparison

with LASSO and banding on Σ2, in both normal and t3 innovations. The performance

gap gets larger as pn increases. For Σ3 BP still outperforms the other two methods in
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Table 2: Operator norm of difference ‖Ω̂−Ω0‖ for different methods.

Multivariate normal Multivariate t3

pn LASSO Banding BP LASSO Banding BP

Σ1 100 .6(.1) .7(.3) .6(.1) 1.7(.5) 2.0(.8) 1.7(.5)

200 .7(.1) .8(.4) .7(.1) 1.8(.6) 2.0(.9) 1.8(.5)

Σ2 100 5.9(.4) 6.2(3.5) 2.5(.4) 11.3(4.6) 11.0(6.6) 7.2(3.5)

200 29.1(11.3) 5.7(3.4) 2.6(.4) 58.1(11.2) 12.1(5.7) 7.7(2.3)

Σ3 100 14.7(1.6) 19.0(14.2) 11.6(1.9) 40.3(9.1) 33.8(13.5) 28.1(6.6)

200 16.0(1.4) 27.4(63.7) 18.4(6.1) 46.1(6.0) 42.2(17.3) 35.5(11.0)

general, especially for heavy-tailed data.

Finally, to illustrate the ability to capture sparsity, we focus on Σ2 and summarize

the correct percentages of zeros and non-zeros estimated in Table 3. BP almost gets all

the zeros and non-zeros right in all simulations. The LASSO does poorly in the correct

percentages of zeros. This is due to biases induced by LASSO that require a relatively

small λ, resulting in many spurious non-zero coefficients. The banding method does not

work well too. However, note that both banding and BP do better as dimension increases.

Table 3: Correct zeros and non-zeros(%) in the estimated Cholesky factors for Σ2.

Multivariate normal Multivariate t3

pn LASSO Banding BP LASSO Banding BP

Correct 50 60.6(2.3) 73.5(20.1) 100(0) 56.5(3.5) 89.1(12.3) 95.6(14.0)

percentage 100 75.3(.9) 87.7(12.0) 100(0) 70.5(2.6) 94.4(5.8) 100(0)

of zeros 200 73.5(.7) 92.9(8.7) 100(0) 72.0(.7) 97.3(2.7) 100(0)

Correct 50 99.6(.4) 100(0) 100(0) 96.4(1.6) 71.3(35.0) 100(0)

percentage 100 99.2(.3) 100(0) 100(0) 95.1(1.8) 72.3(33.3) 100(0)

of non-zeros 200 99.3(.3) 100(0) 100(0) 97.1(.7) 80.5(25.9) 100(0)
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3.2 Real data analysis

We analyze the call center data using the BP method. This set of data is described in

detail and analyzed by Shen and Huang (2005), and we thank you for the data courtesy

by the authors.

The original data consists of details of every call to a call center of a major northeastern

U.S. financial firm in 2002. Removing calls from weekends, holidays, and days when

recording equipment was faulty, we obtain data from 239 days. On each of these days,

the call center open from 7am to midnight, so there is a 17-hour period for calls each

day. For ease of comparison, following Huang et al. (2006) and Bickel and Levina (2008),

we use the data which is divided into 10-minute intervals, and the number of calls in

each interval is denoted by Nij, for days i = 1, · · · , 239 and interval j = 1, · · · , 102. The

transformation yij = (Nij + 1/4)1/2 is used to make the data closer to normal.
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Figure 2: Mean absolute forecast errors for different estimation methods. Average is taken
over 34 days of test data from November to December, 2002.

19



The goal is to forecast the counts of arrival calls in the second half of the day from those

in the first half of the day. If we assume yi = (yi1, · · · , yi,102)
T ∼ N(µ,Σ), partitioning

yi into y
(1)
i and y

(2)
i where y

(1)
i = (yi1, · · · , yi,51)

T ,y
(2)
i = (yi,52, · · · , yi,102)

T , and denoting

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

the best mean square error forecast is then given by the conditional mean

ŷ(2) = E(y(2)|y(1)) = µ̂2 + Σ̂21Σ̂
−1

11 (y(1) − µ̂1).

This is also the best mean square error linear predictor without normality assumption.

To compare performance of different estimators of Σ, we divide the data into a training

set (Jan. to Oct., 205 days) and a test set (Nov. and Dec., 34 days). We estimate

µ̂ =
∑205

i=1 yi/205, and Σ̂ by sample covariance, banding and BP. For each time interval

j = 52, · · · , 102, we consider the mean absolute forecast error

Errj =
1

34

239∑
i=206

|ŷij − yij|.

For BP, we use GCV with h = 0.1. The number k = 19 for banding is used in Bickel and

Levina (2008). From Figure 2, it is clear that the BP outperforms the other two methods,

in particular for the time intervals 66 to 75 corresponding to the mid-afternoon.

Appendix: Proof of Theorems 2(i) and 3

We state the following general regularity conditions for the results in section 2.

(A) The data yi, i = 1, 2, · · · , n are i.i.d. with mean zero and variance Σ0, a symmetric

positive-definite matrix of size pn. The tail probability of yi satisfies, for j =

1, 2, · · · , pn, P (|yij| > x) ≤ K exp(−Cxd), where d > 0 and C, K are constants.

The innovations εi2, · · · , εipn for i = 1, · · · , n in (1.1) are mutually independent

zero-mean r.v.’s and var(εij) = σ2
j0, having tail probability bounds similar to the

yij’s.
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(B) The variance-covariance matrix Σ0 in (A) has eigenvalues uniformly bounded away

from 0 and ∞ w.r.t. n. That is, there exists constants C1 and C2 such that

0 < C1 < λmin(Σ0) ≤ λmax(Σ0) < C2 < ∞ for all n,

where λmin(Σ0) and λmax(Σ0) are the minimum and maximum eigenvalues of Σ0

respectively.

(C) Let dn1 = min{φ0
n1j : φ0

n1j > 0}, where φ0
n1j is the j-th element of φ0

n1 (see Step 2.1

in the proof of Theorem 2(i) for a definition). Then as n →∞,

kn log pn

nd2
n1

→ 0,
k2

n log pn

nλn

→ 0,
log pn

nλ2
n

→ 0.

(D) The tuning parameter λn satisfies

0 < λn < min
j∈Jn1

‖`j0‖
a(pn − j)1/2

,

with (pn − j) →∞ for all j ∈ Jn1 as n →∞.

(E) The values σ2
εM = max1≤t≤pn σ2

t0 and σ2
yM = max1≤r≤pn var(yjr) are bounded uni-

formly away from zero and infinity.

The following lemma is a direct consequence of Theorem 5.11 of Bai and Silverstein

(2006).

Lemma 1 Let {yi}1≤i≤n be a random sample of n vectors with length qn, each with mean

0 and covariance matrix Σ. In addition, each element of yi has finite fourth moment.

Then if qn/n → ` < 1, the sample covariance matrix Sn = n−1
∑n

i=1 yiy
T
i satisfies, almost

surely,

lim
n→∞

λmax(Sn) ≤ λmax(Σ)(1 +
√

`)2, lim
n→∞

λmin(Sn) ≥ λmin(Σ)(1−
√

`)2.
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Proof of Lemma 1. By Theorem 5.11 of Bai and Silverstein (2006), the matrix S∗n =

Σ−1/2SnΣ
−1/2 which is the sample covariance matrix of Σ−1/2yi, has

lim
n→∞

λmax(S
∗
n) = (1 +

√
`)2, lim

n→∞
λmin(S

∗
n) = (1−

√
`)2

almost surely. Since ` < 1, this implies that S∗n is almost surely invertible. Then by

standard arguments,

lim
n→∞

λmin(Sn) = lim
n→∞

λmin(Σ
1/2S∗nΣ

1/2) ≥ λmin(Σ)(1−
√

`)2

almost surely. The other inequality is proved similarly. ¤

Proof of Theorem 2. The idea is to prove that the probability of a sufficient condition

for block-sign consistency approaches 1 as n →∞. We split the proof into multiple steps

and substeps to enhance readability. We prove for the case kn ≥ 1 first, with the case

kn = 0 put at the end of the proof.

Step 1. Sufficient condition for solution to exist. An elementwise sufficient condi-

tion, derived from the Karush-Kuhn-Tucker (KKT) condition for φ̂n to be a solution to

minimizing (2.6) (see for example Yuan and Lin (2006) for the full KKT condition), is

2
n∑

i=1

yi,t−j(yit − yT
i[t]φ̂t[t]) = λnw

k
njφ̂t,t−j/‖ˆ̀j‖, for all ˆ̀

j 6= 0, (A.1)

∣∣∣∣2
n∑

i=1

yi,t−j(yit − yT
i[t]φ̂t[t])

∣∣∣∣ ≤ λnw
k
nj(pn − j)−1/2, for all ˆ̀

j = 0, (A.2)

where t = j +1, · · · , pn and wk
nj = np′λnj

(‖`(k)
j ‖)/λn (see section 2.2 for more definitions).

We assume WLOG that the kn non-zero off-diagonals of the true Cholesky factor T0 are

its first kn off-diagonals to simplify notations. We also assume no stacking (see section

2.6) of the last off-diagonal bands of T in solving (2.6); the case of stacked off-diagonals

can be treated similarly.
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Step 2. Sufficient condition for block sign-consistency. To introduce the sufficient

condition for block-sign consistency, we define Ctjk = n−1
∑n

i=1 yi[t](j)yi[t](k)T for j, k =

1, 2, where yi[t](2) contains the elements of yi[t] corresponding to the zero off-diagonals’

elements of φ0
t[t], and yi[t](1) contains the rest. We also define, for t = 2, · · · , pn,

vt = n−1/2

n∑
i=1

εityi[t], εit = yit − yT
i[t]φ

0
t[t], Wnt = diag(wk

nbnt
, · · · , wk

n2, w
k
n1),

w̃nt = (w̃k
n(t−1), · · · , w̃k

n1)
T , st = (φ̂t,t−bnt/‖ˆ̀bnt‖, · · · , φ̂t,t−2/‖ˆ̀2‖, φ̂t,t−1/‖ˆ̀1‖)T ,

where bnt = min(t − 1, kn), w̃k
nj = wk

nj(pn − j)−1/2. Also, vt(j), w̃nt(j) for j = 1, 2 are

defined similar to yi[t](j); φ0
t[t](j) and φ̂t[t](j) for j = 1, 2 are defined similarly also.

For φ̂n to be block sign-consistent, we need only to show that equation (A.1) is true for

j = 1, · · · , kn, equation (A.2) is true for j = kn + 1, · · · , pn − 1, and |φ̂t[t](1)−φ0
t[t](1)| <

|φ0
t[t](1)|. It is sufficient to show that the following conditions occur with probability

going to 1 (this is similar to Zhou and Yu (2006) Proposition 1; see their paper for more

details)

|C−1
t11vt(1)| < n1/2|φ0

t[t](1)| − λnn
−1/2C−1

t11Wntst/2,

|Cr21C
−1
r11vr(1)− vr(2)| ≤ λnn

−1/2(w̃nr(2)− |Cr21C
−1
r11Wnrsr|)/2,

(A.3)

where t = 2, · · · , pn and r = kn + 2, · · · , pn. Since the matrix Ct11 has size at most kn

and kn/n = o(1), Ct11 is almost surely invertible as n → ∞ by Lemma 1 and condition

(B). In more compact form, it can be written as

|G−1
11 z| < n1/2|φ0

n1| − λnn−1/2G−1
11 Wns/2,

|G21G
−1
11 (2)z(2)− z̃| ≤ λnn−1/2(w̃n − |G21G

−1
11 (2)Wn(2)s(2)|)/2,

(A.4)
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where

G11 = diag(C211, · · · ,Cpn11), G21 = diag(C(kn+2)21, · · · ,Cpn21),

G11(2) = diag(C(kn+2)11, · · · ,Cpn11), z = (v2(1)T , · · · ,vpn(1)T )T ,

z(2) = (vkn+2(1)T , · · · ,vpn(1)T )T , z̃ = (vkn+2(2)T , · · · ,vpn(2))T ,

φ0
n1 = (φ0

2[2](1)T , · · · ,φ0
pn[pn](1)T )T , Wn = diag(Wn2, · · · ,Wnpn),

Wn(2) = diag(Wn(kn+2), · · · ,Wnpn), s = (sT
2 , · · · , sT

pn
)T ,

s(2) = (sT
kn+2, · · · , sT

pn
)T , w̃n = (w̃n(kn+2)(2)T , · · · , w̃npn(2)T )T .

Step 3. Denote by An and Bn respectively the events that the first and the second

conditions of (A.4) hold. It is sufficient to show P (Ac
n) → 0 and P (Bc

n) → 0 as n →∞.

Step 3.1 Showing P (Ac
n) → 0. Define η = G−1

11 z, and ηn = G−1
11 zn, where

zn = (zn,j)
T
j≥1 with zn,j = n−1/2

∑n
i=1 yirεit1{|yir|,|εit|≤a(n)}, a truncated version of zj =

n−1/2
∑n

i=1 yirεit for some r, t with max(1, t − kn) ≤ r < t. Denote by ηn,j the j-th

element of ηn. In these definitions, a(n) →∞ as n →∞.

We need the following result, which will be shown in Step 5:

E(max
j
|ηn,j|) = O((kn log pn)1/2a2(n)). (A.5)

Since the initial estimator φ(k)
n in (2.6) is block zero-consistent, if λn is chosen to

satisfy condition (D), then γn in Definition 1 can be set to this λn. It is easy to see that

P (w̃k
nj = n, ∀j ∈ Jn0) → 1, P (wk

nj = 0, ∀j ∈ Jn1) → 1 as n →∞. (A.6)

By definition, ηn − η → 0 almost surely as n → ∞. Thus, 1{maxj |ηn,j |≥n1/2dn1} −
1{maxj |ηj |≥n1/2dn1} → 0 almost surely, implying

P (max
j
|ηn,j| ≥ n1/2dn1)− P (max

j
|ηj| ≥ n1/2dn1) → 0 as n →∞. (A.7)
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Then by the Markov inequality and (A.5),

P
(
max

j
|ηn,j| ≥ n1/2dn1

) ≤ E
(
max

j
|ηn,j|

)
/(n1/2dn1)

= O((kn log pn)1/2a2(n)/(n1/2dn1)) → 0,

by condition (C) and for a(n) chosen to go to infinity slow enough. Hence by (A.7), we

have P
(
maxj |ηj| ≥ n1/2dn1

) → 0, thus

P (Ac
n) ≤ P (Ac

n ∩ {wk
nj = 0, ∀j ∈ Jn1}) + P (wk

nj > 0, ∀j ∈ Jn1)

≤ P (max
j
|ηj| ≥ n1/2dn1) + P (wk

nj > 0, ∀j ∈ Jn1) → 0,

using (A.6) and the fact that

Ac
n ∩ {wk

nj = 0 ∀j ∈ Jn1} = {|G−1
11 z| ≥ n1/2|φ0

n1|} ⊂
{

max
j
|ηj| ≥ n1/2dn1

}
.

Step 3.2 Showing P (Bc
n) → 0. Define ζ = G21G

−1
11 (2)z(2), then ζj = (Ct21C

−1
t11vt(1))r

for some t, r with t ≥ kn +2. Also, define xrk = n−1/2
∑n

i=1 yiryik, and xn,rk the truncated

version (by a(n)) similar to zn,j in Step 3.1. Then we can rewrite ζj = n−1/2
∑

k xrkηk,

and define

ζn,j = n−1/2
∑

k

xn,rkηn,k,

for some r. The summation involves at most kn terms.

We need the following results, which will be shown in Step 4 and 6 respectively:

E(max
k
|zn,k|) = O((log pn)1/2a2(n)), (A.8)

E(max
j
|ζn,j|) = O(k2

n log pna4(n)). (A.9)

By definition, for all j, ζn,j − ζj → 0 and zn,j − zj → 0 almost surely, implying

P (max
j,k

|ζn,j − zn,k| ≥ λnn
1/2/2)− P (max

j,k
|ηj − zk| ≥ λnn

1/2/2) → 0 as n →∞. (A.10)
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Then by the Markov inequality, (A.8) and (A.9),

P (max
j,k

|ζn,j − zn,k| ≥ λnn1/2/2) ≤ 2{E(max
j
|ζn,j|) + E(max

k
|zk|)}/(λnn

1/2)

= O(k2
n log pn · a4(n)/(λnn) + (log pn)1/2a2(n)/(λnn1/2)),

which goes to 0 by condition (C), for a(n) chosen to go to infinity slow enough. This

implies P (maxj,k |ζj − zk| ≥ λnn
1/2/2) → 0 by (A.10).

Define Dn = {w̃k
nj = n ∀j ∈ Jn0} ∩ {wk

nj = 0 ∀j ∈ Jn1}, so that P (Dc
n) → 0 by (A.6).

Hence using Bc
n ∩Dn = {|ζ − z̃| ≥ λnn

1/2/2} ⊂ {
maxj,k |ζj − zk| ≥ λnn

1/2/2
}
,

P (Bc
n) ≤ P (Bc

n ∩Dn) + P (Dc
n)

≤ P (max
j,k

|ζj − zk| ≥ λnn1/2/2) + P (Dc
n) → 0.

Step 4. Proof of (A.8). This requires the application of Orlicz norm of a random

variable X, which is defined as ‖X‖ψ = inf{C > 0 : Eψ(|X|/C) ≤ 1}, where ψ is a

non-decreasing convex function with ψ(0) = 0. We define ψa(x) = exp(xa)− 1 for a ≥ 1,

which is non-decreasing and convex with ψa(0) = 0. See section 2.2 of van der Vaart and

Wellner (2000) (hereafter VW(2000)) for more details.

We need four more general results on Orlicz norm:

1. By Proposition A.1.6 of VW (2000), for any independent zero-mean r.v.’s Wi,

define Sn =
∑n

i=1 Wi, then

‖Sn‖ψ1 ≤ K1

(
E|Sn|+ ‖ max

1≤i≤n
|Wi|‖ψ1

)
, (A.11)

‖Sn‖ψ2 ≤ K2

(
E|Sn|+ (

n∑
i=1

‖Wi‖2
ψ2

)1/2
)
, (A.12)

where K1 and K2 are constants independent of n and other indices.

2. By Lemma 2.2.2 of VW (2000), for any r.v.’s Wj and a ≥ 1,

‖ max
1≤j≤m

Wj‖ψa ≤ K̃a max
1≤j≤m

‖Wj‖ψa(log(m + 1))1/a (A.13)
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for some constant K̃a depending on a only.

3. For any r.v.’s Wi and 1 ≤ a ≤ 2, (see page 105, Q.8 of VW (2000))

E( max
1≤i≤m

|Wi|) ≤ (log(m + 1))1/a max
1≤i≤m

‖Wi‖ψa . (A.14)

4. For any r.v. W and a ≥ 1,

‖W 2‖ψa = ‖W‖2
ψ2a

. (A.15)

Since the (yjrεjt)j’s are i.i.d. with mean zero (variance bounded by σ2
yMσ2

εM by con-

dition (E)), by (A.12),

max
j
‖zn,j‖ψ2 ≤ max

j
K2((Ez2

n,j)
1/2 + n−1/2(n‖a2(n)‖2

ψ2
)1/2)

≤ max
j

K2(σyMσεM + O(a2(n))) = O(a2(n)). (A.16)

Then using (A.16) and (A.14),

E(max
j
|zn,j|) ≤ (log(pnkn + 1))1/2 max

j
‖zn,j‖ψ2

= O((log pn)1/2a2(n)),

which is the inequality (A.8).

Step 5. Proof of (A.5). By Lemma 1 and condition (B), the eigenvalues 0 < τt1 ≤
τt2 ≤ · · · ≤ τtkn ≤ ∞ of Ct11 are uniformly bounded away from 0 (by 1/τ) and ∞ (by τ)

almost surely when n → ∞. Then ‖Ct11‖, ‖C−1
t11‖ ≤ τ almost surely as n → ∞. Hence

for large enough n,

η2
n,j = ‖eT

k C−1
t11vn,t(1)‖2 ≤ τ 2‖vn,t(1)‖2,

for some k and t, where ek is the unit vector having the k-th position equals to one and

zero elsewhere. The vector vn,t(1) is the truncated version of vt(1) containing elements
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zn,i. Then by (A.15) and (A.16),

max
j
‖ηn,j‖ψ2 = max

j
‖η2

n,j‖1/2
ψ1
≤ τ max

t

∥∥∥‖vn,t(1)‖2
∥∥∥

1/2

ψ1

≤ τk1/2
n max

i=i1,··· ,ikn

‖z2
n,i‖1/2

ψ1
= τk1/2

n max
i=i1,··· ,ikn

‖zn,i‖ψ2

= O(k1/2
n a2(n)). (A.17)

With this, using (A.14), we will arrive at (A.5).

Step 6. Proof of (A.9). Since the yiryik’s are i.i.d. for each r and k with mean

σrk0 ≤ σ2
yM (variance bounded by σ4

yM for r 6= k), arguments similar to that for (A.16)

applies and hence

max
r,k

‖xn,rk‖ψ2 = O(a2(n)). (A.18)

Hence we can use (A.13), (A.15), (A.17) and (A.18) to show that

max
j
‖ζn,j‖ψ1 ≤ n−1/2kn max

r,k
‖max(x2

n,rk, η
2
n,k)‖ψ1

≤ n−1/2knK̃1 log 3 max
r,k

(‖xn,rk‖2
ψ2

, ‖ηn,k‖2
ψ2

)

= O(n−1/2k2
na4(n)). (A.19)

With this, using (A.14), we will arrive at (A.9).

Step 7. Proving (A.2) occurs with probability going to 1 for kn = 0. When kn = 0,

Σ0 is diagonal, and we only need to prove (A.2) occurs with probability going to 1. Then

we need to prove (see Step 3.2 for definition of xkj) P (maxk<j |xkj| ≤ λnw̃
k
nj/(2n

1/2)) → 1.

In fact by (A.6), we only need to prove P (maxk<j |xkj| > λnn1/2/2) → 0, which follows

from (A.18) and (A.14) and arguments similar to (A.7) or (A.10),

P (max
k<j

|xn,kj| > λnn
1/2/2) ≤ 2E(max

k<j
|xn,kj|)/(λnn1/2)

= O((log pn)1/2a2(n)/(λnn
1/2)) → 0,
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by condition (C) and a(n) chosen to go to infinity slow enough. This completes the proof

of Theorem 2(i). ¤

Proof of Theorem 3. We focus on ‖Ω̂−Ω0‖∞ first, which amounts to finding

I = P (max
i,j

|ω̂ij − ωij0| > tn), (A.20)

for some tn > 0.

Note that ωij =
∑pn

r=1 σ−2
r0 φr,iφr,j with φi,i = −1 and φi,j = 0 for i < j. We write

ω̂ij −ωij0 = I1 + · · ·+ I8, where (I5 to I8 are omitted since they have orders smaller than

either of I1 to I4 under block sign-consistency)

I1 =

pn∑

k=1

(σ̂−2
k − σ̂−2

k0 )φ0
k,jφ

0
k,i, I2 =

pn∑

k=1

(σ̂−2
k0 − σ−2

k0 )φ0
k,jφ

0
k,i,

I3 =

pn∑

k=1

σ−2
k0 (φ̂k,j − φ0

k,j)φ
0
k,i, I4 =

pn∑

k=1

σ−2
k0 (φ̂k,i − φ0

k,i)φ
0
k,j,

and σ̂2
k0 = n−1

∑n
i=1 ε2

ik = n−1
∑n

i=1(yik − yT
i[k]φ

0
k[k])

2. Then, the probability I in (A.20)

can be decomposed as

I ≤
8∑

r=1

arP (max
i,j

|Ir| > δtn),

where ar and δ are absolute constants independent of n.

Step 1. Proving the convergence results. The proof consists of finding the orders of

maxi,j |I1| to maxi,j |I4|. We will show in Step 2 that when kn > 0,

max
i,j

|In,3| = OP ({(kn + 1)3 log pn/n}1/2), (A.21)

which has the highest order among the four. When kn = 0, P (I3 = 0) → 1 by block

sign-consistency, and maxi,j |I2| has order dominating the four. In general, we will show

in Step 4 that

max
i,j

|In,2| = OP ((kn + 1)(log pn/n)1/2). (A.22)
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Hence

‖Ω̂−Ω0‖2
∞ = max

i,j
(ω̂ij − ωij0)

2 = OP ((kn + 1)3 log pn/n).

For ‖Ω̂−Ω0‖, using the inequality ‖M‖ ≤ maxi

∑
j |mij| for a symmetric matrix M (see

e.g. Bickel and Levina (2004)), we immediately have

‖Ω̂−Ω0‖ = OP ((kn + 1)‖Ω̂−Ω0‖∞),

where we used the block sign-consistency and the fact that Ω0 has kn number of non-zero

off-diagonals.

Step 2. Proving (A.21) By the symmetry of I3 and I4, we only need to consider

maxi,j |I3|.
Step 2.1 Defining In,3. By block sign-consistency of φ̂n, ˆ̀

1 · · · ˆ̀kn are non-zero

with probability going to 1 and (A.1) is valid for j = 1, · · · , kn. Then we can rewrite

(A.1) into

Ct11(φ̂t[t](1)− φ0
t[t](1)) = n−1/2vt(1)− λnWntst −Ct12φ̂t[t](2), (A.23)

for t = 2, · · · , pn. Block sign-consistency implies φ̂t[t](2) = 0 with probability going to 1.

Also by (A.6), Wnt = 0 with probability going to 1. Hence

φ̂t[t](1)− φ0
t[t](1) = n−1/2C−1

t11vt(1) + oP (1),

where almost sure invertibility of Ct11 follows from Lemma 1 and condition (B) as n →∞.

This implies that, for j = 1, · · · , kn (note I3 = I4 ≡ 0 when kn = 0) and t = 2, · · · , pn,

φ̂t,t−j − φ0
t,t−j = n−1/2ηk + oP (1), (A.24)

for some k, where η is defined in Step 3.1 in the previous proof. Then we can write I3 as

I3 = n−1/2

pn∑

k=1

σ−2
k0 ηikφ

0
k,i + oP (1),
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for some intergers i1, · · · , ipn . Note that I3 has at most (kn + 1) terms in the above

summation. We define

In,3 = n−1/2

pn∑

k=1

σ−2
k0 ηn,ikφ

0
k,i, (A.25)

where ηn,ik is defined in Step 3.1 of the previous proof.

Step 2.2 Finding the order of maxi,j |I3|. Under conditions (A) and (E), σ−2
k0 φ0

k,i is

bounded above uniformly for all i and k. Then using (A.17) and (A.14),

P (max
i,j

|In,3| > δtn) ≤ E(max
i,j

|In,3|)/(δtn)

≤ n−1/2(log pn)1/2(kn + 1) max
i,j,k

{σ−2
k0 φ0

k,i‖ηn,ik‖ψ2}/(δtn)

= O({(kn + 1)3(log pn)}1/2a2(n)/(n1/2tn)).

This shows that maxi,j |In,3| = OP ({(kn + 1)3 log pn/n}1/2), which is also the order of

maxi,j |I3|, since maxi,j |In,3−I3| → 0 almost surely, and a(n) goes to infinity at arbitrary

speed.

Step 3. Showing I1 = oP (I2). By block sign-consistency, φ̂k[k](2) = 0 with

probability going to 1 for k = 2, · · · , pn. Hence

σ̂2
k = n−1

n∑
i=1

(yik − yT
i[k]φ̂k[k](1))2 + oP (1)

= σ̂2
k0 − 2n−1/2vk(1)T ûk[k](1) + ûk[k](1)TCk11ûk[k](1) + oP (1),

where ûk[k](1) = φ̂k[k](1)− φ0
k[k](1). This implies that

|σ̂2
k − σ̂2

k0| ≤ 2n−1/2‖vk(1)‖ · ‖uk[k](1)‖+ λmax(Ck11) · ‖uk[k](1)‖2

≤ 2n−1/2OP (k1/2
n ) ·OP (k1/2

n n−1/2) + τOP (kn/n) = OP (kn/n),

where τ is an almost sure upper bound for the eigenvalues of Ck11 by Lemma 1 and

condition (B). The order for ‖vk(1)‖ can be obtained using ordinary CLT. The order for
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‖ûk[k](1)‖ can be obtained by observing φ̂t,j − φ0
t,j = n−1/2eT

j C−1
t11vt(1) + oP (1), and by

conditioning on yi[t] for all i = 1, · · · , n,

var(n−1/2eT
j C−1

t11vt(1)) = n−1E(eT
j C−1

t11vt(1)vt(1)TC−1
t11ej)

= n−1σ2
t0E(eT

j C−1
t11ej) ≤ n−1σ2

εMτ = O(n−1).

Hence the delta method shows that σ̂−2
k − σ̂−2

k0 = OP (kn/n).

On the other hand, by the ordinary CLT, we can easily see that σ̂2
k0−σ2

k0 = OP (n−1/2).

Thus I2 has a larger order than I1 since (kn/n)/n−1/2 = knn
−1/2 = o(1). Hence we only

need to consider P (|I2| > δtn) and ignore P (|I1| > δtn).

Step 4. Proving (A.22). Delta method implies σ̂−2
k0 − σ−2

k0 = −σ−4
k0 (σ̂2

k0 − σ2
k0)(1 +

oP (1)). We then have

I2 =

pn∑

k=1

{
− n−1

n∑
r=1

(ε2
rk − σ2

k0)

}
σ−4

k0 φ0
k,iφ

0
k,j(1 + oP (1)),

which is a sum of at most kn + 1 terms (corr. i = j) of i.i.d. zero mean r.v.’s having

uniformly bounded variance (fourth-moment of εrk) by condition (A). Now define

In,2 =

pn∑

k=1

{
− n−1

n∑
r=1

(ε2
rk − σ2

k0)1{|ε2rk−σ2
k0|≤a(n)}

}
σ−4

k0 φ0
k,iφ

0
k,j,

and using (A.14) and arguments similar to proving (A.16),

P (max
i,j

|In,2| > δtn) ≤ E(max
i,j

|In,2|)/(δtn)

= O((kn + 1)(log pn/n)1/2a(n)/tn).

Hence this shows that, by maxi,j |In,2 − I2| → 0 almost surely,

max
i,j

|I2| = OP ((kn + 1)(log pn/n)1/2).

This completes the proof of the theorem. ¤
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Supplement: Proof of Theorems 2(ii) and 4

Proof of Theorem 2(ii). To prove asymptotic normality for φ̂n1, note that by (A.23),

for αn with ‖αn‖ = 1 and νn = αnHnαn,

n1/2ν−1/2
n αT

n (φ̂n1 − φ0
n1) = I1 + I2 + I3, (S.1)

where I2 = λn(nνn)−1/2αT
nG−1

11 Wns/2 , I3 = (n/νn)1/2αT
nG−1

11 G12φ̂n2 and I1 = ν
−1/2
n αT

nG−1
11 z,

with φn2 the vector of elements of φn corresponding to its zero off-diagonals.

Step 1. Showing I2, I3 = oP (1). Since P (φ̂n2 = 0) → 1, we have P (I3 = 0) → 1,

thus I3 = oP (1). Also, we can easily show that

|I2| ≤ Cτ−1
1 an(nln)1/2ν−1/2

n kn/2,

where an = max{p′λnj
(‖`(k)

j ‖) : j ∈ Jn1}. Hence if an = o(ν
1/2
n (nln)−1/2k−1

n ), we have

|I2| = oP (1). The SCAD penalty ensures that an = 0 for sufficiently large n if the initial

estimator φ(k)
n is good enough, which is measured by its block zero-consistency.

Step 2. We write αn = (αT
n2, · · · ,αnpn)T , so that I1 = ν

−1/2
n

∑pn

j=2 αT
njC

−1
j11vj(1).

Define

Ĩ1 = ν−1/2
n

pn∑
j=2

αT
njΣ

−1
j11vj(1),

where Σj11 = E(Cj11). We can rewrite Ĩ1 =
∑n

i=1 wn,i, where

wn,i = (nνn)−1/2

pn∑
j=2

αT
njΣ

−1
j11εijyi[j](1)

are independent and identically distributed with mean zero for all i. Our aim is to utilize

the Lindeberg-Feller CLT to prove asymptotic normality of Ĩ1, then argue that I1 itself

is distributed like Ĩ1, thus finishing the proof.

Step 3. Showing asymptotic normality for Ĩ1. First, by suitably conditioning on
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the filtration Ft = σ{ε1, · · · , εt} generated by the εj = (ε1j, · · · , εnj)
T for j = 1, · · · , t,

we can show that (proof omitted) var(Ĩ1) = 1.

Step 3.1 Checking the Lindeberg’s condition. Next, by the Cauchy-Schwarz in-

equality, for a fixed ε > 0,

n∑
i=1

Ew2
n,i1{|wn,i|>ε} = nE(w2

n,11{|wn,1|>ε})

≤ ν−1
n

{
E

( pn∑
j=2

αT
njΣ

−1
j11ε1jy1[j](1)

)4
}1/2

· {P (w2
n,1 > ε2)}1/2.

Step 3.1.1 The Markov inequality implies that

P (w2
n,1 > ε2) < ε−2E(w2

n,1) = ε−2n−1,

thus {P (w2
n,1 > ε2)}1/2 = O(n−1/2).

Step 3.1.2 For the former expectation, note that condition (B) implies that the

eigenvalues of Σj11 are uniformly bounded away from zero and infinity as well, say by c−1

and c respectively, so that ‖Σ−1
j11‖ ≤ c for all j. Hence

E
( pn∑

j=2

αnjΣ
−1
j11ε1jy1[j](1)

)4

≤ c4E(max
j
|ε1j|‖y1[j](1)‖)4 · (

pn∑
j=2

‖αnj‖
)4

≤ c4k2
nE( max

j:αnj 6=0
|ε1j|‖y1[j](1)‖)4

≤ c4k2
nE( max

j:αnj 6=0
ε4
1j) · E(‖y1[pn](1)‖4),

where the second line used the fact that there are at most kn of the αnj that are non-zero

and that
∑pn

j=2 ‖αnj‖2 = 1 implies
( ∑pn

j=2 ‖αnj‖
)4 ≤ k2

n. The third line used conditioning

arguments and the fact that y1[pn](1) has the largest magnitude among the y1[j](1)’s. With

the tail assumptions for the εij’s and the yij’s in condition (A), the fourth moments for

maxj:αnj 6=0 ε1j and ‖y1[pn](1)‖ exist. Using (A.13) and (A.14), can show

E( max
j:αnj 6=0

ε4
1j) = O({log(kn + 1)}4/d), E(‖y1[pn](1)‖4) = O(k2

n(log(kn + 1))4/d).
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Hence E
( ∑pn

j=2 αT
njΣ

−1
j11ε1jy1[j](1)

)4

= O(k4
n(log2(kn + 1))4/d), and combining previous

results we have

n∑
i=1

Ew2
n,i1{|wn,i|>ε} = O(k2

n(log(kn + 1))4/dn−1/2ν−1
n ) = o(1)

by our assumption stated in the theorem. Hence Lindeberg-Feller CLT implies that

Ĩ1
D−→ N(0, 1).

Step 4. Showing I1 is distributed similar to Ĩ1. Finally, note that E(I1 − Ĩ1) = 0

and using conditioning arguments as before, we have

var(I1 − Ĩ1) =

pn∑
j=2

σ2
j0E(αT

nj(C
−1
j11 − Σ−1

j11)Cj11(C
−1
j11 − Σ−1

j11)αnj)

≤ max
1≤j≤pn

σ2
j0E(‖C−1

j11 − Σ−1
j11‖2 · ‖Cj11‖)

≤ max
1≤j≤pn

σ2
j0E(‖Σ−1

j11‖2 · ‖Σj11‖2 · ‖Σ−1/2
j11 Cj11Σ

−1/2
j11 − I‖2 · ‖C−1

j11‖2 · ‖Cj11‖).

As discussed before, we have ‖Σj11‖ ≤ c and ‖Σ−1
j11‖ ≤ c. Also, the semicircular law

implies that ‖Σ−1/2
j11 Cj11Σ

−1/2
j11 − I‖2 = OP (kn/n). We also have, almost surely, ‖Cj11‖,

‖Cj11‖ ≤ τ for each j = 2, · · · , pn as n → ∞. Hence for large enough n, by condition

(E),

var(I1 − Ĩ1) ≤ c4τ 2 max
1≤j≤pn

σ2
j0 ·O(kn/n) = o(1),

so that I1 = Ĩ1 + oP (1), and this completes the proof. ¤

Proof of Theorem 4. The true model for yi = (y1i, · · · , yni)
T (refer to (2.7)) is

yi = X̃i1φ
0
i[i]1 + εi, (S.2)

for i = 2, · · · , pn, where (recall that cni = max(bi− γnc, 1)

X̃i = (ycni
, · · · ,yi−1), φi[i]1 = (φi,cni

, · · · , φi,i−1)
T .
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Step 1. To show P (maxj∈Jn0 ‖˜̀j‖/(pn − j)1/2 ≥ γn) → 0. We need the following

results, the first of which will be proved in Step 3: For each j ∈ Jn0 with 1 ≤ j ≤ bγnc,

E(‖˜̀j‖4/(pn − j)2) = O(n−2), (S.3)

and, for a non-decreasing convex function ψ with ψ(0) = 0, a generalization of (A.14),

E( max
1≤i≤m

|Wi|) ≤ ψ−1(m) max
1≤i≤m

‖Wi‖ψ. (S.4)

Then, with the function ψ(x) = x4 in (S.4), using (S.3), and γn > 0,

P (max
j∈Jn0

‖˜̀j‖/(pn − j)1/2 ≥ γn) ≤ E(max
j∈Jn0

‖˜̀j‖4/(pn − j)2)/γ4
n

= E( max
j∈Jn0,1≤j≤bγnc

‖˜̀j‖4/(pn − j)2)/γ4
n

≤ (bγnc)1/4 max
j∈Jn0,1≤j≤bγnc

{E(‖˜̀j‖4/(pn − j)2)}1/4

= O(n−1/4) → 0,

where the second line used the fact that we have set the off-diagonal bands more than

bγnc bands from the main diagonal to zero.

Step 2. To show P (minj∈Jn1 ‖˜̀j‖/(pn − j)1/2 ≥ γn) → 1. We need the following

result, which will be proved in Step 4: For j ∈ Jn1,

E(‖˜̀j‖2/(pn − j)) = ‖`j0‖2/(pn − j) + O(n−1). (S.5)

Then with γn < minj∈Jn1 ‖`j0‖/(pn − j)1/2, writing aj = (γn − ‖`j0‖/(pn − j)1/2)2,

P (min
j∈Jn1

‖˜̀j‖/(pn − j)1/2 ≥ γn) ≥ 1−
∑

j∈Jn1

P (‖˜̀j‖/(pn − j)1/2 ≤ γn)

≥ 1−
∑

j∈Jn1

P
(
(‖˜̀j‖ − ‖`j0‖)2/(pn − j) ≥ (γn − ‖`j0‖/(pn − j)1/2)2

)

≈ 1−
∑

j∈Jn1

2a−1
j (pn − j)−1‖`j0‖2{1− (1 + O(n−1(pn − j)))1/2 + O(n−1(pn − j))}

= 1−O(kn/n) → 1,
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where the second last line used the delta method, with (S.3) showing the remainder term is

going to zero. From Steps 1 and 2, we need to choose 0 < γn < minj∈Jn1 ‖`j0‖/(pn−j)1/2.

Step 3. To prove (S.3). We need the following result, which can be easily

generalized from Theorems 10.9.1, 10.9.2 and 10.9.10(1) of Graybill (2001): Let ε =

(ε1, · · · , εm)T , where the εi’s are i.i.d. with mean 0, and with finite second and fourth

moments. Then for symmetric constant matrices A and B,

E((εT Aε)(εT Bε)) = atr(A)tr(B) + btr(AB), (S.6)

where a and b are constants depending on the second and fourth moments of εi only.

The estimator T̃, obtained from a series of linear regressions introduced in the theo-

rem, has rows such that by (S.2),

φ̃i[i]1 = (X̃T
i X̃i)

−1X̃T
i yi.

Using (S.2), for j ∈ Jn0 and 1 ≤ j ≤ bγnc, it is easy to see that

‖˜̀j‖2/(pn − j) = (pn − j)−1

pn∑
i=j+1

(eT
ri,j

(X̃T
i X̃i)

−1X̃T
i εi)

2

= (pn − j)−1

pn∑
i=j+1

εT
i Aiεi,

where Ai = X̃i(X̃
T
i X̃i)

−1eri,j
eT

ri,j
(X̃T

i X̃i)
−1X̃T

i , and ri,j is some constant depending on i

and j. With this notation, we have

‖˜̀j‖4/(pn − j)2 = (pn − j)−2

pn∑

r,k=j+1

(εT
r Arεr)(ε

T
k Akεk).

It is then sufficient to show that E((εT
r Arεr)(ε

T
k Akεk)) = O(n−2) for each r ≥ k. Let

Fi−1 = σ{ε1, · · · , εi−1} be the sigma algebra generated by the εk for 1 ≤ k ≤ i− 1. For

large enough n, we have by Lemma 1 and condition (B), for some constant Bγ independent

of n, and for each i = j + 1, · · · , pn,

tr(Ai) = eT
ri,j

(X̃T
i X̃i)

−1eri,j
≤ Bγn

−1. (S.7)
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Step 3.1 To show E((εT
r Arεr)(ε

T
k Akεk)) = O(n−2) for r > k. Hence for r > k with

large enough n, using (S.7),

E((εT
r Arεr)(ε

T
k Akεk)) = E(εT

k AkεkEFr−1(ε
T
r Arεr)) = E(εT

k Akεkσ
2
r0tr(Ar))

≤ Bγσ
2
εMn−1E(εT

k Akεk) = Bγσ
2
εMn−1E(σ2

k0tr(Ak))

≤ B2
γσ

4
εMn−2 = O(n−2).

Step 3.2 To show E((εT
r Arεr)

2) = O(n−2). Using (S.6), with constants a and b

uniformly bounded by condition (A) and condition (E), it is sufficient to show that for

large enough n, tr2(Ar) and tr(A2
r) are O(n−2). By (S.7) we have tr2(Ar) = O(n−2). Also,

tr(A2
r) = (eT

ri,j
(X̃T

r X̃r)
−1eri,j

)2 ≤ B2
γn

−2,

for large enough n, by (S.7).

Step 4. To prove (S.5). For j ∈ Jn1 and large enough n,

E(‖˜̀j‖2/(pn − j)) = ‖`j0‖2/(pn − j) + (pn − j)−1

pn∑
i=j+1

E(εT
i Aiεi)

≤ ‖`j0‖2/(pn − j) + σ2
εM max

i
E(tr(Ai))

≤ ‖`j0‖2/(pn − j) + O(n−1),

where the last line used (S.7). This completes the proof of the theorem. ¤
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