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Estimation of Large Precision Matrices

Through Block Penalization *

By Clifford Lam
Department of Operations Research and Financial Engineering
Princeton University, Princeton, NJ, 08544

This paper focuses on exploring the sparsity of the inverse covariance ma-
trix 37!, or the precision matrix. We form blocks of parameters based on
each off-diagonal band of the Cholesky factor from its modified Cholesky
decomposition, and penalize each block of parameters using the Lo-norm in-
stead of individual elements. We develop a one-step estimator, and prove
an oracle property which consists of a notion of block sign-consistency and
asymptotic normality. In particular, provided the initial estimator of the
Cholesky factor is good enough and the true Cholesky has finite number of
non-zero off-diagonal bands, oracle property holds for the one-step estimator
even if p, > n, and can even be as large as log p, = o(n), where the data y
has mean zero and tail probability P(|y;| > r) < K exp(—Cz?), d > 0, and
Pn is the number of variables. We also prove an operator norm convergence
result, showing the cost of dimensionality is just logp,. The advantage of
this method over banding by Bickel and Levina (2008) or nested LASSO by
Levina et al. (2007) is that it allows for elimination of weaker signals that
precede stronger ones in the Cholesky factor. A method for obtaining an
initial estimator for the Cholesky factor is discussed, and a gradient projec-
tion algorithm is developed for calculating the one-step estimate. Simulation
results are in favor of the newly proposed method and a set of real data is
analyzed using the new procedure and the banding method.

Short Title: Block-penalized Precision Matrix Estimation.
AMS 2000 subject classifications. Primary 62F12; secondary 62H12.
Key words and phrases. Covariance matrix, high dimensionality, modified Cholesky

decomposition, block penalty, block sign-consistency, oracle property.

*Clifford Lam, PhD student (Email: wlam@princeton.edu. Phone: (609) 240-6928). Financial sup-
port from the NSF grant DMS-0704337 and NIH grant R0O1-GMO072611 is gratefully acknowledged.



1 Introduction

The need for estimating large covariance matrices arises naturally in many scientific
applications. For example in bioinformatics, clustering of genes using genes expression
data in a microarray experiment; or in finance, when seeking a mean-variance efficient
portfolio from a universe of stocks. One common feature is that the dimension of the
data p,, is usually large compare with the sample size n, or even p,, > n (genes expression
data, fMRI data, financial data, among many others). The sample covariance matrix S
is well-known to be ill-conditioned in such cases. Even for 3 = I the identity matrix, the
eigenvalues of S are more spread out around 1 asymptotically as p,/n gets larger (the
Marcenko-Pastur law, Marcenko and Pastur, 1967). It is singular when p, > n, thus not
allowing an estimate of the inverse of the covariance matrix, which is needed in many
multivariate statistical procedures like the linear discriminant analysis (LDA), regression
for multivariate normal data, Gaussian graphical models or portfolio allocations. Hence
alternatives are needed for more accurate and useful estimation of covariance matrix.
One regularization approach is penalization, which is the main focus of this paper.
Sparse estimation of the precision matrix © = 37! has been investigated by many re-
searchers, which is very useful in Gaussian graphical models or covariance selection for
naturally ordered data (e.g. longitudinal data, see Diggle and Verbyla (1998)). Mein-
shausen and Biithlmann (2006) used the L;-penalized likelihood to choose suitable neigh-
borhood for a Gaussian graph and showed that p, can grow arbitrarily fast with n for
consistent estimation, while Li and Gui (2006) considered updating the off-diagonal ele-
ments of €2 by penalizing on the negative gradient of the log-likelihood with respect to
these elements. Banerjee, d’Aspremont and El Ghaoui (2006) and Yuan and Lin (2007)
used Li-penalty to directly penalize on the elements of €2, and develop different semi-

definite programming algorithms to achieve sparsity of the inverse. Friedman, Hastie and



Tibshirani (2007) and Rothman et al. (2007) considered maximizing the L;-penalized
Gaussian log-likelihood on the off-diagonal elements of the precision matrix €2, where the
Graphical LASSO and the SPICE algorithms are proposed respectively in their papers
for finding a solution, and the latter proved Frobenius and operator norms convergence
results for the final estimators.

Pourahmadi (1999) proposed the modified Cholesky decomposition (MCD) which fa-

cilitates greatly the sparse estimation of €2 through penalization. The idea is to decompose

3 such that for zero-mean data y = (y1,- - ,yp,)", we have for i =2, | p,,
i1
yi = Z¢Z’jy] + €, and TETT = D, (11)
j=1

where T is the unique unit lower triangular matrix with ones on its diagonal and (i, 7)™
element —¢; ; for j < i, and D is diagonal with i*" element 07 = var(e;). The optimization
problem is unconstrained (since the ¢;;’s are free variables), and the estimate for €2 is
always positive-definite. With MCD in (1.1), Huang et al. (2006) used the L;-penalty on
the ¢; ;s and optimized a penalized Gaussian log-likelihood through a proposed iterative
scheme, with the case p, < n considered. Levina, Rothman and Zhu (2007) proposed
a novel penalty called the nested LASSO to achieve a flexible banded structure of T,
and demonstrated by simulations that normality of data is not necessary, with p, > n
considered.

For estimating the precision matrix €2 for naturally ordered data, apart from the
nested LASSO, Bickel and Levina (2008) proposed banding the Cholesky factor T in
(L.1), with the banding order k chosen by minimizing a resampling-based estimation of
a suitable risk measure. The method works on estimating a covariance matrix as well.
While these two methods are simple to use, they cannot eliminate blocks of weak signals

in between stronger signals. For instance, consider a time series model
Yi = 0.7yi—1 + 0.3yi—3 + €,
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which corresponds to (1.1) with ¢;2 = 0, ¢;; = 0 for j > 4. For example, this kind of
model can arise in clinical trials data, where response on a drug for patients follows a
certain kind of autoregressive process with weak signals preceding stronger ones. This
implies a banded Cholesky factor T, with the first and third off-diagonal bands being
non-zero and zero otherwise. Banding and nested LASSO can band the Cholesky factor
T starting from the fourth off-diagonal band, but cannot set the second off-diagonal band
to zero. And if these methods choose to set the second off-diagonal band to zero, then
the third non-zero off-diagonal band will be wrongly set to zero. Both failures can lead
to inaccurate analysis or prediction, in particular the maximum eigenvalue of a precision
matrix can then be estimated very wrongly. Clearly, an alternative method is required
in this situation. We present the block penalization framework in the next section and
more motivations and details of the methodology.

For more references, Smith and Kohn (2002) used a hierarchical Bayesian model to
identify the zeros in the Cholesky factor T of the MCD. Fan, Fan and Lv (2007), using
factor analysis, developed high-dimensional estimators for both ¥ and ¥7'. Wu and
Pourahmadi (2003) proposed a banded estimator through smoothing of the lower off-
diagonal bands of T obtained from the sample covariance matrix (implicitly, p, < n).
Then an order for banding of T is chosen by using AIC penalty of normal likelihood
of data. Furrer and Bengtsson (2007) considered gradually shrinking the off-diagonal
bands’ elements of the sample covariance matrix towards zero. Bickel and Levina (2007)
and El Karoui (2007) proposed the use of entry-wise thresholding to achieve sparsity in
covariance matrices estimation, and proved various asymptotic results, while Rothman,
Levina and Zhu (2008) generalizes these results to a class of shrinkage operators which
includes many commonly used penalty functions. Wagaman and Levina (2007) developed
an algorithm for finding a meaningful ordering of variables using a manifold projection

technique called the Isomap, so that existing method like banding can be applied.



The rest of the paper is organized as follows. In section 2, we introduce the model for
block penalization, and the motivation behind. A notion of sign-consistency, we name it
block sign-consistency, is introduced. Together with asymptotic normality, we call it the
oracle property of the resulting one-step estimator. An initial estimator needed for the
one-step estimator, with the block zero-consistency concept, is introduced in section 2.5.
A practical algorithm is discussed, with simulations and real data analysis in section 3.
Theorems 2(i) and 3 are proved in the Appendix. We refer the readers to the Supplement
of Lam (2008) for proofs of Theorems 2(ii) and 4.

2 Block Penalization Framework

2.1 Motivation

For data with a natural ordering of the variables, e.g. longitudinal data, or data with a
metric equipped like spatial data with Euclidean distance, if data points are remote in
time or space, they are likely to have weak or no correlation. Then T in equation (1.1)),
and thus €2, are banded. Banding and nested LASSO mentioned in section [1 are based
on this observation for obtaining a banded structure of the Cholesky factor T. See Figure
1(b) for a picture of a banded Cholesky factor.

Also, for variables within a close neighborhood, the dependence structure should be
similar. Equation (1.1) then says that coefficients on an off-diagonal band of the Cholesky
factor T are close to neighboring coefficients (see also Wu and Pourahmadi (2003)). This
means that we can improve our estimation if we can efficiently use neighborhood infor-
mation (along an off-diagonal band of T') to estimate the values of individual coefficients.

With these insights, we are motivated to use the block penalization method. In the

context of wavelet coefficients estimation, Cai (1999) introduced a James-Stein shrinkage



rule over a block of coefficients, whereas Antoniadis and Fan (2001, page 966) were
the first to point out that such method can be regarded as a special kind of penalized
likelihood which penalizes on the L, norm of a group of coefficients, and introduced
a separable block-penalized least squares for simple solutions. Both papers argue that
block thresholding helps pull information from neighboring empirical wavelet coefficients,
thus increasing the information available for estimating coefficients within a block. Yuan
and Lin (2006) introduced the same method, which they called the group LASSO, to
select grouped variables (factors) in multi-factor ANOVA and compare grouped version
of LARS and LASSO. Zhou, Rocha and Yu (2007) further introduced a penalty called
the Composite Absolute Penalty (CAP) to introduce grouping and a hierarchy at the
same time for the estimated parameters in a linear model.

Block penalization allows for a flexible banded structure in T since zero off-diagonal
bands can precede the non-zero ones. This is an advantage over banding of Bickel and
Levina (2008) and nested LASSO of Levina et al. (2007) as discussed in section (1.
Moreover, the block sign-consistency property in Theorem 2(i) implies a banded estimated

Cholesky factor T if the truth Ty is banded. See Figure 1! for a demonstration.

(a) (b) (c) (d)

Figure 1: Pattern of zeros in the resulting estimator for T using (a)Block Penalization;

(b)Banding; (c)Nested LASSO; (d)LASSO



2.2 Block penalization

As pointed out in Levina et al. (2007), the MCD in (1.1) does not require the normality
assumption of the data, and they introduce a least squares version for their penalization.

We also use such an approach, and define

n Pn
i=1 j=2
with Yijj] = (yu, T 7yi,j—1>T7 ¢, = (¢2T[2]7 T >¢§n[pn])T; and ¢j[j} = ((/59',17 T ;</5j,j—1)T-

When py, (+) is singular at the origin, the term-by-term penalty > 2", 22;11 P, ([0i4])
has its singularities located at each ¢; ; = 0, and the block penalty

pn—1

J(@,) = Z P (16510), (2.2)

has its singularities located at £; = 0 for j = 1,--- ,p, — 1, where \,; = \.(p, — j)¥/?,
£ = (dj11.1,Pjr22, * » Gppm_y)’ is the j off-diagonal band of the Cholesky factor T
in (L.1), and || - || is the Ly vector norm. Hence this block penalty either kills off a whole
off-diagonal band £; or keeps it entirely (see also Antoniadis and Fan (2001)).

Combining (2.1) and (2.2)) is the block-penalized least squares

Qn(®,) = Ln(@,) +nJ(y). (2.3)
We will use the SCAD penalty function for py(-) in (2.2), defined through its derivative
PA(0) = ALgo<ny + (ad = 0) 1 1gp5)- (2.4)

SCAD penalty is an unbiased penalty function which has theoretical advantages over
Li-penalty (LASSO). See Lam and Fan (2007) for more details. In fact, in Fan, Feng and
Wu (2007), the SCAD-penalized estimate of a graphical model is substantially sparser

than the Li-penalized one, which has spuriously large number of edges, partially due to



the bias induced by L;-penalty and hence requiring a smaller A that induces spurious

edges. With ¢, we estimate D in (1.1) by

n

ot=n"Y yh, 65 =n"") (v —vipd)t F=23 o (2.5)
=1

=1
2.3 Linearizing the SCAD penalty

Minimizing @,(¢,,) in (2.3) poses some challenges. Firstly, Q,(¢,) is not separable,
which makes our problem computationally challenging. Secondly, the SCAD penalty
complicates the computations as there are no easy simplifications of the problem like
equation (5) in Antoniadis and Fan (2001, page 966).

Zou and Li (2007) showed that linearizing the SCAD penalty leads to efficient algo-
rithms like the LARS to be applicable, and that sparseness, unbiasedness and continuity
of the estimators continue to hold (see Fan and Li (2001)). Following their idea, we
linearize each py,;(|[¢;]]) in (2.2) at an initial value ||£§-0)|| so that minimizing (2.3)) is
equivalent to minimizing, for £ = 0,

n o pa pn—1

QW (D) = 3 (i — yhes)? +n > i, (1€ D11, (2.6)

i=1 j=2 j=1

(k+1)

where we denote the resulting estimate by ¢,

. Parallel to Theorem 1 and Proposition
1 of Zou and Li (2007), we state the following theorem concerning convergence in iterating

(2.6) starting from k& = 0.
Theorem 1 For k=0,1,2,---, the ascent property holds for Q, w.r.t. {¢™}, i.e.

Qu(d*D) > Q. (d™).

Furthermore, let ¢*+Y = M(p), so that M is the map carrying ¢F to ¢"+Y . If

n n

Qn(9,) = Qn(M(g,)) only for stationary points of Q,, and if ¢; is a limit point of the

sequence {qb;k)}, then ¢, is a stationary point Q.
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This convergence result follows from more general convergence results for MM (minorize-
maximize) algorithms. Hence starting from an initial value q,’),(lo), we are able to it-

erate (2.0) to find a stationary point of @,. Note that even starting from the most

primitive initial value ¢;; = 0, the first step gives a group LASSO estimator since

il
Ph,;(0) = Anj = Aa(pn — 4)Y/2. Hence the second step gives a biased reduced estimator
of LASSO, as p’)\nj(||£§k)||) = 0 for ||E§k)|] > aMpj. In section 2.5 we show how to find a

good initial estimator which is theoretically sound, and iterating until convergence is not

always needed.

2.4 One-Step Estimator for ¢,

We now develop a one-step estimator to reduce the computational burden and prove that
such an estimator enjoys the oracle property in Theorem 2. The performance of this
one-step estimator depends on the initial estimator ¢£LO). Define, for £;y denoting the true

value of £; in T,

Jno = {j + 4o =0}, Ju = {5 : &0 # 0}.

Definition 1 An initial estimator q,’),(lo) is called block zero-consistent if there exists vy, =
O(1) such that (a) P(max;e,, ||£§-0)||/(pn — )2 >7,) =0 asn — oo, and (b) for the

same Y, P(minje,, 1687/ (= )% = ) — 1.

This definition is similar to the idea of zero-consistency introduced in Huang, Ma
and Zhang (2006), but we now define it at the block level, which concerns the average
magnitude of each element in the off-diagonal EE-O) . With this, we present the main

theorem of this section, the oracle property for the one-step estimator.

Theorem 2 Assume regularity conditions (A) - (E) in the Appendiz, and the Cholesky

factor T of the true precision matriz €y has k, < n non-zero off-diagonal bands. If the



initial estimator ¢ for Q%O) in (2.6)) is block zero-consistent, then the resulting estimator

¢A)n by minimizing (2.0) satisfies the following:
(i) (Block sign-consistency) P(AN B) — 1, where A = {£; = 0 for all j € J,0}, and

B = {sgn(d;4rx) = sgn( 0 ki) for all j € Ju1, k so that ¢9,, . # 0}.

(i1) (Asymptotic normality) Let ¢, be the vector of elements of ¢, corresponding to
its non-zero off-diagonals. Then for a vector o, of the same size as (]Abnl so that o,
has at most k, non-zero elements and ||aw,|| = 1, if k2(log?(k, + 1))¥¢/n = o(1),
we have

n1/2<aZHnan)il/2aT($nl - ¢0 ) i) N<07 1)7

n nl

where H,, is block diagonal with p, — 1 blocks. Its (j — 1)-th block is 03,55}, and Xj11 =
E(yi(D)ya(1)T), where yii(1) contains the elements of yij;) corresponding to the non-

zero off-diagonals’ elements of qb?m.

From this theorem and regularity condition (C) in the Appendix, the size p, of the
covariance matrix can be larger than n. In particular, if k,, is finite, the oracle property
still holds when logp,, = o(n). This is useful for many applications with p, > n, when
the sample covariance matrix becomes singular, whereas Theorem 3/ shows that as long
as the Cholesky factor is sparse enough, we can get an optimal estimator of the precision

matrix via penalization.

Theorem 3 Let T be the one-step estimator as in Theorem 2, and D be diagonal with
elements 67 as defined in (2.9), so that Q = TTD'T. Then under reqularity conditions
(A) - (E) in the Appendiz, with €y denoting the true precision matriz,

192 = Qolle = Op((kn + 1)**(log p /n)"/?),

1€2 = Q|| = Op((kn + 1) *(log pa/n)'/3),

,and || M|| = Mlac(MTM).

where || M ||co = max; ; |m;

10



We will demonstrate related numerical results in section 3. From this theorem, the
method of block penalization allows for consistent precision matrix estimation as long
as the cost of dimensionality log p, satisfies (k, + 1)°logp,/n = o(1). In particular, if
k, is finite, we only need logp,/n = o(1) for consistent estimation. On the other hand,
provided the cost of dimensionality is not too large (e.g. p, = n® for some a > 0, so

log p,, = alogn and is negligible), we need k, = o(n'/?) for element-wise consistency.

2.5 Block zero-consistent initial estimator

We need a block zero-consistent initial estimator for finding an oracle one-step estimator
in the sense of Theorem 2. The next theorem shows that the OLS estimator T, where
the sample covariance matrix is S = T~'D(T~")7 using the MCD in (1.1), is block zero-
consistent when p,,/n — const. < 1. When p,, > n, S is singular and T is not defined
uniquely. Since we envisage a banded true Cholesky factor Ty with most non-zero off-
diagonals close to the diagonal, we define T by considering the least square estimators of

the regression

1—1
Yi = Z Gi Y5 + €, (2.7)

J=cni

where ¢,; = max{|i — yn],1} with some constant 0 < 7 < 1 controlling the number
of y;’s on which y; regresses. The rest of the ¢; ;s are set to zero, recalling that even

starting from the most primitive initial value ¢

i =0, the one-step estimator is a group

LASSO estimator since p) (0) = Apj = An(pn — V2

Theorem 4 Assume regularity conditions (A) to (E) in the Appendix. Then the estima-
tor T obtained through the above series of regressions is block zero-consistent, provided
all the true non-zero off-diagonal bands of Tq are within the first |yn| off-diagonal bands

from the main diagonal of Ty.
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Remark : In high dimensional model selection, the condition of “irrepresentability”
from Zhao and Yu (2006), “weak partial orthogonality” from Huang et al. (2006) or the
UUP condition from Candes and Tao (2007) all describe the need of a weak association
between the relevant covariates and the irrelevant ones under the true model, for the
estimation procedures to pick up the correct sparse signals asymptotically. In our case,
with (1.1)) as the true model, the association between the variables y; and yp, -,y 1
for i = 2,---,p, is incorporated into the tail assumption of the y;;’s, which is specified
in regularity condition (A). This assumption entails that the |¢; ;|’s for ¢ and j far apart
are small, so that the association between the relevant y;’s (corr. to ¢; # 0) and the
irrelevant y;’s (corr. to ¢, ; = 0) in model (1.1) are small.

In practice, for the series of regression described, we can continue to regress y; on the
next |yn| y;’s etc until all the ¢; ;’s are obtained. We adapt this initial estimator in the
numerical studies in section 3.

Also in practice, the rate at which max;e;,, HE;O)H/ (pn — §)¥/? converges to zero in
probability in definition 1 may not be fast enough for the OLS estimators. One way
to improve the quality of the OLS estimators is to smooth along the off-diagonals of
T. For instance, Wu and Pourahmadi (2003) smoothed along off-diagonals of the OLS
estimator T to reduce estimation errors. This amounts to assuming that the coefficients
Giiej = fipn(i/Pn), where f;, (-) is a smooth function defined on [0, 1]. We then calculate

the smoothed coefficients
Djtik = Z wi(r+J, k4 ) @jrs
r=1
where the weights w;(r + j,k + j) depends on the smoothing method. We use local
polynomial smoothing with bandwidth h — oo with h/p, — 0, so that var(¢; 4z) =

O(n='h™1) (See Wu and Pourahmadi (2003) and Fan and Zhang (2000) for more details.).

12



2.6 Algorithm for practical implementation

Yuan and Lin (2006) proposed a group LASSO algorithm to solve problems similar to
(2.6). However, when p, is large, the algorithm is computationally very expensive. In-
stead, we adapt an idea from Kim, Kim and Kim (2006) and use a gradient projection
method to solve for the one-step estimator, which is computationally much less demand-
ing. Since minimizing (2.6) can be considered as a weighted block-penalized least squares
problem with weights w}; = np’/\n](]|£§k)H) /An, it can be formulated as:

minimizing L, (¢,,) subject to anﬁjHEjH <M (2.8)

j=1

for some M > 0. Since the further off-diagonal bands of T are too short, in practice
we stack them together until it is of length of order p,. We then treat it as one block
in the above dual-like problem, and denote by s, the number of off-diagonals in T after
stacking.

Assume for now that all the tuning parameters are known. Starting from an initial
value q,’),(lo) and ¢t = 1, the gradient projection method involves computing the gradient
VL, (") and defining b = ¢{"™) — sV L, (¢""V), where s is the stepsize of iterations
to be found in the next section. Denote by by;) the jth block of b, with blocks formed
according to the off-diagonals £; of T, j = 1,-- -, s,,. Then the main step of the algorithm

is to solve
¢/, — argming, csllb — ¢,|% with B= {3 wh ;] < M},
j=1
which is called the projection step. It can be easily reformulated as solving

min z;(Hb(j)H — M;)? subject to Z;wszj <M, M;>0, (2.9)
Jj= Jj=

where then £; = M;bg;)/|[bg;)||, and we iterate the above until convergence. Standard

LARS or LASSO packages can solve (2.9) easily, but we adapt a projection algorithm

13



by Kim et al. (2006) which can solve the above even faster. In solving (2.9), we are
essentially projecting (|[bwll,- -, [[b(s,|l) onto the hyperplane > ", wp;M; = M with
M; > 0. The key observation is that if such projection has non-positive values on some
M;’s, then the solution to (2.9) should have those M;’s exactly equal zero. Hence we
can then recalculate the projection onto the reduced hyperplane until no more negative
values occur in the projection, and it is easy to see that at most s, such iterations are
needed to solve (2.9). In detail, we start at 7 = {1,--- , s,}, and calculate the projection

M; = Lgier DGl + (M = 3 wh bk, / (k) (2.10)

reT rET

for j=1,---,s,. We then update 7 = {j : M; > 0} and calculate the above projection

again until M; > 0 for all 7.

2.7 Choice of tuning parameters

There are three tuning parameters introduced in the previous section, namely A,,, M and
s. The small number s is a parameter for the gradient projection algorithm and it is re-
quired that s < 2/L, where L is the Lipchitz constant of the gradient of L,,(¢,,). It can be
easily shown that L = 2)\;@(5}%), where Sy = diag(>_1, y¢[2]yiT[2]7 D Yi[pn}y?[pn]>7
so that s < Amac(S2).

For the choice of M, note that for a suitable A, and that £; = £;, in (2.8), we either
have w}; = 0 or £jo = 0. Thus, the value of P wk|[£50]| is always zero. In view of this,
the oracle choice of M is actually zero. We adapt this choice in the numerical studies in
section |3.

For the choice of \,, we use a GCV criterion similar to the one used by Kim et al.
(2006). We find T as defined in section 2.5, and smooth the off-diagonal bands of T to

J—8n?

form T. Define W, = diag(wh, /1€, 117, wki o/l ill. - wky/ [l why /1))

and X; = (yi, Yop1, - ,yn[j])T, where 1,,, denote the column vector of ones of length

14



m. The GCV-type criterion is to minimize

GCV(A,) = pzn n i (Yij — yzfj}q_sj[j])2
" = (n — tr[X; (X?Xj + )\nWj)_lX;‘»F])Q’

(2.11)

where tr(-) denotes the trace of a square matrix. See Kim et al. (2006) for more details.

In practice we calculate GCV(A,,) on a grid of values of A, and find the one that minimizes

GCV(\,) as the solution.

3 Simulations and Data Analysis

In this section, we compare the performance of block penalization (BP) to other regular-
ization methods, in particular banding of Bickel and Levina (2008) and LASSO of Huang
et al. (2006).

For measuring performance, the Kullback-Leibler loss for a precision matrix is used.

It has been used in Levina et al. (2007), defined as

A

Len(E,3) = tr(27 %) — log |27 '] — pn,

which is the entropy loss but with the role of covariance matrix and its inverse switched.
See Levina et al. (2007) for more details of the loss function. We also evaluate the
operator norm ||€2 — Q|| for different methods to illustrate the results in Theorem 3 in
our simulation studies. The proportions of correct zeros and non-zeros in the estimators

for the Cholesky factors are reported.

3.1 Simulation analysis

The following three covariance matrices are considered in our simulation studies.

I. 3, =081

15



11 22 : ¢i,i—l = ¢i,i—2 = —06, ¢i,i—4 = ¢i,i—6 = —04, ¢i,j =0 OthGI’WiSG; 0]20 = (.8.
III. X5 Qﬁ@j = 0.5i7j,j < % 0']2-0 =0.1.

The covariance matrix 3, is a constant multiple of the identity matrix, which is considered
by Huang et al. (2006) and Levina et al. (2007). X5 is the covariance matrix of an AR(6)
process, which has a banded inverse. 33 is the covariance matrix of an MA(1) process.
It is itself tri-diagonal and has a non-sparse inverse. We investigate the performance of
BP in such a non-sparse case.

Regularity conditions (B) to (E) are satisfied for the three models by construction.
Since all three define stationary time series models in the sense of (1.1), condition (A) is
satisfied from Gaussian to general Weibull-distributed innovations.

We generated n = 100 observations for each simulation run, and considered p, =
50,100 and 200. We used N = 50 simulation runs throughout. In order to illustrate
theoretical results and test the robustness of the BP method on heavy-tailed data, on top
of multivariate normal for the variables, we also consider the multivariate t3 for the vari-
ables, which violated condition (A). Tuning parameters for the LASSO and banding are
computed using 5-fold CV, while the parameter \,, for the BP is obtained by minimizing
GCV(A,) in (2.11). We set the smoothing parameter h = 0.3 for local linear smoothing
along the off-diagonal bands for demonstration purpose. The constant + and stacking
parameter s, mentioned in section 2.5 are set at 0.9 and p, — (Qprl/ 21 respectively. In
fact we have done simulations (not shown) showing that smoothing along off-diagonals
for the initial estimator can improve the performance of the one-step estimator. All the
results below for the performance of BP are based on such smoothed initial estimators.
Also, all subsequent tables show the median of the 50 simulation runs, and the number
in the bracket is the SD,,.q which is a robust estimate of the standard deviation, defined

by the interquartile range divided by 1.349.
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Table 1: Kullback-Leibler loss for multivariate normal and ¢3 simulations.

Multivariate normal Multivariate t3
Dn LASSO Banding BP LASSO Banding BP
31 100 1.0(.1) 1.1(.8) 1.0(.1) 7.7(3.8) 10.7(9.3) 7.8(3.9)
200 2.1(.2) 2.4(3.4) 2.1(.2) 16.4(9.7) 22.9(18.8)  16.4(9.7)

1(.2
3, 100 27.2(1.4)  11.1(65)  5.6(.5) | 110.7(29.2)  57.7(21.1)  28.2(10.6)
200 264.6(39.9) 20.4(12.3)  11.5(.7) | 789.5(132.0) 101.6(36.0) 54.7(14.2)

¥3 100 8.8(.7) 7.8(9.7)  4.3(2.0) 40.2(7.6)  31.8(14.9)  19.8(7.9)
1

200 19.4(1.5) 24.9(83.4) 18.1(23.1) | 99.6(23.6)  70.3(35.4)  56.3(26.0)

(
(
(
(
(

Not shown here, we have carried out comparisons between using GCV-based and 5-
fold CV-based tuning parameter )\, for the BP method, and both performed similarly.
However, the GCV-based method is much quicker, and hence results of simulations are
presented with the GCV-based BP method only.

Table 1/ shows the Kullback-Leibler loss from various methods for multivariate normal
and t3 simulations. We omit the case for p, = 50 to save space, but results are similar to
those for higher dimensions. In general the higher the dimension, the larger the loss is for
all the methods. On 3, all methods perform similarly as expected (sample covariance
matrix performs much worse and is not shown). However on X5, BP performs much
better for all p, considered, especially when multivariate t3 is concerned. The better
performance is expected, since BP can eliminate weaker signals that precede stronger
ones, but not particularly so for other methods. On X3, BP performs slightly better
on average, particularly for multivariate ¢3 simulations. For normal data, LASSO has
smaller variability, though.

To demonstrate results of Theorem 3, the operator norm of difference || — || for
different methods are summarized in Table 2. Clearly BP performs better in comparison
with LASSO and banding on X5, in both normal and ¢3 innovations. The performance

gap gets larger as p, increases. For X3 BP still outperforms the other two methods in
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Table 2: Operator norm of difference || — Q|| for different methods.

Multivariate normal Multivariate t3

Dn, LASSO Banding BP LASSO Banding BP
3, 100 6(.1) 7(.3) 6(.1) 1.7(.5) 2.0(.8) 1.7(.5)

200 (1) .8(.4) (1) 1.8(.6) 2.0(.9) 1.8(.5)
¥, 100 5.9(.4) 6.2(3.5)  2.5(4) | 11.3(4.6) 11.0(6.6)  7.2(3.5)

200 29.1(11.3)  5.7(3.4) 2.6(.4) | 58.1(11.2) 12.1(5.7) 7.7(2.3)
¥3 100 14.7(1.6) 19.0(14.2) 11.6(1.9) | 40.3(9.1) 33.8(13.5) 28.1(6.6)

200 16.0(1.4) 27.4(63.7) 18.4(6.1) | 46.1(6.0) 42.2(17.3) 35.5(11.0)

general, especially for heavy-tailed data.

Finally, to illustrate the ability to capture sparsity, we focus on ¥, and summarize

the correct percentages of zeros and non-zeros estimated in Table 3. BP almost gets all

the zeros and non-zeros right in all simulations. The LASSO does poorly in the correct

percentages of zeros. This is due to biases induced by LASSO that require a relatively

small A\, resulting in many spurious non-zero coefficients. The banding method does not

work well too. However, note that both banding and BP do better as dimension increases.

Table 3: Correct zeros and non-zeros(%) in the estimated Cholesky factors for 3.

Multivariate normal

Multivariate 3

pn LASSO Banding BP LASSO Banding BP
Correct 50 60.6(2.3) 73.5(20.1) 100(0) | 56.5(3.5) 89.1(12.3) 95.6(14.0)
percentage 100 75.3(.9) 87.7(12.0) 100(0) | 70.5(2.6) 94.4(5.8)  100(0)
of zeros 200 73.5(.7)  92.9(87) 100(0) | 72.0(7) 97.3(27)  100(0)
Correct 50  99.6(4)  100(0)  100(0) | 96.4(1.6) 71.3(35.0)  100(0)
percentage 100 99.2(.3)  100(0)  100(0) | 95.1(1.8) 72.3(33.3)  100(0)
of non-zeros 200  99.3(.3) 100(0) 100(0) | 97.1(.7)  80.5(25.9) 100(0)
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3.2 Real data analysis

We analyze the call center data using the BP method. This set of data is described in
detail and analyzed by Shen and Huang (2005), and we thank you for the data courtesy
by the authors.

The original data consists of details of every call to a call center of a major northeastern
U.S. financial firm in 2002. Removing calls from weekends, holidays, and days when
recording equipment was faulty, we obtain data from 239 days. On each of these days,
the call center open from 7am to midnight, so there is a 17-hour period for calls each
day. For ease of comparison, following Huang et al. (2006) and Bickel and Levina (2008),
we use the data which is divided into 10-minute intervals, and the number of calls in

each interval is denoted by N;;, for days ¢ =1,--- 239 and interval j = 1,--- ,102. The

YR

transformation y;; = (Ny; + 1/4)'/2 is used to make the data closer to normal.
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Figure 2: Mean absolute forecast errors for different estimation methods. Average is taken
over 34 days of test data from November to December, 2002.
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The goal is to forecast the counts of arrival calls in the second half of the day from those

in the first half of the day. If we assume y; = (yi1, - ,%i102)7 ~ N(u,X), partitioning

) where yﬁl) = (Yir, - ,yz‘,51)T7}’£2) = (Yis2," "+ ,¥Yi102)", and denoting

Hq Y1 X
B= , U= ,
o o1 Yoo

the best mean square error forecast is then given by the conditional mean

(2

7

y; into yl(-l) and y

X e ol X
y(z) = E(y(z)’y(l)) = o + X Xy (y(l) — 1)

This is also the best mean square error linear predictor without normality assumption.
To compare performance of different estimators of 3, we divide the data into a training
set (Jan. to Oct., 205 days) and a test set (Nov. and Dec., 34 days). We estimate

o= 2?251 yi/205, and 3 by sample covariance, banding and BP. For each time interval

j=952,---,102, we consider the mean absolute forecast error
12
Err; = 34 Z Gij — Yij-
=206

For BP, we use GCV with h = 0.1. The number k£ = 19 for banding is used in Bickel and
Levina (2008). From Figure 2, it is clear that the BP outperforms the other two methods,

in particular for the time intervals 66 to 75 corresponding to the mid-afternoon.

Appendix: Proof of Theorems 2(i) and 3

We state the following general regularity conditions for the results in section 2.

(A) The datay;,i =1,2,--- ,n are i.i.d. with mean zero and variance ¥, a symmetric
positive-definite matrix of size p,. The tail probability of y; satisfies, for j =
1,2, -+ ,pn, P(lyi| > 2) < Kexp(—Cz?), where d > 0 and C, K are constants.
The innovations €, -+ , €, for i = 1,--- n in (1.1) are mutually independent

zero-mean r.v.’s and var(e;;) = 032.0, having tail probability bounds similar to the
yij’s-
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(B) The variance-covariance matrix ¥y in (A) has eigenvalues uniformly bounded away

from 0 and oo w.r.t. n. That is, there exists constants C'; and C5 such that
0< Cl < Amin(zo) < >\max<20) < 02 < oo for all n,

where Apin(3o) and Apax(Xo) are the minimum and maximum eigenvalues of X

respectively.

(C) Let dny = min{e),; : ¢),; > 0}, where ¢, ; is the j-th element of @°, (see Step 2.1

in the proof of Theorem 2(i) for a definition). Then as n — oo,

kologpn k2 log p,, o, lospn

0.
nd?, nAn o2 -

(D) The tuning parameter A, satisfies

0.
0 < A, < min A,
j€In a(pn _])1/2

with (p, — j) — oo for all j € J,; as n — 0.

(E) The values 02, = max,</<p, 07y and 0, = maxi<,<p, var(y;,) are bounded uni-

formly away from zero and infinity.

The following lemma is a direct consequence of Theorem 5.11 of Bai and Silverstein

(2006).

Lemma 1 Let {y;}1<i<n be a random sample of n vectors with length g, each with mean
0 and covariance matriz 3. In addition, each element of y; has finite fourth moment.
Then if g,/n — £ < 1, the sample covariance matriz S, = n=*> 1" | y;y! satisfies, almost

surely,

B Amax(Sn) < Amax(Z)(1 4+ V2, 1im Apin(Sn) > Ain(Z) (1 — V)2,

n—oo n—oo
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Proof of Lemma 1. By Theorem 5.11 of Bai and Silverstein (2006), the matrix S} =

—-1/2

»71/28, 3712 which is the sample covariance matrix of ¥ "/%y;, has

Hm Amax(S5) = (14 V0)?,  Im Apin(S%) = (1 — V1)

n—oo n—oo

almost surely. Since ¢ < 1, this implies that S} is almost surely invertible. Then by

standard arguments,

Hm Amin(Sp) = lm Apin (Y285 2Y2) > A\ (2)(1 — V)2

n—oo

almost surely. The other inequality is proved similarly. [

Proof of Theorem 2. The idea is to prove that the probability of a sufficient condition
for block-sign consistency approaches 1 as n — oo. We split the proof into multiple steps
and substeps to enhance readability. We prove for the case k, > 1 first, with the case
k, = 0 put at the end of the proof.

Step 1.  Sufficient condition for solution to exist. An elementwise sufficient condi-
tion, derived from the Karush-Kuhn-Tucker (KKT) condition for ¢?n to be a solution to

minimizing (2.6) (see for example Yuan and Lin (2006) for the full KK'T condition), is

2 Z?ﬁ,t*j (e — Yigg Pr) = AWk dyai /1451l for all £; # 0, (A1)
i=1
‘2 Z Yii—j (Yir — y%]tﬁt[t]) < )\nwﬁj (pn — j>—1/2’ for all Ej =0, (A.2)
i=1
where t = j+1,--- ,p, and w};; = np’Anj(Hﬁg.k) 1)/ A\ (see section 2.2 for more definitions).

We assume WLOG that the £, non-zero off-diagonals of the true Cholesky factor T are
its first k, off-diagonals to simplify notations. We also assume no stacking (see section
2.0) of the last off-diagonal bands of T in solving (2.6); the case of stacked off-diagonals

can be treated similarly.
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Step 2. Sufficient condition for block sign-consistency. To introduce the sufficient
condition for block-sign consistency, we define Cyj = n~' 30 | yi (J)yip (k)" for j, k =
1,2, where y;;1(2) contains the elements of y;j corresponding to the zero off-diagonals’

elements of qbg[t], and y;1(1) contains the rest. We also define, for t = 2,--- , p,,

Vi = n'? Z CitYi[t], €it = Yit — Y;f[t] ¢?[t], W = diag(w’;bm, T 7w227 wle)>
i=1

R ey 12 vyl T2 i

Wt = (wﬁ(t—l)’ T 7'LD21)Ta St = (gbt,t—bm/”ébnt

where by, = min(t — 1,k,), % = wk;(p, — j)~/2

. Also, vi(j), Wne(j) for j = 1,2 are
defined similar to y;p(5); (]b?[t] (7) and qASt[t] (7) for j = 1,2 are defined similarly also.

For qﬁn to be block sign-consistent, we need only to show that equation (A.1) is true for
j=1,--- ky, equation (A.2) is true for j =k, +1,--- ,p, — 1, and |¢A)tm(1) — qb?[ﬂ(lﬂ <
](b?m(l)]. It is sufficient to show that the following conditions occur with probability

going to 1 (this is similar to Zhou and Yu (2006) Proposition 1; see their paper for more

details)
ICLivi(1)] < 02y (1)] = Aun ™ /2C1 i Wi /2, (A3)
|CT2IC;111VT(1) - v (2)] < )‘nnil/Z(‘i’nr(Q) - |Cr21C;111Wnrer/27
where t = 2,--- ,p, and r = k,, + 2,--- ,p,. Since the matrix C;;; has size at most k,

and k,/n = o(1), Cyy; is almost surely invertible as n — oo by Lemma [Il and condition

(B). In more compact form, it can be written as

Gi'z| < 'l | — Aun PG W,s/2,
(A4)
G21G1! (2)2(2) — 2] < Aun ™2 (W, — |GG (2)W,(2)s(2)])/2,
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where

G = diag(Ca1, - -+, Cpo11)s Gy = diag(C,12)21, -+, Cpo21),
G (2) = diag(Cprvop1s - Cpun), 2= (V2D v, (D)7,

2(2) = (Vg2 (D)7, vy, (D), z= (Vi42(2)", v, (2)T,

b1 = (Do ()" by (D), W, = diag(Wo, -+, Woy,,),
W..(2) = diag(Wogo2), s Wi, ), 8= (83,0 ,8, )7,

5(2) = (Szn—f—Qv T >Sgn)T’ W, = (V~Vn(kn+2) (2)T7 tee vwnpn<2)T)T'

Step 3. Denote by A, and B, respectively the events that the first and the second
conditions of (A.4) hold. It is sufficient to show P(AS) — 0 and P(BS) — 0 as n — oo.

Step 3.1  Showing P(AS) — 0. Define n = Gij'z, and n,, = G'z,, where
Z, = (,zm)]r21 with z,; = n=1/2 Y iy Yir€it Lol eu|<a(n)}, @& truncated version of z; =
n~Y23"  yien for some 7, t with max(1,t — k,) < r < t. Denote by 7, the j-th
element of 7),,. In these definitions, a(n) — oo as n — oc.

We need the following result, which will be shown in Step 5:
E(max|ip, ) = O((ka log p.)**a®(n)). (A.5)
j

Since the initial estimator ¢*) in (2.6) is block zero-consistent, if ), is chosen to

satisfy condition (D), then =, in Definition [Il can be set to this A,. It is easy to see that

Pk, =n, Vj € Juo) — 1, P(wh; =0, Vj € Ju) =1 as n — oo. (A.6)

By definition, n,, — 7 — 0 almost surely as n — oo. Thus, Lya jn. =n1/2d,,) —

L {max; |n;|>n1/2d,, 3 — O almost surely, implying

P(max |n, ;| > n'?d,;) — P(max|n,| > n'/*d,,) — 0 as n — oo. (A.7)
J J
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Then by the Markov inequality and (A.5),
P(max [n, ;| > n'?dy) < E(max|n,;])/(n'dy)
J J

= O((knlog pa)?a*(n) /(n'*dy1)) — 0,

by condition (C) and for a(n) chosen to go to infinity slow enough. Hence by (A.7), we

have P(max; |n;| > n'/?d,) — 0, thus

P(AS) < P(A; N {wh; =0, Vj € Ju}) + P(wh; >0, Vj € Ju1)

< P(mjax ;| > n1/2dn1) + P(wzj >0, V)€ Ju)—0,
using (A.6) and the fact that
A 0wy = 095 € Ju} = {IGila] = n' 260}  {maxn| > n'Pdu }.

Step 8.2 Showing P(BS) — 0. Define ¢ = Go1G17'(2)z(2), then (; = (Ci1Cpyivi(1)),
for some ¢, r with t > k, +2. Also, define z,, = n=/2 Z?:l YirYik, and , , the truncated
version (by a(n)) similar to 2,; in Step 3.1. Then we can rewrite ¢; = n=Y2>", x4my,

and define

—1/2
Cn,j =n / an,rknn,ka
k

for some r. The summation involves at most k,, terms.

We need the following results, which will be shown in Step 4 and 6 respectively:

E(max |z, 4]) = O((logpa)'?a*(n)), (A.8)

E(max|(, |) = O(k2log pya’(n)). (A.9)
j
By definition, for all j, ¢, ; — ¢; — 0 and z,; — 2; — 0 almost surely, implying

P(max |G j — zn | > Aant?/2) — P(max n; — 2| > Aan'/?/2) — 0 as n — oco. (A.10)
]’ j7
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Then by the Markov inequality, (A.8) and (A.9),
P(max Gy — sl = Aun'/2/2) < 2 Bmax [G,1) + E(max [2)}/(\n'’)

4, j
= O(k2log p, - a*(n)/(Aun) + (log p)'/2a®(n) /(\un'/?)),

which goes to 0 by condition (C), for a(n) chosen to go to infinity slow enough. This
implies P(max; [¢; — 2| > A,n'/2/2) — 0 by (A.10).

Define D,, = {w; = nVj € Joo} N{w}; = 0j € Ju1}, so that P(Dg) — 0 by (A.6).
Hence using B N D,, = {|¢ — z| > A\,n'/?/2} C {max;; |(; — 2| > A\on!/?/2},

P(B;) < P(B;, N D)+ P(Dy)

< Plmax |G; — 2| > An'/?/2) + P(D}) — 0
.]7

Step 4. Proof of (A.8). This requires the application of Orlicz norm of a random
variable X, which is defined as | X||;, = inf{C > 0 : Ey(|X|/C) < 1}, where ¢ is a
non-decreasing convex function with ¢(0) = 0. We define ¢,(x) = exp(z®) — 1 for a > 1,
which is non-decreasing and convex with 1,(0) = 0. See section 2.2 of van der Vaart and
Wellner (2000) (hereafter VW(2000)) for more details.

We need four more general results on Orlicz norm:

1. By Proposition A.1.6 of VW (2000), for any independent zero-mean r.v.’s W,
define S, = > | W;, then

1Sullor < K (E1S] + || mas [Wil]l,), (A1)
Salles < Ka(EISA| + (3 IWl1,)72), (A12)
=1

where K7 and K5 are constants independent of n and other indices.

2. By Lemma 2.2.2 of VW (2000), for any r.v.’s W, and a > 1,

| max Wyllu, < Ka mavx (W], (log(m + 1) (A.13)

1<j<m
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for some constant K, depending on a only.

3. For any r.v.’s W; and 1 < a < 2, (see page 105, Q.8 of VW (2000))

B(max W) < (log(m + 1))/ max. Wil (A14)

1<i<m

4. For any r.v. W and a > 1,
||W2||wa - ||W||1,2Z)2a (A]‘5)

. 9 .. . . 2 2
Since the (yjr€j¢);’s are i.i.d. with mean zero (variance bounded by o, ,,07,, by con-

dition (E)), by (A.12),
max |20 lly, < max Ks((Bz ;) + 012 (nl|a*(n)|[7,)")
< max Ky(oynoan + O(a*(n))) = O(a®(n)). (A.16)
Then using (A.16) and (A.14),
Bmis 1) < (08 (piki-+ 1)) mas 2,
= O((log p,)"/*a*(n)),
which is the inequality (A.8).

Step 5. Proof of (A.5). By Lemma(lland condition (B), the eigenvalues 0 < 733 <
Tig < -+ < Ty, < 00 of Cypq are uniformly bounded away from 0 (by 1/7) and oo (by 7)
almost surely when n — oo. Then ||Cyl|, ||Cill < 7 almost surely as n — oo. Hence
for large enough n,

My = ler Caivae (DI < 7% [[vas (D],

for some k and ¢, where e;, is the unit vector having the k-th position equals to one and

zero elsewhere. The vector v, (1) is the truncated version of v;(1) containing elements
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Zni- Then by (A.15) and (A.16),

2 j1/2 2|/
s 1, = mae 5,7 < 7 move [ via (7]
<k max [zl = TR max |zl
i=11, ik, =11, ik,
= O(k}?a*(n)). (A.17)

With this, using (A.14), we will arrive at (A.5).

Step 6.  Proof of (A.9). Since the y;y;;’s are i.i.d. for each r and k with mean
ok < 04y (variance bounded by oy, for r # k), arguments similar to that for (A.16)
applies and hence

a2, = O(a(m). (A1)
Hence we can use (A.13), (A.15), (A.17) and (A.18) to show that
max || Gollo, < 072k, max | max(a] 1y, 07 4l
J 7.7
< 02k K log 3max (|l e, 17il13,)
= O(n~'2E2a%(n)). (A.19)

With this, using (A.14), we will arrive at (A.9)).

Step 7. Proving (A.2) occurs with probability going to 1 for k, =0. When k, =0,
3 is diagonal, and we only need to prove (A.2)) occurs with probability going to 1. Then
we need to prove (see Step 3.2 for definition of zy;) P(maxgc; [z;| < Ak, /(2n/?)) — 1.

In fact by (A.6), we only need to prove P(maxy; |z;| > A\,n'/2/2) — 0, which follows
from (A.18) and (A.14) and arguments similar to (A.7) or (A.10),

P(max |z, ;| > )\nnl/Q/Q) < 2E(max|xn,kj|)/()\nn1/2)
k<j k<j

= O((log pa)'?a*(n)/(Aan'/?)) — 0,
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by condition (C) and a(n) chosen to go to infinity slow enough. This completes the proof
of Theorem 2(i). O

Proof of Theorem 3. We focus on || — €| first, which amounts to finding
I' = P(max |&ij — wijo| > tn), (A.20)
i.j

for some t,, > 0.
Note that w;; = fgl a;ﬁqﬁmgbr,j with ¢;;, = —1 and ¢, ; = 0 for 7 < j. We write
Wi —wijo = I + - - - + Is, where (I5 to I are omitted since they have orders smaller than

either of I to I4 under block sign-consistency)

Pn Pn

Am2 A2\ 0 40 A2 —2y 4,0 40
I = Z(Uk — 0o k,jPh,io I = Z(Uko — 0ko) ki Phis
k=1 k=1
p’ﬂ pn
Y 0 .0 —2/7 0 \.0
Iy = Z Oro (Prj — ¢k,j) kyis Iy = Z%o (Pri — k,i) ko
k=1 k=1

and 67, =n 'Y e =nt Y (Y — ygk}d)g[k])z. Then, the probability I in (A.20)
can be decomposed as

8
I<Y a.P(max|L| > dt,),
r=1 "

where a, and § are absolute constants independent of n.

Step 1. Proving the convergence results. The proof consists of finding the orders of

max; ; |[1| to max; ; |I4|. We will show in Step 2 that when k,, > 0,
max |I 3| = Op({(ky +1)*log pa/n}'"?), (A.21)
i.j

which has the highest order among the four. When k, = 0, P(I3 = 0) — 1 by block
sign-consistency, and max; ; |I>| has order dominating the four. In general, we will show
in Step 4 that

max 12| = Op((kn + 1)(log p,/n)"?). (A.22)
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Hence

122 — I2, = max(@i; — wijo)® = Op((kn +1)"1og pn/n).

For ||Q — Q||, using the inequality || M|| < max; > Imi;| for a symmetric matrix M (see

e.g. Bickel and Levina (2004)), we immediately have
1€2 = Q| = Op (s + 1)II€2 — Do),

where we used the block sign-consistency and the fact that €2y has k,, number of non-zero

off-diagonals.

Step 2. Proving (A.21) By the symmetry of I3 and I, we only need to consider
max; ; | I3|.

Step 2.1 Defining I, 3. By block sign-consistency of qﬁn, 4 - -ékn are non-zero
with probability going to 1 and (A.1l) is valid for j = 1,--- | k,. Then we can rewrite
(A.1) into

Ctll(‘ﬁt[t](l) - ¢?[t](1)) =n"'v (1) — A WaySt — Ct12q§t[t](2)> (A-23)

for t =2,---  p,. Block sign-consistency implies qAﬁtm(Q) = 0 with probability going to 1.
Also by (A.6), W,,; = 0 with probability going to 1. Hence

by (1) — Py (1) = n~2Chivi(1) + 0p(1),

where almost sure invertibility of C;q1 follows from Lemma (1l and condition (B) as n — oc.

This implies that, for j =1,--- , k, (note I3 = I; =0 when k, =0) and t = 2,--+ , p,,
Qgtvt—j - ¢g,t—j = n_l/an + OP(l), (A.24)

for some k, where 7 is defined in Step 3.1 in the previous proof. Then we can write I35 as

Pn
Iy =n"""> "oy ini 8, + op(1),
k=1
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for some intergers iy,--- ,4,,. Note that I3 has at most (k, + 1) terms in the above

summation. We define
Pn
Lis=n"""Y " 0, 00 (A.25)
k=1

where 7, ;, is defined in Step 3.1 of the previous proof.
Step 2.2 Finding the order of max;;|I3]. Under conditions (A) and (E), o, 7¢}; is
bounded above uniformly for all 7 and k. Then using (A.17) and (A.14),

P(max |l 3| > 0t,) < E(max |I,3])/(,)
,J 2¥)
< n”'2(10g pu) 2 (kn + 1) max{ o O il vz }/ (5t0)
= O({(kn +1)*(log pa) }2a®(n) /(n'/?1,)).

This shows that max; |1, 3| = Op({(k, + 1)3logp,/n}'/?), which is also the order of
max; ; |[3], since max; ; |I,, 3 — I3] — 0 almost surely, and a(n) goes to infinity at arbitrary

speed.

Step 3. Showing I, = op(ls). By block sign-consistency, qgk[k]@) = 0 with

probability going to 1 for k =2,---  p,. Hence
op=n"" Zn:(yzk - YiT[k]CE'k[k](l))z +op(1)
i=1
= 62 — 2n 2 (1) g (1) + Qg (1) Crantiggy (1) + 0p(1),
where (1) = qsk[k](l) — qbg[k](l). This implies that

6% — G0l < 207 2vi(D)I] - [l (D] + Amax(Crar) - agpg (1)1

<20 Y20p(kY?) - Op(kX*n™Y2) + 10p(kn/n) = Op(kn/n),

where 7 is an almost sure upper bound for the eigenvalues of Cj; by Lemma [1 and

condition (B). The order for ||v(1)|| can be obtained using ordinary CLT. The order for
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[y (1)]| can be obtained by observing ¢;; — ¢, = n~/2eTC;1vi(1) + op(1), and by
conditioning on y;[t] for alli =1,---  n,
var(n~2ef Civi(1)) = n' B(e] Ciiivi(1)vi(1)T Cigrey)
=n 1UtzoE(eJTCt_lllej) <nlto?,r=0(n").
Hence the delta method shows that 6, % — 6,7 = Op(k,/n).
On the other hand, by the ordinary CLT, we can easily see that 62, —o2, = Op(n~"/?).

Thus I, has a larger order than I since (k,/n)/n""/? = k,n~/? = o(1). Hence we only

need to consider P(|I5| > dt,,) and ignore P(|I1| > dt,).
2 —4

Step 4. Proving (A.22). Delta method implies 6,7 — 030 = —0pg (62 — 029)(1 +
op(1)). We then have

Pn n
=30 { = S ) botehok 1+ or (1)

k=1 r=1
which is a sum of at most k, + 1 terms (corr. ¢ = j) of i.i.d. zero mean r.v.’s having

uniformly bounded variance (fourth-moment of €,;) by condition (A). Now define

Pn n
]n,2 = Z { - n_l Z(Egk - O-I%O)]-ﬂezk—azdga(n)}}Jko k z¢k]7

r=1

and using (A.14) and arguments similar to proving (A.16)),
Pl 1ol > 0ta) < B 1,al)/(3)
= O((kn + 1)(log pa/n)"%a(n) /1,).
Hence this shows that, by max; ; |1, 2 — I| — 0 almost surely,
max | I5] = Op((ky, + 1)(log pn/n)"?).
This completes the proof of the theorem. [
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Supplement: Proof of Theorems 2(ii) and 4

Proof of Theorem 2(ii). To prove asymptotic normality for ¢,,1, note that by (A.23),

nl»

for av,, with ||a,|| =1 and v, = o, H, vy,
n'Pu el — o) = L+ L+ I, (S.1)

where I, = A\, (nvy) V20l G\ W,s/2 |, I = (n/v,)2al G G2, and [, = v, *al Gz,
with ¢,,, the vector of elements of ¢,, corresponding to its zero off-diagonals.

~

Step 1. Showing Is, I3 = op(1).  Since P(¢,, = 0) — 1, we have P(l3 =0) — 1,

thus I3 = op(1). Also, we can easily show that
L] < Crtan(nl,) v, 2k, /2,

where a, = max{p’)\nj(||£§-k)||) : j € Jui}. Hence if a, = O(V}L/Q(nln)*lﬂk‘;l), we have
|I3] = op(1). The SCAD penalty ensures that a,, = 0 for sufficiently large n if the initial

estimator (;57(1]“) is good enough, which is measured by its block zero-consistency.

Step 2. We write o, = (0, -+, 0y, )7, so that I} = vy, /> >y ol Crivy(1).

Define

Pn
L=v, "2y el 551,
j=2

where ¥;1; = E(Cj11). We can rewrite I, = > Wy, where

Pn

wng = ()2 a5 ey (1)

=2

are independent and identically distributed with mean zero for all 2. Our aim is to utilize

the Lindeberg-Feller CLT to prove asymptotic normality of I;, then argue that I itself

is distributed like I;, thus finishing the proof.

Step 3. Showing asymptotic normality for I,.  First, by suitably conditioning on
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the filtration F;, = o{€y, - , €} generated by the €; = (e1j, -+, €,;)" for j = 1,--- ¢,
we can show that (proof omitted) var(I;) = 1.

Step 3.1 Checking the Lindeberg’s condition. Next, by the Cauchy-Schwarz in-
equality, for a fixed € > 0,

Z Ewi,i1{|wn,i‘>€} = nE(wz,ll{lwane})

i=1
Pn 2
< VEI{E<Zazjgﬁﬁeljym](lﬁ } '{P(wi,l > )},
=2

Step 3.1.1 The Markov inequality implies that

P(wi’1 >eh) < e ?B(w? ) =€,

n,l1

thus {P(w?, > €2)}/2 = O(n~1/2).

Step 3.1.2  For the former expectation, note that condition (B) implies that the
eigenvalues of ¥;1; are uniformly bounded away from zero and infinity as well, say by ¢~
and ¢ respectively, so that || X7} ]| < ¢ for all j. Hence

Pn 4 Pn
E(Z anjzfllﬁljyl[j](l)) < C4E(m;tx lenllyi WD (O llewsll)*
j=2 Jj=2

< Mk E( max ey (D)
Jiomi#0
< B max o) E(lyp (1),

where the second line used the fact that there are at most k,, of the a,; that are non-zero
and that ", [la,||* = 1 implies (Y7, Hanj]|)4 < k2. The third line used conditioning
arguments and the fact that y;p,,(1) has the largest magnitude among the y;;(1)’s. With
the tail assumptions for the ¢;;’s and the y;;’s in condition (A), the fourth moments for

MaX;j.q,,,20 €15 and [ly1p,(1)|| exist. Using (A.13) and (A.14), can show

E( max €f;) = O({log(kn + 1)}""), E(lly(D]") = O(k; (log(kn + 1))

Jioun i 7#0
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4
Hence E( g agjzﬁlﬁlg‘}’l[ﬂ(l)) = O(k*(log?(k, + 1))¥), and combining previous
results we have
> B2 L = Ok 10g(kn + 1)) 0™ 201) = o(1)
i=1
by our assumption stated in the theorem. Hence Lindeberg-Feller CLT implies that
I =5 N(0,1).

Step 4. Showing I is distributed similar to I,. Finally, note that E(I; — I;) = 0

and using conditioning arguments as before, we have

V&I‘ Il ZJ]OE lell E;ﬁ)CJH(C;ﬁ — 2;111)anj>
< max ol E(|Coh = B[ - 1Csull)

1<

—12 —1/2 _
< max o5 BI85 152 Cu 2 — 1P - G2 - I ).

As discussed before, we have ||S;11]| < ¢ and ||E5}}]] < ¢ Also, the semicircular law
implies that ||Z]]_111 ZCjHEj_lll/Q — I||* = Op(k,/n). We also have, almost surely, [|C;i1]|,
|Cj11|| < 7 for each j = 2,--- ,p, as n — oco. Hence for large enough n, by condition

(E)7

2
var(l, — I) < é*r nax 02 - O(kn/n) = o(1),

so that I; = I} + op(1), and this completes the proof. O
Proof of Theorem /4. The true model for y; = (y1;, -+, yni)? (rvefer to (2.7)) is
yi = Xi1¢?[i]1 + €, (S.2)

for i =2, p,, where (recall that ¢,; = max(|i —yn|,1)

Xi= Ve Yic1)y iy = (Dicpr =+ > bii1) -
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Step 1. To show P(maxjey,, |&]|/(pn — 7)"/*> > 1) — 0. We need the following

results, the first of which will be proved in Step 3: For each j € J,0 with 1 < j < |yn],
E(I&"/(pn = 3)7) = O(n™?), (S.3)
and, for a non-decreasing convex function ¢ with ¢(0) = 0, a generalization of (A.14)),

E( max |W;]) <+~ (m) max [[Wi,. (S4)

1<i<m 1<i<m

Then, with the function ¢ (z) = z* in (S.4), using (S.3)), and ~,, > 0,
P(max 18511/ (P — )% = ) < E(max 18511/ (o = 5)%) /7

—B(_ max_ &I/ (. — %)/

J€JIno,1<i<yn]

< ()" max  {B(I&]/ (0, — )}

J€JIn0,1<j<|n]

= O(n " =0,

where the second line used the fact that we have set the off-diagonal bands more than

|yn] bands from the main diagonal to zero.

Step 2. To show P(mincs,, |||/ (pn — 7)/? > 7,) — 1. We need the following

result, which will be proved in Step 4: For j € J,1,

B/ (90 — ) = [€0l1*/ (9 — ) + O(n7Y). (5.5)
Then with 7, < minyes,, [[€oll/(pn — J)2 writing a; = (va — €01/ (9 — )/2)2.
PUpin 1B/ = 30" 2 ) 2 1= 32 PUGI/ . =) < 30
>1—;P( 1511 = 11€501)%/ (b = 3) = (3 = 1850l (o — )/2)%)
= 1= 320 =) Wl (1= (14 O (= )+ O™ o =)}

=1—-0(k,/n) — 1,
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where the second last line used the delta method, with (S.3)) showing the remainder term is

going to zero. From Steps 1 and 2, we need to choose 0 < v,, < minje,, [|€oll/(pn—7)Y>.

Step 3. To prove (S.5). We need the following result, which can be easily
generalized from Theorems 10.9.1, 10.9.2 and 10.9.10(1) of Graybill (2001): Let € =
(€1, -+ ,€m)T, where the ¢;’s are i.i.d. with mean 0, and with finite second and fourth

moments. Then for symmetric constant matrices A and B,
E((e" Ae)(e” Be)) = atr(A)tr(B) + btr(AB), (S.6)

where a and b are constants depending on the second and fourth moments of ¢; only.
The estimator T, obtained from a series of linear regressions introduced in the theo-

rem, has rows such that by (S.2),

¢¢[i]1 = (X?Xi)_lxrb"i-

(]

Using (S.2)), for j € J,0 and 1 < j < |yn], it is easy to see that

Pn
1612/ (on = 3) = (oo — 3)" D (], (XIX;)7'XTe;)?
i=j+1
Pn
= (pn— )" Z € A€,
i=j+1

where AZ = Xi(X?Xi)_lemjeT (X;TXZ)—IXT

e 7, and r; ; is some constant depending on ¢

and 7. With this notation, we have

Pn

||ZJ||4/<pn - .])2 = (pn - j)_2 Z <€ZAT€T)(€£Ak€k)'

rk=j+1

It is then sufficient to show that E((e! A,€,)(el Arer)) = O(n=2) for each r > k. Let
Fi—1 = o{e€y, -, €1} be the sigma algebra generated by the €, for 1 <k <i— 1. For
large enough n, we have by Lemma/lland condition (B), for some constant B, independent

of n, and for each i =7+ 1,--- ,pp,

tr(Al) = eT _(XTXi)_leri’j S Byn_l. (S?)



Step 3.1 To show E((€f A€,) (€ Aver)) = O(n™2) forr > k. Hence for r > k with

large enough n, using (S.7),

E((efAreT)(egAkek)) = E(GZ‘AkEkE]-‘T71<€Z—‘AT€T)) = E(egAkekafotr(A,.))
< Byolyn Ble; Aver) = ByoZyn™ E(oj,tr(Ay))

< Blolyn?=0(n?).

Step 3.2 To show E((ef'A,€,.)*) = O(n~?).  Using (S.6), with constants a and b
uniformly bounded by condition (A) and condition (E), it is sufficient to show that for
large enough n, tr?(A,) and tr(A?) are O(n™2). By (S.7) we have tr*(A,) = O(n~?). Also,

tr(A2) = (el ,(f(T)M(T)_lerm)2 < B’n7?,

Ti,5 - vy

for large enough n, by (S.7).

Step 4. To prove (S.5). For j € J,; and large enough n,

E(I&17/(n = ) = 150l /(0 = ) + (o0 = 5) " Z E(ef Aie;)

i=j+1

< 1€joll*/ (P — 3) + oy max E(tr(A;))

< 1€joll*/(pn — 5) + O(n7"),

where the last line used (S.7). This completes the proof of the theorem. [J
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