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EFFICIENT ESTIMATION OF
GENERALIZED ADDITIVE

NONPARAMETRIC REGRESSION
MODELS

OLLLIIIVVVEEERRR B. LIIINNNTTTOOONNN
London School of Economics

and
Yale University

We define new procedures for estimating generalized additive nonparametric re-
gression models that are more efficient than the Linton and Härdle~1996, Bio-
metrika83, 529–540! integration-based method and achieve certain oracle bounds+
We consider criterion functions based on the Linear exponential family, which
includes many important special cases+ We also consider the extension to multi-
ple parameter models like the gamma distribution and to models for conditional
heteroskedasticity+

1. INTRODUCTION

Additive models are widely used in both theoretical economics and in eco-
nometric data analysis+ The standard text of Deaton and Muellbauer~1980!
provides many microeconomics examples in which a separable structure is con-
venient for analysis and important for interpretability+ There has been much
recent theoretical and applied work in econometrics on semiparametric and
nonparametric methods; see Härdle and Linton~1994! and Powell~1994! for
bibliography and discussion+ In such models additivity often has important im-
plications for the rate at which the components can be estimated+

Let ~X,Y! be a random variable withX of dimensiond andY a scalar+ Con-
sider the estimation of the regression functionm~x! 5 E~Y6X 5 x! based on
a random sample$~Xi ,Yi !% i51

n from this population+ Stone ~1980, 1982! and
Ibragimov and Hasminskii~1980! show that the optimal rate for estimatingm
is n2,0~2,1d! with , an index of smoothness ofm+ An additive structure form is
a regression function of the form

m~x! 5 c 1 (
a51

d

ma~xa!, (1)
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wherex 5 ~x1, + + + , xd!' are thed-dimensional predictor variables andma are
one-dimensional nonparametric functions operating on each element of the vec-
tor or predictor variables withE$ma~Xa!% 5 0+ Stone~1986! shows that for
such regression curves the optimal rate for estimatingm is the one-dimensional
rate of convergence withn2,0~2,11! and does not increase with dimensions+ In
practice, the backfitting procedures proposed in Breiman and Friedman~1985!
and Buja, Hastie, and Tibshirani~1989! are widely used to estimate the addi-
tive components+ Buja et al+ ~1989, equation~18!! consider the problem of find-
ing the projection ofm onto the space of additive functions representing the
right-hand side of~1!+ Replacing population by sample, this leads to a system
of normal equations withnd 3 nd dimensions+ To solve this in practice, the
backfitting or Gauss–Seidel algorithm is usually used~see Hastie and Tibshi-
rani, 1990, p+ 91; Venables and Ripley, 1994, pp+ 251–255!+ This technique is
iterative and depends on the starting values and convergence criterion+ These
methods have been evaluated on numerous data sets and been refined quite
considerably since their introduction+

Recently, Linton and Nielsen~1995!, Tjøstheim and Auestad~1994!, and
Newey ~1994! have independently proposed an alternative procedure for esti-
matingma, which we call integration, that exploits the following idea+ Suppose
that m~x1, x2! is any bivariate function and consider the quantitiesm1~x1! 5
*m~x1, x2! dP2~x2! andm2~x2! 5 *m~x1, x2! dP1~x1!, whereP1 andP2 are prob-
ability measures+ If m~x1, x2! 5 m1~x1! 1 m2~x2!, then m1~{! and m2~{! are
m1~{! andm2~{!, respectively, up to a constant+ In practice one replacesm by an
estimate and integrates with respect to some known measure+ The procedure is
explicitly defined and its asymptotic distribution is easily derived: centered cor-
rectly, it converges to a normal distribution at the one-dimensional rate; the
faster rate is because integration is averaging and hence reduces variance+ The
estimation procedure has been extended to a number of other contexts, such as
the generalized additive model~Linton and Härdle, 1996!, to dependent vari-
able transformation models~Linton, Chen,Wang, and Härdle, 1997!, to econo-
metric time series models~Yang and Härdle, 1997!, to panel data models~Porter,
1996!, and to hazard models with time varying covariates and right censoring
~Nielsen and Linton, 1997!+ Gozalo and Linton~1997! develop tests of addi-
tivity+ In this wide variety of sampling schemes and models asymptotics for
integration-based procedures have been derived because of the explicit form
of the estimator+ However, the integration method does not fully exploit the
additive structure and is inefficient+ Linton ~1997! proposes a two-step proce-
dure that took the integration estimate as a first step and then did one backfit-
ting iteration from that+ This procedure is argued to be oracle efficient, i+e+, as
efficient as the infeasible estimate that is based on knowing all components but
the one of interest+ The theoretical analysis of backfitting-like methods has only
just begun and is thus far confined to regression+ Opsomer and Ruppert~1997!
provide conditional mean squared error expressions for bivariate independent
and identically distributed~i+i+d+! data under strong conditions, whereas Linton,
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Mammen, and Nielsen~1997! establish a central limit theorem for a modified
form of backfitting called empirical projection+

A generalized additive structure form is of the form

G$m~x!% 5 c 1 (
a51

d

ma~xa! (2)

for some known, typically monotonic, link function G, wherex 5 ~x1, + + + , xd!T

are thed-dimensional predictor variables andma are one-dimensional nonpara-
metric functions operating on each element of the vector of predictor vari-
ables+ Here, E$ma~Xa!% 5 0 for identification+ This class of models includes
additive regression whenG is the identity and multiplicative regression when
G is the logarithm+ For binary data it is appropriate to takeG to be the inverse
of a cumulative distribution function such as the normal or logit~this ensures
that the regression function lies between 0 and 1 no matter what valuesc 1

(a51
d ma~xa! takes!+ Compare this specification with the semiparametric sin-

gle index model considered in Ichimura~1993! in which the index on the right-
hand side of~2! is linear but the link functionG~{! is unrestricted~apart from
the fact that it is the inverse of a cumulative distribution function@c+d+f+# !+
Both models considerably weaken the restrictions imposed by parametric bi-
nary choice models but are nonnested+ One advantage of the additive model is
that it allows for more general elasticity patterns: specifically, whereas in the
single index modelhj :k 5 ~] ln m0]xj !0~] ln m0]xk! is restricted to be constant
with respect tox, for the additive modelhj :k can vary withxj andxk ~although
not with otherx '’s!+ Note that~2! is a partial model specification and we have
not restricted in any way the variance or other aspects of the conditional dis-
tribution L~Y6X ! of Y given X+ A full model specification, widely used in this
context, is to assume thatL~Y6X! belongs to an exponential family with known
link function G and meanm+ This class of models is calledgeneralized addi-
tive by Hastie and Tibshirani~1990!+ In some respects, econometricians would
prefer the partial model specification in which we keep~2! but do not restrict
ourselves to the exponential family+ This flexibility is a relevant consideration
for many data sets where there is overdispersion or heterogeneity+

Turning to estimation, Stone~1986! shows that for such models the optimal
rate for estimatingm ~and ma!, based on a random sample$~Yi ,Xi !% i51

n from
this population, is the one-dimensional rate of convergencen2,02,11! to be com-
pared with the best possible rate ofn2,0~2,1d! whenm is not so restricted+ In
practice, the backfitting procedures in conjunction with Fisher scoring are widely
used to estimate generalized additive models~see Hastie and Tibshirani, 1990,
p+ 141!+ Linton and Härdle~1996! propose an alternative direct method for es-
timating the components by integrating a transformed pilot regression smoother+
They provide sufficient conditions for a central limit theorem at the optimal
one-dimensional rate+ Nevertheless, this estimator is inefficient for the reasons
given earlier+
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In this paper, we suggest two-step procedures for estimatingma~{! in ~2! that
are more efficient than the integration method, thus extending the recent work
of Linton ~1997! in regression+ We also provide more rigorous proofs of the
claims made in that work+We base our procedures on a localized version of the
likelihood function of linear exponential families~see Gourieroux,Monfort, and
Trognon, 1984a, 1984b!+ This family includes what we are calling the partial
model specification as a special case that corresponds to the homoskedastic nor-
mal likelihood function+ Our estimators are nonlinear, and their asymptotics do
not follow immediately from standard arguments for kernel estimators+ Our
proofs are based on a modification of some recent results of Gozalo and Linton
~1995!+ For expositional purposes we shall work with the special case where we
expect the “one-dimensional” rate of convergencen205 for the additive esti-
mates+ The paper is organized as follows+ In Section 2 we discuss infeasible or-
acle procedures for estimating one component that use knowledge of the other
components+ In particular, we introduce a criterion function based on linear ex-
ponential family density+We discuss feasible procedures and standard error con-
struction+ In Section 4 we discuss the extension to a model in which additive
components enter into the local parameters of a general moment condition+We
estimate the unknown functions using a local generalized method of moments
~GMM ! and local partial GMM criterion function+ Our examples include the bi-
nomial and Poisson models and also models for conditional heteroskedasticity,
known in time series as ARCH+

The symbolrp denotes convergence in probability, whereasn denotes con-
vergence in distribution+ For a random sequenceXn and deterministic decreas-
ing sequencesan,bn we write Xn 5

AD
N~an,bn

2! whenever

Xn 2 an

bn

n N~0,1!+

2. SINGLE PARAMETER LINEAR EXPONENTIAL FAMILY

2.1. Infeasible Procedures

We partitionX 5 ~X1,X2! andx 5 ~x1, x2! wherex1 andX1 are scalar, whereas
x2 andX2 are in general of dimensionsd 2 1+ Let p1 be the marginal density
of X1 and let p2 and p be the densities ofX2 and X, respectively+ Through-
out, m2~{! is an abbreviation for all the other components, i+e+, m2~x2! 5

(a52
d ma~xa!, and can be of any dimension+ Let s2~x! 5 var~Y6X 5 x!+
Our purpose here is to define a standard by which to measure estimators of

the components+ The notion of efficiency in nonparametric models is not as
clear and well understood as it is in parametric models+ In particular, pointwise
mean squared error comparisons do not provide a simple ranking between es-
timators such as kernel, splines, and nearest neighbors+ Although minimax ef-
ficiencies can in principle serve this purpose, they are hard to work with and
even harder to justify+ Our approach is to measure our procedures against given
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infeasible~oracle! procedures for estimatingm1~x1! based on knowledge ofc
andm2~{!+ Linton ~1997! has already defined the oracle estimator whenG~{! is
the identity function, i+e+, when we are in the additive regression setting~1!+ In
this case, one smooths the partial errorsYi 2 c 2 m2~X2i ! on the direction of
interestX1i + He shows that indeed the oracle estimate has mean squared error
smaller than the comparable integration-type estimator+ In the general case
though, one cannot find simple transformations ofYi andc 1 m2~X2i ! to which
one can apply one-dimensional smoothing and that result in a more efficient
procedure than the integration-type estimators+ In summary, it was not imme-
diately clear to us how to even define oracle efficiency in these nonlinear mod-
els+ We suggest the following solution—impose our knowledge aboutc 1
m2~X2i ! inside of a suitable criterion function+

We shall work with a criterion function motivated by the likelihood function
of a complete specification of the conditional distribution ofY6X along with
the additivity restriction~2!+ In particular, we consider one-parameter linear
exponential families, described in Gourieroux et al+ ~1984a!, applied to the con-
ditional distribution ofY given X 5 x+ Every member of the family has a den-
sity with respect to some fixed measurem, and this density function can be
written as

,~ y,m! 5 exp$A~m! 1 B~ y! 1 C~m!y!%, (3)
whereA~{!, B~{!, andC~{! are known functions, with m being the mean of the
distribution whose density is,~ y,m!+ The scalarm [ M, a suitable parameter
space+ See Gourieroux et al+ ~1984a, 1984b! for parametric theory and applica-
tions in economics+ The preceding likelihood function leads us to suggest the
following class of criterion functions:

Qn~u! 5
1

nhn
(
i51

n

KS x1 2 X1i

hn
D$Yi Ci ~u! 1 Ai ~u!%, (4)

whereCi ~u! 5 C~F~c 1 m2~X2i ! 1 u0 1 u1~X1i 2 x1!!! andAi ~u! 5 A~F~c 1
m2~X2i ! 1 u0 1 u1~X1i 2 x1!!! with F 5 G21, whereasu 5 ~u0,u1!+ Here, hn is
a scalar bandwidth sequence andK is a kernel function+ Let Zu maximizeQn~u!
and let [m1~x1! 5 Zu0~x1! be our infeasible estimate ofm1~x1!+ We have the fol-
lowing result+

THEOREM 1+ Suppose that~2! holds+ Then, under the regularity conditions
A given in the Appendix, we have

[m1~x1! 2 m1~x1! 5
AD

NF hn
2

2
m2~K !m1

''~x1!,
1

nhn

7K722
i1~x1!

j1
2~x1!G,

where7K722 5 *K 2~s! ds andm2~K ! 5 *K~s!s2 ds, whereas

i1~x1! 5EC '~m~x!!2F '~G~m~x!!!2s2~x!p~x! dx2,

j1~x1! 5EC '~m~x!!F '~G~m~x!!!2p~x! dx2+
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We call [m1~x1! an oracle estimator because its definition uses knowledge
that only an oracle could have+ A variety of smoothing paradigms could have
been chosen here, and each will result in an “oracle” estimate+We have chosen
the local linear with constant bandwidth kernel weighting because the local con-
stant version, which does not include the slope parameteru1 and is slightly
computationally easier, will result in “bad bias” behavior~for a discussion of
the merits of local linear estimation see Fan, 1992!+ Higher order polynomials
than linear can be used and will result in faster rates of convergence under
appropriate smoothness conditions+

Remark 1+ When~3! is true, we haveC '~m~x!! 5 10s2~x! by Property 3 of
Gourieroux et al+ ~1984a!+ In this case, j1~x1! is proportional toi1~x1!, and one
obtains the simpler asymptotic variance proportional to

VE 5
1

Es22~x!F '~G~m~x!!!2p~x! dx2

+

The integration procedure of Linton and Härdle~1996! has asymptotic vari-
ance proportional to

VH 5EG'$m~x!%2s2~x!
p2

2~x2!

p~x!
dx2+

BecauseG' 5 10F ', we have, applying the Cauchy–Schwartz inequality, that
VE # VLH , and the oracle estimator has lower variance than the integration es-
timator+ When ~3! is not completely true, i+e+, when the variance is misspeci-
fied, it is not possible to~uniformly! rank the two estimators unless the form of
heteroskedasticity is restricted in some way~see the next section!+

Remark 2+ The bias of [m1~x1! is what you would expect ifc 1 m2~{! were
known to be exactly zero, and it is design adaptive+ In the Linton and Härdle
procedure there is an additional multiplicative factor to the bias,

E p2~x2!

F '~G~m~x!!!
dx2,

which can be either greater or less than one+

Remark 3+ Note that [m1~x1! is not guaranteed to satisfy* [m1~x1!p1~x1! dx1 5
0, but the recentered estimate

[mc1~x1! 5 [m1~x1! 2E [m1~x1!p1~x1! dx1

does have this property+ In fact, the variance of [mc1~x1! and [m1~x1! are
the same to first order, whereas the bias of[mc1~x1! hasm1

''~x1! replaced by
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m1
''~x1! 2 *m1

''~x1!p1~x1! dx1+ According to integrated mean squared error,
then, we are better off recentering because

EHm1
''~x1! 2Em1

''~x1!p1~x1! dx1J2

p1~x1! dx1 # E$m1
''~x1!%2p1~x1! dx1+

2.2. Feasible Procedures

The previous section established the standard by which we choose to measure
our estimators+We now show that one can achieve the oracle efficiency bounds
given in Theorem 1 by substituting a suitable pilot estimator ofc 1 m2~X2i ! in
the criterion function~4!+ Suppose thatIc 1 Km2~X2i ! is some initial consistent
estimate and let

EQn~u! 5
1

nhn
(
i51

n

KS x1 2 X1i

hn
D$Yi DCi ~u! 1 DAi ~u!%, (5)

where DAi ~u! 5 A~F~ Ic 1 Km2~X2i ! 1 u0 1 u1~X1i 2 x1!!! and DCi ~u! 5 C~F~ Ic 1
Km2~X2i ! 1 u0 1 u1~X1i 2 x1!!!+ Now let Zu*~x1! 5 ~ Zu0

*~x1!, Zu1
*~x1!! minimize

EQn~u! and let [m1
*~x1! 5 Zu0

*~x1! be our feasible estimate ofm1~x1!+ Suitable
initial estimates are provided by the Linton and Härdle~1996! procedure, which
is explicitly defined+ Finding Zu* still involves solving a nonlinear optimization
problem in general; an alternative approach here is to use the linearized two-
step estimator

S [m1
**~x1!

[m1
**'~x1!D [ Zu** 5 Du 2 F ]2 OQn~ Du!

]u]uT G21 ] EQn~ Du!

]u
,

where Du is the full vector of preliminary estimates+
To provide asymptotic results we shall suppose that the initial estimator sat-

isfies a linear expansion+ Specifically, we suppose that

Ic 2 c 1 Km2~X2i ! 2 m2~X2i ! 5 (
a52

d 1

ngn
(
j51

n

PKSXai 2 Xaj

gn
Dwa~Xi ,Xj !«j 1 dni ,

(6)

where«j 5 Yj 2 E~Yj 6Xj !, where PK is a kernel function, gn is a bandwidth se-
quence, andwa is some fixed function+ The expansion~6! is assumed to obey
the regularity conditions B given in the Appendix, which include the require-
ment that the remainder termdni 5 op~n2205! uniformly in i+ A number of pro-
cedures have recently been proposed for estimating components in additive
models under a variety of sampling schemes~see, e+g+, among others Linton
and Nielsen, 1995; Linton and Härdle, 1996; Yang and Härdle, 1997; Kim, Lin-
ton, and Hengartner, 1997!+ The expansion~6! can be achieved by all of these
methods by undersmoothing under various conditions+1 One might need to as-
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sume stronger smoothness conditions than made in Assumption A to achieve
this, although recent work by Hengartner~1996! suggests this may not be
necessary+

We now have the following result+

THEOREM 2+ Suppose that AssumptionsA and B given in the Appendix
hold+ Then, under~2!, we have

n205$ [m1
*~x1! 2 [m1~x1!%, n205$ [m1

**~x1! 2 [m1~x1!% rp 0+

This says that efficient estimates can be constructed by the two-step proce-
dure and by the linearized two-step estimator; estimation of the nuisance pa-
rameterc 1 m2~{! has no effect on the limiting distribution+ This is not generally
the case in parametric estimation problems, unless there is some orthogonality
between the estimating equations+ In our case, there is an intrinsic local orthog-
onality that affects smoothing operations+

Standard error and bandwidth choice issues can now be addressed via
the mean squared error expressions given in Theorem 1, using modifications
of standard methods+ Thus, under the conditions of Theorem 2 and provided
nhn

5 r 0, the following interval,

[m1
*~x1! 6 za02! 1

nhn

7K722
Zi1~x1!

Zj12~x1!
,

provides 12 a coverage of the true functionm1~x1!, whereza is thea critical
value from the standard normal distribution, whereas

Zi1~x1! 5
1

n (
i51

n

C '~ Km~x1,X2i !!
2F '~G~ Km~x1,X2i !!!

2 Is2~x1,X2i !,

Zj1~x1! 5
1

n (
i51

n

C '~ Km~x1,X2i !!F
'~G~ Km~x1,X2i !!!

2,

in which Km~{! and Is2~{! are any uniformly consistent estimates ofm~{! and
s2~{! ~see Härdle and Linton, 1994!+

3. MULTIPARAMETER EXTENSIONS

The models we have examined thus far were one-parameter families as has
been the case in most of the literature on additive models; we now consider
extensions to multiple parameter families+ The quadratic exponential family of
Gourieroux et al+ ~1984a! can be analyzed similarly to the process described
previously+ This would amount to having an additional set of equations that
impose additivity on some transformation of the variance+ We shall consider a
slightly more general situation based on the generalized method of moments,
which allows the additivity to be imposed on any set of moments+ We suppose
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that there exists a known functionw :Rm1d1p r Rq such that there exists a
vector of additive functionsg0~x! 5 ~g1

0~x!, + + + , gp
0~x!! with

gl
0~x! 5 cl 1 (

a51

d

gla~xa!, l 5 1, + + + , p,

wheregla~Xa! are mean zero for identification, for which

E @w~U, g0~X !!6X 5 x# 5 0, (7)

whereU 5 ~Y,X !+ We assume thatq . 1 and that there is a unique solution to
~7!+ This sort of information could arise from an economic model or through
partial specification of moments, as happens in the ARCH models~see the dis-
cussion that follows!+ It also includes a full likelihood specification as a special
case+ For example, suppose that,~U, g0~X !! is the logarithm of the density
function of Y6X in which g0~X ! is a vector of parameters+ Then, g0~x! is the
unique quantity that satisfies

]

]g
E @,~U, g0~X !!6X 5 x# 5 0+

This system of equations is of the form~7!+
This leads naturally to the following estimation scheme+ First, estimateg0~x!

by any unrestricted smoothing method—we propose a sort of local GMM+ Sec-
ond, integrate out the directions not of interest to get a preliminary estimate
of the univariate effects+ Finally, reestimate the local GMM criterion function
replacing the parameters of the components not of interest by preliminary
estimates+

Let Du~x! 5 ~ Du1~x!, + + + , Dup~x!! minimize the following criterion:

** 1

nhn
d (

i51

n

KS x 2 Xi

hn
Dw~Ui ,u!**

An

2

(8)

with respect tou 5 ~u1, + + + ,up!, whereUi 5 ~Yi ,Xi !, K is a multivariate kernel,
whereas7x7An

5 ~xTAnx!102 for some sequence of positive definite matrices
An rp A, and let Ig~x! 5 Du~x!+ We are using a local constant approach here for
simplicity+ The asymptotic properties of this procedure can be derived using an
extension of Gozalo and Linton~1995!; we expect that Ig~x! is asymptotically
normal with pointwise mean squared error rate ofn240~41d! and indeed has an
expansion like~6!+ To obtain estimates of the component functions, we simply
integrate this pilot procedure as follows, letting, for example,

Igl1~x1! 5E Igl ~x!p2~x2! dx2, l 5 1, + + + , p (9)

and the other components similarly+2 To estimatecl we can use Icl 5
* Igl1~x1!p1~x! dx1+ Thus, Iglj ~{! are feasible preliminary estimates ofglj ~{!+ To
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achieve efficiency, we must modify this procedure to impose additivity+We first
describe the oracle estimate+ Let Zu 5 ~ Zu0, Zu1! 5 ~ Zu01, + + + , Zu0p, Zu11, + + + , Zu1p! mini-
mize the partial GMM criterion

Gn~u! 5 ** 1

nhn
(
i51

n

KS x1 2 X1i

hn
Dw@Ui ,c 1 u0 1 u1{~X1i 2 x1! 1 g{2~X2i !#**

An

2

with respect tou0 5 ~u01, + + + ,u0p! and u1 5 ~u11, + + + ,u1p!, where the vectors
g{2~{! 5 ~g12~{!, + + + , gp2~{!! and c 5 ~c1, + + + ,cp! are assumed known, and let
[g{1~x1! 5 ~ [g11~x1!, + + + , [gp1~x1!! 5 Zu0~x1!+ Finally, the feasible version of

this replacesg{2~{! and c by a vector of preliminary estimates provided by
the integration principle, i+e+, we let Zu* 5 ~ Zu0

*, Zu1
*! 5 ~ Zu01

* , + + + , Zu0p
* , Zu11

* , + + + , Zu1p
* !

minimize

EGn~u! 5 ** 1

nhn
(
i51

n

KS x1 2 X1i

hn
Dw@Ui , Ic 1 u0 1 u1{~X1i 2 x1! 1 Ig{2~X2i !#**

An

2

with respect tou 5 ~u0,u1!, where Ic and Ig{2~X2i ! are obtained from~8! and~9!,
and let [g{1

* ~x1! 5 ~ [g11
* ~x1!, + + + , [gp1

* ~x1!! 5 Zu0
*~x1!+

3.1. Asymptotics

Define the followingq 3 p andq 3 q matrices:

C~x, t! 5 EF ]w~U, t!

]t *X 5 xG; R~x, t! 5 E @w~U, t!wT~U, t!6X 5 x# ,

and let C1 5 C1~x1! 5 *C~x, g0~x!!p~x! dx2 and R1 5 R1~x1! 5
*R~x, g0~x!!p~x! dx2+ Furthermore, suppose that each of the preliminary esti-
mators described in~8! and ~9! satisfies a linear expansion such as~6!+ We
have the following result+

THEOREM 3+ Under the regularity conditionsA' and B' given in the Ap-
pendix, we have under the specification~3! that n205 @ [g{1

* ~x1! 2 [g{1~x1!# 5
op~1! and that

[g{1~x1! 2 g{1~x1!

5
AD

NF hn
2

2
m2~K !g1

''~x1!,
1

nhn

7K722~C1
TAC1!21~C1

TAR1 AC1!~C1
TAC1!21G+

(10)

Furthermore, if we take An 5 ZR1
21~x1!, where ZR1~x1! rp R1~x1!, then

n205 @ [g{1
* ~x1! 2 [g{1~x1!# 5 op~1! and

[g{1~x1! 2 g{1~x1! 5
AD

NF hn
2

2
m2~K !g1

''~x1!,
1

nhn

7K722~C1
TR1

21C1!21G +
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The choice ofAn 5 ZR1
21~x1! as weighting gives minimum variance among

the class of all such procedures+ Note that the efficiency standard we erect here
is not as high as in the one-parameter models+ This is because, generically, we
can expect correlation between[gj1~x1! and [gk1~x1! for j, k 5 1, + + + , p+ In other
words, it is not possible to estimateg11~x1!, say, as well as if one knew every
other component function in the model, although it is possible to estimate the
vectorg{1~{! as well as ifg{2~{! were known+

As before, the preceding result can be used for bandwidth choice and stan-
dard error construction by replacing unknown quantities in~10! by estimates+
Thus, under the conditions of Theorem 3 and providednhn

5 r 0, for any vector
a 5 ~a1, + + + ,ap!T, the following interval,

aT [g{1
* ~x1! 6 za02! 1

nhn

7K722 aT~ ZC1
TAn ZC1!21~ ZC1

TAn ZR1 An ZC1!~ ZC1
TAn ZC1!21a,

provides 12 a coverage of the true functionaTg{1~x1!, where

ZC1 5
1

nhn
(
i51

n

KS x1 2 X1i

hn
D ]w

]t
@Ui , Ic 1 Ig{1~x1! 1 Ig{2~X2i !# ,

ZR1 5
1

nhn
(
i51

n

KS x1 2 X1i

hn
D~w{wT!@Ui , Ic 1 Ig{1~x1! 1 Ig{2~X2i !# +

3.2. Examples

Example 1 (gamma and beta)

Suppose that there exist functionsa~x! and b~x!, both themselves additively
separable functions ofx, that satisfy the equations

E~Y6X 5 x! 5 a~x!b~x!; E~Y2 6X 5 x! 5 b2~x!a~x!@11 a~x!# +

This partial model specification is implied byY6X 5 x being gamma distrib-
uted but is somewhat weaker+ In this case, ~7! is satisfied withw1~Y,X6a,b! 5
Y2 ab andw2~Y,X6a,b! 5 Y2 2 b2a~1 1 a!+ A full model specification can
be based on the gamma~log! density function of~Y,X !, from which we obtain

E @,~U,a,b 6X 5 x!#

5 ~a~x! 2 1!m,~x! 2 b~x!21m~x! 2 ln G~a~x!! 2 a~x! ln b~x!, (11)

whereG~{! is the gamma function, whereasm~x! 5 E @Y6X 5 x# andm,~x! 5
E @ ln Y6X 5 x# + This generates the following moment conditions:

w1~U 6a,b! 5 ln Y2
G '~a!

G~a!
2 ln b; w2~U 6a,b! 5

Y2 ab

b2 +
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The asymptotic variance of these procedures can be found by direct calcula-
tion+3 The beta distribution, which is frequently used in the study of rate or
proportion data, can also be put in this framework+ See Heckman and Willis
~1977! for an econometric application of the beta distribution+

Example 2 (variance models [ARCH])

Suppose that with probability one

E~Y6X 5 x! 5 m~x! 5 Fm@a~x!# , a~x! 5 cm 1 m1~x1! 1 m2~x2!, (12)

var~Y6X 5 x! 5 s2~x! 5 Fs @b~x!# , b~x! 5 cs 1 s1~x1! 1 s2~x2! (13)

for some known functionsFm andFs+ Estimates ofmj ~{! andsj ~{! can be ob-
tained by integrating~transformed! nonparametric estimates of the mean and
variance, as in Yang and Härdle~1997!+ Note that their procedure ignores the
cross-equation information, which can be imposed in our framework+ Using
only the mean and variance specification gives the following moment func-
tions: w1~Y,X6a,b! 5 Y 2 Fm~a! andw2~Y,X6a,b! 5 Y2 2 Fm

2~a! 2 Fs~b!;
the asymptotic variance of the GMM procedure is as in~10! with

R~x, g0~x!! 5 Fs2~x! k3~x!

k3~x! k4~x! 1 2G;
C~x, g0~x!! 5 F Fm

' ~a~x!! 0

2Fm~a~x!!Fm
' ~a~x!! Fs

' ~a~x!!G ,
wherek3~x! 5 E @$Y2 E~Y6X 5 x!%36X 5 x# + The optimal estimator has lower
asymptotic variance than the procedure of Yang and Härdle~1997, Theorem
2+4! because it uses cross-equation information+4

A convenient complete model specification here is thatY6X 5 x is
N~m~x!,s2~x!!, which leads to the following moments:

w1~Y,X6a,b! 5
Y2 Fm~a~x!!

Fs~b~x!!
Fm
' ~a~x!!;

w2~Y,X6a,b! 5
1

2 HSY2 Fm~a~x!!

Fs~b~x!! D2

2 1J Fs
'

Fs

~b~x!!+

The corresponding procedure has asymptotic variance as in~10! with

R~x, g0~x!! 5 C~x, g0~x!! 5 3
Fm
'2~a~x!!

Fs~b~x!!
0

0
1

2 F Fs
'

Fs

~b~x!!G24 +
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4. CONCLUDING REMARKS

We have provided a general principle for obtaining efficient estimates that works
in almost any model with separable nonparametric components, whether fully
specified or only partially specified+We did not consider models with paramet-
ric components or discrete explanatory variables, because such models can be
viewed as special cases of ours+ The only new issue that arises in such models
is how to impose the restriction of parametric effects efficiently+

If the additive structure~2! does not hold, then [m1~x1! is estimating some
other functional of the joint distribution~depending of course on whatc 1 m2~{!
is! ~see, e+g+, Newey, 1994!+ Specifically, [m1~x1! consistently estimates the min-
imizer of a Kullback–Liebler distance with respect tou+ Centered correctly, the
asymptotic distributions take a similar form, with some relabeling, and are ef-
ficient for estimating these particular functionals+

NOTES

1+ Note that the expansion~6! contains no bias terms, which can be achieved by undersmooth-
ing or additional bias reduction+

2+ A computationally efficient estimate ofgl1~x1! can be constructed by generalizing Kim et al+
~1997! as follows+ Let

Igl1~x1! 5
1

n (
i51

n

Kh~x1 2 X1i ! Igl ~Xi !
Ip2~X2i !

Ip~Xi !
,

where Ip2 and Ip are kernel estimates ofp2 andp, respectively+
3+ With regard to preliminary estimation in the full model specification, there are two estima-

tion strategies+ First, simply substitute estimates ofm~x! andm,~x! in ~11! and maximize to obtain
Ja~x! and Db~x!+ Second, one can estimate the local parametersa~x! andb~x! by local likelihood;

i+e+, let Ja~x! and Db~x! maximize

1

nhn
d (

i51

n

KS x 2 Xi

hn
D @~a 2 1! ln Yi 2 b21Yi 2 ln G~a! 2 a ln b#

with respect toa,b+ In both cases, we then integrateJa~x! and Db~x! with respect top2~x2! dx2+
4+ Strictly speaking our results only apply to the i+i+d+ case, but recent work of Kim~1998! has

extended this to a time series setting+
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APPENDIX

Let L~z! 5 C~F~z!!, P~z! 5 A~F~z!!, and

D~x, z! 5 m~x!L~z! 1 P~z!+

We shall letD ~ j !~x, z!, j 5 1,2, + + + denote partial derivatives ofD with respect toz+ We
let 6A65 ~ tr~ATA!!102 for any matrixA+

We use the following assumptions+

Assumption A.

1+ The random sample$~Yi ,Xi !%i51
n , Yi [ R, Xi [ X a compact subset ofRd is i+i+d+

with E~Y4! , `+
2+ Let p~x! be the marginal density ofX with respect to Lebesgue measure and let

m~x! [ E~Y7X 5 x!+ We suppose thatp~x! and m1~x1! are twice continuously
differentiable with respect tox1 at all x and that infx[X p~x! . 0+

3+ The variance functions2~x! 5 var~Y6X 5 x! is Lipschitz continuous at allx [ X;
i+e+, there exists a constantc such that for allx, x ', we have6s2~x! 2 s2~x '!6 #
c6x 2 x ' 6+

4+ The functionsA~{!, C~{!, G~{!, andF~{! have bounded continuous second deriva-
tives over any compact interval+ The functionG is strictly monotonic+

5+ The kernel weighting functionK is continuous, symmetric about zero, of bounded
support, and satisfies*K~v! dv 5 1+

6+ $hn : n $ 1% is a sequence of nonrandom bounded positive constants satisfying
hn r 0 andnhn0 log n r `+

7+ The true parametersu0
0~x1! 5 m1~x1! and u1

0~x1! 5 m1
' ~x1! lie in the interior of

the compact parameter spaceQ 5 Q0 3 Q1+

Assumption B.

1+ For eacha 5 2, + + + ,d, the functionswa and PK are continuous on their bounded
supports+ Furthermore, PK is Lipschitz continuous; i+e+, there exists a finite con-
stantc such that6 PK~t! 2 PK~s!6 # c6 t 2 s6 for all t,s+

2+ The bandwidths satisfygn0hn r 0, nhngn r `, andn3gn
50 log n r `+

3+ The remainder term in~6! satisfies

max
1#i#n

6dni 6 5 op~n2205!+

4+ The functionsA~{!, C~{!, andF~{! have bounded continuous third derivatives over
any compact interval+
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Assumptions A' and B' are like A and B except that we replacem, s2, A, C, andF by
the corresponding quantities derived fromw+

Proof of Theorem 1. Let u0
0~x1! and u1

0~x1! be the true local parameters, i+e+,
u0

0~x1! 5 m1~x1! and u1
0~x1! 5 m1

' ~x1!+ We first show that Zu~x1! 5 ~ Zu0~x1!, Du1~x1!!T

consistently estimatesu~x1! 5 ~u0~x1!,u1~x1!!+ By the uniform law of large numbers in
Gozalo and Linton~1995!, we have

sup
u[Q

6Qn~u! 2 OQn~u!6rp 0,

where OQn~u! 5 E$Qn~u!%+ This applies because of the smoothness and boundedness
conditions onA, C, andF+ Furthermore,

OQn~u! 5ED~X,c 1 m2~X2! 1 u0 1 u1~X1i 2 x1!!
1

hn

KS x1 2 X1

hn
Dp~X ! dX

5ED~x1 2 uhn, x2,c 1 m2~x2! 1 u0 1 u1hnu!K~u!p~x1 2 uhn, x2! du dx2

r ED~x,c 1 m2~x2! 1 u0!p~x! dx2 :5 Q0~u0! (A.1)

uniformly in u [ Q+ The second equality follows by the change of variablesX1 r u 5
~x1 2 X1!0hn, and convergence follows by dominated convergence and continuity+ We
now apply property 4 of Gourieroux et al+ ~1984a!, which says that, provided F is
monotonic,

Q0~u0! # Q0~u0
0!

with equality if and only ifu0 5 u0
0+ This establishes consistency ofZu0~x1!+ The deriva-

tive parameteru1~x1! is determined by the next order term~in hn! through a Taylor
expansion of~A+1!+When evaluated at~u0

0,u1!, this quantity is, apart from terms that do
not depend onu1 or are of smaller order, hn

2 times a constant times

Q1~u1! 5EHa~x!u1 1
1

2
b~x!u1

2J p~x! dx2, (A.2)

where

a~x! 5
]m

]x1

~x!C'~m~x!!F '~G~m~x!!!; b~x! 5 D''~x,G~m~x!!!+

Note that by properties 1 and 2 of Gourieroux et al+ we have

D ''~x,G~m~x!! 5 2C '~m~x!!F '~G~m~x!!!2, (A.3)
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and we can see that the unique minimum ofQ1~u1! is u1~x1! 5 m1
' ~x1! ~C '~m! . 0 by

property 3 of Gourieroux et al+!+ See Gozalo and Linton~1995! for further discussion+
This establishes the consistency ofZu~x1!+

We now turn to asymptotic normality+ By an asymptotic expansion we have

Hn @ Zu~x1! 2 u0~x1!# 5 2FHn
21

]2Qn~u*~x1!!

]u]uT Hn
21G21

Hn
21

]Qn~u0~x1!!

]u
, (A.4)

whereHn 5 diag~1, hn! andu*~x1! is a vector intermediate betweenZu~x1! andu0~x1!+
The presentation of~A+4! assumes that the matrix in square brackets is invertible, which
we shall show is true with probability tending to one+ The score function is

]Qn~u0~x1!!

]u
5

22

nhn
(
i51

n

KS x1 2 X1i

hn
DS 1

~X1i 2 x1!D$Yi L'~ OZi ! 1 P'~ OZi !%,

whereas the Hessian matrix is

]2Qn~u!

]u]uT

5
2

nhn
(
i51

n

KS x1 2 X1i

hn
DS 1 ~X1i 2 x1!

~X1i 2 x1! ~X1i 2 x1!2D$Yi L''~ OZi ~u!! 1 P''~ OZi ~u!!%,

where

OZi ~u! 5 c 1 m2~X2i ! 1 u0 1 u1~X1i 2 x1!,

Zi 5 c 1 m2~X2i ! 1 m1~X1i !,

and OZi 5 OZi ~u
0~x1!!+

We next show that the vectorHn
21]Qn~u0~x1!!0]u satisfies a central limit theorem,

whereasHn
21$]2Qn~u*~x1!!0]u]uT%Hn

21 is, asymptotically, a positive definite diagonal
matrix+ Write the score function as

Hn
21

]Qn~u0~x1!!

]u
5

22

nhn
(
i51

n

KS x1 2 X1i

hn
D«i L'~ OZi !1

1

X1i 2 x1

hn
2

2
2

nhn
(
i51

n

KS x1 2 X1i

hn
DD '~Xi , OZi !1

1

X1i 2 x1

hn
2

[ Tn1 1 Tn2,

where«i 5 Yi 2 m~Xi ! 5 Yi 2 E~Yi 6Xi 5 x!+ The first random vector is mean zero and
has variance matrix

518 OLIVER B. LINTON



var~Tn1! 5
4

nhn

1

nhn
(
i51

n

E3K 2S x1 2 X1i

hn
Ds2~Xi !L

'~ OZi !
21 1

X1i 2 x1

hn

X1i 2 x1

hn
S X1i 2 x1

hn
D224

5
4

nhn
EK 2~u!s2~x1 2 uhn, x2!L'~c 1 m2~x2! 1 m1~x1! 1 hnm1

' ~x1!u!2

{S1 u

u u2Dp~x1 2 uhn, x2! dx2 du

5
4

nhn
S7K722 0

0 m2~K 2!D i1~x1!$11 o~1!%

by the law of iterated expectation, Fubini’s theorem, and dominated convergence, which
can be applied using the boundedness and continuity conditions+ Finally,

e1
TTn1

! 4

nhn

7K722 i1~x1!

n N~0,1!,

wheree1
T 5 ~1,0!, by the Lindeberg central limit theorem~see Gozalo and Linton, 1995,

Lemma CLT!+
The second term in the score function determines the bias of[m1~x1!+ By Taylor

expansion

D~Xi , OZi ! 5 D~Xi ,Zi ! 1 D '~Xi ,Zi !@m1~X1i ! 2 m1~x1! 2 m1
' ~x1!~X1i 2 x1!#

1 D ''~Xi ,Zi
*!@m1~X1i ! 2 m1~x1! 2 m1

' ~x1!~X1i 2 x1!# 2,

whereZi
* are intermediate betweenOZi andZi + Note thatD~Xi ,Zi ! 5 0 by property 1 of

Gourieroux et al+ ~1984a!+ Therefore,

Tn2 5
22

nhn
(
i51

n

KS x1 2 X1i

hn
D1

1

X1i 2 x1

hn
2

3 D '~Xi ,Zi !@m1~X1i ! 2 m1~x1! 2 m1
' ~x1!~X1i 2 x1!#

1
22

nhn
(
i51

n

KS x1 2 X1i

hn
D1

1

X1i 2 x1

hn
2

3 D ''~Xi ,Zi
* !@m1~X1i ! 2 m1~x1! 2 m1

' ~x1!~X1i 2 x1!# 2

5
21

nhn
(
i51

n

KS x1 2 X1i

hn
D1

1

X1i 2 x1

hn
2m1

''~x1!~X1i 2 x1!2D '~Xi ,Zi ! 1 op~hn
2! (A.5)

5 2hn
2Sm2~K !

0 Dm1
''~x1! i1~x1! 1 op~hn

2!, (A.6)
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where~A+5! follows from the fact that for somec , `,

sup
6 t12x16,chn

6m1~t1! 2 m1~x1! 2 m1
' ~x1!~t1 2 x1! 2 2

12m1
''~x1!~t1 2 x1!2 6 5 op~hn

2!

and the fact thatOZi andZi , and henceZi
*, are bounded, whereas~A+6! follows by a stan-

dard law of large numbers, change of variables, and dominated convergence arguments+
By applying the same uniform law of large numbers and dominated convergence ar-

guments we used in the consistency proof, we have that

sup
u[Qn

*Hn
21S ]2Qn~u!

]u]uT 2
]2Qn~u0~x1!!

]u]uT DHn
21* 5 op~1!,

whereQn is a shrinking neighborhood ofu0+ Note that this only requires two continuous
derivatives, because if sup6 OZi ~u! 2 Zi 65 op~1!, then sup6g~ OZi ~u!! 2 g~Zi !65 op~1! for
any uniformly continuous functiong+ Furthermore,

]2Qn~u0~x1!!

]u]uT 5 EF ]2Qn~u0~x1!!

]u]uT G1 op~1!

5
22

nhn
(
i51

n

E3KS x1 2 X1i

hn
DD ''~Xi , OZi !1 1

X1i 2 x1

hn

X1i 2 x1

hn
S X1i 2 x1

hn
D224

1 op~1!

rp 22ED ''~x,G~m~x!!!p~x! dx2S1 0

0 m2~K !D , (A.7)

where the equalities follow by a law of large numbers, whereas the third line follows
using dominated convergence and continuity arguments as previously+ Applying ~A+3!,
we find that the~1,1! element of~A+7! is 22j1~x1! as required+ n

Proof of Theorem 2. Assumption B implies that

Ic 2 c 1 max
1#i#n

6 Km2~X2i ! 2 m2~X2i !6 5 OpS! log n

ngn
D1 op~n2205!+ (A.8)

For anyu, let

EZi ~u! 5 Ic 1 Km2~X2i ! 1 u0 1 u1~X1i 2 x1!

and let EZi 5 EZi ~u
0! and OZi 5 OZi ~u

0! as before+ Define alsohni~u! 5 EZi ~u! 2 OZi ~u! 5
EZi 2 OZi 5 hni + ExpandingD~Xi , EZi ~u!! and its derivatives aboutD~Xi , OZi ~u!! in a Tay-

lor series, we get~for j 5 0,1 andr 5 1,2, + + + !,

D ~ j ! ~Xi , EZi ~u!! 5 (
,50

r21

D ~ j1,! ~Xi , OZi ~u!!hni
, 1 D ~ j1r ! ~Xi , OZi

*j ~u!!hni
r , (A.9)
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provided the relevant derivatives exist, where OZi
*j ~u! are intermediate betweenEZi ~u!

and OZi ~u!+ Our conditions B imply that max1#i#n6hni 6 5 Op~% log n0ngn! 1 op~n2205!+
Furthermore, although EZi ~u! can be unbounded, with a probability tending to one all
EZi ~u! lie in the compact support ofOZi ~u!+ Therefore, we have that

sup
u[Qn

max
1#i#n

6D ~ j ! ~Xi , EZi ~u!! 2 D ~ j ! ~Xi , OZi ~u!!6 5 OpS! log n

ngn
D1 op~n2205!,

j 5 0,1,2, (A.10)

by Assumption B4+ A similar result evidently holds forL, P, and their derivatives+
Therefore,

sup
u[Q

6 EQn~u! 2 Qn~u!6

#
2

nhn
(
i51

n

*KS x1 2 X1i

hn
D«i *{sup

u[Q

max
1#i#n

6L~ EZi ~u!! 2 L~ OZi ~u!!6

1
1

nhn
(
i51

n

*KS x1 2 X1i

hn
D*{sup

u[Q

max
1#i#n

6D~Xi , EZi ~u!! 2 D~Xi OZi ~u!!6

5 OpS! log n

ngn
D1 op~n2205! 5 op~1!+

Therefore, [m1
*~x1! rp m1~x1!+

We now turn to the asymptotic distribution+ The argument is based on showing that
the feasible score and Hessian matrix are sufficiently close to their infeasible counter-
parts+ We show that

*Hn
21S ] EQn~u0~x1!!

]u0

2
]Qn~u0~x1!!

]u0
D* 5 op~n2205! (A.11)

sup
u[Qn

*Hn
21S ]2 EQn~u!

]u]uT 2
]2Qn~u!

]u]uT DHn
21* 5 op~1!+ (A.12)

We first show~A+11!+ We have

Hn
21S ] EQn~u0~x1!!

]u0

2
]Qn~u0~x1!!

]u0
D

5
22

nhn
(
i51

n

KS x1 2 X1i

hn
D1

1

S X1i 2 x1

hn
D2 «i $L

'~ EZi ! 2 L'~ OZi !%

1
2

nhn
(
i51

n

KS x1 2 X1i

hn
D1

1

S X1i 2 x1

hn
D2 $D '~Xi , EZi ! 2 D '~Xi , OZi !%

5 Tn3 1 Tn4+
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In the sequel we shall restrict attention to the first component of these vectors+ The
second component behaves similarly—the functionsK~u! andK~u!u have similar prop-
erties+ We first examine the first element ofTn4, which satisfies

Tn41
5

2

nhn
(
i51

n

KS x1 2 X1i

hn
DD ''~Xi , OZi !hni 1 HOpS! log n

ngn
D1 op~n2205!J2

by ~A+9!+ By Assumption B3, the remainder term isop~n2205!+ Furthermore, the leading
term of Tn41

is

2

nhn
(
i51

n

KS x1 2 X1i

hn
DD ''~Xi , OZi !

{H 1

ngn
(
a52

d

(
j51

n

PKSXai 2 Xaj

gn
Dwa~Xi ,Xj !«j 1 op~n2205!J

5
1

n (
j51

n

«j H 1

ngnhn
(
i51

n

KS x1 2 X1i

hn
D(

a52

d

PKSXai 2 Xaj

gn
Dwa~Xi ,Xj !D

''~Xi , OZi !J
1 op~n2205!

[
1

n (
j51

n

«j znj 1 op~n2205!

5 Op~n2102! 1 op~n2205!+ (A.13)

The reason for~A +13! is as follows+ We have E @Tn616X1, + + + ,Xn# 5 0, whereas
var@Tn616X1, + + + ,Xn# 5 n22 (j51

n s2~Xj !znj
2 , where for anyc . 0,

PrF 1

n (
j51

n

s2~Xj !znj
2 $ cG #

sup
x

s2~x!E~zn1
2 !

c
(A.14)

by identity of distribution and the Markov inequality+ Now, E~zn1
2 ! 5 E2~zn1! 1

var~zn1!, where supn E~zn1! , ` and var~zn1! 5 O~10ngnhn! 5 o~1! by Assump-
tion B2+ Therefore, the numerator of the right-hand side of~A+14! is finite, so that
var@Tn616X1, + + + ,Xn# 5 Op~n21!+ From this, ~A+13! follows by an application of Lemma 1,
which follows+ The same result applies to the second component ofTn41+

To handleTn3 substitute~A+9! with j 5 1 to yield that

Tn31
5

2

nhn
(
i51

n

KS x1 2 X1i

hn
D«i L''~ OZi !hni 1 HOpS! log n

ngn
D1 op~n2205!J2

as before+ Finally, the leading term of leading term ofTn31
is

2

nhn
(
i51

n

KS x1 2 X1i

hn
D«i L''~ OZi !

{F 1

ngn
(
a52

d

(
j51

n

PKSXai 2 Xaj

gn
Dwa~Xi ,Xj !«j 1 op~n2205!G

5 (
i51

n

(
j51

n

Un~Vi ,Vj ! 1 op~n2205!, (A.15)
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whereVi 5 ~Xi ,«i ! and the “U-statistic” kernel is

Un~Vi ,Vj ! 5
2

n2gnhn

KS x1 2 X1i

hn
D(

a52

d

PKSXai 2 Xaj

gn
D«i L''~ OZi !wa~Xi ,Xj !«j +

The error in ~A +15! is op~n2205! because of the uniformity in the expansion~6!+
We have E @Un~Vi ,Vi !# 5 O~10n2gn! and var@Un~Vi ,Vi !# 5 O~10n4gn

2hn!, whereas
E @Un~Vi ,Vj !# 5 0 and var@Un~Vi ,Vj !# 5 O~10n4gnhn! for i Þ j+ Furthermore, E @Un~Vi ,
Vj !Un~Vi ,Vk!# 5 E @Un~Vi ,Vj !Un~Vk,Vj !# 5 0+ Therefore, by standard arguments,
(i51

n (j51
n Un~Vi ,Vj ! 5 Op~10n#gnhn!+

The proof of~A+12! follows by another application of~A+9!+ The proof for [m1
**~x1! is

similar and is omitted+ n

Proof of Theorem 3. The proof is very similar to that of Theorems 1 and 2 and is
omitted+

In the proof of Theorem 2 we made use of the following lemma~which may be well
known, although we have not found any reference to such!+

LEMMA 1 + Let ~Yn,Xn! be a sequence of randomvariables with Yn scalar and Xn [
R,~n! for some,~n!+ Suppose that E~Yn6Xn! 5 mn~Xn! andvar~Yn6Xn! 5 sn

2~Xn! almost
surely, wheremn~Xn!,sn

2~Xn! rp 0+ Then, Yn rp 0+

Proof of Lemma 1. Define «n 5 @Yn 2 mn~Xn!#0sn~Xn!, which hasE~«n6Xn! 5 0
and var~«n6Xn! 5 1 ~we can suppose without loss of generality thatmn~Xn! andsn

2~Xn!
are real valued!, and for any sequencecn,

Yn
'~cn! 5 mn~Xn!1@6mn~Xn!6 , cn# 1 «nsn~Xn!1@6sn

2~Xn!6 , cn# +

Because bothmn~Xn! and sn
2~Xn! tend to zero in probability, there exists a sequence

cn r 0 for whichYn
'~cn! 2 Yn rp 0+ For this sequence, bothE @Yn

'~cn!# and var@Yn
'~cn!#

exist and tend to zero, which implies thatYn
'~cn! rp 0+ n
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