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EFFICIENT ESTIMATION OF
GENERALIZED ADDITIVE
NONPARAMETRIC REGRESSION
MODELS

OLIVER B. LINTON
London School of Economics
and
Yale University

We define new procedures for estimating generalized additive nonparametric re-
gression models that are more efficient than the Linton and H44#86 Bio-
metrika83, 529-540 integration-based method and achieve certain oracle bounds
We consider criterion functions based on the Linear exponential famfych
includes many important special cas®@¢e also consider the extension to multi-
ple parameter models like the gamma distribution and to models for conditional
heteroskedasticity

1. INTRODUCTION

Additive models are widely used in both theoretical economics and in eco-
nometric data analysisThe standard text of Deaton and Muellba&®80
provides many microeconomics examples in which a separable structure is con-
venient for analysis and important for interpretabilifhere has been much
recent theoretical and applied work in econometrics on semiparametric and
nonparametric methogisee Hardle and Linton1994) and Powell(1994) for
bibliography and discussioin such models additivity often has important im-
plications for the rate at which the components can be estimated

Let (X,Y) be a random variable witK of dimensiond andY a scalarCon-
sider the estimation of the regression functimix) = E(Y|X = x) based on
a random samplé(X;,Y;)}L, from this population Stone (198Q 1982 and
Ibragimov and Hasminskiil980 show that the optimal rate for estimating
is n~ ¢ with ¢ an index of smoothness af. An additive structure fomis
a regression function of the form

d
m(x) = ¢+ 21‘,1 M, (X,), 1)
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wherex = (Xy,...,Xq)" are thed-dimensional predictor variables amd, are
one-dimensional nonparametric functions operating on each element of the vec-
tor or predictor variables witle{m,(X,)} = 0. Stone(1986 shows that for
such regression curves the optimal rate for estimating the one-dimensional
rate of convergence with™ 2tV and does not increase with dimensiotrs
practice the backfitting procedures proposed in Breiman and Fried(h885
and Bujg Hastie and Tibshirani(1989 are widely used to estimate the addi-
tive componentsBuja et al (1989 equation(18)) consider the problem of find-
ing the projection ofm onto the space of additive functions representing the
right-hand side of1). Replacing population by samplthis leads to a system
of normal equations witind X nd dimensions To solve this in practicethe
backfitting or Gauss—Seidel algorithm is usually ugsee Hastie and Tibshi-
rani, 199Q p. 91; Venables and Ripleyl994 pp. 251-2535. This technique is
iterative and depends on the starting values and convergence crit€hese
methods have been evaluated on numerous data sets and been refined quite
considerably since their introduction

Recently Linton and Nielsen(1995, Tjgstheim and Auestadl994), and
Newey (1994 have independently proposed an alternative procedure for esti-
matingm,,, which we call integrationthat exploits the following ideéSuppose
that m(xy, X,) is any bivariate function and consider the quantitiegx,) =
I'm(Xq, X2) dPy(X5) andus(Xo) = [m(Xq, X2) dP;(X4), whereP; andP, are prob-
ability measuresIf m(xq, Xo) = mMy(X1) + mMy(X,), then wq(-) and w,(-) are
m,(-) andm,(-), respectivelyup to a constantn practice one replacen by an
estimate and integrates with respect to some known meaBleeprocedure is
explicitly defined and its asymptotic distribution is easily deriveentered cor-
rectly, it converges to a normal distribution at the one-dimensional; rie
faster rate is because integration is averaging and hence reduces variamce
estimation procedure has been extended to a number of other costestisas
the generalized additive modélinton and Héardle 1996, to dependent vari-
able transformation model{&inton, Chen Wang and Héardle 1997, to econo-
metric time series model(¥ang and Hardlg1997), to panel data model$orter
1996, and to hazard models with time varying covariates and right censoring
(Nielsen and Linton1997. Gozalo and Linton(1997) develop tests of addi-
tivity. In this wide variety of sampling schemes and models asymptotics for
integration-based procedures have been derived because of the explicit form
of the estimatarHowever the integration method does not fully exploit the
additive structure and is inefficientinton (1997 proposes a two-step proce-
dure that took the integration estimate as a first step and then did one backfit-
ting iteration from thatThis procedure is argued to be oracle efficjerd., as
efficient as the infeasible estimate that is based on knowing all components but
the one of interesiThe theoretical analysis of backfitting-like methods has only
just begun and is thus far confined to regressi@psomer and Ruppe(1997)
provide conditional mean squared error expressions for bivariate independent
and identically distributedi.i.d.) data under strong conditionshereas Linton
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Mammen and Nielsen(1997) establish a central limit theorem for a modified
form of backfitting called empirical projection
A generalized additive structure fam is of the form

d
G{m(x)} = c+ Zl m,(X,) (2)

for some knowntypically monotonig link function G, wherex = (Xy,..., Xg) "
are thed-dimensional predictor variables angj, are one-dimensional nonpara-
metric functions operating on each element of the vector of predictor vari-
ables Here E{m,(X,)} = 0 for identification This class of models includes
additive regression whe@ is the identity and multiplicative regression when
G is the logarithm For binary data it is appropriate to tak&to be the inverse
of a cumulative distribution function such as the normal or Idtfits ensures
that the regression function lies between 0 and 1 no matter what valties
>9_.m,(x,) takes. Compare this specification with the semiparametric sin-
gle index model considered in Ichimufa993 in which the index on the right-
hand side of2) is linear but the link functiorG(-) is unrestrictedapart from
the fact that it is the inverse of a cumulative distribution functjor.f.]).
Both models considerably weaken the restrictions imposed by parametric bi-
nary choice models but are nonnestéue advantage of the additive model is
that it allows for more general elasticity patterspecifically whereas in the
single index modeh;., = (9 In m/ax;)/(d In m/ax,) is restricted to be constant
with respect tox, for the additive modeh;., can vary withx; andx, (although
not with otherx’’s). Note that(2) is a partial model specification and we have
not restricted in any way the variance or other aspects of the conditional dis-
tribution £(Y|X) of Y given X. A full model specificationwidely used in this
context is to assume thaf (Y| X) belongs to an exponential family with known
link function G and mearm. This class of models is callegeneralized addi-
tive by Hastie and Tibshiran(il990. In some respect&®conometricians would
prefer the partial model specification in which we ke@p but do not restrict
ourselves to the exponential familjhis flexibility is a relevant consideration
for many data sets where there is overdispersion or heterogeneity

Turning to estimationStone(1986 shows that for such models the optimal
rate for estimatingn (andm,), based on a random samgley;, X;)}{~, from
this populationis the one-dimensional rate of convergencé/?*V to be com-
pared with the best possible rate mf“?*% whenm is not so restrictedin
practice the backfitting procedures in conjunction with Fisher scoring are widely
used to estimate generalized additive modsée Hastie and Tibshirarii99Q
p. 141). Linton and Hardlg1996 propose an alternative direct method for es-
timating the components by integrating a transformed pilot regression smoother
They provide sufficient conditions for a central limit theorem at the optimal
one-dimensional ratdNeverthelessthis estimator is inefficient for the reasons
given earlier
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In this paperwe suggest two-step procedures for estimatmg-) in (2) that
are more efficient than the integration methtltus extending the recent work
of Linton (1997 in regressionWe also provide more rigorous proofs of the
claims made in that workWe base our procedures on a localized version of the
likelihood function of linear exponential familidsee GourierouxMonfort, and
Trognon 19844 1984h. This family includes what we are calling the partial
model specification as a special case that corresponds to the homoskedastic nor-
mal likelihood function Our estimators are nonlingand their asymptotics do
not follow immediately from standard arguments for kernel estimatOrg
proofs are based on a modification of some recent results of Gozalo and Linton
(1995. For expositional purposes we shall work with the special case where we
expect the “one-dimensional” rate of convergem@® for the additive esti-
mates The paper is organized as follows Section 2 we discuss infeasible or-
acle procedures for estimating one component that use knowledge of the other
componentsin particular we introduce a criterion function based on linear ex-
ponential family densityWe discuss feasible procedures and standard error con-
struction In Section 4 we discuss the extension to a model in which additive
components enter into the local parameters of a general moment condéon
estimate the unknown functions using a local generalized method of moments
(GMM) and local partial GMM criterion functiarOur examples include the bi-
nomial and Poisson models and also models for conditional heteroskedasticity
known in time series as ARCH

The symbol—, denotes convergence in probabilityhereas= denotes con-
vergence in distributionFor a random sequenc§, and deterministic decreas-
ing sequencea,, b, we write X, £ N(a,, b?) whenever
Xn

— % L N0,2)
b, = ,1).

2. SINGLE PARAMETER LINEAR EXPONENTIAL FAMILY
2.1. Infeasible Procedures

We partitionX = (X4, X5) andx = (X4, X») wherex; and X, are scalagrwhereas
X, and X, are in general of dimensiorts— 1. Let p, be the marginal density
of X; and letp, and p be the densities oK, and X, respectively Through-
out, my(-) is an abbreviation for all the other componenitg., m,(x,) =
ngZ m,(x,), and can be of any dimensiohet o?(x) = var(Y|X = x).

Our purpose here is to define a standard by which to measure estimators of
the componentsThe notion of efficiency in nonparametric models is not as
clear and well understood as it is in parametric madelgarticular pointwise
mean squared error comparisons do not provide a simple ranking between es-
timators such as kernedplines and nearest neighboralthough minimax ef-
ficiencies can in principle serve this purposieey are hard to work with and
even harder to justifyOur approach is to measure our procedures against given
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infeasible(oracle procedures for estimatingy(x;) based on knowledge af
andm,(-). Linton (1997 has already defined the oracle estimator widr) is
the identity functioni.e., when we are in the additive regression settihy In
this caseone smooths the partial erro¥s — ¢ — my(X,;) on the direction of
interestX,;. He shows that indeed the oracle estimate has mean squared error
smaller than the comparable integration-type estimdtoithe general case
though one cannot find simple transformationsYofandc + m,(X,;) to which
one can apply one-dimensional smoothing and that result in a more efficient
procedure than the integration-type estimatbmssummary it was not imme-
diately clear to us how to even define oracle efficiency in these nonlinear mod-
els We suggest the following solution—impose our knowledge albott
m,(X,;) inside of a suitable criterion function

We shall work with a criterion function motivated by the likelihood function
of a complete specification of the conditional distributionYgfX along with
the additivity restriction(2). In particular we consider one-parameter linear
exponential familiesdescribed in Gourieroux et.gl19844, applied to the con-
ditional distribution ofY given X = x. Every member of the family has a den-
sity with respect to some fixed measyse and this density function can be
written as

€(y,m) = exp{A(m) + B(y) + C(m)y)}, 3)
whereA(-), B(-), andC(-) are known functionswith m being the mean of the
distribution whose density i6(y, m). The scalam € M, a suitable parameter
space See Gourieroux et a(198431984h for parametric theory and applica-
tions in economicsThe preceding likelihood function leads us to suggest the
following class of criterion functions

Qn(6) = —EK< h >{YC(0)+A(9)} 4

nl 1
whereC;(0) = C(F(c + my(Xy) + 6y + 6:(Xy; — X1))) andA;(0) = A(F(c +
mMy(Xyi) + 0 + 0.(Xq — Xq))) with F = G~ wherea®d = (6, 6,). Herg hy, is
a scalar bandwidth sequence afds a kernel functionLet 6 maximizeQ,(0)
and lety(x;) = 6o(x,) be our infeasible estimate afy(x;). We have the fol-
lowing result

THEOREM 1 Suppose that?) holds Then under the regularity conditions
A given in the Appendiwe hae
2

AD m i1(X1)
My(Xy) — My(Xy) = N|: > i20x) |

where||K|% = [K?(s)ds andu,(K) = [K(s)s?ds whereas

1
K n
wo(K)my (xy), — nh, K] -

400 = [ C(mO0)E (MO0 2o 2(0p(00 d

Jalxy) = fC’(m(X))F’(G(m(X)))ZD(X) dx,.
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We call m,(x,) an oracle estimator because its definition uses knowledge
that only an oracle could havé variety of smoothing paradigms could have
been chosen herand each will result in an “oracle” estimal&e have chosen
the local linear with constant bandwidth kernel weighting because the local con-
stant versionwhich does not include the slope parameigrand is slightly
computationally easiewill result in “bad bias” behavio(for a discussion of
the merits of local linear estimation see F4892. Higher order polynomials
than linear can be used and will result in faster rates of convergence under
appropriate smoothness conditions

Remark 1 When(3) is trug we haveC’(m(x)) = 1/0%(x) by Property 3 of
Gourieroux et al(198443. In this casej.(x,) is proportional ta,(x,), and one
obtains the simpler asymptotic variance proportional to

1

Ve = :
f o 2(X)F'(G(M(x))?P(x) d,

The integration procedure of Linton and HardE996 has asymptotic vari-
ance proportional to

(2)
()

BecauseG' = 1/F’, we have applying the Cauchy—Schwartz inequalitizat

Ve = V4, and the oracle estimator has lower variance than the integration es-
timator When (3) is not completely trugi.e., when the variance is misspeci-
fied, it is not possible tdquniformly) rank the two estimators unless the form of
heteroskedasticity is restricted in some wage the next sectign

Vi = [Gmoorog 222

Remark 2 The bias offhy(x,) is what you would expect i€ + m,(-) were
known to be exactly zerand it is design adaptivén the Linton and Hardle
procedure there is an additional multiplicative factor to the bias

f P2(X2)

————— dX,,

F'(G(m(x)))

which can be either greater or less than.one

Remark 3 Note thatrh,(x;) is not guaranteed to satisfyh,(Xx,)p.(Xy) dx, =
0, but the recentered estimate

M) = y0) ~ [ M) pix) B,

does have this propertyn fact, the variance offh,(x;) and my(x;) are
the same to first ordemwhereas the bias ah.(x;) hasmy(x;) replaced by
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my(X,) — Sm{(x;)pi(X,) dx;. According to integrated mean squared error
then we are better off recentering because

f{mlll(xl) _fmi’(xl)pl(xl) dxl} Pa(Xy) dx; = J{m’l’(xl)}zpl(xl) dx;.

2.2. Feasible Procedures

The previous section established the standard by which we choose to measure
our estimatorsWe now show that one can achieve the oracle efficiency bounds
given in Theorem 1 by substituting a suitable pilot estimatot &fm,(Xy;) in

the criterion function4). Suppose that + m,(X,;) is some initial consistent
estimate and let

~ 12
Gu(0) = WEK(X

hn

1 Xli X X
>{Yi Ci(0) + Ai(0)}, (5)

whereA;(0) = A(F(C + My(Xy) + 6y + 6:(Xy — X1))) andCi(8) = C(F(¢ +
Mo(Xzi) + 6o + 61Xy — X1))). Now let 6*(xy) = (83(xy), 65 (x,)) minimize
Q.(6) and letmi(x,) = 6;(x,) be our feasible estimate @h,(x,). Suitable
initial estimates are provided by the Linton and Hardl@96 procedurewhich

is explicitly defined Finding 6* still involves solving a nonlinear optimization
problem in generalan alternative approach here is to use the linearized two-
step estimator

<m**<x1)> - l 2%(@)]‘1 aan)
" 0" =6— T
M () 9000 a0

whered is the full vector of preliminary estimates
To provide asymptotic results we shall suppose that the initial estimator sat-
isfies a linear expansiorspecifically we suppose that

SR

d X
C—Cc+ My(Xy) —mMy(Xy) = 2 )W (X, X;) & + i,

1
ng,

n

(6)

whereg; =Y, — E(Y;|X;), whereK is a kernel functiong, is a bandwidth se-
quence andw, is some fixed functionThe expansiori6) is assumed to obey

the regularity conditions B given in the Appendixhich include the require-
ment that the remainder teréy; = 0,(n~%*) uniformly ini. A number of pro-
cedures have recently been proposed for estimating components in additive
models under a variety of sampling schentsse e.g., among others Linton

and Nielsen1995 Linton and Hardle1996 Yang and Hardlgl997 Kim, Lin-

ton, and Hengartnerl997). The expansiori6) can be achieved by all of these
methods by undersmoothing under various conditfo@me might need to as-
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sume stronger smoothness conditions than made in Assumption A to achieve
this, although recent work by Hengartn€t996 suggests this may not be
necessary

We now have the following result

THEOREM 2 Suppose that Assumptiodsand B given in the Appendix
hold. Then under(2), we hae

NZ/>{Mi(xy) — My(xy)}, n?3{Mi*(x;) — My (xy)} - 0.

This says that efficient estimates can be constructed by the two-step proce-
dure and by the linearized two-step estimagstimation of the nuisance pa-
rameterc + m,(-) has no effect on the limiting distributiofhis is not generally
the case in parametric estimation problennsless there is some orthogonality
between the estimating equatiohs our casethere is an intrinsic local orthog-
onality that affects smoothing operations

Standard error and bandwidth choice issues can now be addressed via
the mean squared error expressions given in Theoreuosihg modifications
of standard methodd'hus under the conditions of Theorem 2 and provided
nh® — 0, the following interva)

[ 1 1(Xy)
Mi(Xy) + 2,2 h IK[3 ﬂz(—xll)’
n

provides 1— « coverage of the true functiom,(x,), wherez, is the« critical
value from the standard normal distributjomhereas

1

11(Xy) = 2 C'(M(Xy, X51)) 2F " (G(M(Xq, X5i))) 26 %(Xq, X50),

jAl(Xl) = C'(M(Xq, X)) F'(G(M(Xy, X5)))?,

s

i=1

in which m(-) and 2(-) are any uniformly consistent estimatesrf-) and
o2(-) (see Hardle and LintqriL994).

3. MULTIPARAMETER EXTENSIONS

The models we have examined thus far were one-parameter families as has
been the case in most of the literature on additive mode¢s now consider
extensions to multiple parameter famili@$e quadratic exponential family of
Gourieroux et al (19843 can be analyzed similarly to the process described
previously This would amount to having an additional set of equations that
impose additivity on some transformation of the variante shall consider a
slightly more general situation based on the generalized method of mgments
which allows the additivity to be imposed on any set of momewes suppose
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that there exists a known functiagn: R™"9*P — RY such that there exists a
vector of additive functiong®(x) = (g9(x), ..., g5(x)) with

d
g|0(x) = CI + 2 gla(xa)’ I = 1’“'3 p’
a=1

whereg,,(X,) are mean zero for identificatiomor which
EleU,g°(X)[X=x]=0, (7)

whereU = (Y, X). We assume thaj > 1 and that there is a unique solution to
(7). This sort of information could arise from an economic model or through
partial specification of momentas happens in the ARCH modékee the dis-
cussion that follows It also includes a full likelihood specification as a special
case For example suppose that (U, g°(X)) is the logarithm of the density
function of Y| X in which g°(X) is a vector of parameter¥hen g°(x) is the
unique quantity that satisfies

iE€U OX)IX=x]=0
2g U800 X = x] =0

This system of equations is of the for(¥).

This leads naturally to the following estimation scheffigst, estimateg®(x)
by any unrestricted smoothing method—we propose a sort of local GSHd-
ond integrate out the directions not of interest to get a preliminary estimate
of the univariate effectsFinally, reestimate the local GMM criterion function
replacing the parameters of the components not of interest by preliminary
estimates

Let 8(x) = (61(X),...,0,(x)) minimize the following criterion

2

(8)

12 X=X
nh{ |21,C< h, >(P(UI,0) A,
with respect t& = (6,,...,6,), whereU; = (Y;, X;), K is a multivariate kernel
whereas| x|, = (x"A,x)%? for some sequence of positive definite matrices
A, —p A, and letg(x) = 6(x). We are using a local constant approach here for
simplicity. The asymptotic properties of this procedure can be derived using an
extension of Gozalo and Lintof1995; we expect thag(x) is asymptotically
normal with pointwise mean squared error ratenof/“*% and indeed has an
expansion likeg(6). To obtain estimates of the component functiome simply
integrate this pilot procedure as followstting, for example

0u0) = [P0 e, 1= ©

and the other components similaflyTo estimatec, we can useg =
J 811 (X)) pa(X) dx;. Thus @ (-) are feasible preliminary estimates @f(-). To
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achieve efficiencywe must modify this procedure to impose additivitye first
describe the oracle estimateet § = (6, 6;) = (6oy, .. Hop, f11, .. Glp) mini-
mize the partial GMM criterion

- Xy
G,(6) = H—EK( -

n

2

)@[UHC+ O + 01- (X — Xq) + 9.2(Xy)]

An

with respect tofy = (6o, ...,00,) and 6y = (61y,...,6,,), Where the vectors
9.2(:) = (g12(),- -+, Gp2(+)) and ¢ = (cy,...,¢p) are assumed knowrand let
0.1(X1) = (011(X1),..., Gp1(X1)) = 6o(x;). Finally, the feasible version of
this replacesy.,(-) and ¢ by a vector of preliminary estimates provided by
the integration principlei.e., we letd* = (63,05) = (8g,..., 050, 051, ..., 03,)
minimize

n 2

— X4
2 < h >¢’[U|»C+90+91 (X3 = X1) + 0.2(X5)]

Gn(e) = nh. <

An

with respect t@ = (6, 01), wherec andg,%(XZi) are obtained frong8) and(9),
and letg’(Xy) = (911(X), ..., Gp1(Xq)) = O5(Xy).

3.1. Asymptotics
Define the followingg X p andq X q matrices

[ 9e(U,1)
P(x,t) = E[—at

and let ¥, = WP(x) = JP(Xg°%x)p(x)dx, and R; = Ry(xq)
JR(x,9°%(x))p(X) dx,. Furthermore suppose that each of the preliminary esti-
mators described i8) and (9) satisfies a linear expansion such @. We
have the following result

X=X]; R(x,t) = E[e(U, )" (U, )| X = x],

THEOREM 3 Under the regularity condition®\’ and B’ given in the Ap
pendix we hae under the specificationi3) that n”°[§%(x;) — 0.1(x1)] =
0p(1) and that

§.1(X1) — 9.1(xq)

ﬂ

h2
= N[ wo(K)gy (Xl)’ ‘|K||2(WJAW1) Wl AR AW, (W AYy)~ ]

(10)

Furthermore if we take A = R;%(x;), where Ry(x;) —, Ry(xy), then
NZ3[g%(xy) — G.a(x1)] = op(1) and

AD h2
§.1(X1) —9.4(x1) = [ Mz(K)gl(Xl) HKHZ(\Ifl Ry*w)~ ]
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The choice ofA, = R;1(x;) as weighting gives minimum variance among
the class of all such procedurd¢ote that the efficiency standard we erect here
is not as high as in the one-parameter modEelss is becauseyenerically we
can expect correlation betwegp(x,) and g (x,) for j,k =1,...,p. In other
words it is not possible to estimatg;(x,), say as well as if one knew every
other component function in the mogdelthough it is possible to estimate the
vectorg.,(-) as well as ifg.,(-) were known

As before the preceding result can be used for bandwidth choice and stan-
dard error construction by replacing unknown quantitie$li®) by estimates
Thus under the conditions of Theorem 3 and providegd — 0, for any vector
a=(ay,...,ap)", the following interva)

aTg:*l(Xl) *Z,2 1(\1' A, RlA \Pl)(q’ A ‘1’1) la,

provides 1— « coverage of the true functiom'g.,(x;), where

PRI Y S U,c+ +§.,(X

L= nhni=21 hn ot [ i, C+ 0.1(X1) + 9.2(X3)],

A 1 n X _Xi

R, = _2K< 2 . )(@'@T)[Ui,c"‘ §.1(x1) + 9.2(X3)].
nhni=l hn

3.2. Examples
Example 1 (gamma and beta)

Suppose that there exist functioagx) and 8(x), both themselves additively
separable functions of, that satisfy the equations

E(Y[X=X =a(X)B(x); E(Y?|X=x) =pB2(x)a(x)[1+a(x)].

This partial model specification is implied by| X = x being gamma distrib-
uted but is somewhat weakén this case(7) is satisfied withep,(Y, X|a, 8) =

Y — aB ande,(Y, X|a, B) = Y2 — B%a(1 + ). A full model specification can
be based on the gamniig) density function of'Y, X), from which we obtain

E[€(U, e, B|X = Xx)]
= (a(x) = Dmy(x) — B(X)*M(x) = InT(a(x)) — a(x)In B(x), (11)

whereI'(-) is the gamma functignwhereasm(x) = E[Y|X = x] andm,(x) =
E[InY|X = x]. This generates the following moment conditions

I (a) —aﬁ

e1(U]a, B) = |nY—m—| B;  @(Ula,B) = FE
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The asymptotic variance of these procedures can be found by direct calcula-
tion.® The beta distributionwhich is frequently used in the study of rate or
proportion datacan also be put in this framewaree Heckman and Willis
(1977 for an econometric application of the beta distribution

Example 2 (variance models [ARCH])
Suppose that with probability one

E(Y|X =x)=m(x) = F,[a(X)], a(X) = Cp+ My(Xy) + My(Xy),  (12)
var(Y|X =x) = a2(x) = F,[B(X)],  B(X) =¢, + a1(x) + 05(x2)  (13)

for some known function&,, andF,. Estimates ofm(-) ando;(-) can be ob-
tained by integratingtransformedl nonparametric estimates of the mean and
variance as in Yang and Hardl€1997). Note that their procedure ignores the
cross-equation informatiorwhich can be imposed in our frameworldsing
only the mean and variance specification gives the following moment func-
tions @1(Y, X|a, B) = Y — Fu(@) andga(Y, X| o, B) = Y2 — F2(a) — F,(B);

the asymptotic variance of the GMM procedure is a$li®) with

a?(x)  k3(x)
K3(X)  Ka(X) + 2

Fr(a (X)) 0 ]

’

R(x,9°(x)) = [

2Fp(a(X)Frn(a(x)  Fy(a(x)

wherexs(x) = E[{Y — E(Y|X = x)}3| X = x]. The optimal estimator has lower
asymptotic variance than the procedure of Yang and HA¥87, Theorem
2.4) because it uses cross-equation informafion

A convenient complete model specification here is thaX = x is
N(m(x),o2(x)), which leads to the following moments

W(x,9%(x) = [

Y = Fn(a(X))
e1(Y, X[, B) = TEBN) Fm(a@(x);
v Xlag) = (Y= Fnle\:  \F
@2( ’ |C¥,B) - 2{( FU(B(X)) ) } Fa- (B(X))'
The corresponding procedure has asymptotic variance @jrwith
Faf(a(x))
Fo(B(X)

R(X,9°(x) = ¥(x,9°(x)) =

N i
5| E (B
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4. CONCLUDING REMARKS

We have provided a general principle for obtaining efficient estimates that works
in almost any model with separable nonparametric componesther fully
specified or only partially specifiedVe did not consider models with paramet-
ric components or discrete explanatory variaplecause such models can be
viewed as special cases of ouf$ie only new issue that arises in such models
is how to impose the restriction of parametric effects efficiently

If the additive structuré€2) does not holdthenr,(x,) is estimating some
other functional of the joint distributiofdepending of course on whatt m,(-)
is) (see e.g., Newey 1994). Specifically rh,;(x;) consistently estimates the min-
imizer of a Kullback—Liebler distance with respectitoCentered correctlythe
asymptotic distributions take a similar formwith some relabelingand are ef-
ficient for estimating these particular functionals

NOTES

1. Note that the expansiof®) contains no bias termsvhich can be achieved by undersmooth-
ing or additional bias reduction

2. A computationally efficient estimate @f;(x;) can be constructed by generalizing Kim et al
(1997) as follows Let

12 Xy,
G(x2) = n .:21 Kn(X1 — X3) G (X;) —pSEXiZ))’

wherep, andp are kernel estimates @ andp, respectively

3. With regard to preliminary estimation in the full model specificatitrere are two estima-
tion strategiesFirst, simply substitute estimates of(x) andm,(x) in (11) and maximize to obtain
a(x) andB(x). Secondone can estimate the local parametets) andB(x) by local likelihood
i.e, let @(x) andB(x) maximize

ﬁéK(X;nX)[(a—l)lnYi ~ B, —InT(a) — aln 8]

with respect tay, 8. In both caseswe then integrater (x) and 3 (x) with respect tgpa(xz) dxo.
4. Strictly speaking our results only apply to thed. case but recent work of Kim(1998 has
extended this to a time series setting
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APPENDIX

Let L(z) = C(F(2)), P(z) = A(F(2)), and
D(x,z) = m(x)L(z) + P(2).

We shall letD)(x, 2), j = 1,2,... denote partial derivatives @ with respect taz. We
let |A|= (tr(ATA))¥2 for any matrixA.
We use the following assumptions

Assumption A.

1. The random samplY;, X)}_;, Y € R, X; € X a compact subset & is i.i.d.
with E(Y%) < oo.

2. Let p(x) be the marginal density of with respect to Lebesgue measure and let
m(x) = E(Y|X = x). We suppose thap(x) and m;(x,) are twice continuously
differentiable with respect tg; at all x and that infc» p(x) > 0.

3. The variance functiorr?(x) = var(Y|X = x) is Lipschitz continuous at all € &;

i.e, there exists a constaatsuch that for all, x’, we have|c?(x) — o2(x")| =
clx —x'|.

4, The functionsA(-), C(-), G(-), andF(-) have bounded continuous second deriva-
tives over any compact intervalhe functionG is strictly monotonic

5. The kernel weighting functioK is continuoussymmetric about zer@f bounded
support and satisfiedK(v) dv = 1.

6. {h,:n = 1} is a sequence of nonrandom bounded positive constants satisfying
h, — 0 andnh,/logn — co.

7. The true parameter@)(x,) = my(x;) and#2(x;) = mj(x,) lie in the interior of
the compact parameter spa@e= 0 X 0.

Assumption B.

1. For eacha = 2,...,d, the functionsw, and K are continuous on their bounded
supports Furthermore K is Lipschitz continuousi.e.,, there exists a finite con-
stantc such thai K(t) — K(s)| = c|t — s| for all t,s.

. The bandwidths satisfg,/h, — 0, nh,g, — o0, andn3g3/logn — oo.

3. The remainder term i6) satisfies

N

max |8, | = 0,(n~ /).

1=i=n

4. The functionsA(-), C(-), andF(-) have bounded continuous third derivatives over
any compact interval
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Assumptions Aand B are like A and B except that we replacg o ?, A, C, andF by
the corresponding quantities derived frgm

Proof of Theorem 1. Let 3(x;) and 62(x,) be the true local parameterise.,
09(x,) = my(x1) and 69(x,) = mj(x,). We first show thatd(x;) = (fo(Xy),81(x1))T
consistently estimate®(x;) = (6o(X1), 01(x1)). By the uniform law of large numbers in
Gozalo and Lintor(1995, we have

SUp| Qn(e) - Qn(0)| —p 07

0EO

where Q,(0) = E{Q,(#)}. This applies because of the smoothness and boundedness
conditions onA, C, andF. Furthermore

Xy — Xy

h,

_ 1
Qn(8) = fD(X’C + my(X;) + 6 + 0,(Xy; — Xq)) h_ K( )p(X) dx

= fD(xl —uh,, X5, €+ My(X,) + 0y + 0, h,u)K(u)p(x, — uhy, X,) du dx

o [ Boxe M) + 600000 03 5= Qulhe) (A1)

uniformly in # € ©. The second equality follows by the change of variatigs> u =
(x1 — X1)/hyn, and convergence follows by dominated convergence and contiWéy
now apply property 4 of Gourieroux et.al19844, which says thatprovided F is
monotonig

Qo) = Qu(69)

with equality if and only iff, = 69. This establishes consistency @f x;). The deriva-

tive parametem;(x;) is determined by the next order tergm h,) through a Taylor

expansion ofA.1). When evaluated &82, 8,), this quantity is apart from terms that do
not depend o, or are of smaller ordeh? times a constant times

1
Q.(6,) = f{a(x)el + E b(x)ef} p(x) dx,, (A.2)
where
am
ax) = P (X C'(M(x)F'(G(m(x));  b(x) =D"(x,G(M(x))).
1

Note that by properties 1 and 2 of Gourieroux etve¢ have

D”(x,G(m(x)) = —C’(M(x))F"(G(m(x)))? (A.3)
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and we can see that the unique minimum@f6y) is 61(x1) = mj(x;) (C’'(m) > 0 by
property 3 of Gourieroux et al See Gozalo and LintofiL995 for further discussion
This establishes the consistencyégi,).
We now turn to asymptotic normalitdy an asymptotic expansion we have

5 _,02Qn(0 (1) |t s 9Qn(6°(x0))
Ha[6(x) = 0°(xy)] = —[Hn ! ~apogT HOoH? — 0 (A.4)
whereH,, = diag(1, h,) and#*(x;) is a vector intermediate betwediix;) and6°(x,).
The presentation dfA.4) assumes that the matrix in square brackets is invertitdch
we shall show is true with probability tending to orféhe score function is

IQ(0°(xy) _ =2 X, — Xy 1 . a
B 2K< hn )((Xll_xl)>{YlL(Z')+P (ZI)}y

a0 nh, <1
whereas the Hessian matrix is

92Q,(0)
90067

_ 23 K X1 — Xy 1 (Xg = %) " oz
- E hn (Xgi — X)) (Xy5 — X1)2 i L"(£(0)) + (Z;(8)},

where
Zi(0) = ¢+ my(Xy) + 0y + 6,(Xy; — Xy),
Zi = c+ my(Xy) + my(Xy),

andzi = Zi(ﬁo(xl)).

We next show that the vectdt; 20Q,(6°(x,))/06 satisfies a central limit theorem
whereasH,; 1{02Q,(0%(x,))/0000T}H, * is, asymptotically a positive definite diagonal
matrix. Write the score function as

1
0Q,(6°(x,)) -2 Xg = Xy =
Hil—————— = — Y K[ —— )& L' (Z)| Xy — X
n 30 nh, Z ho ot XX
h,
2 n Xl_ Xli , — 1
- — D2 K[ —— D" (X, Z)| Xy —x
nh, =3 h, Er—
h,
= nl + Tn2s

whereg; = Y; — m(X;) =Y; — E(Y;|X; = x). The first random vector is mean zero and
has variance matrix
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Xy — X
hn

Xy = %X Xy = %1\?
h, h,

—hJ K2(u)a2(x; — uhy, X)L’ (C + my(X,) + my(X;) + hymi(x,)u)?

1
var(T,,) = % ih g (;—Xli>02(xi)L/(Z)2

< >p(X1 uhy, X;) dx, du

- Eo iz (%) {1+ o(1)}
_nhn 0 K2 i (Xg )

by the law of iterated expectatipRubini’'s theoremand dominated convergenaghich
can be applied using the boundedness and continuity conditiamaslly,

-
€ T

4 5
n_hn [KIZi(x,)

wheree] = (1,0), by the Lindeberg central limit theorefsee Gozalo and Lintgri995
Lemma CLT).

The second term in the score function determines the bia#,0%;). By Taylor
expansion
D(X,Z)) = D(X,Z;) + D’"(X;, Z)[My(Xq5) — My(Xg) — My (Xy) (Xy = X3)]

+ D" (X;, ZH)Ima(Xy) — ma(Xq) — mMi(xg) (Xgi — X1)13

= N(0,1),

whereZ;" are intermediate betweefy andZ;. Note thatD(X;, Z;) = 0 by property 1 of
Gourieroux et al(19844. Therefore

1
-2 X1 — Xy
Te=— 2 K| —— || Xy —x
h,

X D' (X, Z)[my(Xg5) — my(Xg) — mi(Xg) (Xg; — Xg)]

1
-2 2 X1 — Xg
+—= X
nhniE:LK< h, ) i X
h,
X D"(X;, ZF)[my(Xy) — my(xq) — my(xq) (Xy = xq)]?
-12 Xy — Xy
=2 K(h—> Xu = Xa | M (%) (Xy = %2)D'(X,Z;) + 05(h?)  (A.5)
hi—1 n —
h

o(K) .
= —h? 0 My (X1)i1(Xy) + Op(hr%)i (A.6)
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where(A.5) follows from the fact that for some < oo,

I su‘p ) [my(t) — my(Xq) — ma(Xg) (t — Xg) — 3my (Xy) (t, — %1)?| = Op(hr%)

t;—x;|<ch,

and the fact thaZ; andz;, and hence&;, are boundedwvhereagA.6) follows by a stan-

dard law of large numbershange of variablesand dominated convergence arguments
By applying the same uniform law of large numbers and dominated convergence ar-

guments we used in the consistency praeé have that

1<62Qn(0) an(ao(Xl)))H
960007 90007

sup |H
00,

- Op(l)

where®, is a shrinking neighborhood @F. Note that this only requires two continuous
derivatives because if SUZ; (§) — Z;| = 0,(1), then supg(Z;(0)) — 9(Z;)| = op(1) for
any uniformly continuous functiog. Furthermore

82Qn(0°(x1)) _ E[BZQH(HO(Xl))] 0.(1)
P

90007 90007
. . 1 X1ih_ X1
- * Xl_ Li " . __ n
- han K< h, )D (%.,2) Xy = X1 X1 = X1 \?
h, ( h, )
+0,(1)
ZID”( G( Np(x)d ! 0 A.7
X GMINPEI Bl o). (A7)

where the equalities follow by a law of large numbesereas the third line follows
using dominated convergence and continuity arguments as previdypglying (A.3),
we find that the(1,1) element of(A.7) is —2j1(X;) as required n

Proof of Theorem 2. Assumption B implies that

¢c—c+ Tax\mz(xz.) m,(Xy)| = Op< /%) +0,(n72/%). (A.8)

For any@, let
Zi(0) = ¢+ My(Xy) + O + 01(Xy — Xq)

and letZ, = Z;(#°) andZ; = Z;(6°) as beforeDefine alson,(8) = Z;(8) — Z;(0) =
Zi — Z; = nni. ExpandingD (X, Z;(9)) and its derivatives abol(X;, Z;(0)) in a Tay-
lor serieswe get(forj = 0,1 andr = 1,2,...),

DU(X;,Z;(0)) = ri DUTO(X;, Zi(0)mf + DUTO (X, 219 (0)) mi, (A.9)

€=0
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provided the relevant derivatives existhere Z;1() are intermediate betwees; ()
andZ; (). Our conditions B imply that max=n|mni| = Op(v'logn/ng,) + 0,(n~2/5).
Furthermore althoughZ; (8) can be unboundedvith a probability tending to one all
Zi () lie in the compact support (). Therefore we have that

logn
sup max|DV(X;,Z(9)) — DV (X, Z (0))| = < \/1> +0p(n"%%),
00, 1=i=n ng,

j = Oy 1a 2s (A 10)

by Assumption B4 A similar result evidently holds fot, P, and their derivatives
Therefore

ju(5| Qn(e) - Qn(0)|

X1 = Xy
(5
n XI
w252
= op< /%) + 0y(n~%/5) = 0,(1).

Therefore m;(x;) —p My(Xq).

We now turn to the asymptotic distributiomhe argument is based on showing that
the feasible score and Hessian matrix are sufficiently close to their infeasible counter-
parts We show that

sup max|L(Z (0)) — L(Z;(8))|

co 1=i=n

2 n
=
r']hn igl

-sup maXID(X.,Z (6)) — D(X; Z;(0))]

oeo 1=i=

A 0 0
9o d6p
2Qn(0)  9°Qu(0)
| ( 00007 00007 )H”l Op(L)- (A.12)

We first show(A.11). We have
_1<0<§n(0°(x1)) B aQn(HO(xl))>

9, 90,
-2 2 X1 — Xy
:n_hn|21K< h, > <x1|h X1> {L(Z) -z
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In the sequel we shall restrict attention to the first component of these veGtoes
second component behaves similarly—the functikite) andK (u) u have similar prop-
erties We first examine the first element df4, which satisfies

2 2 X1 — Xy _ logn 2
Toa, = —— 2 K| = | D" (X, Z) e + {0, ./ —— | +0,(n"%5
n4, I"Ihn ZL < hn > ( i |)77n| { p< ng, Op(n )

by (A.9). By Assumption B3the remainder term is,(n~2/°). Furthermorethe leading
term of T, is

i <X1;xl‘)D”<xi,Z>

1 a & Xai _x
(& 50 ucneam )
n n _ . d L — X
_}2 { EK(Xl X1|>2 K(M)Wu(xhxj)Du(xi,zi)}
nj- i=1 h, a=2 On
+0,(n"%/%)

n

1
- & dn T Op(nfz/s)
ni<

= 0p(n"¥2) + 0,(n"?%). (A.13)

The reason for(A.13) is as follows We have E[Te1/X1,..., Xn] = 0, whereas
var[Thea| Xy, ..., Xp] = n72 3, 0%(X;) {5, where for anyc > 0,

supa *(X)E({F)

12 x
Pr[— > o2(X)E= c] = (A.14)

ni= c
by identity of distribution and the Markov inequalitiNow, E(¢3) = E?({m) +
var({n1), where supE({n) < oo and vafn,) = O(1/ng,h,) = o(1) by Assump-
tion B2 Therefore the numerator of the right-hand side @4.14) is finite, so that
var Toe1 X1,..., Xn] = Op(n™1). From this (A.13) follows by an application of Lemma, 1
which follows The same result applies to the second componeft af

To handleT,; substitute(A.9) with j = 1 to yield that

2 X1 — Xy s logn s 2
Tn31_ n nlElK( hn )Sil— (Zi)nni+ {Op<\/TQn +0p(n )

as beforeFinally, the leading term of leading term Gf, is

2 Un(VL V) + 0,(n~2/%), (A.15)

i=1j=1
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whereV, = (X, ;) and the U-statistic” kernel is

2 Xl_Xli d _ Xai_xaj iy
Un(Vi,Vj) = nzgnhnK< )2 K(g— gl (Zi)wa(xiyxj)8j~

hn a=2 n

The error in(A.15) is 0,(n~?/%) because of the uniformity in the expansi¢®).
We have E[U,(V,,V))] = O(1/n?g,) and vafU,(V;,V.)] = O(1/n*g2h,), whereas
E[Un(Vi,V))] = 0 and vafU,(V;,V,)] = O(1/n*gyhy) for i # j. Furthermore E[Un(V,,
Vi) Un(Vi, Vi)l = E[Un(Vi,Vj)Un(M, V)] = 0. Therefore by standard arguments
2in=12jn=1 Un(V; ’VJ) = Op(l/nmn)~

The proof of(A.12) follows by another application dfA.9). The proof form;*(x,) is
similar and is omitted u

Proof of Theorem 3. The proof is very similar to that of Theorems 1 and 2 and is
omitted

In the proof of Theorem 2 we made use of the following lemmvhich may be well
known, although we have not found any reference to $uch

LEMMA 1. Let(Y,, X,) be a sequence of randarariables with ¥ scalar and % €
R for somef(n). Suppose that EY,| X,) = wn(Xn) andvar(Yy| X,) = o2(X,,) almost
surely whereu,(X,),02(X,) —p 0. Then Y, —; 0.

Proof of Lemma 1. Define e, = [Y,, — wn(Xn)]/on(X,), which hasE(e,|X,) = 0
and vaKe,| X,,) = 1 (we can suppose without loss of generality that X,) ando2(X,,)
are real valueg and for any sequenag,

Ya(€n) = ma(X0) 1| n(Xn)| < Cal + £q0n(X0) Uo7 (X,)] < €.

Because bothu,(X,) ando;2(X,,) tend to zero in probabilitythere exists a sequence
¢, — 0 for which Y (c,) — Y, — O. For this sequencédoth E[Y,(c,)] and vafY,(c,)]
exist and tend to zeravhich implies thatY;(c,) —; 0. n



