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1 Introduction

This book aims to explain, by appealing to the mathematical method of ar-
bitrary functions (MAF) initiated by Hopf and Poincaré, how the many and
various interactions of the parts of a complex system often result in simple
probabilistic patterns of behaviour. A complex system is vaguely defined
as a system of many parts (called enions) which are somewhat autonomous
but strongly interacting; (italicised words are Strevens’ jargon). Strevens
says that a system shows simple behaviour when it can be described math-
ematically with a small number of variables.1 A philosophical treatment of
complex systems, the MAF, and the emergence of simple probabilistic pat-
terns is welcome because these important topics have been rather neglected.

The book proceeds as follows: The Introduction (Chapter 1) is followed by
a discussion in Chapters 2 and 3 of the MAF. This discussion is divided into
an informal part, where the results are explained, and a formal part where the
results are proven. Strevens’ strategy here is to prove theorems from strong
assumptions, and then to argue that they are approximately true if, more
realistically, the assumptions are approximately fulfilled. In Chapter 4 these
results are applied to explain the simplicity of complex systems. Finally,
Chapter 5 contains very brief remarks on the philosophical implications for
the higher-level sciences. No previous knowledge about complex systems or

1Hence systems exhibiting deterministic chaos can show simple behaviour.
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the MAF is presupposed. Basic knowledge of probability theory suffices to
understand the main arguments, and basic measure theory to master the
formal parts.

Nevertheless, the discussion is interesting both to experienced readers and
to novices. The book provides a good introduction to the MAF and contains
some interesting original material. However, the book promises more than
it delivers: There are no convincing examples, and one’s ultimate conclusion
is that we do not yet know whether the book’s proposed explanation of the
simple behaviour of complex systems succeeds. Furthermore, there are some
conceptual lacunae and technical mistakes. Still, Strevens’ arguments suggest
at least a possible explanation of the simple behaviour of complex systems,
and this is an important contribution given the difficulty of the task at hand.
Let me go into the details. I will concentrate on the main chapters, Chapters
2–4, and, in order to advance the discussion, I will focus on my objections.

2 The Method of Arbitrary Functions

Strevens calls the scheme for explaining simple behaviour that he advocates
enion probability analysis (EPA). It consists of three stages. First, a proba-
bility is assigned to events that a specific enion in a given microstate will next
be in a given macrostate, the (single microstate) enion probability ; where mi-
crostates describe all information about the enions and macrostates describe
only enion statistics. Assume that the probabilistic supercondition holds,
i.e. that these enion probabilities depend only on macrostates, and that the
outcomes of any two different enion probabilities are probabilistically inde-
pendent. Then, second, the enion probabilities can be aggregated, often by
applying the law of large numbers, to yield probabilistic relations only be-
tween macrostates. Third, a law about macrostates is derived from these
probabilities, which is simple because it makes no reference to microstates.
Most of the book is concerned with showing, by appealing to the MAF, that
complex systems satisfy the probabilistic supercondition.

Chapter 2 and the first part of Chapter 3 explain two core ideas of the
MAF. Strevens’ results here are a slight variation of classical results and are
rather obvious once these results are known (see in particular Hopf [1934],
[1936]; readers of this journal may also recall von Plato [1983]). His results
differ because, Strevens argues, for the application to complex systems it is
important not to consider limiting behaviour as the classical treatments do
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(e.g. a limit in which time or the number of sections in a roulette wheel goes
to infinity). Let me explain the two core ideas in Strevens’ terms.

First, consider a probabilistic experiment2 C consisting of a (i) determin-
istic mechanism, such as the evolution function of a roulette wheel with 36
equally spaced red and black sections; (ii) the variables V which provide ini-
tial conditions for the mechanism, such as the initial angular velocity with
which the roulette wheel is spun; (iii) a set of outcomes, such as ‘landing
red’ and ‘landing black’ for the roulette wheel; and (iv) a density quanti-
fying the frequency or probability of the possible values of V , such as the
probability density of initial angular velocities imparted to the wheel by a
croupier. Now assume that the experiment is microconstant relative to an
outcome O, meaning that the space of possible values of V can be partitioned
into micro-sized contiguous sets such that across the different sets, the pro-
portion of values which lead to O is a constant, called the strike ratio CO.
Then for any density which is macroperiodic (meaning: constant on each set
in the partition), the probability that the experiment yields O is CO. For
instance, the roulette wheel is microconstant relative to the outcome ‘land-
ing red’ because the space of possible values of initial angular velocities can
be partitioned into micro-sized contiguous sets such that across the different
sets the proportion of velocities which lead to the outcome red is a constant,
say one half. If the density representing the initial angular velocity of the
croupier is constant on each set in the partition, then the probability of the
experiment landing red will be one half (even though the value of the density
can vary greatly from one set of the partition to another).

Strevens (pp. 60–1) argues that all mechanisms of microconstant exper-
iments show sensitivity to initial conditions as usually understood in chaos
theory. It is true that microconstancy implies that there is some ε which we
regard as small such that for any initial condition v1 there is an initial condi-
tion v2 which is less than the distance ε apart from v1 and which yields the
opposite outcome. However, it is not true that microconstant experiments
always show sensitivity to initial conditions as understood in chaos theory,
namely that for every ε and every initial condition v1 there is an initial con-
dition v2 which is less than ε apart from v1 and which leads to a different
outcome. For instance, imagine a roulette wheel whose position after t time
units is v + t, where v represents the initial conditions, and where we choose

2Despite the anthropomorphic word ‘experiment’, this need not involve any human
action or intention.
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v ∈ [0, 1] and assume that the wheel has a circumference of 1; hence positions
which differ by a natural number are identified. Assume that the wheel is
divided into 36 equally spaced red and black sections and that the mecha-
nism is stopped after 34

36
time units. Then the experiment is microconstant,

but solutions starting close together stay close for all times;3 hence very close
initial conditions nearly always lead to the same outcome.

The second core idea of the MAF has to do with the probabilistic inde-
pendence of two (or more) microconstant experiments. Given two causally
isolated microconstant experiments C and D with strike ratios CO1 and DO2 ,
Strevens defines combined experiments in such away that the combined ex-
periment is microconstant relative to the outcome O1 and O2 with strike
ratio CO1 and DO2 . It follows that if the joint density is macroperiodic, the
outcomes are probabilistically independent.

The second part of Chapter 3 contains some new and interesting re-
sults: most notably, that specific causal couplings of microconstant exper-
iments yield probabilistically independent outcomes and that some exper-
iments whose states are deterministically chained maintain macroperiodic
distributions and hence yield probabilistically independent outcomes. These
results hold under the additional assumptions that the transformation T rep-
resenting the chaining mechanism or the causal coupling is strongly inflation-
ary, i.e. T maps every subset of its domain to a larger set, and is microlinear,
i.e. T is linear or affine once restricted to any set of some partition of its
domain into contiguous micro-sized regions.

The main proofs in Chapters 2 and 3 are correct; but the discussion
is sometimes strange; e.g., the term ‘contiguous’, which, as we have seen,
figures in important definitions is never formally defined (pp. 128, p. 134,
p. 220). What is more is that I have doubts about Approximation 3.18.3 of
the main theorem on deterministically chained experiments (p. 248). This
approximation addresses the worry that when a transformation representing
the chaining that is only approximately microlinear is repeatedly applied to
a macroperiodic density, this may eventually result in a density which is not
even approximately macroperiodic. Strevens argues that this worry is un-
founded because strongly inflationary transformations will tend to stretch out
any area of non-macroperiodicity. But this is not convincing. For instance,
for the so-called exact systems, which include many strongly inflationary

3In other examples differences in initial conditions can even shrink for microconstant
experiments.
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transformations, any initial density will (sometimes quickly) converge to the
invariant measure of the system. And many invariant measures are not ap-
proximately macroperiodic (cf. Berger [2001], Chapter 4). This is problem
is potentially serious because this approximation plays a crucial role in the
application to the complex systems in Chapter 4.

3 Complex Systems

In the first part of Chapter 4 Strevens states general conditions under which,
he argues, the simple behaviour of complex systems can be explained. The
evolution of complex systems is represented by sequences of microstates.
Given a microstate, the outcomes of many microdynamic probabilistic exper-
iments determine the next microstate. The formal results of Chapters 2 and 3
are applied so as to conclude that the outcomes of these microdynamic prob-
abilistic experiments are probabilistically independent. Strevens argues that
this implies that every (single microstate) enion probability depends only on
macrostates and that the outcomes of any two different enion probabilities
are probabilistically independent. Thus the probabilistic supercondition is
satisfied, and EPA can be applied to obtain laws about macrostates.

Here I should note that the title ‘Bigger Than Chaos’ and the discussion
about chaos is confusing because two different meanings of chaos (enions
interacting in many and various ways, and deterministic chaos as in chaos
theory) are conflated (p. 332). Deterministic chaos is not a main concern of
the book, although some results require strong inflation, which is sometimes
found, but neither necessary nor sufficient for deterministic chaos (Werndl
[2009a], pp. 209–211). What the title expresses is the main theme, viz.
that probabilities of microconstant experiments are indifferent to the de-
tailed complicated micro-dynamics of complex systems and create simple
behaviour.

The general argument for the simplicity of complex systems simply as-
sumes that microdynamic probabilistic experiments are microconstant and
have macroperiodic densities (pp. 278, p. 283). And it requires that the
coupling and the chaining transformations are strongly inflationary. All will
agree that in the final analysis this has to be verified for each complex sys-
tem. But we should note that Strevens’ remark that strong inflation ‘is in
fact not such a rare thing’ (p. 279) is controversial since this is a very strong
condition. For instance, although several very simple models of determinis-
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tic chaos are strongly inflationary, many chaotic systems such as the logistic
map or the Lorenz system are not; and it is conjectured that more realistic
chaotic models are typically not strongly inflationary (Smith et al. [1999],
pp. 2861–2).

Furthermore, the crucial formal conclusion that the (single microstate)
enion probabilities only depend on macrostates is established only informally
(Section 4.4), leaving uncertainty whether the conclusion is true. Given that
the main results in Chapters 2 and 3 were really proven, one would have
expected proper formal results here also.

Moreover, important paradigms of complex systems are what is often
called self-organised systems, where enions interact much more strongly with
their neighbours than with other enions (Camezine et al. [2001]). As Strevens
points out (p. 291), EPA alone cannot explain the simplicity of these systems.
Here additionally other techniques, such as the renormalisation group, are
needed.

4 Examples: Statistical Physics, Population Ecology
and the Social Sciences

In the second part of Chapter 4 EPA is applied to concrete examples. In
statistical physics Strevens claims that, by considering the collision of par-
ticles in hard-sphere systems, the application of EPA yields the Maxwell-
Boltzmann distribution, or at least the assumptions such as ‘molecular chaos’
needed to derive this distribution. And he spectulates that the same con-
siderations can be used to provide an understanding of all the dynamics
properties of gases, such as the tendency to equilibrium. These ideas are
interesting and worthy of further consideration.

But Strevens’ discussion is rather disappointing: Several formal con-
clusions are only established informally, leaving uncertainty whether they
are true. What is more is that there are several different derivations of
the Maxwell-Boltzmann distribution, which depend on different assumptions
(Uffink [2006], Sections 3 and 4; Uhlenbeck and Ford [1963]). Strevens nei-
ther states which of these sets of assumptions he wants to derive nor does he
directly derive the Maxwell-Boltzmann distribution. And the exact assump-
tions needed for the known derivations of the Maxwell-Boltzmann distribu-
tion seem different from the ones Strevens obtains.

Furthermore, his comments about other approaches in statistical physics
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are sometimes erroneous. Let me give two examples. First, Strevens claims
that ‘the ergodic approach looks for a more extreme form of independence
than I do’ (p. 316). It is unclear what ‘the ergodic approach’ is because
there are many different approaches to statistical physics employing ergodic
theory. Strevens seems to think that ‘the ergodic approach’ requires sys-
tems to be Bernoulli systems, whilst he only requires that the evolution can
be viewed as an irreducible and aperiodic Markov process. The discussion
is quite informal; but if he really regarded the evolution as a discrete-time
or continuous-time finite-state irreducible and aperiodic Markov process, this
would actually imply that the system is Bernoulli (Ornstein and Weiss [1991],
p. 22; Werndl [2009b]). Furthermore, several ergodic approaches impose con-
ditions on the dynamics which are weaker than being Bernoulli, for instance,
that the systems are ergodic or nearly ergodic (Frigg [2008], Sections 3.2.4
and 3.3.3; Uffink [2006], Sections 3–6). Ergodicity does not even imply any
sensitivity to initial conditions. All this leads one to strongly doubt that his
approach requires less independence than ‘the ergodic approach’.

Second, Strevens claims that ergodic theory is unsuitable for treating
complex systems because even the most general theorems in ergodic theory
assume that the energy is conserved and that the evolution function is contin-
uous (pp. 26–27). This is not so: Ergodic theory has been applied to several
systems which do not conserve energy, e.g. the Lorenz system, and to many
non-continuous evolution functions, e.g. the baker’s transformation (Ornstein
and Weiss [1991]). Generally, many ergodic theorems only require a measur-
able evolution function, including functions which are nowhere continuous,
e.g. the Dirichlet function (Berger [2001], Chapter 3).

By appealing to EPA, Strevens suggests some interesting possible ex-
planations of the simple behaviour in population ecology and in the social
sciences. But there are no concrete models, and he admits that not enough
is known to really say whether EPA applies (pp. 327, p. 355). So in the end
we can conclude only that still a lot of work is needed to explain the simple
behaviour of complex systems; exciting work for the future!

Despite these problems, the book will be valuable because of its good intro-
duction to the MAF, its new results concerning the MAF, and its stimulating
ideas about how to explain the simple behaviour of complex systems.
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