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Abstract

From the beginning of chaos research until today, the unpredictabil-
ity of chaos has been a central theme. It is widely believed and claimed
by philosophers, mathematicians and physicists alike that chaos has
a new implication for unpredictability, meaning that chaotic systems
are unpredictable in a way that other deterministic systems are not.
Hence one might expect that the question ‘What are the new impli-
cations of chaos for unpredictability?’ has already been answered in a
satisfactory way. However, this is not the case. I will critically evalu-
ate the existing answers and argue that they do not fit the bill. Then
I will approach this question by showing that chaos can be defined
via mixing, which has never before been explicitly argued for. Based
on this insight, I will propose that the sought-after new implication of
chaos for unpredictability is the following: for predicting any event all
sufficiently past events are approximately probabilistically irrelevant.
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1 Introduction

In the past decades much ado has been made about chaos research, which has
been hailed as having led to revolutionary scientific insights. Since the begin-
nings of systematically investigating chaos until today, the unpredictability
of chaotic systems has been at the centre of interest.

There is widespread belief in the philosophy, mathematics and physics
communities (and it has been claimed in various articles and books) that
there is a new implication of chaos for unpredictability, meaning that chaotic
systems are unpredictable in a way other deterministic systems are not. More
specifically, what is usually believed is that there is at least one new impli-
cation of chaos for unpredictability that holds true in all chaotic systems.

The physicist James Lighthill, commenting on the impact of chaos on
unpredictability, expresses this point as follows:

We are all deeply conscious today that the enthusiasm of our forebears
for the marvellous achievements of Newtonian mechanics led them to
make generalizations in this area of predictability which, indeed, we
may have generally tended to believe before 1960, but which we now
recognize were false (Lighthill [1986], p. 38).
These features connected with predictability that I shall describe from
now on, then, are characteristic of absolutely all chaotic systems (Ibid.,
p. 42).

Similarly, Weingartner ([1996], p. 50) says that ‘the new discovery now was
that [...] a dynamical system obeying Newton’s laws [...] can become chaotic
in its behaviour and practically unpredictable’.

Thus the question ‘What are the new implications of chaos for unpre-
dictability?’ appears natural, and one might well suppose that it has already
been satisfactorily answered. However, this is not the case. On the contrary,
there is a lot of confusion about what exactly the new implications of chaos
for unpredictability are. Several answers have been proposed, but, as we will
see, none of them fit the bill.

Fundamental questions about the limits of predictability have always been
of concern to philosophy. So the widespread belief and the various flawed
accounts about the new implications of chaos for unpredictability demand
clarification. The aim of this paper is to critically discuss existing accounts
and to propose a novel and more satisfactory answer.

My answer will be based on two insights. First, I will show that chaos can
be defined in terms of mixing. Although mixing is occasionally mentioned in
connection with chaos, to the best of my knowledge, so far no one has explic-
itly argued that chaos can be thus defined. Second, I will argue that mixing

3



has a natural interpretation as a particular form of approximate probabilistic
irrelevance which is a form of unpredictability. On this basis I will propose a
general novel answer: a new implication of chaos for unpredictability is that
for predicting any event at any level of precision, all sufficiently past events
are approximately probabilistically irrelevant.

The structure of the paper is as follows. Section 2 will provide the back-
ground of our discussion. I will introduce dynamical systems, and I will
discuss the concepts of unpredictability relevant for this paper. Section 3
will be about chaos. Here I will show that chaos can be defined in terms
of mixing. After that, in section 4 I will examine the existing answers to
the question of the new implications of chaos for unpredictability, which I
dismiss as mistaken. In section 5 I propose a general answer that does not
suffer from the shortcomings of the other accounts.

2 Dynamical Systems and Unpredictability

2.1 Dynamical Systems

Chaos is discussed in dynamical systems theory. A dynamical system is a
mathematical model consisting of a phase space X, the set of all possible
states of the system, and evolution equations that describe how solutions
evolve in phase space. Dynamical systems often model natural systems (e.g.
in the sciences).

There are discrete dynamical systems and continuous dynamical systems.
Discrete dynamical systems are systems in which the time increases in dis-
crete steps. Formally, they consist of a set X as phase space and a map
T : X → X as evolution equation; the dynamics of the system is given by
xn+1 = T (xn), x0 ∈ X, n ∈ N0. The solution through x is the sequence
(T n(x))n≥0, which is also referred to as the iterates of x. If T is invertible
(noninvertible), I speak of an invertible (noninvertible) discrete dynamical
system, respectively. Continuous dynamical systems involve a continuous
time parameter. They typically arise from differential equations. By defini-
tion, all dynamical systems and thus chaotic systems are deterministic.1

For simplicity I will often confine my attention to discrete dynamical
systems. I can do this without loss of generality because all definitions of
chaos I will be using can be directly carried over to continuous dynamical
systems. Alternatively, a continuous dynamical system can be regarded as

1According to the conventional definition of Montague ([1962]) and Earman ([1971]), a
dynamical system is deterministic if and only if any two solutions that agree at one time
agree at all future times.
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chaotic if and only if there is a suitable Poincaré section such that the discrete
dynamical system defined by the Poincaré map is chaotic (e.g. Smith [1998],
pp. 92–3). Hence everything I will say about the new implications of chaos
for unpredictability equally applies to continuous dynamical systems.

Dynamical systems divide into two groups: volume-preserving systems,
among them Hamiltonian systems, and dissipative systems. A volume-preser-
ving system is defined as a system in which the phase-space volume is pre-
served under time evolution, i.e. the volume (formally the Lebesgue measure)
of any region of phase space remains the same as this region is evolved ac-
cording to the evolution equations (Smith [1998], p. 16). Dissipative systems
are systems which are not volume-preserving.

There are two types of dynamical systems relevant for our discussion.
First, if for a discrete system there is a metric d, where d measures the dis-
tance between points in phase space, (X, d, T ) is called a ‘topological dynam-
ical system’. It is generally assumed in the literature (e.g. Devaney [1986],
p. 51), that topological systems provide a possible framework for character-
ising chaos. This makes intuitive sense because it is often imagined that in
case of chaotic behaviour there is some way of measuring the distance be-
tween points in the phase space X and thus that there is a metric defined on
X. Moreover, to the best of my knowledge, there is always a natural metric
for paradigmatic chaotic systems. Often the phase space is simply a subset
of Rn, n ≥ 1, and the metric is the standard Euclidean metric.

The second type of dynamical system is a measure-theoretic dynamical
system. It is a quadruple (X, Σ, µ, T ) consisting of a phase space X, a σ-
algebra Σ on X, a measure µ with µ(X) = 1 and a surjective measurable
map T : X → X. If a property holds for all points in a subset X̄ of X for
which µ(X̄) = 1, it is said that it holds for almost all points.

Important for us is what is called a ‘measure-preserving dynamical sys-
tem’. It is a measure-theoretic system where for all A ∈ Σ

µ(T−1(A)) = µ(A), (1)

where T−1(A) = {x ∈ X : T (x) ∈ A} (cf. Cornfeld et al. [1982], pp. 3–5).
Condition (1) says that the measure µ is invariant under the dynamics of the
system. Although there exist evolution equations that do not have invariant
measures, for very wide classes of systems invariant measures can be proven
to exist. For instance, if T is a continuous map on a compact phase space
endowed with a metric, there exists at least one invariant measure (Mañé
[1983], p. 52).2

2Descriptions of a dynamical system via metric spaces and measures are usually related
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As it is sometimes claimed (e.g. Eckmann and Ruelle [1985]), measure-
preserving systems provide a possible framework for characterising chaos.
For volume-preserving systems the natural invariant measure is typically the
Lebesgue measure or a normalized Lebesgue measure, e.g. the microcanonical
measure of classical statistical mechanics. For dissipative systems, to the best
of my knowledge, all systems that have ever been identified as chaotic have
or are supposed to have a natural invariant measure if one considers the
following.

Many chaotic systems have attractors. For a topological system (Y, d, T )
the set Λ ⊂ Y is an attractor if and only if (i) T (Λ) = Λ; (ii) there is a
neighbourhood U ⊃ Λ such that all solutions are attracted by Λ, i.e. for all
y in U limn→∞ inf{d(T n(y), x) |x ∈ Λ} = 0; and (iii) no proper subset of Λ
satisfies (i) and (ii). Liouville’s theorem implies that only dissipative systems
can have attractors (Schuster and Just [2005], p. 162).3 As we will see in
the next section, for chaotic systems the evolution of any bundle of initial
conditions eventually enters every region in phase space. This is impossible
for the motion approaching an attractor since the attracted solutions never
return to where they originated. Hence chaotic behaviour can only occur on
Λ. The chaotic motion is described by a system with phase space Λ, and the
invariant measure is only defined on Λ. Generally, an attractor on which the
motion is chaotic is called a ‘strange attractor ’.

Of course, in practice one is often concerned with solutions approaching
a strange attractor. Yet after a sufficiently long duration either the solutions
enter the attractor or come arbitrarily near to the attractor. In the latter
case since the dynamics is typically continuous, when the solutions are suf-
ficiently near to the attractor, they essentially behave like the solutions on
the attractor. And in applications such solutions which are sufficiently near
to a strange attractor are considered to be chaotic for practical purposes. In
particular, in the latter case the unpredictability of solutions very near to
the attractor is practically indistinguishable from the one on the attractor.
Consequently, for characterising the unpredictability of motion dominated
by strange attractors, it is widely acknowledged that it suffices to consider
the dynamics on attractors, where natural invariant measures can be defined.

in the following way: the σ-algebra Σ of a measure-theoretic system is, or at least includes,
the Borel σ-algebra of the metric space (X, d) of the topological system. The Borel σ-
algebra of (X, d) is the σ-algebra generated by all open sets of X (cf. Mañé [1983], pp. 2–3).
Intuitively, it is the σ-algebra which arises from the metric space (X, d).

3Some other definitions of ‘attractor’ allow that volume-preserving systems can have
attractors; yet these definitions are not standard in our context.
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2.2 Natural Invariant Measures

What are natural invariant measures, in particular for dissipative systems?
From an observational viewpoint it is natural to demand that the long-run
time-averages of almost all solutions approximate the measure. Such mea-
sures are called ‘physical measures’. Let us look at them in more detail
(cf. Eckmann and Ruelle [1985], p. 626 and pp. 639–40).

For measure-preserving systems (X, Σ, µ, T ) with λ(X) > 0, where λ
is the Lebesgue measure, the following method identifies physical measures.
(M1) (i) Take any A ⊆ X. (ii) Take an initial condition x ∈ X. (iii) Consider
LA(x), the long-run average of the fraction of iterates of x which are in A.
(iv) Consider GA = {x ∈ X |LA(x) = µ(A)}. Then µ is a physical measure if
and only if for any A ∈ Σ Lebesgue-almost all initial conditions approximate
the measure of A, i.e. λ(GA) = λ(X). If such a measure exists, it is unique.

What are physical measures for strange attractors? I will be concerned
with two kinds of strange attractors: first, the case where all solutions even-
tually enter an attractor Λ with λ(Λ) > 0. Clearly, here method (M1) can
be applied for X = Λ. Second, it can be that the solutions approach but
never enter an attractor Λ with λ(Λ) = 0 but λ(U) > 0, where U is the
neighbourhood of Λ. Here the method has to be slightly modified. (M2): (i)
Take any region A ⊆ Λ. (ii) Take an initial condition x ∈ U . (iii) Consider
L̄A(x), the long-run average of the fraction of iterates of x which are close
to A. (iv) Consider ḠA = {x ∈ U | L̄A(x) = µ(A)}. Then µ is a physical
measure if and only if for all A ∈ Σ it holds that λ(ḠA) = λ(U). If such a
measure exists, it is unique.

As we will see in the next section, chaotic systems are ergodic. A measure-
preserving system (X, Σ, µ, T ) is ergodic if and only if for all A ∈ Σ with
µ(A) > 0:

µ(∪n≥0T
−n(A)) = 1. (2)

Now for ergodic volume-preserving systems the Lebesgue-measure is the
physical measure. As we will see in the next section, typically for systems
proven to be chaotic physical measures can be proven to exist (Lyubich [2002];
Young [2002]). For system only conjectured to be chaotic numerical evidence
generally favours the existence of physical measures (Young [1997]).

For an example consider the logistic map T (x) : [0, 1] → [0, 1], T (x) =
αx(1− x) with α ≈ 3.6785. Here the solutions enter an attractor of positive
Lebesgue measure. Now we choose an initial condition on the attractor and
draw a histogram of the fraction of iterates of x (up to an iterate T n(x), n ≥ 1)
which are in a particular part on the attractor. Then, for Lebesgue-almost
all initial conditions we chose on the attractor, we obtain what is illustrated
in Figure 1: as n goes to infinity and the histogram becomes finer, the
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Figure 1: (a) histogram and (b) natural measure of the logistic map for α ≈ 3.6785

histograms approximate a particular measure on the attractor. Hence this
measure is physical according to method (M1) (cf. Jacobson [1981]).

For another example consider the Lorenz equations

dx(t)

dt
= σ(y(t)− x(t))

dy(t)

dt
= rx(t)− y(t)− x(t)z(t) (3)

dz(t)

dt
= x(t)y(t)− bz(t),

for the parameter values σ = 10, r = 28 and b = 8/3, which Lorenz ([1963])
considered. Here it is proven that there is a strange attractor of Lebesgue
measure zero such that all solutions originating in the neighbourhood of
the attractor, which is of positive Lebesgue measure, approach but never
enter the system. Figure 2 shows a numerical solution of these equations;
one can vaguely discern the shape of the attractor, known as the Lorenz
attractor, because the solution spirals toward it. According to the method
(M2), the physical measure is the one for which for Lebesgue-almost-all initial
conditions in the neighbourhood of the attractor the long-run time-average
a solution is close to a set A on the attractor approximates the measure of
A (cf. Luzzatto et al. [2005]).4

4There are also other natural measures. For instance, ν is absolutely continuous with
respect to µ, where ν and µ are measures on a measurable space (X, Σ), if and only if for
all A ∈ Σ with µ(A) = 0 also ν(A) = 0. Absolute continuity with respect to the Lebesgue
measure can be justified (Malament and Zabell [1980]; van Lith [2001], p. 590). Hence
if there is a unique ergodic invariant measure absolutely continuous with respect to the
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Figure 2: Numerical solution of the Lorenz equations for σ = 10, r = 28, b = 8/3

Invariant measures are commonly interpreted as probability densities.
This deep and controversial issue has, of course, been discussed in statistical
mechanics but is not the main focus of this paper. I only mention two
interpretations that naturally suggest interpreting measures as probability
and relate to our discussion. According to the time-average interpretation,
the measure of a set A is the long-run time-average a solution spends in
A. According to the ensemble interpretation, the measure of a set A at
t corresponds to the fraction of solutions starting from some set of initial
conditions that are in A at time t (Berkovitz et al. [2006], p. 675).

2.3 Unpredictability

There are different kinds of unpredictability in dynamical systems. I will
only introduce two concepts needed for the discussion of our main question.

According to the first concept of unpredictability, a system is unpre-
dictable when any bundle of initial conditions spreads out more than a specific
diameter representing the prediction accuracy of interest (usually of larger di-
ameter than the one of the bundle of initial conditions). When this happens,
the system is unpredictable in the sense that the prediction based on any bun-
dle of initial conditions is so imprecise that it is impossible to determine the

Lebesgue measure, it is a natural one. For ergodic volume-preserving systems the Lebesgue
measure is such a unique measure. For many systems, e.g. wide classes of one-dimensional
maps and, as we will see in the next section, many paradigmatic dissipative chaotic systems
including strange attractors, there is a unique ergodic measure absolutely continuous with
respect to the Lebesgue measure (Lyubich [2002]). For instance, for the logistic map with
µ ≈ 3.6785 the measure of Figure 1(b) is such a unique measure (Jacobson [1981]).

9



outcome of the system with the desired prediction accuracy.5 A well-known
example is a system in which, due to exponential divergence of solutions, any
bundle of initial conditions of at least a specific diameter spreads out over
short time periods more than a diameter of interest.

The second concept of unpredictability is probabilistic. It says that for
practical purposes any bundle of initial conditions is irrelevant, i.e. makes
it neither more nor less likely that the state is in a region of phase space of
interest. According to this concept, it is not only impossible to predict with
certainty in which region the system will be, but in addition, for practical
purposes knowledge of the possible initial conditions neither heightens, nor
lowers, the probability that the state is in a given region of phase space. An
example is that knowledge of any bundle of sufficiently past initial conditions
is practically irrelevant for predicting that the state of the system is in a re-
gion of phase space. Eagle ([2005], p. 775) defines randomness as a strong
form of unpredictability: an event is random if and only if the probability of
the event conditional on evidence equals the prior probability of the event.
This idea relativised to practical purposes is at the heart of our second con-
cept. Consequently, this second concept can also be regarded as a form of
randomness.

Clearly, the first and second concepts of unpredictability are different and
cannot be expressed in terms of each other since the notions of ‘diameter’
and ‘probability’ are not expressible in terms of each other.

3 Chaos

3.1 Defining Chaos

I base the discussion of defining chaos on the following assumption, which is
widely accepted in the literature (e.g. Brin and Stuck [2002], p. 23; Devaney
[1986], p. 51). A formal definition of chaos is adequate if and only if

(i) it captures the main pretheoretic intuitions about chaos, and

(ii) it is extensionally correct (i.e. correctly classifies essentially all systems
which, according to the pretheoretic understanding, are uncontrover-
sially chaotic or nonchaotic).

Let us first direct our attention to (i). Roughly, chaotic systems are deter-
ministic systems showing irregular, or even random, behaviour and sensitive
dependence to initial conditions (SDIC). SDIC means that small errors in
initial conditions lead to totally different solutions.

5Schurz ([1996], pp. 133–9) discusses several variants of this form of unpredictability.
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Figure 3: behaviour of the logistic map for α = 4

The logistic map T : [0, 1] → [0, 1], T (x) = αx(1 − x) for α = 4 is
a paradigmatic chaotic system. Figure 3 shows the first six iterates of a
small bundle of initial conditions I, and suggests that any bundle blows
up substantially. Thus the system appears to exhibit SDIC. This figure also
suggests that any bundle blows up until it covers the whole phase space. Thus
the motion appears not only to exhibit SDIC but also irregular behaviour
in the following sense: any bundle of initial conditions eventually intersects
with any other region in phase space, a property called denseness. It is widely
agreed that SDIC and denseness are necessary conditions for chaos (Niellsen
[1999], pp. 14–5; Peitgen et al. [1992], pp. 509–21; Smith [1998], pp. 167–9).
This motivates the following criterion: a definition applying to dynamical
systems captures the main pretheoretic intuitions about chaos if and only if
it implies SDIC and denseness.

Let us now discuss (ii), the requirement of extensional correctness. Imag-
ine we are concerned with a pretheoretic property P. Further, assume that
we are faced with a class of objects some of which uncontroversially have
property P, others uncontroversially fail to have property P, and yet others
are borderline cases or controversial in some sense. The task is to find an
unambiguous definition of P. Then it is natural to say that an unambiguous
definition of the property P is extensionally correct if and only if it classifies
all objects correctly which uncontroversially have or do not have property P.
For the borderline objects it is unimportant how they are classified, and we
defer to the definition.

Being chaotic is such a property because the pretheoretic idea of chaos is
somewhat vague. Among the dynamical systems whose behaviour is mathe-
matically well understood, there is a broad class of uncontroversially chaotic
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systems and a broad class of uncontroversially nonchaotic systems. More-
over, there are a few borderline cases, for example the system discussed by
Martinelli et al. ([1998], p. 199), where it is not clear whether they are chaotic
(Brin and Stuck [2002], p. 23; Robinson [1995], pp. 81–5; Zaslavsky [2005],
pp. 53–4). Consequently, I say that a formal definition of chaos is extension-
ally correct if and only if it correctly classifies essentially all mathematically
well understood uncontroversially chaotic and nonchaotic behaviour.

Several definitions of chaos have been proposed (Lichtenberg and Lieber-
man [1992], pp. 302–9; Robinson [1995], pp. 81–6). While these definitions
are very similar, they are all inequivalent. For want of space I cannot discuss
all these definitions here and instead focus on a definition of chaos in terms
of mixing, which will be crucial later on.

3.2 Defining Chaos via Mixing

Intuitively speaking, the fact that a system is mixing means that any bundle
of solutions spreads out in phase space like a drop of ink in a glass of water.
A measure-preserving dynamical system (X, Σ, µ, T ) is mixing if and only if
for all A, B ∈ Σ:

lim
n→∞

µ(T−n(B) ∩ A) = µ(B)µ(A). (4)

Mixing is occasionally mentioned in connection with chaos, usually only in
the context of volume-preserving systems (e.g. Lichtenberg and Liebermann
[1992], pp. 302–3; Schuster and Just [2005], p. 177). Yet, to the best of my
knowledge, so far no one has explicitly argued that chaos can thus be defined.
I will argue for this and propose that mixing is chaos : a system is chaotic if
and only if it is mixing on the relevant subset of X. More needs to be said
about what qualifies as the relevant subset later on.

Since mixing was introduced before the 1960s, the beginning of the sys-
tematic investigation of chaos, it might seem puzzling that chaos can be ade-
quately defined via mixing. However, many formal definitions and measures
of chaos were invented before the 1960s (Dahan-Dalmedico [2004], p. 70),
but rather few systems were known to which these notions apply. Novel
from the 1960s onwards was that many different highly interesting systems,
surprisingly also very simple systems, were found to which these concepts
apply.

Let us first discuss whether mixing captures the pretheoretic intuitions.
Mixing implies denseness: mixing systems are ergodic (Cornfeld et al. [1982],
p. 25). By looking at equation (2) we see that from this follows that any
region, naturally interpreted as a set of positive measure, eventually visits
every region in phase space.
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Mixing also implies SDIC. This can be seen as follows. Mixing im-
plies that any bundle of initial conditions spreads out uniformly over the
phase space. Therefore, any bundle eventually spreads out considerably,
thus exhibiting SDIC. Formally, assume a mixing measure-preserving system
(X, Σ, µ, T ) is given where a metric d is defined on X and Σ contains every
open set of X. Further, assume that every open set has positive measure.6

Consider two open sets O1 and O2 with 0 < ε := infx∈O1,y∈O2{d(x, y)}. Mix-
ing implies that for any open set O there is a n ≥ 0 such that T n(O)∩O1 6= ∅
and T n(O) ∩ O2 6= ∅. But this means that ε ≤ supx,y∈T n(O){d(x, y)}. Hence
the following condition holds, which in definitions like Devaney chaos is taken
to be the SDIC implied by chaotic behaviour (Devaney [1986], p. 51):

There is a ε > 0 such that for all x ∈ X and for all δ > 0 (5)

there is a y ∈ X and a n ∈ N0 with d(x, y) < δ and d(T n(x), T n(y)) ≥ ε.

As SDIC is often linked to positive Liapunov exponents, let us now turn
to a discussion of this issue. For a continuously differentiable T on an open
X ⊆ R the Liapunov-exponent of x ∈ X is

λ(x) := lim
n→∞

1

n

n−1∑
i=0

log(|T ′(T i(x))|), (6)

where T ′ is the derivative of T (for a general definition see Mañé [1983],
p. 263). For ergodic systems the Liapunov-exponent exists and is equal for
all points except for a set of measure zero (Robinson [1995], p. 86). Hence one
can speak of the Liapunov-exponent of a system. Accordingly, one definition
of chaos that has been suggested is that the system is ergodic and has a
positive Liapunov-exponent.

From a positive Liapunov exponent it is commonly concluded that the
SDIC shown by chaos consists of the exponential spreading of inaccuracies
over finite time periods (e.g. Lighthill [1986], p. 46; Ott [2002], p. 140; Smith
[1998], p. 15).7 However, this is mistaken. Positive Liapunov exponents im-
ply that for almost all points x in phase space the average over all i ≥ 0 of
log(|T ′(T i(x))|)—the exponential growth rate of an inaccuracy at the point
T i(x)—is positive. Here the average is taken for the solution starting from
x over an infinite time period. But positive on average exponential growth
rates over an infinite time period do not imply that nearby solutions di-
verge exponentially or rapidly over finite time periods. The growth rate over

6This is standardly assumed and, to the best of my knowledge, applies to all paradig-
matic chaos systems.

7With the qualification that the time periods have to be small enough such that the
inaccuracy does not eventually saturate at the diameter of the system.
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finite time periods can be anything; inaccuracies can even shrink (Smith
et al. [1999], pp. 2861–2).8 Furthermore, it is not true that inaccuracies
of chaotic systems spread exponentially or rapidly over finite time periods:
for paradigmatic chaotic systems like the Lorenz attractor there are regions
where inaccuracies even shrink over finite time periods, and numerical evi-
dence suggests such regions for many chaotic systems (Smith et al. [1999],
p. 2881; Zaslavsky [2005], p. 315; Ziehmann et al. [2000], pp. 10–1).

Mixing systems need not have positive Liapunov exponents, and thus in-
accuracies need not grow exponentially on average as time goes to infinity.
Is this a problem for mixing as a definition of chaos? No. First, there is no
agreement in the literature whether chaos should show this on average expo-
nential growth. Some definitions do indeed demand it, others like Devaney
chaos do not. Second, the arguments for requiring positive Liapunov expo-
nents are not convincing. The standard rationale is that the SDIC shown
by chaotic system has to be exponential divergence of nearby solutions over
finite time periods. But as shown above, this is not implied by a positive
Liapunov exponent and also does not generally hold for chaotic systems.
Another possible argument is that for chaotic behaviour inaccuracies should
spread out rapidly. Yet the rate of divergence of mixing systems not having
positive Liapunov exponents can be much faster for arbitrary long time pe-
riods than for systems with positive Liapunov exponents; thus it is not clear
why positive Liapunov exponents should be required (Berkovitz et al. [2006],
p. 689; Wiggins [1990], p. 615). To conclude, mixing captures the pretheo-
retic intuitions about chaos. It remains to show that mixing is extensionally
correct.

To do this, I have to consider the main classes of uncontroversially chaotic
and nonchaotic behaviour.9 I start with uncontroversially chaotic behaviour
and first discuss volume-preserving systems. There are (i) Hamiltonian sys-
tem which are chaotic on the whole hypersurface of constant energy. Three
types of systems are mainly discussed here: first, chaotic billiards, which
are mixing (Chernov and Markarian [2006]; Ott [2002], p. 296); second,
hard sphere systems, which are either proven or conjectured to be mixing
(Berkovitz et al. [2006], pp. 679–80); third, geodesic flows of space with
negative Gaussian curvature, which are mixing (Schuster and Just [2005],
p. 181).

8Moreover, Liapunov exponents only measure the average growth rate of an infinites-
imal inaccuracy around x, which is defined as the growth rate of a small ball of radius
ε > 0 with centre x as ε → 0; yet in practice the uncertainty is finite and may not behave
like the infinitesimal one (cf. Bishop [unpublished], p. 8).

9Obviously, I cannot discuss every single system regarded as clearly chaotic or non-
chaotic. Yet our discussion covers all main examples.
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Another class are (ii) Hamiltonian systems to which the KAM-theorem
applies, e.g. the Hénon-Heiles system or the standard map. This class also
includes simplified versions of Poincaré maps of systems to which the KAM-
theorem applies. The KAM-theorem describes what happens when integrable
systems are perturbed by a nonintegrable perturbation. It says that tori with
sufficiently irrational winding number survive the perturbation. Between
the stable motion on surviving tori there appear to be regions of random
motion. As the perturbation increases, these regions become larger and often
eventually cover nearly the entire hypersurface of constant energy.

For these systems the phase space is separated into regions, each of which
has its own dynamics: in some of them the motion appears random and in
others it is stable. Because of this separation into regions, random behaviour
can only be found in a region. Consequently, as is widely acknowledged,
proper chaotic motion can only occur on a region (Ott [2002], pp. 267–95;
Schuster and Just [2005], pp. 165–74). Thus I have to show that the math-
ematically well-understood random motion in a region is mixing. Yet the
conjectured chaotic motion of KAM-type systems is understood only poorly
(Zaslavsky [2005], p. 139). It has only been proven that there is chaotic
behaviour near hyperbolic fixed points, where the motion is indeed mixing
(Moser [1973], chapter 3). Apart from this, some numerical evidence suggests
that the motion conjectured to be chaotic is mixing (e.g. Chirikov [1979]).
Thus Lichtenberg and Liebermann ([1992], p. 303) comment that we ‘expect
that the stochastic orbits that we have encountered in previous sections are
mixing over the bounded portion of phase space for which they exist’.

I should mention that numerical experiments suggest that for a few KAM-
type maps there are sets on which the motion seems somewhat random,
but these sets consist of n ≥ 2 component areas, each of which is mapped
successively on to another, returning to itself after n iterations. There is no
agreement whether such motion, which cannot be mixing, should be called
‘chaotic’ (e.g. Belot and Earman [1997], p. 154, vs. Ott [2002], p. 300). If it
is, chaos can still be defined via mixing: one can say that a system is chaotic
if and only if it is ergodic and its phase space is decomposable into n ≥ 1 sets
with disjoint interior such that the n-th iterate is mixing on each of these sets.
I call this the ‘broad definition of chaos via mixing’. Numerical experiments
suggest that the behaviour mentioned above may be chaotic according to this
definition (Ott [2002], p. 303).

Next in line are (iii) chaotic volume-preserving non-Hamiltonian systems.
Here the main examples discussed are discrete. First, the baker’s map and
volume-preserving Anosov diffeomorphisms like the cat map, which are mix-
ing (Arnold and Avez [1968], p. 75; Lichtenberg and Liebermann [1992],
p. 303). Second, paradigmatic chaotic systems are expanding piecewise maps
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like the tent map or the sawtooth map, which are mixing too (Bowen [1977]).
I now turn to dissipative systems and first discuss strange attractors. One

class are (iv) strange attractors where the attracted solutions never enter the
attractor. Three main groups are treated here: first, for Smale’s Solenoid,
and generalised Solenoid systems, there is a measure on which the motion is
mixing (Mayer and Roepstorff [1983]). Second, for the system investigated
by Lorenz ([1963]) and the Lorenz model, and generalised versions thereof,
there is a physical measure on which the motion is mixing (Luzzatto et
al. [2005]). Third, for generalised Hénon systems like the Hénon map there
exists a physical measure such that the motion on the attractor is mixing
(Benedicks and Young [1993]).

Also important is the (v) visible chaotic behaviour of generalised logistic
systems like the logistic map. For these discrete systems for most parameter
values the solutions enter an attractor with a physical measure on which
the motion is either mixing or chaotic according to the broad definition via
mixing. But for a few parameter values there is chaotic behaviour on the
entire interval, e.g. for the logistic map with parameter 4; in these cases
there is also a physical measure on which the motion is mixing (Jacobsen
[1981]; Lyubich [2002]).10

Finally, another class is (vi) repelling chaotic behaviour on Cantor sets.
Two main kinds of discrete systems are discussed here: first, geometric
horseshoe-systems like Smale’s horseshoe, which are mixing (Robinson [1995],
pp. 249–74). The second example is chaotic motion on Cantor sets for the
logistic map with parameter greater than 4, which is also mixing (Robinson
[1995], p. 33).11

Let us now turn to uncontroversially nonchaotic motion. I again start
with volume-preserving systems. A paradigmatic class are (i) integrable
Hamiltonian systems, where there is periodic or quasi-periodic motion on
tori, which is not mixing (Arnold and Avez [1968], pp. 210–214).

Another class is the (ii) motion on clearly nonchaotic regions of KAM-
type systems. Again, this class also includes simplified versions of Poincaré
maps of KAM-type systems. As already discussed, for KAM-type systems
the phase space is separated into regions, and on some regions the motion
is stable. Thus I have to show that the stable motion is not mixing. And
indeed, the behaviour in these regions, e.g. the motion on surviving tori or
the one near specific elliptic periodic points, is not mixing (Arnold and Avez
[1968], pp. 86–90; Lichtenberg and Liebermann [1992], chapter 3–5).

10In all these cases the invariant measure is also the unique ergodic measure absolutely
continuous with respect to the Lebesgue measure (Jacobsen [1981]; Lyubich [2002]).

11This follows because these systems are isomorphic to a Bernoulli-shift.
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I now turn to dissipative systems. Important here are (iii) nonchaotic
attractors. These are attracting periodic cycles and fixed points and also
quasi-periodic attractors as discussed by Ott ([2002], chapter 7), which obvi-
ously cannot be mixing. Moreover, the motion approaching such attractors,
e.g. the behaviour around stable nodes or stable foci, clearly cannot be mixing
(cf. Robinson [1995], p. 105).12

Finally, let us mention two further very broad classes of clearly nonchaotic
behaviour. Since mixing captures SDIC, (iv) systems not exhibiting any kind
of SDIC, e.g. the identity function, cannot be mixing.

Moreover, since mixing captures denseness, (v) motions showing SDIC
but where, in any sense, typical solutions do not come arbitrarily near to any
region in phase space cannot be mixing. Examples are the system xn+1 = cxn

for c > 1 on (0,∞) or the motion around unstable nodes or unstable foci
(cf. Robinson [1995], p. 105).12

In sum, I have first demonstrated that mixing captures the pretheoretic
intuitions about chaos. After that I have briefly shown that a definition of
chaos in terms of mixing is extensionally correct in the sense explained above.
Consequently, chaos can be adequately defined in terms of mixing.

With this knowledge about chaos we are ready to critically discuss the
answers suggested in the literature to our main question.

4 Criticism of Answers in the Literature

4.1 New: Asymptotically Unpredictable?

Let us first discuss an answer based on the concept of asymptotic unpredicta-
bility. Roughly, systems whose asymptotic behaviour cannot be predicted
with arbitrary accuracy for all times, even if the bundle of initial conditions
is made arbitrarily small, are said to be asymptotically unpredictable. Let
(X, d, T ) be a topological dynamical system, ε be the desired prediction ac-
curacy and δ be the diameter of the bundle of initial conditions. For x ∈ X
the solution (T n(x))n≥0 is asymptotically predictable if and only if

∀ε > 0 ∃δ > 0 ∀y ∈ X ∀n ≥ 0 (d(x, y) < δ → d(T n(x), T n(y)) < ε). (7)

A dynamical system is asymptotically unpredictable if and only if for all x ∈ X
(T n(x))n≥0 is not asymptotically predictable.13 In terms of the distinction

12Here there often exists no invariant measure of interest.
13Bishop ([2003], pp. 174–7) also aims to formalise asymptotic unpredictability. How-

ever, he does not list the most obvious notion presented here.
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introduced in subsection 2.3, this is clearly a version of the first concept of
unpredictability.

Miller ([1996], pp. 106–7) and Stone ([1989], p. 127) argue that the new
implication of chaos for unpredictability is that chaotic systems are asymp-
totically unpredictable. Indeed, all chaotic systems discussed in the literature
are asymptotically unpredictable, and standard definitions of chaos imply
asymptotic unpredictability. For instance, (5), a condition of Devaney chaos
and, under plausible assumptions, a consequence of mixing, clearly implies
asymptotic unpredictability.

However, as Smith ([1998], p. 58) has pointed out, many nonchaotic sys-
tems, e.g. one only showing SDIC as it happens in the system xn+1 = cxn,
c > 1, (class (v) of clearly nonchaotic behaviour), are asymptotically un-
predictable. Hence this account is wrong. But maybe the account can be
strengthened in the following way: the new implication is that chaotic sys-
tems are asymptotically unpredictable and bounded. I maintain that this is not
correct either: there are unbounded chaotic systems (Smith [1998], pp. 168–
9), a point which is reflected in usual definitions of chaos, which do not require
boundedness. Furthermore, for many bounded integrable systems (part of
class (i) of the clearly nonchaotic behaviour) the solutions loop around tori
in such a way that they are asymptotically unpredictable (Arnold and Avez
[1968], pp. 210–4). Hence there are examples of nonchaotic, bounded and
asymptotically unpredictable systems.

I conclude that the sole connection between asymptotic unpredictability
and chaos is this: while only some nonchaotic systems are asymptotically
unpredictable, every chaotic system is asymptotically unpredictable.

4.2 New: Unpredictable Due to Rapid or Exponential
Divergence of Solutions?

It is widely believed and often claimed that the new implication of chaos
for unpredictability is the following: due to rapid or exponential divergence
of nearby solutions, bundles of initial conditions spread out a distance more
than a diameter of interest over short time periods (e.g. Ruelle [1997], pp. 27–
8); often it is added that this is so and the systems are bounded (e.g. Lighthill
[1986], p. 46). In terms of the distinction introduced in subsection 2.3, this
is a form of the first concept of unpredictability.

As many unbounded nonchaotic systems like the system xn+1 = cxn with
c > 1 show (part of class (v) of clearly nonchaotic behaviour) rapid or expo-
nentially divergence everywhere is “nothing new” (Smith [1998], p. 15). Thus
the version not requiring boundedness cannot be true. But also the version
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requiring boundedness is wrong : as mentioned above, there are unbounded
chaotic systems. Furthermore, as argued in subsection 3.2, it is often not
true that nearby solutions of chaotic systems diverge rapidly or exponentially
over finite time periods as is so widely believed in the philosophy, physics and
mathematics communities (e.g. Eagle [2005], p. 767; Schurz [1996], p. 140;
Smith [1998], p. 15). Hence this is not the sought-after new implication of
chaos for unpredictability.

Why is it so widely believed that inaccuracies in chaotic systems spread
rapidly or exponentially over finite time periods? One plausible reason is
that because very simple systems like the cat map show this property, this
claim is wrongly generalized to all chaotic systems. Also, the wrong belief
stems at least in part from misinterpreting Liapunov exponents. As pointed
out in subsection 3.2, positive on average exponential growth rates over an
infinite time period are wrongly taken to imply that inaccuracies spread
exponentially over finite time periods.

The only connection between the unpredictability of chaos and the rapid
or exponential increase of inaccuracies over finite time periods seems to be
this: it is more often the case for chaotic than for nonchaotic systems that
bundles of initial conditions spread out more than a diameter of interest over
short time periods.

4.3 New: Macro-predictable & Micro-unpredictable?

Macro-predictable yet micro-unpredictable behaviour is a broad and inter-
esting topic in physics. For instance, in statistical mechanics systems are
often macro-predictable but micro-unpredictable. Here we concentrate only
on whether there is any combination of macro-predictability and micro-
unpredictability in chaotic systems that other deterministic systems do not
have.

To gain an understanding of this third proposed answer, recall the Lorenz
equations (3) and Figure 2. These equations exhibit macro-predictability:
the solutions are attracted by an attractor, a small region of phase space.
There is also micro-unpredictability since the motion on the attractor exhibits
SDIC. Peter Smith argues that this combination of macro-predictability and
micro-unpredictability is a new implication of chaos for unpredictability :

This type of combination of large-scale order with small scale disorder,
of macro-predictability with the micro-unpredictability due to sensitive
dependence, is one paradigm of what has come to be called chaos. [...]
So error inflation by itself is entirely old-hat. The novelty in the new-
fangled chaotic cases that will concern us is, to repeat, the combination

19



of exponential error inflation with the tight confinement of trajectories
by an attractor (Smith [1998], pp. 13–5, original emphasis).

Here macro-predictability means that the system eventually shows the
behaviour corresponding to the motion on the attractor, a proper subset of
phase space. Micro-unpredictability is understood as the unpredictability
implied by exponential error inflation. Yet, as shown in section 3, solutions
of chaotic systems need not diverge exponentially or rapidly over finite time
periods. Therefore, micro-unpredictability has to be interpreted as a weaker
notion, e.g. asymptotic unpredictability (cf. subsection 4.1).

As becomes clear from the Lorenz system, strange attractors imply this
combination of macro-predictability and micro-unpredictability. However,
this combination is no new implication of chaos for unpredictability since
there are many chaotic systems without attractors. As already pointed out,
all chaotic volume-preserving dynamical systems like chaotic Hamiltonian
systems or the baker’s map (classes (i), (ii) and (iii) of uncontroversially
chaotic behaviour) cannot have attractors. And some chaotic dissipative
systems, e.g. repelling chaotic motion on Cantor sets or the logistic map on
[0, 1] (class (vi) and a part of class (v) of uncontroverially chaotic behaviour),
have no attractors. Hence these systems are not macro-predictable in the
above sense, viz. that appeals to attractors.

It could be that Smith ([1998]) only meant to say that this combination of
macro-predictability and micro-unpredictability found in strange attractors
is a novelty for systems with attractors. But this would not help. Clearly, this
claim would be no satisfying answer to our main question because it does not
apply to essentially all chaotic systems. Furthermore, also nonchaotic sys-
tems can be macro-predictable and micro-unpredictable as discussed here.
For instance, in the plane let R be the region enclosed by a circle of radius r
around the origin (boundary included). Imagine that all solutions in R go in
circles around the origin and that all solutions outside R are attracted by the
periodic motion in R such that all solutions are continuous. Such nonchaotic
attractors (part of class (iii) of clearly nonchaotic behaviour) obviously im-
ply macro-predictability and micro-unpredictability. Thus this combination
of macro-predictability and micro-unpredictability is not even a novelty for
systems with attractors.

Of course, there are also other concepts of macro-predictability and micro-
unpredictability (e.g. Smith [1998], pp. 60–1). However, to the best of my
knowledge, none of them provides a combination of macro-predictability and
micro-unpredictability that is characteristic of chaotic behaviour.

To conclude, strange attractors are macro-predictable and micro-unpredictable
in the above specified sense. However, it is not the case that a combination
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of macro-predictability and micro-unpredictability constitutes a new impli-
cation of chaos for unpredictability.

None of the answers examined so far have proven to be correct. There
is one more answer suggested in the literature: some physicists, e.g. Ford
([1989]), have defined chaos by the condition that almost all solutions have
positive algorithmic complexity. In other words they have argued that the
unpredictability implied by positive algorithmic complexity is a new impli-
cation of chaos for unpredictability. However, Batterman and White ([1996])
and Smith ([1998], p. 160) have made it clear that chaos cannot be defined
via algorithmic complexity since many systems without SDIC (part of class
(iv) of clearly nonchaotic behaviour) have positive algorithmic complexity
too. Consequently, this is no new implication of chaos for unpredictability,
and this is all we need to know.

In sum, the answers in the literature do not fit the bill.

5 A General New Implication of Chaos for

Unpredictability

5.1 Approximate Probabilistic Irrelevance

The answer I propose starts from the well-known idea that mixing goes along
with loss of information as recently discussed by Berkovitz et al. ([2006]).
First of all, let us introduce the approximate probabilistic irrelevance, the
notion of unpredictability which will be crucial for our claim.

Given a measure-preserving system (X, Σ, µ, T ) it is common to associate
with a set A ∈ Σ a property PA, where PA holds if and only if the system’s
state is in A (Ibid., p. 671). For instance, for the logistic map with α = 4
interpreted as a model of population dynamics (May [1976]), the set A =
[0, 1/2) corresponds to the property that the population is less than half of
the maximum of the possible population.

Because time is discrete, I can denote time points by tn, n ∈ Z, such that
n increases by one if the model is iterated once; for instance, if t4 corresponds
to the iteration stage T , t5 corresponds to T 2 etc. Given this, I define the
event Atn as the occurrence of the property PA at time tn. To come back
to our example, Atn is the event that the population is less than half of the
maximum possible population at time tn (Berkovitz et al. [2006], p. 671).

Since the exact state of the system may not be known, I introduce p(Atn),
the probability of the event Atn . I also introduce conditional probabilities:
p(Btm | Atn), for arbitrary A, B ∈ Σ with µ(A) > 0, is the probability that
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PB obtains at time tm given that PA obtained at tn (Ibid., p. 671). By the
usual definition, p(Btm | Atn) = p(Btm&Atn)/p(Atn).

Now recall the second conception of unpredictability of subsection 2.3.
For this conception we have to say what it means that knowledge that the
system is in a region A at tn is practically irrelevant for predicting that it
will be in B at tm. We say that this is so if the probability of the event Btm

given knowledge of the event Atn approximately equals the unconditionalised
probability of the event Btm . Let ε > 0 be the level at which probabilities
differing by less than ε are considered as practically equivalent. Further,
assume that p(Atn) > 0; I will later explain why I am justified to do so.
Then formally this is captured by the following definition:14

Atn is approximately probabilistically irrelevant for predicting Btm (8)

(tm ≥ tn) at level ε > 0 if and only if |p(Btm | Atn)− p(Btm)| < ε.

How can we determine the values of the probabilities occurring in (8)?
Because the probabilities should reflect objective dynamical properties of
systems, I say that the probability of an event Atn corresponds to the measure
of A (Ibid., p. 673). As mentioned in subsection 2.1, this is quite natural
under certain interpretations.

For all tn and for all A ∈ Σ : p(Atn) = µ(A). (9)

This idea can be generalised to joint simultaneous events as follows:

For all tn and for all A, B ∈ Σ : p(Atn&Btn) = µ(A ∩B). (10)

This implies:

For all tm, tn, tm ≥ tn, and all A, B ∈ Σ : p(Btm&Atn) = µ(T n−m(B) ∩ A)
(11)

since T n−m(B) is the evolution of the set B backward in time from tm to
tn.15

In the next section we will see how the approximate probabilistic irrele-
vance relates to chaos and will finally propose an answer to our question.

14I use what is basically the difference measure in confirmation theory to define the
approximate probabilistic irrelevance. I should point out that our claims are independent
of the measure involved, i.e. they would remain the same if I used any other measure with
the indisputable property that it is continuous when the unpredictability is highest, i.e.
when p(Btm | Atn) = p(Btm). Berkovitz et al. ([2006], p. 672) interpret the difference
measure of events as a general measure of unpredictability. However, they do not justify
this choice or address whether their results are independent of the measure.

15I can infer (11) from (10) as follows: Tn−m(B) contains exactly those points that are
in B at time tm. Consequently, Tn−m(B) ∩A consists of exactly those points which pass
A at time tn and go through B at time tm ≥ tn, i.e. for which Btm&Atn is true. Thus
from (10) it follows that p(Btm&Atn) = µ(Tn−m(B) ∩A).
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5.2 New: Sufficiently Past Events Approximately Prob-
abilistically Irrelevant for Predictions

The argument I put forward to answer the main question of the paper is as
follows. (P1) Chaos can be defined in terms of mixing. (P2) Mixing systems
exhibit a particular pattern of approximate probabilistic irrelevance, which
constitutes a form of unpredictability. Therefore: (C) a new implication of
chaos for unpredictability is the particular pattern of approximate probabilistic
irrelevance arising from mixing.

In subsection 3.2 we have seen that premise (P1) is true. Let us now argue
for premise (P2). Recall the definition of mixing (4). I assume without loss
of generality that the event we want to predict occurs at t0. Then, assuming
(9) and (11), it follows that a system (X, Σ, µ, T ) is mixing if and only if

lim
n→∞

p(Bt0 | At−n)− p(Bt0) = 0, (12)

for all A, B ∈ Σ with µ(A) > 0. This equation holds for all, i.e. invert-
ible and noninvertible, measure-preserving systems. Berkovitz et al. ([2006],
p. 676) show (12) only for invertible systems. Moreover, they interpret their
results as applying only to Hamiltonian systems. Many chaotic systems, e.g.
all strange attractors (classes (iv) and (v) of uncontroversially chaotic be-
haviour), are not Hamiltonian. Furthermore, many paradigmatic systems
like generalised logistic systems or the tent map (class (v) and part of classes
(iii) and (vi) of uncontroversially chaotic behaviour) are not invertible. Since
I am interested in the unpredictability implied by chaos, I need (12) for all
systems, and this general claim follows from (9) and (11).

From the definition of the limit, I obtain that (12) can be expressed as:

For any event Bt0 , any precision ε > 0 and any A with µ(A) > 0 (13)

there exists n0 ∈ N such that for all n ≥ n0 : |p(Bt0 | At−n)− p(Bt0)| < ε.

Hence mixing means that for predicting an arbitrary event at an arbitrary
level of precision ε > 0, any sufficiently past event is approximately prob-
abilistically irrelevant. Notice that due to the impossibility of determining
initial conditions precisely, scientists always consider regions of phase space
corresponding to possible initial conditions. Since these regions are not of
measure zero, I am justified assuming that µ(A) > 0. In terms of the dis-
tinction introduced in subsection 2.3, this pattern of probabilistic irrelevance
is a version of the second concept of unpredictability. Hence mixing systems
exhibit a particular pattern of approximate probabilistic irrelevance, which
constitutes a form of unpredictability: i.e. premise (P2) is true.16

16This claim can be generalised. (X, Σ, µ, T ) is mixing iff for any ρ absolutely continuous
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Now that I have argued for the premises (P1) and (P2) of the above argu-
ment, I conclude: (C) a general new implication of chaos for unpredictability
is that for predicting any event at any level of precision ε > 0, all sufficiently
past events are approximately probabilistically irrelevant.

To fully understand this conclusion, consider the following: for strange
attractors this claim applies in a strict sense only to events on the attractor.
Yet for practical matters there is chaotic behaviour when solutions are very
near to the strange attractor (cf. subsection 2.1); then my claim means that
for predicting any event on or very near the attractor Λ at any level of
precision ε > 0, all sufficiently past events in the neighbourhood U ⊃ Λ are
approximately probabilistically irrelevant. For KAM-type systems my claim
applies, as one would like it, to each chaotic region. Moreover, as explained in
section 3.2 in discussing the uncontroversially chaotic behaviour, some may
want to adopt the broad definition of chaos via mixing, i.e. that the system is
ergodic and its phase space is decomposable into n ≥ 1 regions with disjoint
interior such that the n-th iterate is mixing on each set. When n > 1, my
claim (C) has to be adapted in the following way: the unpredictability of
mixing applies to the n-th iterate on the region of interest. This means that
for predicting any event in the region of interest at any level of precision
ε > 0, all sufficiently past events that could have evolved to the region of
interest are approximately probabilistically irrelevant.

On the one hand, the unpredictability involved in my answer is strong:
sufficiently distant events are practically as independent as coin tosses. On
the other hand, it is weak since only sufficiently past measurements are ap-
proximately probabilistically irrelevant. Restricting my claim to sufficiently
past events is essential: first, many chaotic systems are continuous, and conti-
nuity makes it impossible that for all past times, all events are approximately
probabilistically irrelevant for predictions. Second, we have seen that to re-
quire rapid divergence of nearby solutions for chaotic behaviour is untenable.

What is novel about my claim? Granted, in a few publications on chaos
the notion of ‘irrelevance’ is discussed. In fact, there are two main foci; but
none give my claim. First, there is Berkovitz et al.’s ([2006]) explication of
the ergodic hierarchy. Yet recall our main argument (cf. the beginning of
this subsection). As pointed out, Berkovitz et al. only show premise (P2) for
invertible systems, and they interpret their results as only applying to Hamil-

with respect to µ and any square integrable function f : limn→∞
∫

f(x)dρn =
∫

f(x)dµ,
where ρn is the n-steps evolved measure. Interpret µ as probability and ρ as measuring
our knowledge of the initial condition. Then, assuming absolute continuity of ρ, mixing
means that for arbitrary knowledge of the initial condition after a sufficiently long time
the prediction obtained by evolving the measure is practically no better than if we had no
knowledge whatsoever of the initial conditions (cf. Berger [2001], pp. 126–32).
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tonian systems. Hence they do not argue for the general premise (P2), and,
most importantly, they do not argue for the crucial premise (P1). Therefore,
they could not arrive at the conclusion (C). Second, sometimes it is asserted
that for chaos the input is irrelevant in the sense that prediction is exponen-
tially expensive in the initial data, meaning that for an input string of length
n all information is lost after n steps, at which point we are totally unsure
what happens next (Leiber [1998], p. 361; Smith [1998], p. 53). However,
as argued in subsection 4.2, predictions for chaotic systems need not be ex-
ponentially expensive in the initial data; the irrelevance shown by chaos is
more subtle.

6 Conclusion

The unpredictability of chaotic systems is one of the issues that has attracted
most interest in chaos research. Nonetheless, nearly half a century after the
start of the systematic investigation of chaos, there has been much confusion
about, and no correct answer to, the question ‘What are the new implica-
tions of chaos for unpredictability?’, in the sense that chaotic systems are
unpredictable in a way that other deterministic systems are not.

I have criticised the answers in the literature to the above question.
First, I rejected the answer that chaotic systems are asymptotically unpre-
dictable on the grounds that also many nonchaotic systems are asymptot-
ically unpredictable. Second, I rejected the answer that chaotic systems
are unpredictable in the sense of exponential or rapid divergence of nearby
solutions (often claimed with the added condition of boundedness). For,
when not requiring boundedness, many nonchaotic systems are also unpre-
dictable in this sense. Furthermore, in the case of requiring boundedness,
there are unbounded chaotic systems and, though unacknowledged in the
philosophy literature, chaotic systems need not be unpredictable in the sense
of having exponential or rapid divergence of solutions. Third, I dismissed
the answer that chaos shows a specific combination of macro-predictability
and micro-unpredictability: there are chaotic systems which are not macro-
predictable and nonchaotic systems which also show this combination of
macro-predictability and micro-unpredictability.

This prompted the search for an alternative answer. I approached this
problem by showing that chaos can be defined in terms of mixing, i.e. that
mixing captures the main pretheoretic intuitions about chaos and correctly
classifies the various classes of uncontroversially chaotic and nonchaotic be-
haviour. This has never been explicitly argued for in the literature. Based
on this insight, I proposed a novel general answer: a new implication of chaos
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for unpredictability is that for predicting any event at any level of precision
ε > 0, all sufficiently past events are approximately probabilistically irrele-
vant. Chaotic behaviour is multi-faceted and takes various forms. Yet if the
aim is to identify a general new implication of chaos for unpredictability, I
think this is the best we can get.
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