The Dantzig selector in Cox’s proportional hazards model

Running headline: Dantzig selector fox Cox’s model

Anestis Antoniadis,
Laboratoire Jean Kuntzmann, Département de Statistique,
Université Joseph Fourier, France

Piotr Fryzlewicz,
Department of Statistics, London School of Economics, UK

and

Frédérique Letué,
Laboratoire Jean Kuntzmann, Département de Statistique,
Université Pierre Mendès France, France.

October 6, 2009
Abstract

The Dantzig Selector is a recent approach to estimation in high-dimensional linear regression models with a large number of explanatory variables and a relatively small number of observations. As in the least absolute shrinkage and selection operator (LASSO), this approach sets certain regression coefficients exactly to zero, thus performing variable selection. However, such a framework, contrary to the LASSO, has never been used in regression models for survival data with censoring. A key motivation of this article is to study the estimation problem for Cox’s proportional hazards function regression models using a framework that extends the theory, the computational advantages and the optimal asymptotic rate properties of the Dantzig selector to the class of Cox’s proportional hazards under appropriate sparsity scenarios. We perform a detailed simulation study to compare our approach to other methods and illustrate it on a well-known microarray gene expression data set for predicting survival from gene expressions.

Key words: Dantzig selector, generalized linear models, Lasso, penalized partial likelihood, proportional hazards model, variable selection

1 Introduction

An objective of survival analysis is to identify the risk factors and their risk contributions. Often, many covariates are collected and, to reduce possible modelling bias, a large parametric model is built. An important and challenging task is then variable selection which is a form of model selection in which the class of models under consideration is represented by subsets of covariate components to be included in the analysis. Variable selection methods are well developed in linear regression settings and in recent years many of them have been extended to the context of censored survival data analysis. They include best-subset selection (Jovanovic et al.,
1995), stepwise selection (Delong et al., 1994), asymptotic procedures based on score tests, Wald tests and other approximate chi-squared testing procedures (Harrell, 2001), bootstrap procedures (Graf et al., 1999) and Bayesian variable selection (Faraggi & Simon, 1998; Ibrahim et al., 2008). However, theoretical properties of these methods have not been fully validated (Fan & Li, 2002).

A family of penalized partial likelihood methods, such as the LASSO (Tibshirani, 1997) and the smoothly clipped absolute deviation method (SCAD, Fan & Li, 2002) were proposed for Cox’s proportional hazards model. By shrinking some regression coefficients to zero, these methods select important variables and estimate the regression model simultaneously. The LASSO estimator does not possess the oracle properties (Fan & Li, 2002). The SCAD estimator has better theoretical properties than the LASSO, but the nonconvex form of its penalty makes its computation challenging in practice, and the solutions may suffer from numerical instability (see Zou, 2008). An adaptive LASSO method based on a penalized partial likelihood with adaptively weighted L_1 penalties on regression coefficients developed by Zhang & Lu (2007) enjoys the oracle properties of the SCAD estimator but the optimization problem cannot be efficiently solved by standard algorithms.

Recently, Candès & Tao (2007) proposed the Dantzig selector (DS, for short) for performing model fitting for linear regression models where the number of variables can be much larger than the sample size but the set of coefficients is sparse, i.e. most of the coefficients are zero. Unlike most other procedures such as the LASSO and the SCAD, which minimize the sum of squared errors subject to a penalty on the regression coefficients, the Dantzig Selector minimizes the L_1 norm of the coefficients subject to a constraint on the error terms. As with the LASSO, SCAD or the adaptive LASSO, this approach sets certain coefficients exactly to zero, thus performing variable selection. However, unlike the other methods, standard linear programming methods can be used to compute the solution to the Dantzig selector, providing a computationally efficient algorithm. Also, the resulting estimated coefficients enjoy near-optimal ℓ_2 non-asymptotic error bounds. Hence, the Dantzig selector appears to be an appealing
estimation procedure for sparse linear regression models and this motivates us to extend its theoretical and computational advantages to the class of semi-parametric Cox’s proportional hazards models. The proposed method uses the partial likelihood function as an overall loss function. Since it compares favourably with other methods, as indicated in our simulation study, we view it as a useful addition to the toolbox of estimation and prediction methods for the widely used Cox’s model.

Incidentally, after this work was completed, more recent work by Martinussen & Scheike (2009b) has appeared, where the Dantzig selector is studied in the setting of a semiparametric Aalen additive hazards model using, instead of Cox’s partial likelihood, an appropriate least-squares criterion as a loss function.

The paper is organized as follows. The usual survival data setup for (generalized) Cox’s regression model with time-independent covariates is introduced in Section 2, recalling the basic ideas of Cox’s original proportional model for the hazard rates. In particular, we briefly recall in this section the appropriate framework needed to represent this model in a martingale notation based on theories of counting processes (see e.g. Andersen & Gill, 1982). In Section 3, after outlining the approach behind the Dantzig Selector for linear regression models, we introduce our Dantzig Selector for proportional hazards (PH) models and develop a computationally efficient algorithm for computing the estimator. Section 3 also contains our main assumptions and theoretical results concerning the estimator, the main result relating to its l_2 error, in analogy with Candès and Tao’s (Candès & Tao, 2007) results for linear models. In Section 4, we present a simulation study comparing the proposed approach with various competitors, while in Section 5 we present an application of our method on a well-known microarray gene expression data set, used previously for similar purposes in the literature (Bøvelstad et al., 2007). Some conclusions are given in Section 6. Proofs of main and intermediate results are in the Appendix.

R software implementing our Dantzig selector for survival data can be downloaded from

2 Notation and preliminaries

In order to fix the notation we consider the usual survival data setup. The reader unfamiliar with the concepts described in this Section is referred to the book by Andersen et al. (1993). The survival time X is assumed to be conditionally independent of a censoring time U given the p-dimensional vector of covariates $Z = (Z_1, Z_2, \ldots, Z_p)^T$ so that the construction of the partial likelihood is justified. We observe n i.i.d. copies (\tilde{X}_i, D_i, Z_i), $i = 1, \ldots, n$, of the right censored survival time $\tilde{X} = \min(X, U)$ and the censoring indicator $D = \mathbf{I}[X \leq U] = \mathbf{I}[\tilde{X} = X]$. The covariates are assumed to be bounded: there exists a positive constant C such that $\sup_{1 \leq j \leq p} |Z_j| \leq C$. This assumption is fully justified in the fixed design case, and is used in our theoretical calculations regarding the performance of our estimator. However, we emphasise that in practice, our computational algorithm makes no use of either the assumption itself or the (possibly unknown) value of the constant C. Thus this assumption should not be viewed as restrictive, even in the random design case. We also note that in cases where Z_j represent gene expressions measured on a microarray, they are naturally bounded by virtue of the measurement process.

In the following we will denote by Z the $n \times p$ matrix whose generic term Z_{ij} is the ith observed value of the jth covariate Z_j, and the ith row of Z will be denoted by z_i^T. For simplicity, we will also assume that there are no tied failure times; suitable modifications of the partial likelihood exist for the case of predictable and locally bounded covariate processes and for the case of ties (see Andersen et al., 1993). Most often in the literature, proportional hazards models are formulated using random variables (as opposed to stochastic processes), and the implied statistical methods are based on maximum (partial) likelihoods. However, we prefer studying such problems in terms of the theory of counting processes, since time and random phenomena occurring in time play an essential role in survival analysis. Moreover, this counting process approach has been facilitated by the work of Andersen & Gill (1982) and permits us to use martingale convergence results in a unified way to demonstrate
theoretical properties of our approach.

In the counting process setup, we can represent the observed data as follows. The regression model for survival data, described above, is linked to the multivariate counting process \(N = (N_1, \ldots, N_n) \) of the form, \(N_i(t) = I(\tilde{X}_i \leq t, D_i = 1) \) where the \(N_i \)'s are independent copies of the single-jump counting process \(N(t) = I(\tilde{X} \leq t, D = 1) \) which registers whether an uncensored failure (or death) has occurred by time \(t \). Let \(Y(t) = I[\tilde{X} \geq t] \) be the corresponding “at risk” indicator. Define the filtration \(\mathcal{F}_t = \mathcal{F}_0 \lor \{ N(u), Y(u); u \leq t \} \), where \(\mathcal{F}_0 = \sigma(Z) \). Under the true probability measure \(\mathbb{P} \) on \(\mathcal{F} = \mathcal{F}_t \), the counting processes \(N_i(t) \) have intensity processes \(\lambda_i(t, z_i) \) and under the Cox regression model, the conditional intensities \(\lambda_i(t, z_i) \) of \(N_i \) given \(Z_i = z_i \) for \(t \) restricted to a fixed time interval \([0, \tau]\) are

\[
\lambda_i(t, z_i) = Y_i(t)a_0(t) \exp(z_i^T \beta_0)
\]

where \(a_0 \) is the baseline hazard function and \(\beta_0 \) is the unknown vector of regression coefficients. For flexibility of fit, the baseline hazard function is left unspecified and our setting is therefore semiparametric. This, in particular, means that

\[
M_i(t) = N_i(t) - \int_0^t \lambda_i(u, z_i)du, \quad t \in [0, \tau],
\]

are independent \(\mathcal{F}_t \) square-integrable martingales under \(\mathbb{P} \) with compensator \(V_i(t) = \int_0^t \lambda_i(u, z_i)du \). In particular, we have

\[
\langle M_i, M_i \rangle(t) = \int_0^t \lambda_i(u, z_i)du = V_i(t).
\]

Under the above notation, the (rescaled by 1/n) Cox’s partial loglikelihood function is given by

\[
l(\beta) = \frac{1}{n} \sum_{i=1}^n z_i^T \beta \int_0^\tau dN_i(u) - \int_0^\tau \log \left(\sum_{i=1}^n Y_i(u) \exp(z_i^T \beta) \right) \frac{d\bar{N}(u)}{n},
\]

where \(d\bar{N}(u) = d \sum_{i=1}^n N_i(u) \). Let \(S_n(\beta, u) = \sum_{i=1}^n Y_i(u) \exp(z_i^T \beta) \). Then

\[
l(\beta) = \frac{1}{n} \sum_{i=1}^n z_i^T \beta \int_0^\tau dN_i(u) - \int_0^\tau \log \left(S_n(\beta, u) \right) \frac{d\bar{N}(u)}{n}.
\]
Define the first and second order partial derivative of \(S_n(\beta, u) \) with respect to \(\beta \):

\[
S^1_n(\beta, u) = \sum_{i=1}^n Y_i(u) \exp(z_i^T \beta)z_i \quad \text{and} \quad S^2_n(\beta, u) = \sum_{i=1}^n Y_i(u) \exp(z_i^T \beta)z_i \otimes z_i,
\]

where \(z \otimes z = zz^T \). The maximum likelihood estimator of \(\beta \) in Cox’s model, is found as the solution to the score equation \(U(\hat{\beta}) = 0 \), where the score process \(U(\beta) \) is defined by

\[
U(\beta) = \frac{\partial l(\beta)}{\partial \beta} = \frac{1}{n} \sum_{i=1}^n \int_0^T (z_i - E(u, \beta)) dN_i(u),
\]

with \(E(u, \beta) = \frac{S^1_n(\beta, u)}{S_n(\beta, u)} \). In particular, for the true parameter \(\beta = \beta_0 \), we have:

\[
(U(\beta_0))_j = \left(\frac{\partial l(\beta)}{\partial \beta_j} \right)_{\beta_0} = \frac{1}{n} \sum_{i=1}^n Z_{ij} \int_0^T dM_i(u) - \frac{\int_0^T S^1_n(\beta_0, u) d\bar{M}(u)}{S_n(\beta_0, u)},
\]

where \(d\bar{M}(u) = d \sum_{i=1}^n M_i(u) \). Thus the score process evaluated at the true parameter \(\beta = \beta_0 \) is itself a martingale and this fact, together with standard regularity assumptions, facilitates the study of the asymptotic properties of the MLE estimator of the vector of regression coefficients.

In practice, not all the covariates (components of \(Z \)) may contribute to the prediction of survival outcomes: some components of \(\beta \) in the true model may be zero. Our Dantzig selection procedure, described in the next section, works under this “sparsity” assumption and produces consistent and easily computable estimates of the relevant coefficients.

3 Dantzig selector for Cox’s regression model

Theoretical properties of LASSO and SCAD for Cox’s proportional hazard model have been investigated in literature. These penalized partial likelihood methods may be viewed, in an asymptotic sense, as instances of iteratively re-weighted least squares procedures by transferring the objective functions involved in the optimization into asymptotically equivalent least-squares problems. Indeed, as noted by Wang & Leng
Dantzig selector fox Cox’s model

(2007), when \(p \) is fixed and is smaller that \(n \), using the asymptotic theory for the MLE estimator \(\hat{\beta} \) of \(\beta \) in a standard Cox’s regression model, the negative log-likelihood function can be replaced locally by a Taylor series expansion at \(\hat{\beta} \) leading to a least squares penalized criterion which is updated iteratively (LASSO Estimation via Least Squares Approximation (LSA)). As shown by Wang & Leng (2007), their resulting LSA estimators are often asymptotically as efficient as oracle as long as the number of components \(p \) remains fixed and the tuning parameters are chosen appropriately. In our case, we do not want to restrict ourselves to the standard \(p < n \) setup, but we would also like to examine the case where \(p \) may grow with, and exceed, \(n \), i.e. the case of a (fast) growing dimension of the predictor. This is indeed part of our motivation for proposing the Dantzig selector. However, in order to justify the algorithm that numerically implements our procedure, we will make some use of the above remarks about LSA.

3.1 Dantzig selector for linear regression

The Dantzig Selector (Candès & Tao, 2007)) was designed for linear regression models

\[
Y = Z\beta + \epsilon,
\]

with a large \(p \) but a sparse set of coefficients, i.e. where most of the regression coefficients \(\beta_j \) are zero. For the linear regression model given by (3), the Dantzig Selector estimate, \(\hat{\beta} \), is defined as the solution to

\[
\min_{\beta \in B} \|\beta\|_1 \quad \text{subject to} \quad |Z^{jT}(Y - Z\beta)| \leq \lambda, \ j = 1, \ldots, p,
\]

where \(\| \cdot \|_1 \) is the \(L_1 \) norm, \(Z^j \) is the \(j \)th column of \(Z \), \(\lambda \) is a tuning parameter and \(B \) represents the set of possible values for \(\beta \), usually taken to be a subset of \(\mathbb{R}^p \). The \(L_1 \) norm minimization produces coefficient estimates that are exactly zero in a similar fashion to the LASSO and hence can be used as a variable selection tool. In this setup \(Z^j \) is assumed to be norm one which is rarely the case in practice. However, this difficulty is easily resolved by reparameterizing (3) such that the \(Z^j \)'s do have norm one.
Notice that for Gaussian error terms, (4) can be rewritten as,

$$\min_{\beta \in B} \| \beta \|_1 \quad \text{subject to} \quad |\ell'_j(\beta)| \leq \lambda / \sigma^2, \ j = 1, \ldots, p,$$

(5)

where ℓ'_j is the partial derivative of the log likelihood function with respect to β_j and $\sigma^2 = \text{Var}(\epsilon_j)$. Hence, an intuitive motivation for the Dantzig Selector, as also observed by James & Radchenko (2009), is that, for $\lambda = 0$, the solution to (5) will return the maximum likelihood estimator. For $\lambda > 0$, the Dantzig Selector searches for the β with the smallest L_1-norm that is within a given distance of the maximum likelihood solution, i.e. the sparsest β that is still reasonably consistent with the observed data. Notice that even for $p > n$, where the likelihood equation will have infinite possible solutions, this approach can still hope to identify a unique solution, provided β is sparse, because it is only attempting to locate the sparsest β close to the peak of the likelihood function.

The Dantzig Selector has two main advantages. The first is that (4) can be formulated as a standard linear programming problem. The second main advantage is theoretical. Candès and Tao (2007) proved tight non-asymptotic bounds on the error in the estimator for β, a result which has recently attracted a lot of attention since it demonstrated that the L_2-error in estimating β was within a factor of $\log p$ of that one could achieve if the true model were known. More precisely, suppose that that ϵ_i are i.i.d. $N(0, \sigma^2)$ variables and that β has at most S non-zero components. Assume also that a Uniform Uncertainty Principle (UUP) condition holds on the design matrix, i.e. suppose that the Gram matrix $\Psi = \frac{1}{n} Z^T Z$ is such that $\Psi_{ii} = 1$ for all $i = 1, \ldots, p$ and $\max_{i \neq j} |\Psi_{ij}| \leq \frac{1}{\sqrt{S}}$ for some $\alpha > 1$ (see Lounici, 2008). Then for any $a \geq 0$ and $\lambda = \sigma \sqrt{2(1 + a)(\log p) / n}$, the Dantzig selector estimator satisfies

$$\| \hat{\beta} - \beta \|_2^2 \leq (1 + a) \cdot C \cdot S \cdot \sigma^2 \cdot (\log p) / n,$$

(6)

with probability close to 1. Even if we knew ahead of time which β_j's were non-zero, under the same conditions on the design Gram matrix, it would still be the case that $\| \hat{\beta} - \beta \|_2^2$ grew at the rate of $S \cdot \sigma^2 / n$. Hence the rate is optimal up to a
factor of $\log p$, and we only pay a small price for adaptively choosing the significant variables. As mentioned before, equation (6) holds for Gaussian errors with a linear regression model. Our purpose is to extend the Dantzig estimator, algorithm and the above theoretical bounds to the general class of Cox’s proportional hazards regression models introduced in Section 2. To our knowledge this is the first time that bounds of this form have been proposed for such models.

3.2 Survival Dantzig Selector

We have already observed that for Gaussian errors in a linear regression model, the inner product between the jth covariate and the vector of residuals, $Z^T(Y - Z\beta)$ is proportional to the jth component $\ell_j'(\beta)$ of the score vector. Hence, the Dantzig optimization criteria given by (4) and (5) can be extended to the class of Cox’s PH regression models in a natural fashion by computing the solution $\hat{\beta}$ of

$$\min_{\beta \in \mathbb{R}^p} \|\beta\|_1 \text{ subject to } \|U(\beta)\|_\infty \leq \gamma,$$

(7)

where $\gamma \geq 0$ and $U(\beta)$ is the score process. Note that such a solution exists because the negative of the loglikelihood is a convex function of β. We will call the resulting procedure the Survival Dantzig Selector (SDS for short). The purpose of this subsection is to show that, under appropriate assumptions on the information matrix of the corresponding point process, the resulting SDS estimator maintains all the important properties of the Dantzig selector.

In order to prove our main results we will partially proceed along similar lines to Candès and Tao’s (2007) original result on the DS and we will need for that the fact that $\|\hat{\beta}\|_1 \leq \|\beta_0\|_1$. However, while for Gaussian errors in a sparse linear regression model, such an inequality is “automatic” (it follows from obvious concentration properties of centered Gaussian measures), this is not the case in our general point process setup, and, indeed, it is implied by Lemma 1 stated below and proved in Section 7. The number of predictors $p = p_n$ is allowed to grow (fast) with the sample size n.
Lemma 1 Assume that the dimension of predictor in Cox’s PH model satisfies $p_n = O(n^\xi)$, $n \to \infty$, for some $1 < \xi$. Assume also that the number S of effective predictors, i.e. the number of $\beta_{0,i,n} \neq 0$ is independent of n and finite (S-sparsity of β_0). Let $\gamma = \gamma_{n,p} = \sqrt{(1+a)\log \frac{p_n}{\sqrt{n}}}$ for some $a > 0$. Under the additional assumptions that

- the baseline hazard function in eq. (1) is such that $\int_0^\infty \alpha_0(u) du < +\infty$
- $\sup_{1 \leq i \leq n} \sup_{1 \leq j \leq p_n} |Z_{ij}| \leq C$,

it follows that

$$P\{\|U(\beta_0)\|_\infty \geq \gamma_{n,p}\} \leq p_n \exp \left(-\frac{n\gamma_{n,p}^2}{2(2C\gamma_{n,p} + K)} \right) = O\left(n^{-a\xi}\right),$$

with $K > 0$ a suitable constant. It follows that, as $n \to \infty$, with probability tending to 1, the true β_0 is admissible for problem (7), i.e. $\|U(\beta_0)\|_\infty < \gamma$ and in particular $\|\hat{\beta}\|_1 \leq \|\beta_0\|_1$.

Remark 1 The scaling $1/\sqrt{n}$ in $\gamma_{n,p}$ in the above lemma comes from the scaling $1/n$ we chose in the log-likelihood. This choice is also made by Bickel et al. (2009) and Lounici (2008). Note also that the result of Lemma 1 is taken for granted in the extension of the DS to the class of generalized linear models derived by James & Radchenko (2009), but it is not automatically true. Finally, note that we allow for a large predictor dimension relative to the sample size n as long as $\xi > 1$ and the S-sparsity assumption holds. The other assumptions about the boundedness of the predictor variables and the baseline hazard are standard under Cox’s PH model (Andersen et al., 1993).

In order to obtain error bounds on the components selected by our Survival Dantzig Selector, we introduce a few definitions that are closely related to those from Candès & Tao (2007).

Given an $n \times p$ matrix A and an index set $T \subset \{1, \ldots, p\}$ we will write A_T for the $n \times |T|$ matrix constructed by extracting the columns of A corresponding to the indices in T. The quantities defined below depend on A but this will be omitted to simplify
the notation. If this dependency is needed we will denote them with a superscript \(A \).

As in Candès & Tao (2007), for any integer \(S \leq p \), \(\delta_S \) is the largest quantity such that
\[
\| A_T c \|_2^2 \geq \delta_S \| c \|_2^2
\]
for all subsets \(T \) with \(|T| \leq S \) and all vectors \(c \) of length \(|T| \). If \(A \) is an orthonormal matrix, then \(\| A_T c \|_2 = \| c \|_2 \) for all \(T \), \(c \) and hence \(\delta_S = 1 \). If some columns of \(A \) are linearly dependent then for a certain \(T \) and \(c \), \(\| A_T c \|_2 = 0 \) and hence \(\delta_S = 0 \).

If \(S + S' \leq p \), we also define \(\theta_{S,S'} \) as the smallest quantity such that
\[
\|(A_T c)^T A_T c'\|_2 \leq \theta_{S,S'} \| c \|_2 \| c' \|_2
\]
for all disjoint subsets \(T \) and \(T' \) with \(|T| \leq S \) and \(|T'| \leq S' \) and all corresponding vectors \(c \) and \(c' \). Note that when the columns of \(A \) are orthogonal then \(\theta_{S,S'} = 0 \).

Before stating our main result, we recall that the \(p \times p \) observed “information” matrix up to time \(\tau \) corresponding to Cox’s proportional model is given by (see e.g. Andersen & Gill, 1982):
\[
J(\beta, \tau) = J_n(\beta, \tau) = \int_0^\tau [S_n^2(\beta, u) - (S_n^1(\beta, u))^2] \frac{dN_n(u)}{n},
\]
with notation as in (2). For a fixed sparsity parameter \(S \), as \(n \) tends to infinity, it tends in probability (see Theorem VII.2.2 in Andersen et al., 1993) to the \(p \times p \) matrix of rank \(S \)
\[
I(\beta, \tau) = \int_0^\tau [s^2(\beta, u) - (s^1(\beta, u))^2] s(\beta, u) b_0(u) du,
\]
where \(s(\beta, u) = \mathbb{E}(S_n(\beta, u)/n) \), \(s^1(\beta, u) = \mathbb{E}(S_n^1(\beta, u)/n) \), \(s^2(\beta, u) = \mathbb{E}(S_n^2(\beta, u)/n) \). Finally, when derivatives defining \(s(\beta, u) \), \(s^1(\beta, u) \) and \(s^2(\beta, u) \) are computed only with respect to the components of the true \(S \)-dimensional vector \(\beta_0 \), the true \(S \times S \) information matrix, not be confused with the \(p \times p \) matrix \(I(\beta_0, \tau) \) (of rank \(S \)) which is the asymptotic limit of \(J(\beta_0, \tau) \), will be denoted by \(I(\beta_0, \tau) \). Applying Theorem 7.2.6 of Horn & Johnson (1985) with \(k = 2 \), we will denote hereafter \(V^{1/2} \) the unique (semi)definite positive square root matrix of a (semi)definite positive matrix \(V \).

Let \(\gamma = \gamma_{n,p} \) be a tuning parameter. We now state our main theoretical result in Theorem 1 below. The proof is in the Appendix.
Theorem 1 Suppose that the true vector of coefficients $\beta_0 \in \mathbb{R}^p$ is a nonzero S-sparse coefficient vector with S independent of n, such that the coefficients δ and θ for the matrix $1^{1/2}(\beta_0, \tau)$ obey $\theta_{S,2S} < \delta_{2S}$. Assume that the assumptions used in Lemma 1 hold and let $\hat{\beta}$ be the estimate from the SDS using tuning parameter $\gamma = \gamma_{n,p}$ with $\gamma_{n,p}$ as in Lemma 1. Then, as long as the information matrix $I(\beta_0, \tau)$ is positive definite at β_0, we have:

$$P(\|\hat{\beta} - \beta_0\|^2_2 > 64S(\frac{\gamma}{\delta_{2S} - \theta_{S,2S}})^2) \leq O(n^{-a\xi}).$$

The assumptions of Theorem 1 are similar to the assumption $\delta + \theta < 1$ made for Dantzig selector in standard linear models by Candès & Tao (2007) and the assumption $\Delta_K > 0$ made for sparse generalized linear models by James & Radchenko (2009). The positive-definiteness of $I(\beta_0, \tau)$ is classical in survival analysis (condition VII.2.1 of Andersen et al., 1993). While one appealing property of the DS is the fact that the error bound can be established for set-ups satisfying the UUP (the condition $\theta_{S,2S} < \delta_{2S}$ from Theorem 1), in our case this leads to a condition on the “information matrix” $I(\beta_0, \tau)$ rather than directly on the design as in the standard least squares regression setting.

The verifiability of the UUP condition is also an issue, whatever setting one considers, since, as dimensionality grows, the UUP condition becomes more and more difficult to satisfy as important predictors can be highly correlated with some other unimportant predictors. In summary, assessing this condition in our case is not easy and the difficulty is twofold: firstly, the condition is formulated on the asymptotic matrix I and not on the observable finite-sample matrix J. Secondly, to verify the condition, even if we are prepared to work with the estimated information and with an a priori upper bound on the sparsity parameter S, we need to spend an “exponential” amount of time verifying the two inequalities that define the UUP condition stated in Theorem 1, especially when p is large. It is certainly of interest to relax the UUP condition when working with a concrete data-set and one way to reach an upper bound on p that achieves this is to extend and use a concept similar to that of sure screening proposed recently by Fan & Lv (2008) in the linear regression setting to reduce high dimensionality to a relatively smaller scale, possibly below the sample size. We do not
pursue this in this paper.

The above theorem depends on the rate at which \(p \) is allowed to increase with the number of observations \(n \). Under the usual regularity assumptions for our point process (similar to those of Andersen & Gill (1982), Theorem 4.1) our choice of the threshold \(\gamma \) leads to an optimal (a rate that is similar to the one obtained for the classical Dantzig selector in linear models by Candès & Tao (2007)), up to a \(\log p \) factor, squared error bound for the SDS estimator \(\hat{\beta} \), provided that \(S \) remains small. Under such conditions the SDS will give accurate results even for values of \(p \) that are larger than \(n \).

3.3 An algorithm for computing the SDS

In this section, we propose an iterative weighted Dantzig selector algorithm for computing the SDS solution for a given value of \(\gamma \).

Note that the constraints in (7) are non-linear, so linear programming software cannot directly be used to compute the SDS solution. As noted in the Introduction, in a standard GLM setting, an iterative weighted least squares algorithm is usually used to solve the system of score equations. More precisely, given a current estimate for \(\hat{\beta} \), an adjusted dependent variable is computed, and a new estimate for \(\beta \) is then computed using weighted least squares. This procedure is iterated until \(\hat{\beta} \) converges. For more details the reader is referred to McCullagh & Nelder (1989). An analogous iterative approach works well in computing the SDS solution. We can describe it as follows.

For any fixed \(\gamma \):

1. At the \((k + 1)\)st iteration, compute the gradient vector \(U(\hat{\beta}^{(k)}) \) and the Hessian matrix \(J(\hat{\beta}^{(k)}, \tau) \), where \((k)\) denotes the corresponding estimate from the \(k\)th iteration. Consider the unique square root of the matrix \(J(\hat{\beta}^{(k)}, \tau) \), i.e. \(J(\hat{\beta}^{(k)}, \tau) = A_{(k)}^2 \), and set the pseudo response vector \(Y = (A_{(k)})^{-\frac{1}{2}} \{J(\hat{\beta}^{(k)}, \tau)\hat{\beta}^{(k)} - U(\hat{\beta}^{(k)})\} \), where \(V^{-} \) denotes the Moore-Penrose generalized inverse of \(V \). This amounts to
approximating Cox’s partial likelihood at the current estimate by the quadratic form
\[
\frac{1}{2}(Y - A_{(k)}\hat{\beta})^T(Y - A_{(k)}\hat{\beta}).
\] (8)

2. Re-parameterize \(A_{(k)}\) say to \(A^\ast_{(k)}\) such that its columns have norm one and modify accordingly \(Y\) to \(Y^\ast\) to produce the SDS estimate of \(\beta\) at the original scale.

3. Use Candes and Tao’s (2007) Dantzig selector to compute \(\hat{\beta}^{(k+1)}\) using \(Y^\ast\) as the response and \(A^\ast_{(k)}\) as the design matrix.

4. Repeat steps 1 through 3 until convergence.

Note that numerical implementation of step 3 requires only a linear programming algorithm.

The above approach is closely related to the standard GLM approach and relies upon an appropriate linearization, equivalent to making a quadratic approximation of the partial log-likelihood in the censored case instead of the usual log-likelihood in the standard GLM approach. Another difference between the standard GLM methodology and our algorithm is that the (linear) Dantzig selector is used in step 3.

This algorithm gives exact zeros for some coefficients and it converges quickly based on our empirical experience. However, as with the standard GLM iterative algorithm, there is no theoretical proof that the algorithm is guaranteed to converge to the global minimizer of (7). Especially in the case \(n < p\), instead of using a Moore-Penrose inverse for the possibly semi-positive definite matrix \(A_{(k)}\) in the previous algorithm, we could have used, as it is done in ridge regression, the square root of the positive definite matrix \(J(\hat{\beta}^{(k)}, \tau) + \mu I_p\) for a small \(\mu > 0\).

To estimate the tuning parameter \(\gamma\), we use generalized cross-validation (Craven & Wahba (1979)). Let \(\nu = \gamma^{-1}\) and \(V(\hat{\beta})\) be the diagonal matrix with diagonal entries \(1/\hat{\beta}_i^2\) when \(\hat{\beta}_i^2 > 0\) and 1 when \(\hat{\beta}_i = 0\). At convergence, the minimizer of (8) in step 1 can be approximated by the ridge solution \((J(\hat{\beta}, \tau) + \nu V(\hat{\beta}))^{-1}A^T Y\). Therefore, the number of effective parameters in the SDS estimator can be approximated by
Dantzig selector fox Cox’s model

\[p(v) = \text{tr}\left((J(\hat{\beta}, \tau) + vV(\hat{\beta}))^{-1}J(\hat{\beta}, \tau)\right) \] and the generalized cross-validation function is \(GCV(v) = -\ell(\hat{\beta})/[n(1 - p(v)/n)^2] \). If \(\hat{v} \) minimizes \(GCV(v) \) then \(\gamma \) is chosen to be \(1/\hat{v} \). We used the above algorithm both in the simulation study and in the real data analysis, reported below.

4 Simulation study

In this section, we present the results of a simulation study conducted to evaluate the performance of the SDS in comparison with three other approaches which include both state-of-the-art and classical methods. To keep the scope of the study manageable, we only included a limited number of methods in our comparison. We feel that the current selection covers the spectrum of existing methods reasonably well: one of them is similar to the Lasso but better (Gui & Li, 2005), the other one is known to be an excellent predictor while the third one is simple and standard. We briefly describe below the methods to which the comparisons with SDS are made, namely Partial Cox regression with one or two retained components (PLS Cox), Cox regression with the subset of 20 “best” genes (Cox20) and the threshold gradient descent procedure (TGD) for the Cox model by Gui & Li (2005).

Partial Cox Regression. Nguyen & Rocke (2002) proposed the use of the partial least squares (PLS) algorithm for the prediction of survival with gene expression. This method, however, does not handle the censoring aspect of the survival data properly. PLS for Cox regression handling censoring has been developed for analyzing genome-wide data in Nygård et al. (2008). We adopted the closely related approach of Park et al. (2002) in which the full likelihood for Cox’s model is reformulated as the likelihood of a Poisson model, i.e. a generalized linear model (GLM). This reformulation enables application of the iteratively reweighted partial least squares (IRPLS) procedure for GLM (Marx, 1996). We used the implementation of the PLS algorithm of Park et al. (2002) in
R provided by Boulesteix & Strimmer (2007) where the PLS components depend solely on the gene expressions. The interpretation of components is generally not straightforward, especially if the number of genes that contribute to the component becomes large. Aside from this difficulty, PLS components may be excellent survival time predictors. We should also mention here a recent proposal by Martinussen & Scheike (2009a) implementing a partial least squares regression for additive hazards model via the so-called Krylov sequence.

Cox with univariate gene selection. Possibly the most straightforward and intuitive approach to handling high-dimensional data consists of carrying out univariate gene selection and using the obtained (small) subset of genes as covariates in the standard Cox model. Such an approach was adopted by Jenssen et al. (2002) and van Wieringen et al. (2009). We order genes based on the \(p \)-value obtained using Wald’s test in univariate Cox regression and, similarly to van Wieringen et al. (2009), we select a pre-fixed number of genes (20 in the present study) rather than genes whose \(p \)-values fall below a threshold. This ensures having a set of genes of a convenient size for any training set. A partial justification for selecting 20 covariates comes from the work of van Wieringen et al. (2009), which indicates that using more covariates may lead to more variable results. Furthermore, the univariate Cox regression model is estimated based on the training data only, which is a universally recommended approach.

TGD Cox. The threshold gradient descent procedure for the Cox regression analysis in the high-dimensional and low-sample size setting approximates the Lasso or LARS estimates, while selecting more relevant genes, which is also the reason why we did not include Lasso directly in our simulation study. The method is described in Gui & Li (2005). The approach has two parameters but they rarely need to be tuned, and can instead be chosen by minimizing a cross-validated partial likelihood. The complete method, including the dimensional reduction and the ability to capture correlated genes, is discussed in details in the above
cited paper and implemented as an R script available upon request from the authors.

The methods are compared in a simulation study. As in van Wieringen et al. (2009), two artificial data sets are used. In the first data set the survival times are generated independently of the gene expression data. Its results give an indication of the performance of the tested algorithms when there is no predictive power in the expression data. The other simulated data set was introduced by Bair et al. (2006), also for evaluation purposes.

Design of artificial data sets

Each artificial data set used in the simulation study consists of $p = 500$ variables and $n = 100$ samples. The survival times and covariate values are distributed as follows.

Data set 1: The columns of the design matrix are samples from a multivariate normal distribution with a given non-diagonal covariation matrix. The survival and censoring times (with censoring probability 1/3) are exponentially distributed. They are independent from each other as well as from the covariates data. Hence, there is no prediction power in the covariates.

Data set 2: Following Bair et al. (2006) the covariate data are distributed as:

$$\log(Z_{ij}) = \begin{cases}
3 + \epsilon_{ij} & \text{if } i \leq n/2, j \leq 30 \\
4 + \epsilon_{ij} & \text{if } i > n/2, j \leq 30 \\
3.4 + \epsilon_{ij} & \text{if } j > 30
\end{cases}$$

where the ϵ_{ij} are drawn from a standard normal distribution. The survival and censoring times (with censoring probability 1/3) are generated from an accelerated failure model in which only the values of covariates 1 to 30 (with additional noise) contribute. In other words, only the first 30 covariates determine the survival.

One of the desirable goals in estimating a survival model via Cox’s proportional hazards is to design procedures that predict well. In high dimensions it is essential to
regularize the model in some fashion in order to attain good predictive risk. However, as noted in van Wieringen et al. (2009), it is not straightforward to evaluate or compare prediction methods in the presence of censoring. The standard mean-squared-error or misclassification rate criteria used in regression or classification cannot be applied to censored survival times. In the simulations, we used three measures to evaluate the prediction of the compared methods: the \(p \)-value (likelihood ratio test) of Bair et al. (2006), which is in fact the probability of drawing the observed data under the null-hypothesis that the covariates have no effect on survival (the lower the \(p \)-value, the more probable that the null hypothesis is not true); a goodness-of-fit measure for the proportional hazard model based on the variance of the martingale residuals proposed by Barlow & Prentice (1988) (the smaller the better); and the integrated Brier-Score introduced by Graf et al. (1999). The values of the Brier-Score are between 0 and 1 and good predictions result in small Brier-Scores. A detailed description of these measures is given in van Wieringen et al. (2009). The first two measures are based on the Cox model, while the Brier score uses the predicted survival curves, which can be derived via other approaches. For applying the evaluation measures to our prediction methods, we simply extract the predicted median survival time from the predicted survival curves and use it as a predictor in a univariate Cox model. This approach, though possibly suboptimal, allows to compare all the prediction methods with these three evaluation measures.

An alternative goal is accurate parameter estimation. Indeed, one of the most basic desirable properties of an estimator is consistency and Theorem 1 shows that our DS is consistent in the high dimensional setting. Therefore, our simulation study also focuses on the properties of the estimate of the coefficient vector under squared error loss. Moreover, when the underlying model is sparse, a natural requirement is to ask that the estimator should correctly identify the relevant variables. Our simulation results specify the false positive rate, \(F_+ \), i.e. the proportion of unrelated variables incorrectly included in the selected model, and the false negative rate, i.e. the proportion of variables with non-zero coefficients left out of the model.
Simulation results

The data sets described above were generated 50 times, and randomly split into training and test sets with a 7:3 ratio. The survival prediction methods were applied to the training sets, and the test set was then used for calculation of the evaluation measures (p-value, variance of martingale residuals and Brier score as implemented in the R package `ipred`). The hyperparameters needed for the TGD and the DS methods were determined by cross-validation on the training sample. The number of PLS components in the PLS algorithm is usually determined by some sort of cross validation procedure. However, there is no simple such criterion to use with the partial likelihood of Cox’s regression model. In our simulations, we tried retaining one, two and three components, but the results showed that retaining more than two components, at least in the examples we studied, was not advisable.

The results are plotted and summarized in the figures and tables that follow. Figures 1, 2 and 3 show evaluation measure boxplots for the results of each of the five methods. The boxplots are grouped by method: two boxplots for the two artificial data sets per method. The coding of the methods underneath the boxplots is explained in Tables 1, 2 and 3 which also contain the summary statistics of the results for the three evaluation measures. The median and IQR are given to match the characteristic features of the boxplots.

Figure 1 and its caption here

Table 1 and its caption here

Figure 2 and its caption here

Table 2 and its caption here

Figure 3 and its caption here

Table 3 and its caption here
With respect to the variance of the martingale residuals, no method clearly stands out. They all perform more or less alike. Hence, the variance of the martingale residuals is not very discriminative as an evaluation measure for survival prediction methods.

The smaller the Brier score, the better the survival prediction. Focusing on the second data set where the expression data contains predictive information on survival, we observe that PLS1, PLS2 and DS have a similar good performance. Exceptions are the Cox with 20 genes method and the TGD Cox regression, which do not perform so well, even falling behind the simple Cox regression with univariate feature selection. A closer look at this method revealed that for data set 2 sometimes no features were selected, leading to poor evaluation measures. We believe this is partially due to the choice of the tuning parameters in the cross-validation, forcing the method to choose between either the maximum (no features included) or a value that leads to a poor prediction.

So far, we have focused on finding the best prediction rule for the time to an adverse event using all the available covariates measurements. However, if we bear in mind that in many studies, the main focus is on finding a small subset of the covariates that are the most important for predicting survival, we find the survival Dantzig selector very interesting, as it also is a variable selection method. Note that the SDS selector picked on average as few as 20 genes (median over the 50 splits) for the second data set and as few as 6 genes for the first data set.

More precisely, regarding the accuracy of the estimators of the vector of coefficients (excluding PLS which is only useful as a dimension reduction technique for prediction), the same simulation scenario as that described above was used to generate the two data sets but, this time, with no split into training and test sets since we only wished to evaluate the properties of the estimators. Once again the hyperparameters needed for the TGD and the DS methods were determined by cross-validation on the simulated sample. We fitted each method 50 times for each simulation scenario. For each method (Cox20, TGD and DS) and simulation we computed three statistics,
averaged over 50 runs: the false positive rate, the false negative rate and the median root mean squared error between the estimated coefficients and the truth. Table 4 provides the results.

Table 4 and its caption here

In comparison to Cox20 and TGD, DS had the lowest false positive rates and similar or lower false negative rates. One notes also that the mean squared error is more pronounced with data set 2, which we believe is partly explained by the log p factor in the upper bound in Theorem 1.

5 Analysis of a real-life data set

In this section, we compare the performance of the prediction methods on a real-life data set from survival gene expression data. As in Van’t Veer et al. (2002), we have used a smaller version (78 patients) of a well known real-life data set, namely the **Dutch breast cancer data** which was analyzed first by van Houwelingen et al. (2006) and used by Bøvelstad et al. (2007) and consisting of survival times and gene expression measurements from 295 women. The expression levels of $p = 4919$ genes were available for this study (consisting of 78 patients). In order to evaluate the methods we divided the data set randomly into two parts; a training set of about 2/3 of the patients used for estimation and a test set of about 1/3 of the patients used for evaluation or testing of the prediction capability of the estimated model. The split was done 50 times and in such a way that the proportion of censored observations in the original data set was respected. The results are plotted and summarized in the following figures and tables.

As shown in the simulations, the variance of the martingale residuals was not highly discriminative as an evaluation measure for survival prediction. Bearing this in mind, for this real-data case we only used the p-values and the Brier scores as evaluation measures of predictive performance. Figures 5.4 and 5.5 show boxplots for
the evaluation measures of the results for each of the five methods. Table 5 and Table 6 contain the summary statistics of the results for the two evaluation measures over the 50 iterations. The median and IQR are given to match the characteristic features of the boxplots.

Figure 4 and its caption here

Table 5 and its caption here

Figure 5 and its caption here

Table 6 and its caption here

With respect to the variance of the martingale residuals, as for the simulation, no method clearly stands out. Both the boxplots in Figure 5.5 and Table 6 indicate that the PLS based methods and the Dantzig selector have the smallest Brier score, with the Dantzig selector also having the smallest IQR. Remembering that the PLS components are built out of a combination of genes, the Dantzig selector is therefore preferable in terms of interpretability for the breast cancer data set.

6 Conclusions

We compared our Dantzig selector method for survival data to several previously published methods for predicting survival and applied it to some simulated data and also to a survival study based on microarray data. Our method performed well in simulations and for real data in comparison with the competitors. Another important advantage of the Dantzig selector is that it selects a subset of the genes to use as predictors. The PLS based method, which had a comparable predicting power, by contrast, require the use of all (or a large number) of the genes.

We close with a few further remarks. We acknowledge that previous work (Lounici (2008); James & Radchenko (2009)) established links between the Dantzig selector and
LASSO for linear models, also as variable selectors. We note that establishing a possible similar connection between the two procedures in Cox’s model appears challenging and is out of scope of the present work. It is also unclear to us whether or how it is possible to rapidly compute entire solution paths for the Survival Dantzig Selector; we note that generalised path algorithms for penalised optimisation problems for loss functions different from least-squares are not obvious to construct or known to exist (Rosset & Zhu (2007)).

As pointed out by a reviewer, it may be desirable to retain some covariates in the model, based on information from previous studies. In that case, the conditional intensities (1) can be re-written as

$$\lambda_i(t, z_i, w_i) = Y_i(t) \alpha_0(t) \exp(z_i^T \beta_0 + w_i^T \eta_0)$$

where the w_i are q-dimensional covariates whose corresponding parameters η_0 are to be estimated in a standard way (i.e. via maximum likelihood), and the z_i are p_n-dimensional covariates among which a selection should be done. In this set-up, it is convenient to keep q fixed, whereas p_n can possibly go to infinity with n. We wish to estimate η_0 in a classical way and β_0 in a sparse way, using a DS-type algorithm. In this set-up, our estimator can be adapted by calculating the solution $\tilde{\theta} = (\tilde{\beta}^T, \tilde{\eta}^T)^T$ of

$$\min_{\theta \in \mathbb{R}^{p+q}} \|\beta\|_1 + \|\eta\|_1 \text{ subject to } \|U_{\beta}(\theta)\|_\infty \leq \gamma \text{ and } \|U_{\eta}(\theta)\|_\infty = 0,$$

where $\theta = (\beta^T, \eta^T)^T$ and where U_{β} (resp. U_{η}) is the p-dimensional (resp. q-dimensional) vector of derivatives of the log-partial likelihood corresponding to the β components (resp. η components). The only change in our algorithm would occur in step 3 whilst executing the linear programming algorithm: the parameter γ is simply put to 0 for the components we wish to retain in the model, which ensures that the solution for those components is in fact a marginal maximum likelihood solution. We leave a more thorough study of this issue for future work.

We close with some advice for data analysts, based on our practical experience with high dimensionality in Cox’s model. When faced with a particular real data set with
a fixed n and p, our advice is to first conduct a pilot simulation study by simulating artificial data sets with these values of n and p, and with the number of significant covariates which we believe is of the order of the corresponding number from the real data set. For each replicate, our advice is then to run the chosen algorithm (this applies not only to our Dantzig Selector, but also to other methods) and assess its performance across a number of replicates. Satisfactory performance would offer us reassurance that the method would also perform well for the real data set. If performance is unsatisfactory, our advice is to perform univariate gene deletion until p is reduced enough for the tested method to offer satisfactory performance.

Acknowledgements

Piotr Fryzlewicz would like to thank Anestis Antoniadis for his hospitality while visiting the Department of Statistics, LJK to carry out this work. Financial support form the IAP research network Nr. P6/03 of the Belgian government (Belgian Federal Science Policy) is gratefully acknowledged. The authors thank Anne-Laure Boulesteix for kindly providing the R code for the PLS Cox regression described in Boulesteix & Strimmer (2007) and the simulation designs and also Gareth James for kindly providing his Dantzig selector R code implementation for GLM. We thank the Editor, Associate Editor and two Referees for stimulating reports.

References

2nd edn.

regression for application to DNA microarray survival data. *Bioinformatics* **18**, 1625–
1632.

Wiley, New York.

van de Geer, S. (1995). Exponential inequalities for martingales, with application to

validated Cox regression on microarray gene expression data. *Statistics in Medicine*
25, 3201–3216.

using gene expression data: a review and comparison. *Computational Statistics and

Corresponding author:
Anestis Antoniadis
Laboratoire Jean Kuntzmann, Département de Statistique,
Université Joseph Fourier, B.P. 53
38041 Grenoble CEDEX 9, France
e-mail : Anestis.Antoniadis@imag.fr

7 Appendix: Proofs

This section is devoted to the proofs of our main theoretical results stated in the paper.

Proof of Lemma 1. We have to control $\mathbb{P}(\|U(\beta_0)\|_\infty < \gamma)$ as $n, p \to \infty$. That is, we are studying the event

$$
\sup_j \left| \frac{1}{n} \sum_{i=1}^n \int_0^T dM_i(u) \left[\sum_{k=1}^n \{Z_{ij} - Z_{kj}\} w_k(\beta_0, u) \right] \right| \geq \gamma,
$$

where

$$
w_k(\beta, u) = \frac{\exp(\mathbf{z}_k^T \beta) Y_k(u)}{\sum_l \exp(\mathbf{z}_l^T \beta) Y_l(u)}.
$$
Note that the $w_k(\beta, u), u \in [0, \tau)$ are nonegative and sum to one. Let

$$g_{n,i,j}(u) = \sum_{k=1}^{n} (Z_{ij} - Z_{kj}) w_k(\beta, u).$$

Note that $g_{n,i,j}(u)$ inherits from $Y_k(u)$ all measurability properties, so it is a predictable process. Thus, for each i, j, $\int_{0}^{\tau} g_{n,i,j}(u) dM_i(u)$ is a martingale, which implies that $M_{n,i,j} = \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} g_{n,i,j}(u) dM_i(u)$ is a martingale. We use now Lemma 2.1 from van de Geer (1995), which comes from Shorack & Wellner (1986). For that purpose, we need to compute the quantities $\Delta M_{n,i,j}(u)$ (magnitude of a jump in $M_{n,i,j}$ if it occurs at time u) and $V_{n,i,j}(u)$ (the variation process of $M_{n,i,j}(u)$).

Since the jumps of the processes M_i do not occur at the same time and are all of magnitude one, we have

$$|\Delta M_{n,i,j}(u)| \leq \sup_{1 \leq i \leq n} \frac{\|g_{n,i,j}\|_{\infty}}{n} \leq \sup_{i,j,k} \frac{|Z_{i,j} - Z_{k,j}|}{n} \sum_{k=1}^{n} w_k(\beta, u) \leq 2 \sup_{j} \frac{\|z_j\|_2}{n} = \frac{2C}{n}.$$

For the variation process, we use the fact that

$$\langle \int_{0}^{\tau} H_u dM_u, \int_{0}^{\tau} H'_u dM'_u \rangle = \int_{0}^{\tau} H_u H'_u d\langle M, M' \rangle_u,$$

where H, H' are square integrable predictable processes, and M and M' are square integrable martingales. Since the M_i are independent, we have

$$V_{n,i,j}(\tau) = \frac{1}{n^2} \sum_{i=1}^{n} \int_{0}^{\tau} g^2_{n,i,j}(u) d\langle M_i, M_i \rangle_u$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \int_{0}^{\tau} g^2_{n,i,j}(u) \exp(z^T_i \beta_0) Y_i(u) \alpha_0(u) du$$

$$\leq \frac{4}{n^2} \|z^i\|_2^2 \sup_{u \in [0, \tau]} \{S_n(\beta_0, u)\} \| \alpha_0 \|_1.$$

We have

$$\sup_{u \in [0, \tau]} \{S_n(\beta_0, u)\} \leq \sum_{i=1}^{n} \exp(z^T_i \beta_0) \leq n \exp(S\|\beta_0\|_{\infty} \sup_{j} \|z^j\|_2) = O(n),$$

so that $V_{n,i,j}(\tau) \leq \frac{K}{n}$ for a suitable constant K. We will now use the exponential
inequality from Shorack & Wellner (1986).

\[P \left(\sup_j \left| \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} dM_i(u) \left[\sum_{k=1}^{n} \{ Z_{ij} - Z_{kj} \} w_k(\beta_0, u) \right] \right| \geq \gamma \right) \leq \sum_j P \left(\left| \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} dM_i(u) \left[\sum_{k=1}^{n} \{ Z_{ij} - Z_{kj} \} w_k(\beta_0, u) \right] \right| \geq \gamma \right) = \sum_j P \left(\left| \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} dM_i(u) \left[\sum_{k=1}^{n} \{ Z_{ij} - Z_{kj} \} w_k(\beta_0, u) \right] \right| \geq \gamma \cap V_{n,j}(\tau) \leq \frac{K}{n} \right) \leq p \exp \left(-\frac{n\gamma^2}{2(2C\gamma + K)} \right). \]

Our choice of \(\gamma \) allows us to conclude.

Proof of Theorem 1. To prove the result, we will also need the following Lemma which we state with no proof since it is a straightforward generalization of Lemma 3.1 in Candès & Tao (2007).

Lemma 2 Let \(A \) be an \(n \times p \) matrix and suppose \(T_0 \subset \{1, \ldots, p\} \) is a set of cardinality \(S \). For a vector \(h \in \mathbb{R}^p \), let \(T_1 \) be the \(S' \) largest positions of \(h \) outside of \(T_0 \) and put \(T_{01} = T_0 \cup T_1 \).

Then

\[
\|h_{T_0}\|_2 \leq \frac{1}{\delta_{S+S'}} \|A_{T_{01}}^T A h\|_2 + \frac{\theta_{S',S+S'}}{\delta_{S+S'}((S')^{1/2}} \|h_{T_0}\|_1 \\
\|h\|_2^2 \leq \|h_{T_0}\|_2^2 + (S')^{-1} \|h_{T_0}\|_1^2.
\]

To prove the Theorem we need to establish that \(\|U(\beta_0)\|_\infty \leq \gamma \) implies that \(\|\hat{\beta} - \beta_0\|_2^2 \leq 64S(\frac{\gamma^2}{\delta_{2S'-\delta_{2S}}})^2 \). Assume that \(\|U(\beta_0)\|_\infty \leq \gamma \) where

\[
\|U(\beta_0)\|_\infty = \sup_j \left| \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\tau} dM_i(u) \left[\sum_{k=1}^{n} \{ Z_{ij} - Z_{kj} \} w_k(u) \right] \right|.
\]

Recall here that for any consistent estimator \(\hat{\beta} \) of \(\beta_0 \), we may write:

\[
J(\hat{\beta}, \tau) - J(\beta_0, \tau) = \int_{0}^{\tau} (V_n(\hat{\beta}, u) - V(\hat{\beta}, u)) d\tilde{N}(u) - \int_{0}^{\tau} (V(\hat{\beta}, u) - V(\beta_0, u)) d\tilde{N}(u)
\]

\[
+ \int_{0}^{\tau} (V(\hat{\beta}, u) - V(\beta_0, u)) d\tilde{N}(u)
\]

\[
+ \int_{0}^{\tau} V(\beta_0, u) d\tilde{N}(u)
\]

\[
+ \int_{0}^{\tau} V(\beta_0, u) (\frac{S_n(\beta_0, u)}{n} - s(\beta_0, u)) d\tilde{N}(u)
\]

\[
\text{as } \int_{0}^{\tau} V(\beta_0, u) d\tilde{N}(u) = 0.
\]
where \(V_n(\beta, u) = \frac{S^2}{S^2_n}(\beta, u) - (\frac{S^1}{S^2_n}) \otimes^2 (\beta, u) \) and \(v(\beta, u) = \frac{S^3}{S}(\beta, u) - (\frac{S^1}{S}) \otimes^2 (\beta, u) \). Since \(\beta_0 \) is a nonzero \(S \)-sparse vector with \(S \) independent of \(n \) and since the true information matrix \(I(\beta_0, \tau) \) is positive definite at \(\beta_0 \), for any \(\beta^* \) in an Euclidian ball \(B_r = B(\beta_0, r) \) centered at \(\beta_0 \) and of radius at most \(r = 8\sqrt{S \frac{\gamma}{\delta^2}} \), the regularity conditions of Theorem 3.4 in Huang (1996) hold and it follows that

\[
\sup_{\hat{\beta} \in B_r} \| J(\beta^*, \tau) - I(\beta_0, \tau) \|_\infty = O_P(n^{-1/2})
\] \hspace{1cm} (15)

as \(n \) tends to \(\infty \).

Define \(h = \hat{\beta} - \beta_0 \) and let \(T_0 \) be the support of \(\beta_0 \). According to Lemma 1, we have \(\| \hat{\beta} \|_1 \leq \| \beta_0 \|_1 \) and this inequality implies that \(\| h_{T_0} \|_1 \leq \| h_{T_0} \|_1 \), which yields, by Cauchy inequality,

\[
\| h_{T_0} \|_1 \leq \| h_{T_0} \|_1 \leq S^{1/2} \| h_{T_0} \|_2.
\] \hspace{1cm} (16)

By assumption, we have \(\| U(\beta_0) \|_\infty \leq \gamma \) and by construction of the estimator, \(\| U(\hat{\beta}) \|_\infty \leq \gamma \). Adding up the two inequalities (triangle inequality)

\[
\| U(\beta) - U(\hat{\beta}) \|_\infty \leq 2\gamma
\]

By Andersen & Gill (1982), formula (2.6), we have, Taylor-expanding the left hand side of the above,

\[
\| J(\beta^*, \tau)(\hat{\beta} - \beta_0) \|_\infty \leq 2\gamma,
\] \hspace{1cm} (17)

where \(\beta^* \) lies within the segment between \(\hat{\beta} \) and \(\beta_0 \).

Now, using our remark (15) on the behavior of the matrix \(I(\beta_0, \tau) \) at the neighborhood of \(\beta_0 \) we have

\[
\| I(\beta_0, \tau)(\hat{\beta} - \beta_0) \|_\infty \leq \| (J(\beta^*, \tau) - I(\beta_0, \tau))(\hat{\beta} - \beta_0) \|_\infty + \| J(\beta^*, \tau)(\hat{\beta} - \beta_0) \|_\infty
\]

\[
\leq Dn^{-1/2} \| \hat{\beta} - \beta_0 \|_1 + 2\gamma,
\]

\[
\leq 4\gamma,
\]

for \(n \) large enough, since \(\| \hat{\beta} - \beta_0 \|_1 \leq \| \hat{\beta} \|_1 + \| \beta_0 \|_1 \leq 2 \| \beta_0 \|_1 \). Hence, if \(A = I(\beta_0, \tau)^{1/2} \) denotes the squared root of the (semi)definite positive matrix \(I(\beta_0, \tau) \), we
have
\[\|AAh\|_\infty \leq 4\gamma. \]

This, again by Cauchy inequality, implies \(\|A_{T_{01}}h\|_2 \leq 4(S + S')^{1/2}\gamma \). Take \(S' = S \).

By the first inequality of Lemma 2 and inequality (16), we have
\[
\|h_{T_{01}}\|_2 \leq \frac{4}{\delta_{2S}} (2S)^{1/2}\gamma + \frac{\theta_{S,2S}}{\delta_{2S}} S^{1/2}\|h_{T_0}\|_2 \\
\leq \frac{4}{\delta_{2S}} (2S)^{1/2}\gamma + \frac{\theta_{S,2S}}{\delta_{2S}} \|h_{T_{01}}\|_2.
\]

Rearranging for \(\|h_{T_{01}}\|_2 \), we get
\[
\|h_{T_{01}}\|_2 \left(1 - \frac{\theta_{S,2S}}{\delta_{2S}}\right) \leq \frac{4}{\delta_{2S}} (2S)^{1/2}\gamma \\
\|h_{T_{01}}\|_2 \leq \frac{4}{\delta_{2S} - \theta_{S,2S}} (2S)^{1/2}\gamma.
\]

By the second inequality of Lemma 2 and inequality (16), we have
\[
\|h\|_2^2 \leq \|h_{T_{01}}\|_2^2 + S^{-1}S\|h_{T_0}\|_2^2 \leq 2\|h_{T_{01}}\|_2^2 \leq 64S\left(\frac{\gamma}{\delta_{2S} - \theta_{S,2S}}\right)^2,
\]
which completes the proof of the Theorem.
Figures, Tables and Captions

Figure 1: Box plots of the p-values for each method over the 50 simulations of each data set. The lower the p-value, the more probable is that the covariates have predictive power.
Table 1: Results for the simulated data sets: p-values.

<table>
<thead>
<tr>
<th>Method</th>
<th>Coded as</th>
<th>Data set</th>
<th>Median</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox regression with 20 best genes</td>
<td>COX</td>
<td>ds1</td>
<td>0.563</td>
<td>0.445</td>
</tr>
<tr>
<td>Cox regression with 20 best genes</td>
<td>COX</td>
<td>ds2</td>
<td>0.437</td>
<td>0.555</td>
</tr>
<tr>
<td>PLS Cox (1 comp)</td>
<td>PLS1</td>
<td>ds1</td>
<td>0.516</td>
<td>0.399</td>
</tr>
<tr>
<td>PLS Cox (1 comp)</td>
<td>PLS1</td>
<td>ds2</td>
<td>0.031</td>
<td>0.099</td>
</tr>
<tr>
<td>PLS Cox (2 comp)</td>
<td>PLS2</td>
<td>ds1</td>
<td>0.626</td>
<td>0.412</td>
</tr>
<tr>
<td>PLS Cox (2 comp)</td>
<td>PLS2</td>
<td>ds2</td>
<td>0.495</td>
<td>0.483</td>
</tr>
<tr>
<td>TGD Cox regression</td>
<td>TGD</td>
<td>ds1</td>
<td>0.404</td>
<td>0.121</td>
</tr>
<tr>
<td>TGD Cox regression</td>
<td>TGD</td>
<td>ds2</td>
<td>0.028</td>
<td>0.084</td>
</tr>
<tr>
<td>Dantzig Selector</td>
<td>DS</td>
<td>ds1</td>
<td>0.438</td>
<td>0.492</td>
</tr>
<tr>
<td>Dantzig Selector</td>
<td>DS</td>
<td>ds2</td>
<td>0.027</td>
<td>0.084</td>
</tr>
</tbody>
</table>

Figure 2: Box plots of the variance of martingale residuals for each method over the 50 simulations of each data set.
<table>
<thead>
<tr>
<th>Method</th>
<th>Coded as</th>
<th>Data set</th>
<th>Median</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox regression with 20 best genes</td>
<td>COX</td>
<td>ds1</td>
<td>0.617</td>
<td>0.106</td>
</tr>
<tr>
<td>Cox regression with 20 best genes</td>
<td>COX</td>
<td>ds2</td>
<td>0.606</td>
<td>0.104</td>
</tr>
<tr>
<td>PLS Cox (1 comp)</td>
<td>PLS1</td>
<td>ds1</td>
<td>0.650</td>
<td>0.144</td>
</tr>
<tr>
<td>PLS Cox (1 comp)</td>
<td>PLS1</td>
<td>ds2</td>
<td>0.620</td>
<td>0.165</td>
</tr>
<tr>
<td>PLS Cox (2 comp)</td>
<td>PLS2</td>
<td>ds1</td>
<td>0.635</td>
<td>0.138</td>
</tr>
<tr>
<td>PLS Cox (2 comp)</td>
<td>PLS2</td>
<td>ds2</td>
<td>0.571</td>
<td>0.156</td>
</tr>
<tr>
<td>TGD Cox regression</td>
<td>TGD</td>
<td>ds1</td>
<td>0.618</td>
<td>0.121</td>
</tr>
<tr>
<td>TGD Cox regression</td>
<td>TGD</td>
<td>ds2</td>
<td>0.639</td>
<td>0.150</td>
</tr>
<tr>
<td>Dantzig Selector</td>
<td>DS</td>
<td>ds1</td>
<td>0.636</td>
<td>0.114</td>
</tr>
<tr>
<td>Dantzig Selector</td>
<td>DS</td>
<td>ds2</td>
<td>0.631</td>
<td>0.120</td>
</tr>
</tbody>
</table>

Table 2: Results for the simulated data sets: variance of martingale residuals.

Figure 3: Box plots of the Brier prediction score for each method over the 50 simulations of each data set.
Table 3: Results for the simulated data sets: Brier scores (the lower the better).

<table>
<thead>
<tr>
<th>Method</th>
<th>Coded as</th>
<th>Data set</th>
<th>Median</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox regression with 20 best genes</td>
<td>COX</td>
<td>ds1</td>
<td>0.169</td>
<td>0.052</td>
</tr>
<tr>
<td>Cox regression with 20 best genes</td>
<td>COX</td>
<td>ds2</td>
<td>0.150</td>
<td>0.054</td>
</tr>
<tr>
<td>PLS Cox (1 comp)</td>
<td>PLS1</td>
<td>ds1</td>
<td>0.135</td>
<td>0.049</td>
</tr>
<tr>
<td>PLS Cox (1 comp)</td>
<td>PLS1</td>
<td>ds2</td>
<td>0.106</td>
<td>0.040</td>
</tr>
<tr>
<td>PLS Cox (2 comp)</td>
<td>PLS2</td>
<td>ds1</td>
<td>0.157</td>
<td>0.055</td>
</tr>
<tr>
<td>PLS Cox (2 comp)</td>
<td>PLS2</td>
<td>ds2</td>
<td>0.120</td>
<td>0.043</td>
</tr>
<tr>
<td>TGD Cox regression</td>
<td>TGD</td>
<td>ds1</td>
<td>0.264</td>
<td>0.107</td>
</tr>
<tr>
<td>TGD Cox regression</td>
<td>TGD</td>
<td>ds2</td>
<td>0.191</td>
<td>0.082</td>
</tr>
<tr>
<td>Dantzig Selector</td>
<td>DS</td>
<td>ds1</td>
<td>0.156</td>
<td>0.060</td>
</tr>
<tr>
<td>Dantzig Selector</td>
<td>DS</td>
<td>ds2</td>
<td>0.109</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Table 4: Results for the simulated data sets: median root mean squared error, false positive rate F_+ and false negative rate F_- for three different methods using 50 simulations with $p = 0$ (data-set ds1) and $p = 30$ (data-set ds2).

<table>
<thead>
<tr>
<th>Method</th>
<th>Coded as</th>
<th>Data set</th>
<th>RMSE</th>
<th>F_+</th>
<th>F_-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cox regression with 20 best genes</td>
<td>COX</td>
<td>ds1</td>
<td>0.0905</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>Cox regression with 20 best genes</td>
<td>COX</td>
<td>ds2</td>
<td>2.2832</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>TGD Cox regression</td>
<td>TGD</td>
<td>ds1</td>
<td>0.0188</td>
<td>0.08</td>
<td>0.00</td>
</tr>
<tr>
<td>TGD Cox regression</td>
<td>TGD</td>
<td>ds2</td>
<td>2.2889</td>
<td>0.02</td>
<td>0.11</td>
</tr>
<tr>
<td>Dantzig Selector</td>
<td>DS</td>
<td>ds1</td>
<td>0.0163</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Dantzig Selector</td>
<td>DS</td>
<td>ds2</td>
<td>2.2798</td>
<td>0.00</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Figure 4: Box plots of the p-values for each method over the 50 simulations for the Breast Cancer data set.

<table>
<thead>
<tr>
<th>Method</th>
<th>Median</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>COX</td>
<td>0.139</td>
<td>0.406</td>
</tr>
<tr>
<td>PLS1</td>
<td>0.082</td>
<td>0.181</td>
</tr>
<tr>
<td>PLS2</td>
<td>0.094</td>
<td>0.217</td>
</tr>
<tr>
<td>TGD</td>
<td>0.027</td>
<td>0.120</td>
</tr>
<tr>
<td>DS</td>
<td>0.141</td>
<td>0.194</td>
</tr>
</tbody>
</table>

Table 5: Results for the Breast Cancer data: p-values over the 50 splits.
Figure 5: Box plots of the Brier prediction score for each method over the 50 simulations for the Breast Cancer data set.

<table>
<thead>
<tr>
<th>Method</th>
<th>Median</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>COX</td>
<td>0.263</td>
<td>0.113</td>
</tr>
<tr>
<td>PLS1</td>
<td>0.199</td>
<td>0.052</td>
</tr>
<tr>
<td>PLS2</td>
<td>0.215</td>
<td>0.047</td>
</tr>
<tr>
<td>TGD</td>
<td>0.246</td>
<td>0.093</td>
</tr>
<tr>
<td>DS</td>
<td>0.230</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Table 6: Results for the Breast Cancer data: Brier scores over the 50 splits.