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Results in Finding an Unknown Number of
Multivariate Outliers in Large Data Sets
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Abstract

We use the forward search to provide parameter estimates for Mahalanobis dis-
tances used to detect the presence of outliers in a sample of multivariate normal data.
Theoretical results on order statistics and on estimation in truncated samples provide
the distribution of our test statistic. Comparisons of our procedure with tests using
other robust Mahalanobis distances show the good size and high power of our proce-
dure. We also provide a unification of results on correction factors for estimation from
truncated samples.

Keywords: forward search; graphics; logistic plots; Mahalanobis distance; order statis-
tics; power comparisons; truncated distributions; very robust methods

1 Introduction
The normal distribution, perhaps following data transformation, has a central place in the
analysis of multivariate data. Mahalanobis distances provide the standard test for outliers
in such data. However, the performance of the test depends crucially on the subset of
observations used to estimate the parameters of the distribution.

It is well known that the estimates of the mean and covariance matrix using all the
data are extremely sensitive to the presence of outliers. In this paper we use the forward
search to provide an adaptively selected sequence of subsets of the data from which the
parameters are estimated. We compare the resulting Mahalanobis distances as an outlier
test with a variety of robust procedures, all of which can be described as using estimates
based on one or two subsets. We show that our procedure has superior power as well as
good size and so is to be recommended.

Mahalanobis distances and the forward search are introduced in §2. In §3 we exhibit
bootstrap envelopes for the distribution of distances in the forward search. Theoretical
results on the distribution are in §4. In particular, §4.1 uses results on order statistics to find
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the distribution of ordered Mahalanobis distances. In §4.2 we use a result of Tallis (1963)
to adjust for the bias caused by estimation of the covariance from a subset of observations.

We use Mahalanobis distances to develop a test for the presence of one or more outliers
in a sample. Our procedure for this form of outlier detection is described in §5 with two
examples in the following section. Several established robust procedures for the detection
of individual outlying observations, such as those of Davies and Gather (1993), Rousseeuw
and Van Driessen (1999) and Hardin and Rocke (2005) are introduced in §7. Some of these
methods use reweighted estimates and so are based on two subsamples of the data. To
adapt these tests to determining whether there are any outliers in a sample, we introduce
in §8 a Bonferroni correction to allow for simultaneity. This allows us to develop two new
versions of reweighted Mahalanobis distances. The comparisons of size in §9.1 show that
our procedure has better size than many competitors. In §9.2 we use logistic plots of power
to provide simple comparisons of tests with markedly different sizes. The results show the
superior performance of our procedure.

Examples of analyses of individual sets of data are in §10. The first appendix discusses
the importance of careful numerical procedures in the calculation of extreme values of
order statistics and the second draws a connection between the results of Tallis and the
distribution of observations in a truncated univariate normal distribution.

Our procedure provides the most powerful test for outliers amongst those in our com-
parisons. It can be further enhanced by use of the rich variety of information that arises
from monitoring the forward search.

2 Distances
The main tools that we use are the values of various Mahalanobis distances. The squared
distances for the sample are defined as

d2
i = {yi − µ̂}T Σ̂−1{yi − µ̂}, (1)

where µ̂ and Σ̂ are the unbiased moment estimators of the mean and covariance matrix of
the n observations and yi is v × 1.

In the methods compared in this paper the parameters µ and Σ are estimated from
a subset of m observations, yielding estimates µ̂(m) with µ̂(m)j = ȳj and Σ̂(m) with
Σ̂(m)jk = (yj − ȳj)

T (yk − ȳk)/(m − 1). Note that here yj and yk are m × 1. From this
subset we obtain n squared Mahalanobis distances

d2
i (m) = {yi − µ̂(m)}T Σ̂−1(m){yi − µ̂(m)}, i = 1, . . . , n. (2)

The single subsets used for each MCD-based method are defined in §7. In the forward
search we use many subsets for outlier detection, rather than one. The difference is between
viewing a movie and a single snapshot.

In the forward search we start with a subset of m0 observations which grows in size
during the search. When a subset S∗(m) of m observations is used in fitting we order the
squared distances and take the observations corresponding to the m + 1 smallest as the
new subset S∗(m + 1). Usually this process augments the subset by one observation, but
sometimes two or more observations enter as one or more leave. To start the procedure we
find a starting subset S∗(m0) that is not outlying in any two-dimensional projection of the
data (Atkinson et al. 2004, §2.13).
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In our examples we look at forward plots of quantities derived from the distances di(m)
in which the parameters are estimated from the observations in S∗(m). These distances for
i /∈ S∗(m) tend to decrease as n increases. If interest is in the latter part of the search we
may use scaled distances

d sc
i (m) = di(m)×

(
|Σ̂(m)|/|Σ̂(n)|

)1/2v

, (3)

where Σ̂(n) is the estimate of Σ at the end of the search.
To detect outliers all methods compare selected Mahalanobis distances with a threshold.

We examine the minimum Mahalanobis distance amongst observations not in the subset

dmin(m) = min di(m) i /∈ S∗(m), (4)

or its scaled version d sc
min(m). If this ordered observation [m+1] is an outlier relative to the

other m observations, this distance will be large compared to the maximum Mahalanobis
distance of observations in the subset. Because we potentially make many comparisons,
one for each value of m, the form of our threshold needs to allow for simultaneity, so
that we have a test with size α for the presence of at least one outlier. Adjustment for
simultaneity in the other procedures is discussed in §7.

3 The Structure of Forward Plots and the Importance of
Envelopes: Swiss Banknotes

Our purpose is to provide methods for relatively large data sets. Here we present a brief
analysis of a smaller example, which illustrates the use of forward plots with thresholds that
are pointwise envelopes. In this example the bootstrap envelopes are found by simulating
the search 10,000 times. For larger examples we use the theoretical results of §4

Flury and Riedwyl (1988, pp. 4–8) introduce 200 six-dimensional observations on
Swiss banknotes. Of these, units 101 to 200 are believed to be forgeries. The left-hand
panel of Figure 1 shows a forward plot of the (unscaled) minimum Mahalanobis distances
for the forgeries. There is a large peak at m = 85, indicating that there are at least 15
outliers. The peak occurs because the outliers form a loose cluster. Once one of these
observations has been included in S∗(m), the parameter estimates are slightly changed,
making less remote the next outlier in the cluster. At the end of the search the distances
increase again when the remaining observations not in S∗(m) are somewhat remote from
the cluster of outliers. Large distances at the end of the search are, as shown in Figure 5,
typical of data with unclustered outliers.

An important feature of Figure 1 is that the plot goes outside the upper envelope when
m is slightly less than 85. This is because, if we have a sample of 85 observations from
the normal distribution, the last few distances will be relatively large and the envelope will
curve upwards as it does in the plots for m a little less than 100. If we remove the 15
observations that form the outlying group and superimpose the new envelope for n = 85,
we can see whether all outliers have been identified.

The curve for scaled distances in the right-hand panel of the figure lies below the en-
velopes in the earlier part of the search because scaling is by the estimate Σ̂(n) from the
end of the search, which is inflated by the presence of the outliers. Hence the distances
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Figure 1: Swiss banknotes, forgeries (n = 100): forward plot of minimum Mahalanobis dis-
tance with superimposed 1, 5, 95, and 99% bootstrap envelopes using 10000 simulations.
Left panel unscaled distances, right panel scaled distances. There is a clear indication of
the presence of outliers which starts around m = 84.

are shrunken. This plot shows that scaled distances may yield a procedure with low power
if several outliers are present. However, we avoid extensive simulations by first finding
theoretical envelopes for scaled distances and then converting them to those that are un-
scaled. Ease of computation is of particular importance if we have to superimpose a series
of envelopes for different subsample sizes.

4 Envelopes from Order Statistics

4.1 Scaled Distances
We now use order statistics to find good, fast approximations to our bootstrap envelopes.
For the moment we take µ and Σ as known, so our results apply to both scaled and unscaled
distances. The test statistic (4) is the m+1st ordered value of the n Mahalanobis distances.
We can therefore use distributional results to obtain approximate envelopes for our plots.
Since these envelopes do not require simulation in their calculation, we can use them for
much more extreme points of the distribution than would be possible for bootstrap intervals
without massive simulations.

Let Y[m+1] be the (m + 1)st order statistic from a sample of size n from a univariate
distribution with c.d.f. G(y). Then the c.d.f of Y[m+1] is given exactly by

P{Y[m+1] ≤ y} =
n∑

j=m+1

(
n
j

)
{G(y)}j{1−G(y)}n−j.

(5)

See, for example, Lehmann (1991, p. 353). Further, it is well known that we can apply
properties of the beta distribution to the RHS of (5) to obtain

P{Y[m+1] ≤ y} = IG(y)(m + 1, n−m), (6)

where
Ip(A,B) =

∫ p

0

1

α(A,B)
uA−1(1− u)B−1du
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is the incomplete beta integral. From the relationship between the F and the beta distribu-
tion it is possible to rewrite equation (6) as

P{Y[m+1] ≤ y} = P

{
F2(n−m),2(m+1) >

1−G(y)

G(y)

m + 1

n−m

}
(7)

where F2(n−m),2(m+1) is the F distribution with 2(n−m) and 2(m+1) degrees of freedom
(Guenther 1977). Thus, the required quantile of order γ of the distribution of Y[m+1] say
ym+1,n;γ can be obtained as

ym+1,n;γ = G−1

(
m + 1

m + 1 + (n−m)x2(n−m),2(m+1);1−γ

)
(8)

where x2(n−m),2(m+1);1−γ is the quantile of order 1− γ of the F distribution with 2(n−m)
and 2(m + 1) degrees of freedom. The argument of G−1(.) in (8) becomes extremely close
to one at the end of the search, that is as m → n, particularly for large n and extreme γ.
Consequently, care needs to be taken to ensure that the numerical calculation of this inverse
distribution is sufficiently accurate. Details of one case are in §10.3

We now consider the choice of G(x). If we knew both µ and Σ, G(x) would be χ2
v.

When both µ and Σ are estimated using maximum likelihood on the whole sample, the
squared distances have a scaled beta distribution. But, in our case, we estimate from a sub-
sample of m observations that do not include the observation being tested. Atkinson, Riani,
and Cerioli (2004, p. 43-4) derive distributional results for such deletion Mahalanobis dis-
tances. In the present case we estimate Σ on m− 1 degrees of freedom. If the estimate of
Σ were unbiased the null distribution of this squared distance would be

d2
(i) ∼

n

(n− 1)

v(m− 1)

(m− v)
Fv,m−v. (9)

The superiority of the F -approximation is shown in Figure 2 for the case n = 100 and
v = 6, values for which asymptotic arguments are unlikely to hold. The left-hand panel of
the figure shows that the χ2 approximation is poor, the envelopes being systematically too
low.

Unfortunately, the estimate of Σ that we use is biased since it is calculated from the
m observations in the subset that have been chosen as having the m smallest distances.
However, in the calculation of the scaled distances (3) we approximately correct for this
effect by multiplication by a ratio derived from estimates of Σ. So the envelopes for the
scaled Mahalanobis distances are given by

Vm,γ =

√
n

(n− 1)

√
v(m− 1)

(m− v)

√
ym+1,n;γ. (10)

4.2 Approximations for Unscaled Distances
Unscaled distances cannot take advantage of the beneficial cancellation of bias provided by
the ratio |Σ̂(m)|/|Σ̂(n)| in (3). However, an approximate correction factor for the envelopes
of unscaled squared Mahalanobis distances (2) can be obtained from results on elliptical
truncation in the multivariate normal distribution. Suppose that yi ∼ N(µ, Σ) is restricted
to lie in the subspace

0 ≤ (yi − µ)T Σ−1(yi − µ) ≤ b(m), (11)
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Figure 2: Comparison of 1%, 50% and 99% asymptotic envelopes for scaled distances:
n = 100, v = 6. Left-hand panel: χ2; right-hand panel: scaled F distribution. Continuous
lines, envelopes found by simulation

where b(m) is an arbitrary positive constant. Then it follows from the results of Tallis
(1963) that

E(yi) = µ and var(yi) = k(m)Σ,

where

k(m) =
P{χ2

v+2 < b(m)}
P{χ2

v < b(m)} .

Our estimate of Σ at step m is calculated from the m observations yi that have been
chosen as having the m smallest (squared) Mahalanobis distances. If we ignore the sam-
pling variability in this truncation we can take b(m) as the limiting value of the m-th order
statistic in a sample of n squared Mahalanobis distances. Hence cFS(m) = k(m)−1 is the
inflation factor for Σ̂(m) to achieve consistency at the normal model. In large samples

cFS(m) =
m/n

P (χ2
v+2 < X2

v,m/n)
, (12)

where X2
v,m/n is the m/n quantile of χ2

v. Our envelopes for unscaled distances are then
obtained by scaling up the values of the order statistics

V ∗
m,γ = cFS(m)Vm,γ.

The bound
√

b(m) in (11), viewed as a function of m, is sometimes called a radius for
trimming size (n −m)/n. Garcı́a-Escudero and Gordaliza (2005) studied the asymptotic
behaviour of its empirical version when µ and Σ are replaced by consistent robust estima-
tors, such as the MCD-based estimators of §7.2. There we take m = h, where h, defined
in (14), is a carefully selected half of the data. Then cFS(m) is equal to the consistency
factor (16) derived for the MCD scatter estimator by Butler, Davies, and Jhun (1993) and
Croux and Haesbroeck (1999). A corollary of the results of Tallis, relating the truncated
univariate normal distribution and χ2

3 is given in Appendix 2.
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4.3 Asymptotic Results for Very Large Samples
For very large n we use the asymptotic normality of order statistics to provide a satisfactory
approximation to (5), once more for known µ and Σ. The asymptotic expectation of Y[m+1]

is (Cox and Hinkley 1974, p.470) approximately

ξm+1,n = G−1{(m + 1− 3/8)/(n + 1/4)}.

If we let pξ = (m + 1 − 3/8)/(n + 1/4) and ξm+1,n = G−1(pξ), the variance of ξm+1,n

(Stuart and Ord 1987, p.331) is

σ2
ξ = pξ(1− pξ)/{nG2(ξm+1,n)}.

Thus, replacing G with the scaled F distribution (9) yields the asymptotic 100α% point of
the distribution of the scaled squared distance as

ξm+1,n + σξΦ
−1(α), (13)

where Φ(z) is the c.d.f. of the standard normal distribution.
For scaled distances (13) replaces (10). To obtain approximations for the unscaled

distance we again need to apply the results of §4.2.

4.4 A Comparison of Some Bootstrap and Order-Statistic Based En-
velopes

We now present plots illustrating the quality of our order-statistic approximations to the
envelopes.

The right-hand panels of Figure 3 show bootstrap envelopes (solid line) and the order-
statistic approximation of §4.1 for scaled distances when n = 200 and v = 5 and 10.
Agreement with the results of 10,000 simulations is very good virtually throughout the
whole range of m. The plots in the left-hand panels of the figure are for unscaled distances
using the results of §4.2. Although the approximation is not perfect, as we shall see the
bounds are adequate for outlier detection where we look at the upper boundaries typically
in the last one third of the search.

Figure 4 is a similar plot for n = 600. Here the approximations for the unscaled
distances are improved compared with those in Figure 3: the effect of increased v is reduced
and the agreement in the upper envelope extends at least to n/2.

5 The Forward Search for Outlier Detection

5.1 Motivation
If there are a few large outliers they will enter at the end of the search, and their detection
is not a problem. As an instance Figure 5 shows an example with two appreciable outliers
with mean shift 2.1 in a sample of 200 six-dimensional observations. At the end of the
search there are two observations lying clearly outside the 99.9% envelope. Here the for-
ward search has no difficulty in detecting these anomalous observations. The same is true
for many other outlier detection procedures.
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Figure 3: Agreement between bootstrap envelopes (solid line) and the order-statistic ap-
proximation of §4 when n = 200. Left-hand panels: unscaled distances, right-hand panels:
scaled distances. Top panels: v = 5, bottom panels v = 10.
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Figure 5: Easily detected outliers. There are two contaminated units in this sample with
n = 200 and v = 6 that are clearly revealed at the end of the search; 1%, 50%, 99% and
99.9% envelopes

Even relatively small clusters of outliers can however be more difficult to identify. Fig-
ure 1 of the Swiss banknote data shows that the forward plot of distances twice goes outside
the 99%envelope and twice returns within it. These events indicate two instances of mask-
ing. At the end of the search the Mahalanobis distance dmin for m = n−1 is 5.691 and lies
just below the 99% envelope from bootstrap simulations for which the value is 5.834. Only
if two observations are deleted do these few outliers become apparent: when m = n − 3
the 99% bootstrap value of dmin is 4.62; the observed value is 4.77, which lies well outside
the envelope. However, there is also a cluster of outliers and the search has a central peak,
around m = 85 in Figure 1, before a series of lower values of the distance. In more extreme
cases with a cluster of outliers masking may cause the plot to return inside the envelopes
at the end of the search. An example is in our second set of simulated data in Figure 10.
Methods of using the forward search for the formal detection of outliers have to be sensitive
to these two patterns - a few “obvious” outliers at the end and a peak earlier in the search
caused by a cluster of outliers.

5.2 Procedure
To use the envelopes in the forward search for outlier detection we propose a two stage
process. In the first stage we run a search on the data, monitoring the bounds for all n
observations until we obtain a “signal” indicating that observation m†, and therefore suc-
ceeding observations, may be outliers, because it lies beyond our threshold. In the second
part we superimpose envelopes for values of n from this point until the first time we intro-
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duce an observation we recognise as an outlier.
The thresholds need to be chosen to avoid the problem of simultaneity. We require a

procedure that combines high power with a size of α for declaring the sample to contain at
least one outlier. In our exposition and examples we take α = 1%.

We can expect the occasional observation to fall outside the bounds during the search
even if there are no outliers. If we ignore the correlation in adjacent distances induced by
the ordering imposed by the search, each observation can be taken to have a probability γ =
1−α of falling above the α point of the pointwise envelope. If γ is small, say 1%, and n =
1, 000 the number of observations outside the envelope will have approximately a Poisson
distribution with mean 10. The probability that no observations fall above the envelope
will then be e−10, a very small number. We need to be able to distinguish these random
occurrences during the search from the important peaks illustrated in the two figures.

The envelopes shown in Figures 3 and 4 consist roughly of two parts; a flat “central”
part and a steeply curving “final” part. Our procedure FS1 for the detection of a “signal”
takes account of these two parts and is as follows:

• In the central part of the search we require 3 consecutive values of dmin(m) above the
99.99% envelope or 1 above 99.999%;

• In the final part of the search we need two consecutive values of dmin(m) above 99.9%
and 1 above 99%;

• dmin(n− 2) > 99.9% envelope;
• dmin(n− 1) > 99% envelope.

The final part of the search is defined as:

m ≥ n− [
13 (n/200)0.5

]
,

where here [] stands for rounded integer. For n = 200 the value is slightly greater than 6%
of the observations.

The purpose of, in particular, the first point is to distinguish real peaks from random
fluctuations. Once a signal takes place (at m = m†) we start superimposing 99% envelopes
taking n = m† − 1,m†,m† + 1, . . . until the final, penultimate or antepenultimate value
are above the 99% threshold or, alternatively, we have a value of dmin(m) for any m > m†

which is greater than the 99.9% threshold.
Some slight variations of the former procedure are possible. Here are two. If we failed

to detect any outliers in FS1 but had an incontrovertible signal:

• FS2. Three consecutive values of dmin(m) above the 99.999% threshold, or
• FS3. Ten values of dmin(m) above the 99.999% threshold,

we then decide that outliers are present.
Some features of this procedure may seem arbitrary. However, as we see in §7, there

are likewise arbitrary decisions in the MCD based procedures in the definition of the subset
of m observations that are used in the final calculation of Mahalanobis distances and in the
reference distributions used for testing these distances.

10
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Figure 6: Slight contamination. Scatterplot matrix of data yielding Figure 7: n = 500,
v = 5; 5% of the units are contaminated. Level shift = 1.4 for each dimension. Original
units, •; contaminated units +

6 Two Examples

6.1 Slight Contamination
The purpose of this example is to show in practice how the procedure works in the presence
of slight contamination and a small number of contaminated units.

There are 500 observations and v = 5. There is a shift contamination of 1.4 in all
dimensions applied to 5% of the units, those numbered 1–25. The scatterplot matrix of the
data is in Figure 6, with the forward plot of minimum Mahalanobis distances in Figure 7.
This plot shows that there is a series of large values around m = 480, even though the value
at the end of the search is below the 99% envelope. There is thus visual evidence of the
presence of around 20 masked outliers.

More formally, we now apply our rule FS1 and find that a signal occurs when m =
479 because, for this value we have two consecutive values of dmin(m) above the 99.9%
threshold and, in addition, one other value above 99%. In particular the threshold levels
are:

dmin(479) > 99.9%, dmin(480) > 99.9% with dmin(478) > 99%.

We receive the signal at m = 479 because this is the first point at which we have an
observation above the 99.9% threshold.

We now proceed to the second part of our outlier detection process and superimpose
envelopes for a series of increasing sample sizes until we identify the outliers signalled
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in the first stage of the process. In this example we start with n = 479. Figure 8 shows
the envelopes and forward plot of minimum Mahalanobis distances for several values of n.
When n = 482 the curve lies well within the envelopes. Around n = 490 the observed
curve starts to become closer to the 99% envelope. When n = 494 some values are close
to the 99.9% envelope. The first time the observed values go out of the 99.9% envelope is
when n = 495.

The procedure of resuperimposing envelopes stops when n = 495, the first time in
which we have a value of dmin(m) for m ≤ m† greater than the 99.9% threshold. The
group can therefore be considered as homogeneous up to when we include 494 units. In
these data the shifted observations are units 1 - 25. The last six units included in the search
plotted in Figure 7 are numbered 2, 343, 6, 16, 23, 1, so that five out of these six are indeed
contaminated units.

6.2 Appreciable Contamination
We now consider an example with the same structure but with an appreciable number of
contaminated units, although the mean shift itself is not large. We take n = 200 and v = 5,
with 30% contamination from a mean shift of 1.2 in each dimension. The original obser-
vations again have a standard independent multivariate normal distribution. The scatterplot
matrix of the data is in Figure 9 with the forward plot of minimum Mahalanobis distances
in Figure 10.

With 30% contamination and 200 observations there are 60 outliers. Figure 10 shows
a peak around m = 130 followed by a trough a little after m = 140, which therefore
come roughly where we would expect. The peak is a little early because of the overlapping
nature of the two groups. The trough is caused by the effect of the inclusion of outliers on
the estimate of Σ which becomes too large, giving small Mahalanobis distances.
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Figure 8: Slightly contaminated data. When n = 482 the curve lies well within the en-
velopes. Around n = 490 the observed curve starts getting closer to the 99% envelope and
when n = 494 some values are close to the 99.9% envelope. The first time the curve goes
above the 99.9% envelope is step n = 495.
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Figure 11: 2,000 normal observations, v = 10: forward plot of 90% and 99% envelopes of
minimum Mahalanobis distances with superimposed Bonferroni bounds including Hadi’s
correction

If we apply our rules to this plot we find that, from m = 122 to m = 133 the consecutive
values of dmin(m) are greater than the 99.99% envelope while from m = 123 to m = 132
they are all greater than the 99.999% envelope. FS2 is therefore satisfied and we do not
need to confirm the outliers by successively superimposing bounds. The figure shows how
masking will cause the failure of procedures that look at only the largest values of the
distances, or that try to detect outliers by backwards deletion. The structure of a peak,
followed by a dip, in the plot of Figure 10 is further evidence of the presence of a cluster
of outliers that can only be obtained from the forward search. However we do not here
make use of this as a procedure for detecting outliers, concentrating instead solely on upper
exceedances of the bounds.

7 Other Outlier Detection Procedures

7.1 Bonferroni Bounds
The statistic (2) provides the basis for our test of the outlyingness of observation [m + 1].
Hadi (1994) uses a Bonferroni bound to allow for the ordering of the distances during his
forward search and compares a slightly scaled version of (2) with the percentage points of
χ2

v,(α/n), the scaling being to allow for the estimation of Σ.
Since the test is for an outlier in a sample of size m + 1, it seems appropriate to use

the Bonferroni bound χ2
v,{α/(m+1)} rather than χ2

v,(α/n). Figure 11 shows the resulting 95
and 99% bounds superimposed on a forward plot of bootstrap envelopes for n = 2000 and
v = 10. These bounds were calculated using the empirical scaling in §2 of Hadi (1994).
They are unrelated to the true distribution, except for the last step of the search; due to the
low correlation of the distances the bound is almost exact when m = n− 1. Earlier in the
search the bounds are far too large, because Σ̂(m), despite Hadi’s rescaling, is treated as
an estimate from a full sample, rather than from the truncated sample that arises from the
ordering of the distances.

Wisnowski et al. (2001, p. 360) report that the related procedure of Hadi and Simonoff
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(1993) for regression has a low detection rate for moderate and small outliers and an ab-
normally low false alarm rate. Similar properties for multivariate data can be inferred from
Figure 11.

7.2 Distances for Outlier Detection
In this section we describe a number of variants of the Mahalanobis distance that have been
recommended for outlier detection. These vary in the subset or subsets of observations
used for parameter estimation. When robust estimates are used, there are several possible
adjustments to obtain consistent estimators of Σ. There is also a choice of reference dis-
tribution against which to assess the observed distances. We leave until §8 the adjustments
made for simultaneous inference which introduce further subsets of the data to be used for
estimation.

• MD and MDK.
The Mahalanobis distance (1), with parameters estimated from all the data was long

suggested as an outlier test, for example by Wilks (1963). As is well known, it is ex-
ceptionally sensitive to masking. However, we include it in some of our comparisons to
illustrate just how sensitive it is.

If the values of the parameters µ and Σ were known, the distribution of the distance
would be χ2

v. As an outlier test we call this MDK with MD the test based on the same
distances but referred to the correct scaled Beta distribution. Section 2.6 of Atkinson et al.
(2004) gives this distribution; §2.16 gives references to the repeated rediscovery of related
distributional results.

Robust distances. The customary way to detect multivariate outliers is to compute
robust estimates of µ and Σ based on one or two carefully chosen subsets of the data
(Rousseeuw and van Zomeren 1990). Mahalanobis distances from this robust fit are then
compared with the α% cut-off value of the reference distribution, with α usually between
0.01 and 0.05, and unit i is nominated as an outlier if its distance exceeds the threshold. The
distribution of squared Mahalanobis distances depends on the robust estimators at hand,
but it has been proven that asymptotically it is either exactly or proportional to χ2

v in many
situations; see e.g. Davies (1992), Butler, Davies, and Jhun (1993), Lopuhaä (1999) and
Maronna, Martin, and Yohai (2006). We list four robust distances, versions of which are
used in our comparisons.

• MCD.
We consider the minimum covariance determinant (MCD) estimator described in Rousseeuw

and Leroy (1987, p. 262) and some of its variants. In the MCD approach, the estimators of
Σ and µ, say µ̂MCD and Σ̂MCD, are defined to be the mean and the covariance matrix of the
subset of

h = bn + v + 1

2
c (14)

observations for which the determinant of the covariance matrix is minimal, where b·c
denotes the integer part. The resulting breakdown value is then

b(n− v + 1)/2c
n

. (15)

The MCD is used because it has rate of convergence n−1/2, unlike the minimum volume
ellipsoid estimator (Davies 1992) for which convergence is at rate n−1/3.
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Rousseeuw and Van Driessen (1999) developed a fast algorithm for computing µ̂MCD

and Σ̂MCD, which has been implemented in different languages, including R, S-Plus,
Fortran and Matlab. Software availability and faster rate of convergence with respect
to other high breakdown estimators have made the MCD approach a popular choice in
applied robust statistics.

A crucial issue with the MCD scatter estimator Σ̂MCD is that it tends to underestimate
Σ even in large samples. With breakdown value (15), the appropriate large-sample correc-
tion factor for Σ̂MCD was derived by Butler, Davies, and Jhun (1993) and by Croux and
Haesbroeck (1999) as

cMCD(h, n, v) =
h/n

P (χ2
v+2 < X2

v,h/n)
. (16)

However, although consistent at the normal model, the estimator

cMCD(h, n, v)Σ̂MCD

is still biased for small sample sizes. Pison, Van Aelst, and Willems (2002) showed by
Monte-Carlo simulation the importance of applying a small sample correction factor to
cMCD(h, n, v)Σ̂MCD. Let sMCD(h, n, v) be this factor for a specific choice of n and v and
breakdown value (15). The resulting robust Mahalanobis distances are then

d(MCD)i =

√
kMCD(yi − µ̂MCD)T Σ̂−1

MCD(yi − µ̂MCD) i = 1, . . . , n, (17)

where kMCD = {cMCD(h, n, v)sMCD(h, n, v)}−1.
• HR.
The exact finite-sample distribution of the robust Mahalanobis distances (17) is un-

known, but Hardin and Rocke (2005) proposed a scaled F approximation which, in small
and moderate samples, outperforms the asymptotic χ2

v approximation of MCD.
• RMCD-C.
To increase efficiency, a reweighted version of the MCD estimators is often used in

practice. These reweighted estimators, µ̂RMCD and Σ̂RMCD, are computed by giving weight
0 to observations for which d(MCD)i exceeds a cutoff value. Thus a first subset of h ob-
servations is used to select a second subset from which the parameters are estimated. The
default choice (Rousseeuw and Leroy 1987, Rousseeuw and Van Driessen 1999) for this
cutoff value is √

X2
v,0.025. (18)

Both the consistency (Croux and Haesbroeck 2000) and the small sample (Pison, Van Aelst,
and Willems 2002) correction factors cRMCD(h, n, v) and sRMCD(h, n, v) can be applied to
Σ̂RMCD, when the robust Mahalanobis distances become

d(RMCD−C)i =

√
kRMCD−C(yi − µ̂RMCD)T Σ̂−1

RMCD(yi − µ̂RMCD) i = 1, . . . , n, (19)

where kRMCD−C = {cRMCD(h, n, v)sRMCD(h, n, v)}−1.
RMCD.
The original MCD literature (Rousseeuw and Leroy 1987, Rousseeuw and Van Driessen

1999) did not suggest use of the consistency correction factor cRMCD(h, n, v). The ro-
bust Mahalanobis distances arising from this basic reweighted MCD estimator, d(RMCD)i,
are then computed as in equation (19), but with kRMCD = sRMCD(h, n, v)−1 replacing
kRMCD−C.
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8 Simultaneity and Bonferronisation
The published literature describing the properties of robust Mahalanobis distances for mul-
tivariate outlier detection is mainly concerned with rejection of the single null hypothesis

H0 : yi ∼ N(µ, Σ) (20)

at level α. On the contrary, in our procedure of §4 the test statistic (4) is the m + 1st
ordered value of the n Mahalanobis distances. Therefore, its distribution involves the joint
distribution of all the n Mahalanobis distances d2

i (m), so that the null hypothesis of interest
becomes the intersection hypothesis

H0 : {y1 ∼ N(µ, Σ)} ∩ {y2 ∼ N(µ, Σ)} ∩ . . . ∩ {yn ∼ N(µ, Σ)} (21)

that there are no outliers in the data. The Forward Search α is the size of the test of (21),
i.e. the probability that at least one of the individual hypotheses (20) is rejected for some
m when (21) is true. In our approach, we are willing to tolerate a wrong conclusion in
(100α)% of data sets without outliers, while under (20) one should be prepared to declare
(100α)% of observations as outliers in any application.

We let α have the same interpretation in MCD procedures by comparing all the indi-
vidual statistics d(MCD)i, d(RMCD)i and d(RMCD−C)i, i = 1, . . . , n, with the α∗ = α/n cutoff
value of their reference distributions. A Bonferroni approach is appropriate in this con-
text because extreme observations are approximately independent of the MCD estimators
µ̂MCD and Σ̂MCD, as shown by Hardin and Rocke (2005). Hence the intersection between
multiple tests of (20), sharing the same MCD estimates, should be negligible, at least when
H0 is rejected. Gather, Pawlitschko, and Pigeot (1997) discuss properties of multiple tests
and provide further references.

This Bonferroni procedure applies to the level at which we say that at least one outlier
is present. We can, in addition, apply the Bonferroni argument to selection of observations
to be used in parameter estimation for the reweighted distances. We suggest two such
modifications.

• RMCD-B.
We set α = 0.01 in all our simulations. The default cutoff value for excluding obser-

vations in the computation of reweighted MCD estimators is given by (18). However, this
cutoff is inappropriate when testing the intersection hypothesis (21), as individual outlier
tests are now performed with size α∗ = 0.01/n. We accordingly calculate a modified ver-
sion of the reweighted estimators, say µ̂RMCD−B and Σ̂RMCD−B, where observations are
given weight 0 if d(MCD)i exceeds √

X2
v,α∗ . (22)

Substituting these modified estimators into (19), we obtain the Bonferroni-adjusted reweighted
distances

d(RMCD−B)i =

√
kRMCD(yi − µ̂RMCD−B)′Σ̂−1

RMCD−B(yi − µ̂RMCD−B) i = 1, . . . , n,
(23)

• RMCD-D.
An alternative Bonferroni-adjusted reweighted-MCD distance is obtained by substitut-

ing kRMCD−C for kRMCD in equation (23), thus including the consistency factor as we did
in the definition of RMCD-C.
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The correction factors in these Bonferroni-adjusted versions of RMCD include the
small sample correction sRMCD(h, n, v) which was derived without allowance for simul-
taneous inference. The appropriate small-sample factor for RMCD-B and RMCD-D is not
available in the MCD literature.

A summary of the Mahalanobis distance outlier tests considered in our simulations is
given in Table 1.

Table 1: Mahalanobis distance outlier tests to be compared with the Forward Search

Acronym Description

MDK Squared non-robust distances d2
i

asymptotic χ2
v distribution

MD Squared non-robust distances d2
i

Exact scaled Beta distribution

MCD Squared MCD distances d2
(MCD)i

asymptotic χ2
v distribution

RMCD Squared reweighted-MCD distances d2
(RMCD)i

asymptotic χ2
v distribution

RMCD-C Squared reweighted-MCD distances
with consistency correction d2

(RMCD−C)i

asymptotic χ2
v distribution

RMCD-B Squared Bonferroni-adjusted reweighted-MCD distances d2
(RMCD−B)i

asymptotic χ2
v distribution

RMCD-D Squared Bonferroni-adjusted reweighted-MCD distances
with consistency correction d2

(RMCD−D)i

asymptotic χ2
v distribution

HR Squared MCD distances d2
(MCD)i

scaled F distribution of Hardin and Rocke (2005)

9 Size and Power

9.1 Size
To compare the performance of the various outlier tests we need them to have at least
approximately the same size. To establish the size we performed each nominal 1% test on
10,000 sets of simulated multivariate normal data for four values of n from 100 to 1,000
and with dimension v = 5 and 10. The result was considered significant if at least one
outlier was detected.

We summarise our findings in Table 2. For the first eight tests, based on various Ma-
halanobis distances, we use the Bonferroni correction to obtain a test with nominal size of
1%. The first entry in the table is for the standard Mahalanobis distance with reference
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Table 2: Size of the nominal 1% test based on 10,000 simulations (v = 5 first entry and
v = 10 second entry in each cell): classical Mahalanobis distances, the six MCD-based
procedures of Table 1 and our three proposals

n = 100 n = 200 n = 500 n = 1000

MDK 0.28% 0.42% 0.70% 0.79%
0.06% 0.44% 0.52% 0.89%

MD 1.12% 0.97% 0.97% 0.89%
1.04% 1.21% 0.99% 1.19%

MCD 62.43% 32.91% 8.81% 3.71%
88.59% 49.21% 11.76% 4.72%

RMCD 30.04% 10.95% 3.78% 3.02%
61.78% 16.37% 5.15% 3.64%

RMCD-C 10.13% 3.39% 1.70% 1.16%
32.25% 6.04% 2.15% 1.77%

RMCD-B 4.94% 1.94% 1.16% 1.03%
12.45% 3.33% 1.61% 1.40%

RMCD-D 3.41% 1.64% 1.09% 1.01%
8.11% 2.90% 1.51% 1.36%

HR 2.41% 2.53% 1.17% 0.97%
5.28% 2.34% 1.09% 1.17%

FS1 1.02% 1.14% 1.13% 1.15%
1.16% 1.26% 1.15% 1.19%

FS2 1.03% 1.15% 1.14% 1.15%
1.53% 1.27% 1.17% 1.20%

FS3 1.04% 1.16% 1.15% 1.16%
1.54% 1.31% 1.18% 1.20%
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values from asymptotic χ2 distribution that ignores the effect of estimating the parameters.
The results are surprisingly bad: for n = 100 and v = 10 the size is 0.06% rather than 1%.
Even when n = 1, 000, a value by which asymptotics are usually expected to be a good
guide, the size is only 0.79% when v = 5. There is a sharp contrast with the results using
the correct Beta distribution, when the sizes correctly fluctuate between 0.89 and 1.21%.
These results provide a measure of the fluctuation to be found in our simulation results.
They also confirm that our Bonferroni correction does indeed provide a test with power
close to 1%. Despite the correct size of the test, our simulations in §9.2 quantify what is
well known in general, that the standard Mahalanobis distance can have very low power
when used as an outlier test.

The next two sets of results are for the MCD and the RMCD. These results, especially
for n = 100 are exceptionally bad, with sizes of up to 89%, clearly rendering the test
unusable for ‘small’ samples of 100. As n increases, the asymptotically based correction
factor improves the size. But even when n = 1, 000, the sizes are between 3 and 5%. In
view of this performance, we do not need to consider these tests any further.

The following four tests are versions of the MCD but with better size that improves as
we go down the table. For RMCD-C, that is reweighted MCD with a consistency correction
in the reweighting, the size is around 10% when n = 100 and v = 5. When v = 10 it rises
to over 32%. For this and the other three reweighted MCD rules the size decreases with n,
being close to the hoped-for value when n = 500. In RMCD-B we extend RMCD-C by
including Bonferroni reweighting to obtain sizes around 5% when n = 100 and v = 5; for
v = 10 the value is 12.5%. The version of RMCD-B with consistency correction, which
we call RMCD-D, has sizes of 3.4% and 8.1% when n = 100, with all sizes less than those
for RMCD-B. The sizes for HR when n = 100 are also too large, although throughout the
table this test has values amongst the best for all values of n. The three versions of the
forward search have satisfactory sizes for all values of n in the range studied, although the
values are slightly above 1%.

As a result of this preliminary exploration we decided to focus our investigation on
the properties of four outlier detection procedures: MD, RMCD-B, HR and FS3. Other
procedure are sometimes included if some particular property is thereby revealed.

9.2 Power
To begin our comparisons of power, Table 3 shows the results of 10,000 simulations of
samples with n = 200, v = 5 and with 5% of shifted observations, for a shift in all
dimensions from 1 to 2.4; the first line of the table, in which the shift is zero, serves as a
reminder of the size. The results are the percentage of samples in which at least one outlier
was detected. In this table we have included all three of the Forward Search rules of §5.2.
For this example there is nothing to choose between these three and, in the rest of the paper,
we only give results for FS3.

The general conclusion from this table is that the FS rules behave slightly better than
RMCD-B, which has a larger size, but lower power for level shifts above 1.6. The HR rule
behaves less well than these, with MD by far the worst, despite its excellent size.

Table 4 repeats the results of Table 3 but with 30% of the observations shifted. The
broad conclusions from the two tables are similar, but more extreme for the more contam-
inated data. The best rule is FS3. Unlike HR, RMCD-B loses appreciable power in this
more heavily contaminated setting. Most sensationally of all, masking is so strong that MD
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Figure 12: Power comparisons n = 200, v = 5. Logit of power: upper panel 5% contami-
nation, lower panel 30% contamination. The lower horizontal line corresponds to a power
of 1%, the nominal size of the tests

indicates that less than 1% of the samples contain outliers.
These comparisons are made simpler by the plots of Figure 12. It is customary to plot

the power directly, on a scale going from 0 to 100%. However, such plots are not usually
informative, since virtually all procedures start with a size near zero and finish up with a
power near one. The eye is drawn to the less informative region of powers around 50%.
Accordingly, we instead plot the logit of the power. That is, if the power of the procedure
is p, we plot y = log p/(1− p), an unbounded function of p. An additional advantage of
such plots is that we are able to make useful comparisons of tests with different actual sizes
although the nominal sizes may be the same.

The upper panel of Figure 12, for 5% contamination, shows that initially FS3 has a
more nearly correct size than the robust procedures RMCD-B and HR and that, as the shift
in means increases, FS3 gradually becomes the most powerful procedure. The conclusions
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Table 3: Power comparisons - %: n = 200, v = 5; 5% shifted observations

Shift FS1 FS2 FS3 HR RMCD-B MD

0 1.14 1.15 1.16 2.53 1.94 0.97
1 3.00 3.04 3.05 3.41 4.36 2.2

1.2 5.68 5.69 5.71 6.41 8.47 3.82
1.4 11.43 11.46 11.47 11.54 14.60 5.74
1.6 26.61 26.64 26.65 20.95 26.43 8.00
1.8 53.39 53.41 53.42 34.15 45.16 11.42
2 80.42 80.43 80.44 49.38 66.32 14.94

2.2 95.87 95.88 95.89 65.90 83.03 18.33
2.4 99.64 99.65 99.66 79.12 93.73 22.89

Table 4: Power comparisons - %: n = 200, v = 5; 30% shifted observations

Shift FS3 HR RMCD-B MD

0 1.16 2.53 1.94 0.97
1 0.92 1.90 1.29 0.73

1.2 0.89 2.28 1.68 0.65
1.4 1.03 3.09 1.47 0.76
1.6 4.47 7.85 1.37 0.63
1.8 24.48 19.49 2.10 0.67
2 66.39 37.95 3.64 0.73

2.2 94.27 58.66 8.36 0.78
2.4 99.55 77.73 19.31 0.57
2.6 99.97 89.35 36.55 0.73

from the lower panel for 30% contamination are similar. For large displacements not only
is FS3 again the most powerful procedure, but it is comparatively more powerful than the
other procedures as the shift increases. Robust tests of the correct size could be found
by subtracting a constant from the logits to bring the curves down to the 1% line, when
the curve for FS3 would lie together with or above those for the other curves, showing
the superiority of the forward search procedure for these configurations. Such a proce-
dure however does not provide operational tests as a simulation is needed to establish the
required adjustment to the logits.

Two minor points are also of interest. One is that the lower panel reveals the complete
masking associated with the non-robust MD. The other is that, for 30% contamination,
all procedures require an appreciable shift before the high proportion of outliers can be
detected.

Tables 5 and 6 present the results for v = 10, with the powers plotted in Figure 13.
Table 2 shows that the sizes of HR and RMCD-B are too large. This shows in the plot by
the lines for these two procedures being the highest for small contamination. However, as
the mean shift increases the power curve for FS3 rises more rapidly revealing it again as

23



the most powerful procedure.

Shift in location

Lo
gi

t o
f p

ow
er

0.0 0.5 1.0 1.5 2.0

−
4

−
2

0
2

4
6

FS3
HR
RMCD−B
MD

n=200, v=10, cont.=5%

Shift in location

Lo
gi

t o
f p

ow
er

0.0 0.5 1.0 1.5 2.0

−
4

−
2

0
2

4

FS3
HR
RMCD−B
MD

n=200, v=10, cont.=30%

Figure 13: Power comparisons n = 200, v = 10. Logit of power: upper panel 5% contam-
ination, lower panel 30% contamination. The lower horizontal line corresponds to a power
of 1%, the nominal size of the tests

As a final comparison we look at some results for much larger samples, n = 1000,
with v = 5 and 5% contamination. The results are in Table 7. The first four comparisons
are those of the procedures FS3, HR, RMCD-B and MD that we have already compared
for n = 200. The results are plotted in the upper panel of Figure 14. Now, as we know
from Table 2, all procedures have virtually the correct size, so the plots of power start close
together. As we have seen before, FS3 has the highest power for larger shifts in mean.

Also included in Table 7 are the results for three further versions of reweighted MCD
distances. These power curves are plotted, together with that for FS3 in the lower panel
of Figure 14. The plot for RMCD, the reweighted estimator without the consistency factor
and lacking the Bonferroni adjustment in the reweighting, lies above the very similar curve
for RMCD-C, the version of RMCD in which the consistency correction was included.
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Figure 14: Power comparisons n = 1, 000, v = 10 with 5% contamination. Logit of power:
upper panel FS3, HR, RMCD-B and the nonrobust MD. Lower panel FS3 and three further
reweighted versions of MCD. The lower horizontal line corresponds to a power of 1%, the
nominal size of the tests

Both have lower power than FS3 for large mean shifts. The final version of these robust
distances, RMCD-D, is the version of RMCD in which we use a Bonferroni adjustment
in the reweighting of RMCD with additional consistency correction. This has the poorest
performance of all, apart from the non-robust MD. The conclusion is that, once adjustment
is made for size, RMCD has much the same properties as HR and RMCD-C. Here HR is
better than RMCD-B, as it is for the datasets with n = 200 and 30% contamination. There
is little to choose between these two for n = 200 and 5% contamination when adjustment
is made for size. In all comparisons FS3 has the highest power, combined with good size.
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10 Examples
Our results show the good size and superior power of our forward search procedures. In
this section we conclude by revisiting our three examples and suggest why our procedure
has greater power than that of MCD derived approaches.

10.1 Slight Contamination
In this example there were 500 observations, v = 5 and the first 25 units were contaminated.
The forward plot of minimum Mahalanobis distances in Figure 7 exhibited a series of large
values around m = 480, but with the value at the end of the search below the 99% envelope.
Such masked behaviour can be expected to cause difficulties for methods that test only the
largest value of a robust Mahalanobis distance based on an arbitrary or non-adaptive subset
of the data. We now look at a variety of distances for each unit.
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Figure 15: Slightly contaminated data: output from MCD, RMCD, RMCD-B and HR.
Distances against unit number, the original units are represented by black dots, the 25
contaminated units by the symbol +. Upper line, 1% Bonferroni limit; lower line, 1% limit
of individual distribution

The top left-hand panel of Figure 15 shows a plot of MCD distances against observa-
tion number, with the first 25 units, shown by crosses, being those that are contaminated.
The lower horizontal line on the plot is the 1% point of the nominal distribution of the
individual statistics. As the figure shows, for this and all other distances, there are several
uncontaminated units above this threshold as well as, in this case, half of the contaminated
units. A Bonferroni limit is clearly needed. However, in this and all other panels, imposi-
tion of the Bonferroni limit, the upper horizontal bound, fails to reveal any outliers. This
much structure of the four panels is common. However, the figure does show that RMCD
comes nearest to revealing the presence of outliers, with seven of the first 25 units forming
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the largest distances. Although the Bonferroni bound is so large that these distances are not
significant, the bound is not, in general, conservative. For instance, the size of RMCD with
n = 500 and v = 5 is almost 4%.
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Figure 16: Robust Mahalanobis distances MCD against non-robust Mahalanobis distances
MD. The original units are represented by black dots, the contaminated units by the sym-
bol +. Left-hand panel, slightly contaminated data, right-hand panel, appreciably contam-
inated data

It is frequently suggested, for example by Rousseeuw and van Zomeren (1990), that a
useful diagnostic for the presence of outliers is to compare robust and non-robust analyses.
Accordingly, in the left hand-panel of Figure 16 we show a scatter plot of distances from the
MCD against the full-sample Mahalanobis distances. This plot is unrevealing. Although
there is a preponderance of contaminated units in the upper-right hand corner of the plot,
the two sets of distances form a wedge pattern, with no obvious differences between the
two. The structure is basically linear, with scatter increasing with magnitude. There is no
diagnosis of the presence of outliers.

10.2 Appreciable Contamination
We now repeat this analysis but for the appreciably contaminated data of §6.2; there are 200
observations with v = 5, but there is 30% contamination which is in units 1-60 caused by a
mean shift of 1.2 in each dimension. The forward plot of minimum Mahalanobis distances
was given in Figure 10. This again has a peak well before the end, with ‘good’ behaviour
after m = 145.

The panels of Figure 17 repeat those of Figure 15, showing plots of four robust distances
against observation number, now with the first 60 units, shown by crosses, being those that
are contaminated. The lower horizontal line on the plot is the 1% point of the nominal
distribution of the individual statistics.

These plots make rather different points from those of Figure 15. Again, there would
be a large number of outliers if the limit for the individual statistics were used and virtually
none if the Bonferroni limit is employed. In fact, only the MCD would lead to detection of
an ‘outlier’. However, as the upper-left panel of the figure shows, this observation is not an
outlier. More surprisingly, none of the four procedures shows a contaminated observation
as having the largest distance. With this relatively small sample size, the procedures are
completely failing to detect the 30% of contamination in the data. This might seem puzzling
given the large size of the procedures revealed in Table 2. However, the latter part of the
forward plot of Figure 10 shows that if the parameters are estimated from a subset including
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Figure 17: Appreciably contaminated data: output from MCD, RMCD, MCD-B and HR.
Distances against unit number, the original units are represented by black dots, the 60
contaminated units by the symbol +. Upper line, 1% Bonferroni limit; lower line, 1% limit
of individual distribution

contaminated observations, the resulting over-estimation of Σ leads to small distances and
a failure to detect outliers.

Finally, in the right hand-panel of Figure 16 we show the scatter plot of distances from
the MCD against the standard non-robust Mahalanobis distances. The structure is similar
to that for the lightly contaminated data in the left-hand panel, but certainly no more infor-
mative about the existence of the 60 outliers. In fact, the plot might even be thought to be
misleading; the majority of observations with larger distances lying away from the centre
of the wedge shape are uncontaminated units.

10.3 Swiss Banknotes
Application of FS1 to the forward plot of distances in Figure 1 yields a value of 84 for m†.
Figure 18 shows the successive superimposition of envelopes from this value. There is no
evidence of any outliers when n = 84 and 85, but when n = 86 we obtain clear evidence
of a single outlier with observation [86] well outside the 99% envelope. When n = 87 we
have even stronger evidence of the presence of outliers. As a result we conclude that there
are 15 outlying observations in the data on forged banknotes.

For these data the four robust methods we have compared on other sets of data also all
reveal the presence of outliers. As the index plots of Mahalanobis distances in Figure 19
show, the 1% Bonferroni level for MCD, RMCD and RMCD-B all reveal the 15 outliers
without any false positives. However, the sizes of these procedures when n = 100 are
totally unacceptable, namely 62%, 30% and 5%. Only HR is too conservative, indicating
just 5 outliers, from a test with size 2.4%. Since HR is a rescaled version of MCD, the
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Figure 18: Swiss Banknotes: forward plot of minimum Mahalanobis distance. When n =
84 and 85, the observed curve lies within the 99% envelope, but there is clear evidence of
an outlier when n = 86. The evidence becomes even stronger when another observation is
included.
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Figure 19: Swiss banknote data: output from MCD, RMCD, MCD-B and HR. Distances
against unit number; the 15 outlying units are represented by the symbol +. Upper line,
1% Bonferroni limit; lower line, 1% limit of individual distribution

figure confirms that the 15 outliers do indeed have the largest distances for HR. The plot of
robust against non-robust distances in Figure 20 also revels the 15 outliers, which fall into
a separate group from the other 85 observations.

These plots serve to make the point that our comparisons have been solely of whether
the methods identify at least one outlier in a sample. The comparison of methods for the
number of outliers can be problematic. Consider our canonical example of a multivariate
normal sample, some observations of which have a mean shift. If the shift is sufficiently
large, the outliers will be evident and most methods will detect them. However, if as in
our paper, the shift is slight, the two groups will overlap and the number of ‘outliers’ will
not be as great a the number of shifted observations. Comparisons of methods then require
a two-way table of counts for each procedure in which the factors are whether or not the
observation was shifted and whether it was identified as outlying.

Appendix 1: Numerical
In §4.1 we mentioned that care is needed in evaluating the integral in (8) for large n as
m → n. For example, when n = 1, 000 and v = 10, in the final step of the search we
have m = n− 1 = 999, x2,2000;0.01 = 0.01005 and F (y2000,2000;0.99) = 0.9999899497. This
implies that we have to find the quantile of an F distribution with 10 and 989 degrees of
freedom associated with probability 0.9999899497; in Fortran the IMSL function DFIN
gave a value of 4.1985, the same value as the S-Plus function qf. Using this number we
obtain a value of 6.512259 in equation (10). After dividing by the consistency factor we
obtain a final value of 6.520. Note that the Bonferroni value is 6.426 and the coefficient
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Figure 20: Swiss banknote data: robust Mahalanobis distances MCD against non-robust
Mahalanobis distances MD. The 15 outlying units are represented by the symbol +

obtained by Hadi using simulations is 6.511. From 30,000 simulations using Gauss the
value we obtained was 6.521, very close to our final value coming from the theoretical
arguments leading to (10).

Appendix 2: The χ2
3 c.d.f. as a Function of the Standard

Normal Distribution
The application of standard results from probability theory shows that the variance of the
truncated normal distribution containing the central m/n portion of the full distribution is

σ2
T (m) = 1− 2n

m
Φ−1

(
n + m

2n

)
φ

{
Φ−1

(
n + m

2n

)}
,

where φ(.) and Φ(.) are respectively the standard normal density and c.d.f. See, for exam-
ple, Johnson, Kotz, and Balakrishnan (1994, pp. 156-162). On the other hand the results
from elliptical truncation due to Tallis (1963) that we used in §4.2 show that this variance
can be written as

σ2
T (m) =

n

m
Fχ2

3

{
F−1

χ2
1

(m

n

)}

After some algebra it appears that

F−1
χ2

1

(m

n

)
=

{
Φ−1

(
m + n

2n

)}2

,

when, rearranging terms, we easily obtain that

Fχ2
3
(x2) =

m

n
− 2xφ(x)

where x = Φ−1{(m + n)/(2n)}. This result links the c.d.f of the χ2
3 in an unexpected way

to the density and c.d.f. of the standard normal distribution.
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Table 5: Power comparisons - %: n = 200, v = 10; 5% shifted observations

Shift FS3 HR RMCD-B MD

0 1.31 2.34 3.33 1.21
1 4.79 6.59 10.34 2.78

1.2 12.75 14.93 19.93 4.31
1.4 36.96 31.01 40.61 5.96
1.6 73.98 52.83 68.78 8.04
1.8 95.93 75.47 90.47 10.31
2 99.70 89.96 98.13 12.23

Table 6: Power comparisons - %: n = 200, v = 10; 30% shifted observations

Shift FS3 HR RMCD-B MD

0 1.31 2.34 3.33 0.0121
1 1.04 2.42 2.98 0.086

1.2 1.50 2.69 3.00 0.085
1.4 10.79 7.30 3.64 0.091
1.6 47.91 24.85 5.51 0.083
1.8 79.79 53.85 15.75 0.085
2 91.21 78.93 40.00 0.082

2.2 95.65 91.18 71.79 0.084
2.4 98.02 96.52 92.00 0.072
2.6 99.17 98.13 97.67 0.073

Table 7: Power comparisons for seven rules on large samples - %: n = 1000, v = 5; 5%
shifted observations

Shift FS3 HR RMCD-B MD RMCD RMCD-C RMCD-D

0 1.16 1.15 1.11 0.99 2.80 1.39 1.08
1 6.02 5.98 3.45 2.88 11.63 5.79 3.33

1.2 23.00 16.27 5.49 4.44 27.47 13.69 5.26
1.4 52.40 39.47 10.07 7.04 59.75 35.60 9.40
1.6 94.00 71.11 18.58 10.97 91.11 71.96 16.77
1.8 99.90 92.26 35.39 14.20 99.65 95.90 30.31
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