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LONG AND SHORT MEMORY
CONDITIONAL HETEROSKEDASTICITY

IN ESTIMATING THE MEMORY
PARAMETER OF LEVELS

P.M. ROOOBBBIIINNNSSSOOONNN AAANNNDDD M. HEEENNNRRRYYY
London School of Economics

Semiparametric estimates of long memory seem useful in the analysis of long fi-
nancial time series because they are consistent under much broader conditions than
parametric estimates+ However, recent large sample theory for semiparametric es-
timates forbids conditional heteroskedasticity+ We show that a leading semipara-
metric estimate, the Gaussian or local Whittle one, can be consistent and have the
same limiting distribution under conditional heteroskedasticity as under the condi-
tional homoskedasticity assumed by Robinson~1995,Annals of Statistics23, 1630–
61!+ Indeed, noting that long memory has been observed in the squares of financial
time series, we allow, under regularity conditions, for conditional heteroskedastic-
ity of the general form introduced by Robinson~1991, Journal of Econometrics47,
67–84!, which may include long memory behavior for the squares, such as the
fractional noise and autoregressive fractionally integrated moving average form,
and also standard short memory ARCH and GARCH specifications+

1. INTRODUCTION

In recent years, tools for investigating possible long memory in time series have
been considerably developed+Early work of Mandelbrot~1969! considered the pos-
sibility of long memory modeling in economic and financial time series; his work
and that ofAdenstedt~1974! began parametric modeling of long memory,whereas
Geweke and Porter-Hudak~1983! introduced semiparametric procedures,and em-
pirical applications have become numerous+ A review of the literature from an
econometric standpoint is in Robinson~1994!+Very long, approximately station-
ary series, such as series of asset returns and other financial measurements,are best
analyzed, at least at an initial stage, by semiparametric estimates+ They have the
advantage of avoiding precise specification in that they parametrically model only
the low frequency part of the spectral density~or the long-lagged autocovari-
ances!, thus avoiding inconsistency in estimation of even the low frequency struc-
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ture that would be caused by misspecification~or overfitting! of the short memory
dynamics+Semiparametric estimates have a slower rate of convergence than para-
metric ones,but with sufficient data this concern may be outweighed by their greater
robustness properties+

We semiparametrically model long memory in a covariance stationary series
xt , t 5 0, 61, + + + , by

f ~l! ; Gl122H asl r 01, (1.1)

where1
2
_ , H , 1 and 0, G ,`, f ~l! being the spectral density ofxt satisfying

gj 5 cov~xt , xt1j ! 5E
2p

p

f ~l!cos~ jl! dl, j 5 0,61, + + + + (1.2)

Under ~1+1!, f ~l! has a pole atl 5 0 for 1
2
_ , H , 1 ~when there is long

memory inxt !, f ~l! is positive and finite forH 5 1
2
_ ~which we identify with

short memory inxt !, and f ~0! 5 0 for 0 , H , 1
2
_ ~which we describe as

negative dependence or antipersistence!+ Two leading semiparametric estimates
of the memory parameterH are the log periodogram estimate of Geweke and
Porter-Hudak~1983! and the Gaussian or local Whittle estimate of Künsch
~1987!+ Only recently has asymptotic distributional theory of these estimates
been laid down, by Robinson~1995a, 1995b!, though earlier attempts in the
case of the log periodogram estimate appear in the literature, and in fact, the
version of the log periodogram estimate considered by Robinson~1995b! dif-
fers from the original and also provides efficiency improvements+ Even with
such improvements, the Gaussian semiparametric estimate is the more effi-
cient+ Unlike the log periodogram estimate, it is not defined in closed form, but
nonlinear optimization is only needed with respect to a single parameter, H,
and can be accomplished rapidly+

The asymptotic theory of Robinson~1995a, 1995b! rules out the possibility of
conditional heteroskedasticity, and this seems a drawback in the case of financial
series for which semiparametric estimates otherwise seem appropriate+ Indeed,
Robinson~1995b! analyzed the log periodogram under the assumption thatxt is
Gaussian+For the Gaussian semiparametric estimate he made the weaker assump-
tion

xt 5 E~xt ! 1 (
j50

`

aj «t2j , (
j50

`

aj
2 , `, (1.3)

where the«t satisfy at least

E~«t 6Ft21! 5 0 almost surely~a+s+!, (1.4)

st
2 5

def
V~«t 6Ft21! 5 s2 a+s+ (1.5)

for all t, whereFt is thes-field of events generated by~«s,s # t! ands2 is a
constant+We would like to relax~1+5! to allow for the possibility of autocorrela-
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tion in the«t
2; for example, in some financial applications, the levelsxt can be

approximated by a martingale difference sequence~so aj 5 0, j . 0! but the
squaresxt

2 5 «t
2 cannot, so that the sequencext is not a sequence of independent

random variables+ In fact, empirical evidence~see, e+g+,Ding,Granger, and Engle,
1993! has also suggested that dependence in the squares can fall off very slowly,
in a way that is possibly more consistent with long memory than with standard
short memory ARCH and GARCH specifications+

In fact, prior to Ding et al+ ~1993!, GARCH-type models admitting the possi-
bility of long memory had already been proposed by Robinson~1991! and ap-
plied to financial time series by Whistler~1990!+Robinson~1991! considered the
specifications

st
2 5 s2 1 (

j51

`

cj ~«t2j
2 2 s2 ! (1.6)

and

st
2 5 Ss 1 (

j51

`

cj «t2jD2

+

We shall discuss only the ARCH~`! specification~1+6!+ This can be reparam-
eterized as

st
2 5 b 1 (

j51

`

cj «t2j
2

and includes both standard ARCH~whencj 5 0, j . p, for finite p! and GARCH
~when thecj decay exponentially! models+ More generally, if , for complex val-
uedz,

c~z! 5 12 (
j51

`

cj z
j (1.7)

satisfies

6c~z!6Þ 0, 6z6 # 1, (1.8)

define

f~z! 5 (
j50

`

fj z
j 5 c~z!21, f0 5 1+ (1.9)

Then Robinson~1991! rewrote~1+6! as

«t
2 2 s2 5 (

j50

`

fj nt2j , (1.10)
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where

nt 5 «t
2 2 st

2 (1.11)

satisfies

E~nt 6Ft21! 5 0 a+s+ (1.12)

by construction+ The requirement

0 , (
j50

`

fj
2 , ` (1.13)

includes the traditional long memory specifications of moving average coeffi-
cients, for example, the autoregressive fractionally integrated moving average
~ARFIMA ! case

f~z! 5 ~12 z!2d
b~z!

a~z!
(1.14)

for 0 , d , 1
2
_ and finite order polynomialsa~z! andb~z! whose zeros are outside

the unit circle in the complex plane, and the fractional noise case

corr~«t
2,«t1j

2 ! 5

(
i50

`

fi fi1j

(
i50

`

fi
2

5
1

2
$6 j 2 162d11 2 6 j 62d11 1 6 j 2 162d11 %+ (1.15)

Robinson~1991! developed Lagrange multiplier tests for no-ARCH against
alternatives consisting of general finite parameterization of~1+6!, specializing to
~1+14! and~1+15!+ In both these cases, the autoregressive weightscj satisfy

(
j50

`

6cj 6 , `+ (1.16)

Under

max
t

E~«t
4! , `, (1.17)

it follows that

E~nt
2! # 2@E~«t

4! 1 E$E~«t
26Ft21!%2 #

# 4E~«t
4! # K, (1.18)

whereK is a generic finite constant, so that the innovationsnt in ~1+10! are square
integrable martingale differences and«t

2 is well defined as a covariance station-
ary process and its autocorrelations can exhibit the usual long memory structure
implied by~1+14! or ~1+15!+ Even if ~1+17! does not hold, the “autocorrelations”
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(i50
` fi fi1j 0(i50

` fi
2 are well defined under~1+13!+Giraitis, Kokoszka, and Lei-

pus~1998! derived sufficient conditions for a stationary solution of~1+6!, given
that«t 5 ht st for independent and identically distributed~i+i+d+! ht andcj $ 0 for
all j,which do not cover long memory in«t

2, so the character of solutions of~1+6!
remains open to further study+

Subsequent to Robinson~1991!, similar long memory versions of~1+6! have
been pursued by Baillie, Bollerslev, and Mikkelsen~1996!, Ding and Granger
~1996!, and others; for example, the model labeled~4+27! in Ding and Granger
~1996! was discussed in Section 5 of Robinson~1991!, being the casea 5 b [1
in equations~1+10! and~1+14! of the current paper+ Alternative models that pro-
vide long memory in squares and short memory in levels were proposed by Rob-
inson and Zaffaroni~1997, 1998!+

In view of the empirical evidence of Whistler~1990! and Ding et al+ ~1993!, it
seems appropriate to allow for possible long memory in«t

2 in inference on long
memory inxt + In this paper,we consider the Gaussian semiparametric estimate of
H in these circumstances, partly because it is well motivated by superior effi-
ciency properties under the previous conditions, and because the log periodogram
estimate~and some others! are technically more complex and cumbersome to
handle when Gaussianity is relaxed, because of their highly nonlinear structure+

The following section describes the Gaussian semiparametric estimate ofH+
Because the estimate is of the implicitly defined extremum type, one has to es-
tablish consistency prior to deriving limiting distributional behavior, and these
tasks are carried out in Section 3, the proofs appearing in the Appendix+ Section
4 reports a small Monte Carlo study of finite sample behavior+ Section 5 contains
some concluding comments+

2. SEMIPARAMETRIC GAUSSIAN ESTIMATE

On the basis of observationsxt , t 5 1, + + + ,n, define the periodogram

I ~l! 5
1

2pn *(
t51

n

xt e
itl*

2

and consider estimatingH by

ZH 5 argmin
D1#h#D2

R~h!,

where 0, D1 , D2 , 1 and

R~h! 5 logH 1

m (
j51

m I ~l j !

l j
122hJ 2 ~2h 2 1!

1

m (
j51

m

log l j ,

in which m [ ~0,@n02# ! andl j 5 2pj0n+
As explained in Robinson~1995a!, for m5 @n02# , ZH is a form of Gaussian or

Whittle estimate under the parametric modelf ~l! 5 G6l 6122H, all l [ ~2p,p# ,
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and its asymptotic properties would be approximately covered by Fox and Taqqu
~1986!, Giraitis and Surgailis~1990!, and others, under Gaussianity, or more
generally the assumption thatxt is linear with i+i+d+ innovations+ ~These authors
considered continuous, rather than discrete, averaging over frequencies+! When
m , @n02# such that, asn r `,

1

m
1

m

n
r `, (2.1)

ZH can be viewed as a semiparametric estimate based on~1+1! and can be derived
by concentrating out the scale factor from a narrow-band form of Whittle objec-
tive function+Under~1+1!, ~1+3!–~1+5!, and~2+1!, and other regularity conditions,
Robinson~1995a! showed that ZH is consistent forH and under further conditions
that

m102~ ZH 2 H ! rd N~0,4
12! asn r `+ (2.2)

The bandwidth parameterm is analogous to that employed in weighted peri-
odogram estimates of the spectral density of short memory processes+ Clearly
~2+1! is a minimal requirement for consistency under~1+1!+ Henry and Robinson
~1996! discussed optimal choices ofm in the determination of ZH+

The compact set@D1,D2# of admissibleh values in Robinson~1995a! can in-
clude values between12

_ and 1,where there is long memory, values between 0 and
1
2
_ , where there is negative dependence or antipersistence, andh5 1

2
_ , where there

is short memory+ It seems desirable to avoid assuming, say, 1
2
_ , H , 1, a priori,

but rather to allow also for the possibility thatH # 1
2
_ , especially in view of the

very mixed evidence of the existence of long memory in levels of financial series
~see, e+g+, Lo, 1991; Lee and Robinson, 1996!, in view of the efficient markets
hypothesis, under whichH 5 1

2
_ , and in view of the possibility that log price levels

may be nonstationary with less than a unit root, in which case returns can exhibit
negative dependence~as in Henry and Payne, 1997!+ By contrast, the bulk of
asymptotic theory relevant to long memory assumes a priori that long memory
exists+

It turns out that not only is ZH still consistent forH in the presence of the
~possibly long memory! ARCH behavior described in the previous section~al-
though with stronger moment conditions!, but ~2+2! holds in detail with the same
asymptotic variance, so that no features of theARCH structure defined by~1+6! or
~1+10! enter+ This outcome is not entirely predictable, because ARCH-type be-
havior can affect limiting distributional properties~see, e+g+,Weiss, 1986; Kuer-
steiner, 1997!+ It is especially desirable in the present case+ This is in the first
place because of the simplicity of the limiting variance in~2+2!, which is inde-
pendent of bothH andG+Moreover, although maximum likelihood estimation of
parametric versions of~1+10!, such as~1+14! and~1+15!, is implicit in the deriva-
tion of Lagrange multiplier~LM ! tests by Robinson~1991!, no rigorous asymp-
totic theory exists for such estimates, apart from the ARCH and GARCH special
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cases studied by Weiss~1986!, Lee and Hansen~1994!, and Lumsdaine~1996!+
Third, there is no asymptotic theory available for semiparametric estimation of
the memory parameter determining the asymptotic behavior of thecj or fj in
~1+6! and~1+10!+We will return to this last point in Section 5+Our derivation of the
asymptotic properties ofZH follows the main steps of the proof in Robinson~1995a!
and uses a number of properties established there, but it also differs significantly,
posing new challenges+ This appears to be the first paper that develops asymp-
totic theory in a long memory context that allows for ARCH structure+ Long
memory is not covered by the mixing conditions stressed in much econometric
literature, the long memory literature featuring either Gaussian processes~e+g+,
Fox and Taqqu, 1986; Robinson, 1995b!, nonlinear functions of Gaussian pro-
cesses~e+g+, Taqqu, 1979!, linear filters of i+i+d+ sequences~e+g+, Giraitis and
Surgailis, 1990!, nonlinear functions of such linear filters~“Appel polynomials,”
see Giraitis and Surgailis, 1986!, and the model~1+3!–~1+5!+ None of these ap-
proaches represents conditional heteroskedasticity in a martingale difference
sequence+

3. CONSISTENCY AND ASYMPTOTIC NORMALITY
OF THE GAUSSIAN SEMIPARAMETRIC ESTIMATE

We introduce the following assumptions+

Assumption A1+ For H [ @D1,D2# , 0 , D1 , D2 , 1, and 0, G , `, f ~l!
satisfies~1+1!+

Assumption A2+ In a neighborhood~0,d! of the origin, f ~l! is differentiable
and

d

dl
log f ~l! 5 O~l21 ! asl r 01+

Assumption A3+ The processxt satisfies~1+3!, ~1+4!, and~1+17! with st
2 given

by ~1+6! such that~1+16! holds and thefj defined by~1+7!–~1+9! satisfy~1+13!+ In
addition either

E~«t
36Ft21! 5 E~«t

3! a+s+, t 5 0,61+ + + , (3.1)

or

(
j50

`

6fj 6 , `+ (3.2)

Assumption A4+ The sequencem satisfies~2+1!+
Assumptions A1, A2, and A4 are identical to the equivalently numbered ones

of Robinson~1995a!+We stress that only local~to zero! assumptions are made on
f ~l!, so that it need not be smooth, or even bounded~or nonzero! outside a neigh-
borhood of the origin+ In place of the current Assumption A3, Robinson~1995a!
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assumed~1+3!–~1+5! with a homogeneity condition, so that we require more mo-
ments while allowing for ARCH behavior, possibly with long memory+ The re-
quirement~3+1! that conditional third moments be nonstochastic is restrictive but
satisfied if«t has a conditionally symmetric density or, more specially, if

«t 6Ft21 ; N~0,st
2!+ (3.3)

The alternative requirement~3+2! rules out long memory in«t
2 but covers stan-

dard ARCH and GARCH specifications~i+e+, ~1+14! with d 5 0! and many pro-
cesses for which autocorrelation in squares decays more slowly than exponentially+
Note that~1+17! itself entails a restriction on the magnitude of thefj ; see for
instance the results of Engle~1982! and Bollerslev~1986! for ARCH~1! and
GARCH~1,1! processes under~3+3!, and of Nelson~1990! under more general
distributional assumptions+ However, ~1+17! is not a necessary condition, and
indeed, under ~3+2! it can be shown to be unnecessary by means of a longer
argument, involving truncations, than that in the proof of the following theorem+

THEOREM 1+ Under AssumptionsA1–A4,

ZH rp H, asn r `+

The limiting distributional properties ofZH rest on stronger conditions than
those sufficient for consistency+

Assumption A1'+ For someb [ ~0,2# ,

f ~l! ; Gl122H~11 O~lb !! asl r 01,

whereG [ ~0,`! andH [ @D1,D2# +

Assumption A2'+ In a neighborhood~0,d! of the origin, a~l! is differentiable
and

d

dl
log6a~l!6 5 OS 6a~l!6

l
D asl r 01,

wherea~l! 5 (j50
` aj e

ijl+

Assumption A3'+ The first sentence of Assumption A3 holds, and

max
t

E«t
8 , `, (3.4)

E~«t
2«u«v21! 5 0, E~«t

4«u6Fu21! 5 E~«t
4«u

2«v 6Fv21! 5 0, a+s+,

t $ u $ v, (3.5)

fj 5 O~ j d21 !, asj r `, d , 2
12, (3.6)

aj 5 O~ j H2~302!!, asj r `, (3.7)

and theaj are quasi-monotonically decreasing+
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Assumption A4'+ As n r `

1

m
1

m112b~ log m!2

n2b 1
~m log m!2

n
r 0, (3.8)

and, if ~3+2! does not hold, for the samed as in Assumption A3'

m~ log m!

n~102!2d r 0+ (3.9)

Compared to the corresponding assumptions in Robinson~1995a!, Assump-
tions A1' and A2' are unchanged~still restrictingf ~l! only near the origin, such
thatb indicates the smoothness off ~l!0Gl122H there!, but Assumptions A3' and
A4' trade off the relaxation of constant conditional innovations variances and
fourth moments with some strengthening of conditions+ The eighth moment con-
dition ~3+4! replaces the fourth moment condition of Robinson~1995a!,whereas,
when there is long memory in the«t

2, extension of~3+1! to ~3+5! is again satisfied
in case~3+3!+ The strengthening of moment conditions is a matter both of prac-
tical concern, in view of the characteristics of much financial data, and of theo-
retical concern in view of the results of Engle~1982!, Bollerslev~1986!, Nelson
~1990!, for example+ As with Theorem 1, it is likely that Theorem 2, which fol-
lows, can be established under a milder moment condition by a more detailed
argument+ Note, however, that Davis and Mikosch~1997! have shown that the
sample autocorrelations of squares of ARCH~1! sequences have nondegenerate
probability limits when fourth moments do not exist+ Condition~3+5! is seen to
hold under~3+3!, on noting that then

E~«t
46Ft21! 5 3st

2, E~«t
66Ft21! 5 15st

6, a+s+

and applying these properties and~1+4!, ~1+6!, and~1+16! recursively+ Condition
~3+6! strengthens~1+13! and is satisfied in the examples~1+14! and~1+15!+ The
parameterd can be arbitrarily close to12

_ , so that~3+6! is not of great concern in
itself, except that~3+9! strengthens~3+8! unlessd # ~12 2b!0~4b 1 2!, which is
possible only whenb , 1

2
_ is chosen in~3+8!, whereas when the levelsxt them-

selves have fractional noise orARFIMAlong memory~analogous to models~1+15!
and~1+14! for «t

2!, b 5 2 is available in Assumption A1'+ In ~3+8!, the requirement
~m log m!20nr 0 was not in Robinson~1995a!, but it does not bind whenb # 1

2
_ +

Fractional noise and ARFIMAxt satisfy~3+7!, which is consistent with Assump-
tion A1', and also satisfy the quasi-monotonicity assumption on theaj , which
entails~see Yong, 1974!, for all sufficiently largej

6aj 2 aj116 # K
6aj 6

j
+ (3.10)

In fact, we believe that this requirement, and~3+9!, could be removed or re-
laxed by a more detailed proof, but the quasi-monotonicity requirement does not
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seem very onerous, whereas~3+9! is also needed when the«t
2 have long memory,

and there always exists anm sequence satisfying both~3+8! and~3+9!+

THEOREM 2+ Under AssumptionsA1'–A4', ~2+2! holds+

The most notable aspect of Theorem 2 is that the asymptotic variance, 1
4
_ ,

achieved by Robinson~1995a! is not affected by the conditional heteroskedasticity+
For readers not wishing to go through the proof of Theorem 2 in the Appendix,

we provide here a briefer,more intuitive explanation of this outcome, in the case
of the simple ARCH~1! model

st
2 5 b 1 c1«t21

2 + (3.11)

The most likely way in which conditional heteroskedasticity could affect the as-
ymptotic variance is through the variance of the normalized scorem102dR~H !0dh+
It turns out~see Robinson, 1995a! that this can be approximated by a quantity pro-
portional to

(
t52

n

zt , (3.12)

where

zt 5 «t jt , jt 5 (
s51

t21

«sct2s, (3.13)

cs 5
2

nm102 (
j51

m

bj cos~sl j !, bj 5 log j 2
1

m (
i51

m

log i+ (3.14)

Now the asymptotic variance of~3+12! is unaffected by conditional heteroske-
dasticity if

(
t52

n

E$~st
2 2 s2 !jt

2% r 0, asn r `+ (3.15)

Under~3+11!, ~3+15! is proportional to

(
t52

n

E~xt21jt
2! 5 (

t52

n

ESxt21 (
s51

t21

ct2s
2 xsD1 (

t52

n

ESxt21 (
vÞs

t21

«v«sct2vct2sD,
(3.16)

wherext 5 «t
2 2 s2+ The second term on the right is zero on applying~1+10!,

nested conditional expectations, ~3+1!, and ~1+4!+ The first term on the right of
~3+16! is bounded in absolute value by

(
t52

n

(
s51

t21

ct2s
2 6gt2s216, (3.17)
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wheregj 5 cov~«t
2,«t1j

2 !+ Equation~3+17! tends to zero by the Toeplitz lemma
because(t52

n (s51
t21 ct2s

2 r 1 ~see Robinson, 1995a! andgj r 0 asj r ` under
~3+11!; in fact arbitrarily slow decay in the autocorrelations of the squares«t

2

suffices+

4. FINITE SAMPLE COMPARISON

Although the asymptotic properties ofZH that we have established are highly de-
sirable,and reassuring in applications to long financial series, it is of interest to ex-
amine their relevance to series of more moderate length+For example, conditional
heteroskedasticity might worsen the normal approximation in~2+2!, and if there is
considerable persistence, of the ARCH or GARCH type or especially of the long
memory type that our asymptotics may also permit, the variance of ZH might differ
considerably from 10~4m!+ It is also of interest to consider robustness to depar-
tures from the moment conditions ofTheorems 1 and 2+Finite sample performance
of ZH was examined under the presumption of no conditional heteroskedasticity by
Robinson~1995a! and compared with that of a version of the log periodogram es-
timate, whereas Taqqu and Teverovsky~1995! include such estimates in a more
comprehensive simulation study but again restricted to conditionally homoske-
dastic environments+We report a Monte Carlo study ofZH applied to simulated series
xt following anARIMA~0,H2 1

2
_ ,0! parametric version of~1+3!, for variousH and

various forms of conditional heteroskedasticity in«t +
We first took«t 5st ht ,where theht are NID~0,1!, so that~3+3! is satisfied, and

st follows one of the specifications listed here+

~i! IID :st
25s2+ The«t are i+i+d+, so that there is no conditional heteroskedasticity+We

can takes2 5 1 with no loss of generality+
~ii ! ARCH: st

2 5 +51 +5«t21
2 + The«t are ARCH~1! with modest autocorrelation in the

«t
2; they satisfy~1+17! but not~3+4! ~Engle, 1982!+

~iii ! GARCH: st
2 5 +05 1 +5«t21

2 1 +45st21
2 + The «t are GARCH~1,1!, with strong

autocorrelation in the«t
2 at “short” lags~nearly IGARCH!; they do not satisfy

~1+17! ~Bollerslev, 1986!+
~iv! LMARCH: st

25 $12 ~12 L! +25%«t
2+ The«t have~moderate! long memory ARCH

structure satisfying~1+6!–~1+9! and ~1+14! with a~z! 5 b~z! 5 1, so that the«t
2

follow the ARFIMA~0,d,0! structure discussed in Section 5 of Robinson~1991!,
with d 5 +25+

~v! VLMARCH : st
2 5 $12 ~12 L! +45%«t

2+ The«t have “very long memory” ARCH
structure, such that the«t

2 follow the same type of model as in~iv! but withd5 +45,
close to the stationarity boundary+

The model specification~1+6! adopted here forst
2 does not allow for asym-

metric response of conditional variances to positive and negative returns, which
is reported in the empirical finance literature as the leverage effect+ We have
nevertheless also considered a form of Nelson’s EGARCH~Nelson, 1991!,which
models the leverage effect+
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~vi! EGARCH: ln st
2 5 2+5 1 +9 ln st21

2 2 +5ht21 1 +56ht216, with ht still NID ~0,1!+
The coefficient ofht21 induces a strong leverage effect, volatility rising in re-
sponse to unexpectedly low returns+ In case of unexpectedly high returns, the
volatility behaves as in an AR~1! stochastic volatility model, with AR coefficient
calibrated on typical values in the empirical literature on financial volatilities~which
are nearly always larger than+9; see, e+g+, Ghysels, Harvey, and Renault, ~1996!+
The innovations«t have finite unconditional moments of all orders+

So far as theARFIMA~0,H2 1
2
_ ,0! model forxt is concerned~so that in relation

to ~1+3!, (j50
` aj L

j 5 ~12 L! ~102!2H !, we consider:

~a! “Antipersistence”: H 5 +25,
~b! “Short memory”: H 5 +5,
~c! “Moderate long memory”: H 5 +75,
~d! “Very long memory”: H 5 +95+

We study each of~i!–~vi! with ~a!–~d!, covering a range of short0long0negative
memory in«t and a range of short0long memory in«t

2+
Tables 1+1–1+4, 2+1–2+4, 3+1–3+4, and 4+1–4+4 deal, respectively, with each of

the fourH values~a!–~d!+ In each case the results are based onn5 64, 128, and
256 observations, with bandwidthsm5 n016, n08, n04, and 10,000 replications,
as in the Monte Carlo study of Robinson~1995a! with conditionally homoske-
dastic«t + In each set of tables we report, for the conditional variance specifica-
tions~i!–~vi!,Monte Carlo bias of the Gaussian semiparametric estimate;Monte
Carlo root mean squared error~MSE!; 95% coverage probabilities based on the
N~H,10~4m!! approximation~2+2! for ZH; and also the efficiency of the log peri-
odogram estimate relative to the Gaussian estimate, that is, the ratio of the Monte
Carlo mean squared errors, and we can compare this with the ratio of the asymp-
totic variances#60p . +78+We make the comparison with the log periodogram
estimate~the version in Robinson, 1995b, but with no trimming! because it has
been popularly used, but we do not otherwise report the results for this estimate+

The innovations«t were generated recursively with starting values subsequently
discarded+ In particular, «t 5 st ht with st

2 5 1, t 5 21,000, + + + ,0, and st
2 5

s2P~L!«t
2, t 51, + + + ,2n, whereht ; NID ~0,1! ands2 andP~L! are the relevant

intercept and operator in cases~i!–~v!, the latter being truncated to 1,000 lags in
the two long memory cases~iv! and~v!+ In case~vi!, ln st

2 was generated recur-
sively according to the formula+The Gauss random number generator RNDN was
used with random seed starting at the value 12,145,389+ A method based on the
Cholevsky decomposition~mi, j !i, j51

2n of the Toeplitz matrix~ r6 i2j 6!i, j51
2n ,whererj

are the autocovariances of an ARFIMA~0,H 2 1
2
_ ,0!, was then used to simulatext

from the errors«t asxt 5 (i51
t mti «i , t 5 1, + + + ,2n, the firstn values being sub-

sequently discarded+ For each series simulated, the periodogram was computed
by the Gauss fast Fourier transform algorithm andZH computed using a simple
gradient algorithm+ The optimization was constrained to the compact set
@+001,+999# ~chosen values forD1 andD2, respectively! and for selected replica-
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Table 1.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to an ARFIMA~0,2+25,0!
series with five specified innovation structures~“antipersistence”: H 5 +25, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+060 0+014 20+001 20+006 20+011 20+004 20+028 20+017 20+004
ARCH 0+062 0+010 20+001 20+003 20+016 20+007 20+028 20+016 20+006
GARCH 0+065 0+020 0+005 20+004 20+010 20+003 20+026 20+018 20+006
LMARCH 0+064 0+012 0+002 20+001 20+012 20+004 20+022 20+014 20+003
VLMARCH 0+064 0+018 0+001 20+002 20+010 20+004 20+020 20+013 20+004
EGARCH 20+107 20+054 20+039 20+033 20+012 20+017 20+002 20+002 20+007

Table 1.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to an ARFIMA~0,2+25,0!
series with five specified innovation structures~“antipersistence”: H 5 +25, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+34 0+24 0+16 0+23 0+16 0+11 0+16 0+11 0+07
ARCH 0+34 0+23 0+17 0+23 0+16 0+12 0+16 0+11 0+08
GARCH 0+34 0+25 0+19 0+24 0+19 0+14 0+18 0+14 0+11
LMARCH 0+34 0+24 0+17 0+24 0+16 0+12 0+16 0+12 0+08
VLMARCH 0+34 0+25 0+18 0+24 0+17 0+13 0+17 0+13 0+10
EGARCH 0+37 0+26 0+18 0+25 0+17 0+13 0+17 0+11 0+08

3
1

1



Table 1.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to anARFIMA~0,2+25,0!
series with five specified innovation structures~“antipersistence”: H 5 +25, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+85 0+90 0+84 0+91 0+84 0+89 0+83 0+88 0+91
ARCH 0+85 0+90 0+82 0+92 0+84 0+85 0+84 0+88 0+85
GARCH 0+84 0+88 0+75 0+90 0+76 0+76 0+77 0+77 0+74
LMARCH 0+84 0+90 0+82 0+91 0+83 0+85 0+82 0+86 0+86
VLMARCH 0+85 0+89 0+79 0+91 0+79 0+80 0+79 0+81 0+80
EGARCH 0+81 0+86 0+80 0+88 0+83 0+84 0+84 0+88 0+86

Table 1.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to an ARFIMA~0,2+25,0! series with five specified innovation structures~“antipersistence”: H 5 +25, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+56 0+68 0+73 0+68 0+76 0+78 0+76 0+80 0+78
ARCH 0+57 0+67 0+74 0+67 0+74 0+79 0+75 0+79 0+81
GARCH 0+57 0+67 0+74 0+66 0+74 0+80 0+73 0+80 0+84
LMARCH 0+57 0+68 0+74 0+67 0+75 0+80 0+76 0+81 0+81
VLMARCH 0+56 0+68 0+75 0+67 0+75 0+81 0+75 0+82 0+83
EGARCH 0+56 0+67 0+73 0+67 0+74 0+80 0+75 0+80 0+81

3
1

2



Table 2.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to white noise with five spec-
ified error structures~“short memory”: H 5 +5, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 20+035 20+029 20+025 20+027 20+026 20+013 20+020 20+013 20+008
ARCH 20+034 20+030 20+021 20+030 20+024 20+016 20+021 20+015 20+009
GARCH 20+033 20+034 20+019 20+037 20+022 20+018 20+026 20+019 20+012
LMARCH 20+031 20+034 20+020 20+032 20+021 20+013 20+019 20+011 20+009
VLMARCH 20+032 20+032 20+025 20+033 20+024 20+016 20+022 20+015 20+007
EGARCH 20+030 20+036 20+031 20+031 20+025 20+020 20+018 20+015 20+010

Table 2.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structures~“short memory”: H 5 +5, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+37 0+27 0+18 0+27 0+18 0+11 0+18 0+11 0+07
ARCH 0+36 0+27 0+19 0+27 0+18 0+13 0+17 0+11 0+08
GARCH 0+36 0+29 0+21 0+28 0+20 0+15 0+20 0+15 0+11
LMARCH 0+37 0+28 0+19 0+27 0+18 0+12 0+18 0+12 0+08
VLMARCH 0+37 0+28 0+20 0+28 0+19 0+13 0+19 0+13 0+10
EGARCH 0+36 0+27 0+19 0+27 0+18 0+13 0+17 0+11 0+09

3
1

3



Table 2.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structures~“short memory”: H 5 +5, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+63 0+76 0+84 0+77 0+84 0+89 0+83 0+88 0+92
ARCH 0+65 0+77 0+81 0+77 0+83 0+84 0+85 0+88 0+86
GARCH 0+65 0+72 0+76 0+74 0+77 0+75 0+79 0+77 0+74
LMARCH 0+64 0+75 0+81 0+76 0+82 0+85 0+82 0+86 0+87
VLMARCH 0+64 0+75 0+79 0+75 0+80 0+81 0+80 0+81 0+81
EGARCH 0+65 0+77 0+80 0+78 0+84 0+84 0+85 0+88 0+86

Table 2.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to white noise with five specified error structures~“short memory”: H 5 +5, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m 5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+60 0+78 0+82 0+78 0+84 0+80 0+84 0+82 0+77
ARCH 0+60 0+77 0+80 0+78 0+83 0+82 0+83 0+82 0+82
GARCH 0+60 0+76 0+81 0+77 0+84 0+84 0+84 0+86 0+85
LMARCH 0+60 0+78 0+82 0+78 0+84 0+82 0+84 0+83 0+81
VLMARCH 0+60 0+76 0+82 0+78 0+83 0+83 0+84 0+85 0+84
EGARCH 0+61 0+78 0+82 0+79 0+83 0+82 0+83 0+81 0+82

3
1

4



Table 3.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to an ARFIMA~0, +25, 0! series
with five specified innovation structures~“moderate long memory”: H 5 +75, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 20+108 20+050 20+027 20+040 20+012 20+010 20+004 0+001 20+007
ARCH 20+112 20+053 20+031 20+035 20+014 20+015 20+003 20+004 20+005
GARCH 20+113 20+057 20+033 20+043 20+020 20+020 20+014 20+007 20+006
LMARCH 20+110 20+051 20+026 20+038 20+013 20+011 20+005 0+001 20+006
VLMARCH 20+104 20+052 20+034 20+044 20+015 20+010 20+005 20+004 20+006
EGARCH 20+107 20+054 20+039 20+033 20+012 20+017 20+002 20+002 20+007

Table 3.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to an ARFIMA~0, +25, 0!
series with five specified innovation structures~“moderate long memory”: H 5 +75, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+38 0+26 0+17 0+26 0+17 0+11 0+17 0+11 0+07
ARCH 0+37 0+26 0+18 0+25 0+17 0+12 0+16 0+11 0+08
GARCH 0+37 0+28 0+20 0+27 0+20 0+15 0+19 0+14 0+11
LMARCH 0+38 0+27 0+18 0+26 0+17 0+12 0+17 0+12 0+08
VLMARCH 0+37 0+27 0+19 0+27 0+18 0+13 0+18 0+13 0+10
EGARCH 0+37 0+26 0+18 0+25 0+17 0+12 0+17 0+11 0+08

3
1
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Table 3.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to an ARFIMA~0, +25,
0! series with five specified innovation structures~“moderate long memory”: H 5 +75, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+80 0+86 0+83 0+87 0+84 0+88 0+84 0+89 0+91
ARCH 0+81 0+86 0+80 0+88 0+84 0+85 0+85 0+88 0+86
GARCH 0+80 0+84 0+75 0+86 0+76 0+76 0+79 0+77 0+75
LMARCH 0+80 0+85 0+81 0+87 0+83 0+85 0+82 0+86 0+87
VLMARCH 0+80 0+85 0+79 0+86 0+80 0+81 0+80 0+82 0+81
EGARCH 0+81 0+86 0+80 0+88 0+83 0+84 0+84 0+88 0+86

Table 3.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to an ARFIMA~0, +25, 0! series with five specified innovation structures~“moderate long memory”: H 5 +75, ht ;
N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+61 0+75 0+79 0+74 0+78 0+79 0+79 0+81 0+79
ARCH 0+62 0+75 0+78 0+74 0+79 0+80 0+78 0+82 0+80
GARCH 0+60 0+74 0+79 0+74 0+79 0+81 0+80 0+82 0+83
LMARCH 0+61 0+76 0+78 0+74 0+80 0+80 0+79 0+81 0+81
VLMARCH 0+61 0+75 0+80 0+74 0+79 0+81 0+79 0+82 0+81
EGARCH 0+61 0+75 0+80 0+74 0+79 0+81 0+78 0+80 0+80

3
1
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Table 4.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to an ARFIMA~0, +45, 0! series
with five specified innovation structures~“very long memory”: H 5 +95, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 20+201 20+102 20+059 20+087 20+044 20+027 20+035 20+015 20+013
ARCH 20+190 20+107 20+070 20+085 20+047 20+033 20+034 20+017 20+018
GARCH 20+210 20+132 20+088 20+110 20+073 20+053 20+060 20+043 20+037
LMARCH 20+210 20+117 20+076 20+101 20+060 20+043 20+052 20+030 20+024
VLMARCH 20+218 20+121 20+081 20+112 20+064 20+047 20+056 20+037 20+032
EGARCH 20+187 20+105 20+070 20+084 20+046 20+034 20+034 20+017 20+017

Table 4.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to an ARFIMA~0, +45, 0!
series with five specified innovation structures~“very long memory”: H 5 +95, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+38 0+23 0+14 0+22 0+13 0+09 0+12 0+08 0+06
ARCH 0+37 0+23 0+16 0+21 0+14 0+10 0+12 0+08 0+07
GARCH 0+38 0+25 0+17 0+23 0+15 0+11 0+14 0+10 0+08
LMARCH 0+38 0+23 0+15 0+21 0+13 0+09 0+13 0+08 0+06
VLMARCH 0+38 0+24 0+16 0+22 0+14 0+10 0+13 0+09 0+07
EGARCH 0+37 0+23 0+16 0+21 0+13 0+10 0+12 0+08 0+07

3
1
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Table 4.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to an ARFIMA~0, +45,
0! series with five specified innovation structures~“very long memory”: H 5 +95, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+80 0+86 0+89 0+88 0+91 0+93 0+93 0+94 0+95
ARCH 0+81 0+86 0+87 0+89 0+91 0+91 0+93 0+94 0+92
GARCH 0+81 0+85 0+85 0+87 0+88 0+87 0+90 0+90 0+86
LMARCH 0+81 0+86 0+88 0+89 0+91 0+91 0+92 0+94 0+93
VLMARCH 0+80 0+86 0+87 0+87 0+90 0+89 0+91 0+92 0+89
EGARCH 0+82 0+87 0+87 0+89 0+92 0+91 0+93 0+94 0+92

Table 4.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to an ARFIMA~0, +45, 0! series with five specified innovation structures~“very long memory”: H 5 +95, ht ; N~0,1!!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+61 0+65 0+64 0+62 0+61 0+63 0+57 0+59 0+65
ARCH 0+59 0+67 0+67 0+62 0+62 0+63 0+57 0+59 0+66
GARCH 0+62 0+67 0+65 0+63 0+61 0+61 0+57 0+57 0+60
LMARCH 0+61 0+65 0+64 0+61 0+59 0+61 0+56 0+54 0+59
VLMARCH 0+62 0+65 0+65 0+61 0+60 0+60 0+56 0+56 0+62
EGARCH 0+61 0+67 0+68 0+61 0+61 0+64 0+57 0+58 0+66

3
1
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tions, R~h! was plotted on the interval@21,2# and was always found to be very
smooth with a single relative minimum+

Perhaps the most striking feature of the results is the relatively poor perfor-
mance of ZH and of the normal inference rule~2+2! provided by Theorem 2 in the
GARCH case, compared to the other processes+ Out of the 36H,m,n combina-
tions, the GARCH bias is largest in 18 cases, whereas its MSE ties largest in 3
cases and is outright largest in 28+Moreover the deviation of 95% coverage prob-
abilities from their normal values ties largest 3 times and is outright largest 28
times, for GARCH+Relative efficiencies to the log periodogram estimate are also
most out of line with their asymptotic values for the GARCH: it ties with the
largest discrepancy 12 times and has the outright largest 10 times+ To further
investigate this relatively poor performance ofZH in the case of GARCH errors,
Monte Carlo empirical distribution functions of 2!m~ ZH 2 H ! are plotted for all
four values ofH against the standard normal distribution function in Figures 1–3,
which correspond to three different choices of the pair~n,m!, namely, ~64,4!,
~128,16!, and~256,64!+ These empirical distributions are truncated because the
estimate is restricted to the interval@0,001,0+999# + In the case wheren 5 64 and
m5 4, the empirical distributions are highly leptokurtic and a high proportion of
estimates hit a boundary+Whenn andm increase, the tails become thinner+

Looking at the other heteroskedastic specifications, VLMARCH leads to a
slightly worse performance than LMARCH but with no reliable evidence that
this is significantly worse than ARCH or indeed IID+ Failure of the moment

Figure 1. Empirical distributions with GARCH errors~n 5 64, m5 4!+
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Figure 2. Empirical distributions with GARCH errors~n 5 128, m5 16!+

Figure 3. Empirical distributions with GARCH errors~n 5 256, m5 64!+

320 P.M. ROBINSON AND M. HENRY



conditions~1+17! and~3+4! has no evident effect+ In our series of modest length,
the relatively poor behavior under GARCH may be better explained by the im-
pact of a near unit root; for much larger values ofn, LMARCH and VLMARCH
would presumably do worse than GARCH, but in such samples this is unlikely
to be a matter of great practical concern+ In absolute terms, even GARCH does
not perform so badly for us to question the usefulness of the asymptotic robust-
ness results in moderate sample sizes+WhenH 5 1

2
_ , ZH has almost identical root

MSE and 95% coverage probabilities for EGARCH and ARCH+ In the EGARCH
case, Monte Carlo biases are typically larger when there is antipersistence and
smaller in the case of very long memory in levels+ As expected, MSE decreases
monotonically asn andm increases+ The decay in bias with increasingn is less
noticeable, whereas the typical decay in bias with increasingm is somewhat sur-
prising but broadly in line with results of Robinson~1995a!, in the case of frac-
tional Gaussian noise levels~which has similar spectral shape to that of the
ARFIMA ~0,H 2 1

2
_ ,0!!+ As in the no-ARCH finite sample results of Robinson

~1995a!, coverage probabilities are markedly sensitive to choice ofm, and this
problem clearly requires further study beyond that of Henry and Robinson~1996!,
though for largen this is likely to be less of a problem+

Finally, the effect of heavy-tailed conditional distributions for«t is investi-
gated in Tables 5+1–5+4 and 6+1–6+4 in the case of short memory levels~H 5 0+5!+
Monte Carlo biases, root MSE’s, coverage probabilities, and relative efficiencies
of the log periodogram estimate are reported as before for models~i!–~v! only
with «t 5st ht ,where theht are i+i+d+ t4 in Tables 5+1–5+4 and i+i+d+ t2 in Tables 6+1–
6+4, so thatht has, respectively, infinite fourth moment and infinite second mo-
ment+ Relative efficiency of the log periodogram estimate seems unaffected by
heavy-tailedness+However,when there is no conditional heteroskedasticity, ZH on
the whole performs better whenht is t4 than when it is normal and better still
when it ist2, in terms of Monte Carlo bias,MSE, and coverage probability+ Con-
ditional heteroskedasticity produces a reverse picture+ The results fort4 ht are
better than those for normalht in only seven cases in respect of bias, four in
respect of MSE, and two in respect of coverage probability+ The results fort2 are
better than those fort4 in only one case in respect of bias, four in respect of MSE,
and four in respect of coverage probability+Moreover, these exceptions are mostly
for then5 64,m5 8 combination, and frequently the deterioration produced by
extreme heavy-tailedness is substantial+ And although bias and MSE typically
decrease with increasingn andm for t-distributedht , suggesting that consistency
of ZH is maintained, there is some tendency for coverage probabilities to actually
worsen~become smaller! especially fort2, so that not only is the heavy-tailedness
reflected in the distribution ofZH but there is evidence that the limit distribution of
Theorem 2 may not hold under this violation of the moment conditions, in line
with the evidence of Davis and Mikosch~1997! referred to earlier+

Overall the results suggest that the possibility of conditional heteroskedasticity
can be a cause for concern in moderate sample sizes, especially for IGARCH-like
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Table 5.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to white noise with five spec-
ified error structures~“short memory”: H 5 +5, ht ; t4!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 20+028 20+031 20+020 20+026 20+022 20+011 20+021 20+011 20+005
ARCH 20+033 20+041 20+035 20+028 20+030 20+022 20+025 20+020 20+019
GARCH 20+041 20+043 20+027 20+042 20+037 20+027 20+043 20+029 20+024
LMARCH 20+035 20+030 20+027 20+031 20+023 20+016 20+023 20+022 20+013
VLMARCH 20+031 20+036 20+028 20+029 20+029 20+019 20+030 20+024 20+019

Table 5.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structures~“short memory”: H 5 +5, ht ; t4!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+37 0+27 0+17 0+28 0+17 0+11 0+17 0+11 0+07
ARCH 0+35 0+26 0+21 0+25 0+18 0+16 0+17 0+13 0+13
GARCH 0+36 0+30 0+24 0+30 0+25 0+21 0+26 0+22 0+18
LMARCH 0+36 0+28 0+20 0+28 0+20 0+15 0+22 0+16 0+11
VLMARCH 0+36 0+29 0+22 0+29 0+22 0+17 0+24 0+19 0+15

3
2

2



Table 5.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structures~“short memory”: H 5 +5, ht ; t4!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+64 0+76 0+85 0+77 0+85 0+89 0+85 0+89 0+91
ARCH 0+69 0+78 0+76 0+80 0+82 0+76 0+86 0+84 0+72
GARCH 0+66 0+68 0+69 0+69 0+65 0+61 0+63 0+58 0+53
LMARCH 0+65 0+74 0+78 0+73 0+78 0+77 0+74 0+75 0+74
VLMARCH 0+65 0+72 0+74 0+72 0+72 0+72 0+69 0+67 0+64

Table 5.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to white noise with five specified error structures~“short memory”: H 5 +5, ht ; t4!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+60 0+77 0+80 0+78 0+81 0+78 0+83 0+81 0+77
ARCH 0+61 0+77 0+80 0+78 0+83 0+82 0+82 0+83 0+83
GARCH 0+60 0+74 0+81 0+74 0+82 0+85 0+81 0+85 0+88
LMARCH 0+60 0+77 0+82 0+77 0+84 0+84 0+84 0+86 0+85
VLMARCH 0+60 0+76 0+83 0+76 0+83 0+85 0+83 0+87 0+86
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Table 6.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to white noise with five spec-
ified error structures~“short memory”: H 5 +5, ht ; t2!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 20+018 20+027 20+019 20+024 20+018 20+010 20+017 20+009 20+006
ARCH 20+043 20+047 20+042 20+042 20+039 20+037 20+036 20+032 20+034
GARCH 20+047 20+042 20+035 20+051 20+048 20+040 20+055 20+047 20+038
LMARCH 20+036 20+038 20+032 20+040 20+034 20+028 20+047 20+038 20+028
VLMARCH 20+042 20+036 20+037 20+052 20+043 20+037 20+054 20+048 20+037

Table 6.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structures~“short memory”: H 5 +5, ht ; t2!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+35 0+25 0+16 0+26 0+16 0+10 0+16 0+10 0+07
ARCH 0+33 0+26 0+23 0+24 0+21 0+20 0+17 0+17 0+19
GARCH 0+35 0+31 0+26 0+31 0+28 0+24 0+28 0+26 0+23
LMARCH 0+36 0+29 0+23 0+30 0+25 0+21 0+28 0+24 0+20
VLMARCH 0+35 0+30 0+25 0+31 0+27 0+23 0+29 0+26 0+22
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Table 6.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structures~“short memory”: H 5 +5, ht ; t2!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+68 0+81 0+87 0+80 0+88 0+91 0+87 0+91 0+93
ARCH 0+74 0+78 0+71 0+83 0+78 0+65 0+86 0+76 0+56
GARCH 0+68 0+67 0+62 0+66 0+57 0+53 0+59 0+50 0+42
LMARCH 0+65 0+71 0+70 0+67 0+65 0+62 0+59 0+55 0+50
VLMARCH 0+68 0+68 0+65 0+66 0+61 0+56 0+58 0+50 0+45

Table 6.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to white noise with five specified error structures~“short memory”: H 5 +5, ht ; t2!

n 5 64 n 5 128 n 5 256

Model m5 4 m5 8 m5 16 m5 8 m5 16 m5 32 m5 16 m5 32 m5 64

IID 0+61 0+76 0+79 0+78 0+80 0+78 0+83 0+80 0+77
ARCH 0+64 0+75 0+79 0+77 0+81 0+81 0+81 0+83 0+83
GARCH 0+62 0+73 0+78 0+73 0+80 0+83 0+78 0+82 0+84
LMARCH 0+60 0+74 0+80 0+74 0+81 0+84 0+80 0+85 0+86
VLMARCH 0+61 0+73 0+80 0+73 0+80 0+84 0+78 0+83 0+85
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behavior and when the conditional distribution of«t has heavy tails+On the other
hand, some forms of conditional heteroskedasticity appear to have little effect,
and in these circumstances, use of ZH and the associated large sample inference
rules of Robinson~1995a! seems warranted at least for reasonably large samples,
though as is typically the case with smoothed nonparametric estimation, report-
ing results for a range of bandwidths is a wise precaution+

5. FINAL COMMENTS

This paper seems to be the first attempt to study the impact of conditional het-
eroskedasticity on the behavior of semiparametric estimates of long memory+
Moreover,we have allowed in the asymptotic theory not only for standard ARCH
and GARCH specifications of conditional heteroskedasticity,but for theARCH~`!
model for squared innovations introduced by Robinson~1991!, which covers
ARFIMA structure+ The fact that the limiting distribution has the same simple
form as under conditional homoskedasticity not only implies that existing rules
of large sample statistical inference remain valid~including the test forI ~0! based
on the objective functionR~h! recently developed by Lobato and Robinson, 1998!,
but also suggests that the formulae for asymptotic mean squared errors ofZH
provided by Henry and Robinson~1996! will remain valid, and the consequent
rules for the optimal choice of bandwidthm+ So far as the technical contribution
of the current paper is concerned, it seems that very similar methods can be used
to investigate the large sample distribution theory of other statistics in the pres-
ence of~possibly long memory! conditional heteroskedasticity, such as nonpara-
metric estimates of the spectral density of a process with short memory in levels
and also more elaborate statistics+

TheGaussiansemiparametricestimatecanbeusedatan initial stage in theanaly-
sis of a seriesxt ,perhaps to test for a specific value ofH such as12

_ ~as in Lobato and
Robinson, 1998!, or to create a fractionally differenced seriesD ZH2~102!xt ,whereD
is the differencing operator+ This represents an asymptotically valid approxima-
tion to anI ~0! series without any parametric assumption on the autocorrelation of
the underlyingI ~0! processDH2~102!xt , so we might then proceed to identify the or-
der of a parametric model such as anARMAon the basis of theD ZH2~102!xt ,possibly
then carrying out estimation of theARFIMAmodel forxt by a parametric Gaussian
method+Aquestion that then arises is whether the innovations in the model~equiv-
alent to our«t ! have conditional heteroskedasticity, and if so, what are the nature
and extent of it+This is of interest whether or notxt has long memory,and even ifxt

isamartingaledifference,xt5«t + If ~1+10! isparameterized,sayby~1+15!or~1+14!,
then we can estimate the unknown parameters by applying the conditional Gauss-
ian loglikelihood underlying the LM tests developed by Robinson~1991!, though
asymptotic properties of the parameter estimates remain to be established in the
long memory case and indeed in many short memory ones+However, such a pro-
cedure carries the disadvantage that even the memory parameterd will be incon-
sistently estimated if the short memory dynamics of the squares is misspecified,
whereas we may in any case prefer an exploratory approach at the initial stage+
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One may thus consider applying a semiparametric procedure for estimatingd
to the«t

2, or their proxies+ For example, the Gaussian method appears to be a
candidate, because, although the«t

2 cannot be Gaussian,Gaussianity ofxt was not
assumed by Robinson~1995a! or in the current paper+However, although some of
the analysis of these papers will be relevant, and~1+10! represents«t

2 as a linear
filter of martingale differencesnt , not only do thent have conditional heteroske-
dasticity but their odd conditional moments are perforce stochastic, so that no
conditions analogous to~3+1! or ~3+5! can be imposed+ The form of the limiting
distribution of the Gaussian semiparametric estimate ofdand of its derivation are
thus open questions+
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APPENDIX

Proof of Theorem 1. The main part of the proof of the corresponding Theorem 1 of
Robinson~1995a! applies except for the proof that

(
r51

m21S r

m
D2~D2H !11 1

r 2 *(
j51

r

~2pJ~l j ! 2 s2 !* rp 0, (A.1)
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where

J~l! 5
1

2pn *(
t51

n

«t e
itl*

2

and D 5 D1 when H , 1
2
_ 1 D1 and D [ ~H 2 1

2
_ ,H # otherwise+ ~Note that unlike in

Robinson, 1995a, we take the unconditional variance of«t to bes2, not unity+!
The justification for the preceding claim rests on the fact that the remainder of the

aforementioned proof depends only on unconditional second moment properties+ In view
of ~3+18! of Robinson~1995a!, ~A+1! is implied if

(
t51

n

~«t
2 2 s2 ! 5 op~n! (A.2)

and

(
sÞt
1

n

«s«t Ast
~r ! 5 op~r 12hn!, someh . 0, (A.3)

uniformly in r [ @1,m2 1# , whereAst
~r ! 5 (j51

r cos@~s 2 t!l j # + The left side of~A+2! has
mean zero and variance

(
t,s51

n

(
j,k50

`

fj fkE~nt2j ns2k! 5 (
t,s51

n

(
j50

`

fj fj1s2t E~nt2j
2 ! (A.4)

in view of ~1+4!, with fj 5 0, j , 0+ In view of ~1+18! and the Cauchy inequality, ~A+4! is,
with Fj 5 ~(i5j

` fi
2!102,

OSn (
j50

`

fj
2 1 nF0 (

j51

n21

FjD 5 o~n2 !

by the Toeplitz lemma and~1+9!, thus verifying~A+2!+To prove~A+3!, the left hand side has
variance

4ES(
u,v

1

n

(
s,t
1

n

«s«t «u«vAst
~r ! Auv

~r !D+ (A.5)

In view of ~1+4! of Assumption A3, it is clear that no summands for whicht Þ v can
contribute+ Thus, ~A+5! is

4ES(
s,t
1

n

«t
2«s

2Ast
~r !2D1 8ES (

u,s,t
1

n

«t
2«s«uAst

~r ! Aut
~r !D+ (A.6)

The first term in~A+6! is bounded by

4 max
t

E~«t
4! (

s,t
1

n

Ast
~r !2 5 O~rn2 !
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from ~3+20! of Robinson~1995a!+ Substituting~1+10! in the second term of~A+6! gives

8ES (
u,s,t

1

n Ss2 1 (
j50

`

fj nt2jD«u«sAst
~r ! Aut

~r !D
5 8 (

u,s,t
1

n

ft2sE~ns«u«s!Ast
~r ! Aut

~r !

5 8 (
u,s,t

1

n

ft2sE~«s
3«u!Ast

~r ! Aut
~r ! +

Under~3+1!, this is identically zero+ Under~3+2!, it is bounded in absolute value by

8r max
t

E~«t
4! (

j50

`

6fj 6(
s,t
1

n

6Ast
~r !6 # KrnS(

s,t
1

n

Ast
~r !2D102

5 O~r 302n2 !

because6Ast
~r !6# r+ Thus, ~A+3! is verified+

As explained by Robinson~1995a!, there is a lack of uniformity in the convergence of
R~h! aroundh5 H 2 1

2
_ that is of concern whenH $ 1

2
_ 1 D, and then one has to show also

that

1

m (
j51

m

~aj 2 1!~2pJ~l j ! 2 s2 ! rp 0, (A.7)

whereaj 5 ~ j0p!2~D2H ! for 1 # j # p andaj 5 ~ j0p!2~D12H ! for p , j # m, wherep 5
exp~10m(j51

m log j !+ However, by similar arguments to those used earlier we establish
~A+7! under Assumption A3, in view of the proposition, established in Robinson~1995a!,
that(t51

n (sÞt
n @(j51

m ~aj 2 1!cos$~s2 t!l j %#
2 5 o~mn2!+ n

Proof of Theorem 2. Again, the basic structure of the proof of Robinson~1995a! is
unchanged, and a number of properties established there are still of use+ Again a mean
value theorem argument is applied and the scores approximated by a martingale+ The
approximation and the treatment of second derivatives ofR~h! are affected by the changed
conditions, but we postpone discussion of this until after we have established the asymp-
totic normality of the approximating martingale, whose proof is considerably affected+

With the definitions~3+12! and~3+14!,(2
n zt is a martingale and we wish to show, as in

Robinson~1995a!, that asn r `

(
t51

n

E~zt
4! r 0, (A.8)

(
t51

n

E~zt
26Ft21! rp s4+ (A.9)

By the Schwarz inequality, E~zt
4! # ~E«t

8!102~Ejt
8!102+ Because the«t are martingale dif-

ferences, by Burkholder’s inequality~Burkholder, 1973! andcr inequalities

E~jt
8! # KES(

s51

t21

ct2s
2 «s

2D4

# ~max
s

E«s
8!rn

4 5 O~~ log m!80n4 !
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uniformly in t by ~4+22! of Robinson~1995a!, with rt 5 c1
2 1 {{{ 1 ct

2+ Thus,

(
t51

n

E~zt
4! # K

~ log m!4

n
r 0

to verify ~A+8!+ To check~A+9!, write

E~zt
26Ft21! 5 st

2jt
2 5 s2jt
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2 2 s2 !jt
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From~4+14! and~4+15! of Robinson~1995a!,
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with xt 5 «t
2 2 s2+ The first term on the right has mean zero and variance

(
t51

n21

(
u51

n21

gt2u rn2t rn2u+ (A.11)

Now

6gj 6 5 O~ j 2d21 !, asj r ` (A.12)

by ~3+4! and~3+6!, and

(
t51

n21

rt r 1, asn r ` (A.13)

established by Robinson~1995a!+ It follows from the Toeplitz lemma that~A+11! tends to
zero+Clearly, the second term in~A+10! thus tends to zero,whereas the last term has mean
zero and variance bounded by

2Smax
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4D (

t,u52
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6ct2r ct2scu2r cu2s6+ (A.14)

This follows from the corresponding derivation in Robinson~1995a! but upper bounding
E~«t

2«s
2! by the Schwarz inequality+ The absolute value did not arise in Robinson~1995a!

but it is clear from his derivation that the bound established there applies to~A+14!, namely,
O~~ log m!4~n21 1 m2103!! r 0+ It remains to show that
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t52

n

~st
2 2 s2 !jt

2 rp 0+ (A.15)

The left side is
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The first term is
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using~1+16!, ~A+12!, andrn5O~~ log m!40n!,which was established by Robinson~1995a!+
On the other hand
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The expectation of the absolute value of~A+17! is bounded by
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whose absolute value has expectation that likewise tends to zero+ The remainder of~A+18!
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The first term in~A+19! has mean square
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Now each~v,s,q, p! such thats , v, p , q satisfies one of the relationsv5 q, s# q , v,
q , s , v, p # v , q or v , p , q+ The contribution from summands in~A+20! such that
v5 q is bounded by
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where the second inequality employs Burkholder’s~1973! inequality and the final one
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26Fj21!%4 # # K, by ~3+4!+Considering similarly the three cases
$ p , q , s , v%, $ p # v , q ands , v% and$s , v , p , q%, we have

6E~xvxsxqxp!6 # K~Fv2q 1 Fv2s 1 Fq2v1 Fq2p!

whenevers, v, p , q, andvÞ q, whereFj 5 0 for j , 0+ Thus the contribution to~A+20!
for vÞ q is bounded in absolute value by

K (
t,u52

n

(
v51

t21

6ct2v 6(
s51

v21

ct2s
2 (

q51

u21

6cu2q6 (
p51

q21

cu2p
2 ~Fv2q 1 Fv2s 1 Fq2v1 Fq2p!

# K (
t,u52

n H(
v51

t21

(
q51

u21

6ct2vcu2q6Fv2qJ rt21 ru21

1 K (
j51

`

6cj 6 (
u52

n

ru21 (
t52

n

(
s51

t21

ct2s
2 H(

v51

t21

6ct2v 6Fv2sJ + (A.23)
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The terms in braces are bounded, respectively, by

(
i, j50

`

6ci ci1j1u2t 6Fj , (
i51

`

6ci 6Ft2s2i ,

which tend to zero as6u 2 t 6r ` and6 t 2 s6r `, respectively, in view of ~1+13! and
~1+16! and the Toeplitz lemma+ Thus, ~1+16!, ~A+13!, and the Toeplitz lemma further imply
that~A+23! r 0 asnr`, completing the proof that the first term of~A+19! is op~1!+ The
second term of~A+19! can be treated in the same way to conclude that~A+18! is op~1!+ The
last term of~A+16! is

2 (
t52

n

(
j52`

t21

ct2j xj (
v,s

1

t21

«v«sct2vct2s+ (A.24)

Now, note that

E~xj «s«vxk«r «u! 5 0, v , s, u , r, vÞ u or sÞ r+

This follows by proceeding recursively using~1+6! and nested conditional expectations,
and the fact thatE~«t 6Ft21!,E~«t

36Ft21!,E~«t
4«u6Fu21!, t $ u andE~«t

4«u
2«u6Fv21!, t $

u $ v are all a+s+ zero under Assumption A3'+ On the other hand, for all indices,

6E~xj «s«vxk«r «u!6 # max
t

E~«t
8! , `

by Hölder’s inequality+ It follows that~A+24! has second moment

4 (
t,u52

n

(
j52`

t21

ct2j (
k52`

u21

cu2k (
v,s

1

min~t,u!21

ct2vct2scu2vcu2sE~xj xk«v
2«s

2!

# K (
t,u52

n

(
v,s

1

min~t,u!21

6ct2vct2scu2vcu2s65 OS ~ log m!4

m103 D
as in~A+14!, to complete the proof that~A+10! rp 0 and thus of~A+9!+

Application of the remainder of the proof of Robinson~1995a! requires estimation of
Ur 2 rs2 andVr 2 Ur , whereUr 5 2p (j51

r J~l j !, andVr 5 (j51
r I ~l j !0Gl j

122H , for 1#
r # m+ In Robinson~1995a! it is shown thatUr 2 rs25Op~r 102!, but inspection of the only
use that is made of this bound indicates thatOp~r 12h ! would suffice, for anyh . 0+ From
Robinson~1995a!,

Ur 2 rs2 5
r

n (
t51

n

~«t
2 2 s2 ! 1 (

t52

n

«t (
s51

t21

«sdt2s, (A.25)

whereds 5 20n(j51
r cossl j + The first term of~A+25! has mean zero and variance

OS r 2

n (
j51

n

6gj 6D 5 O~r 2n2d21 ! 5 OSr 2~12h!
r 2h

n122dD ,
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and this isO~r 2~12h! ! under~3+8! on takingh # 1
2
_ 2d+ The second term in~A+25! has mean

zero and variance

EH(
t52

n

st
2 (

s51

t21

«s
2dt2s

2 J1 EH(
t52

n

st
2 (
vÞs

t21

«s«vdt2sdt2vJ +
The first term isOp~n~maxt E«t

6!(t51
n dt

2! 5 O~r ! from Robinson~ 1995a!, whereas the
second term is zero from~3+5!+ Thus, Ur 2 rs2 5 Op~r 12h !, someh . 0+ The bound
established forVr 2 Ur by Robinson~1995a! was

Op~r 103~ log r !203 1 r b11n2b 1 r 102n2104 !, (A.26)

where~3+8! was assumed+Again, this bound is stronger than necessary, and it will suffice
to establish the bound~A+26! 1 Op~rnd2~102! !+ To approximate the scores by a suitable
martingale it is sufficient that

(
j51

m

njS I ~l j !

Gl j
122H 2 s2J~l j !D 5 op~m102 !, (A.27)

and the left side is, by summation by parts and6log r 2 log~r 1 1!6# r 21, bounded by

(
r51

m21 1

r
6Vr 2 Ur 61 2 logm6Vm 2 Um6+

We can then invoke~3+8! and ~3+9! to establish~A+27!, if indeedVr 2 Ur 5 ~A+26! 1
Op~rnd2~102! !+ In fact, part of the proof in Robinson~1995a! thatUr 2 Vr has bound~A+26!
continues to hold, but not that relating to the contribution to the variance of~A+25! from
fourth cumulants+ Under the conditions of Robinson~1995a! that second and fourth con-
ditional moments are constant, cum~«r ,«s,«t ,«u! 5 cum~«r ,«r ,«r ,«r ! if r 5 s5 t 5 u, and
zero otherwise+ However, under the present assumptions, we have

cum~«r ,«s,«t ,«u! 5 cum~«r ,«r ,«r ,«r !, r 5 s5 t 5 u,

5 gr2s, r 5 t Þ s5 u, (A.28)

5 gr2t , r 5 sÞ t 5 u, (A.29)

5 gr2t , r 5 u Þ t 5 s (A.30)

and zero otherwise+ The contributions from~A+28!–~A+30! to the variance ofVr 2 Ur will
thus be studied+ In view of ~A+28!–~A+30! the contribution of fourth cumulants to the
variance ofVr includes terms such as

SG

r
D2

(
j,k

r

~l j lk!2H21 (
vÞs

gv2sav~l j !as~2l j !as~lk!av~2lk!, (A.31)

whereav~l!5(t51
n at2ve

itl and we takeat 50, t , 0+Nowav~l! is identically zero when
v. n+On the other hand whenv, 0 such that~2v!21 5 O~6l 6! we have by summation by
parts, ~3+7!, and~3+10!, that
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6av~l!6 # (
t512v

n2v21

6at 2 at116* (
s512v

t

eisl* 1 6an2v 6* (
s512v

n2v

eisl*
# K

~12 v!H2~302!

6l 6
5 O~6l 6~102!2H !,

whereas forv , 1 such that2v5 O~106l 6!

6av~l!6 # (
t512v

12v1s

6av 61 * (
t512v1s

n2v

at e
itl* (A.32)

for 1 # s , n+ Applying summation by parts in the same way as previously to the
second term of~A+32! indicates that it isO~~1 2 v 1 s!H2~302!06l 6!, whereas the first
term is O~~1 2 v 1 s!H2~102! !+ Choosings such that 12 v 1 s ; 106l 6 indicates that
~A+32! is alsoO~6l 6~102!2H !+ In the same way, it follows that for 1# v # n, av~l! 5
O~6l 6~102!2H !+ It immediately follows that~A+31! is O~r 2n21 (j51

n 6gj 6! 5 O~r 2n2d21!
as desired+ The other fourth cumulant contributions to the variance ofVr are treated in
the same way, and those to the covariance betweenVr andUr and to the variance ofUr

follow if anything more easily, to complete the proof that the fourth cumulant contribu-
tion to Vr 2 Ur is Op~rnd2~102! !+ We have of course not assumed~3+2! in the preceding
discussion, but if we do then(j50

` 6gj 6 , `, so it is easily seen that~A+31! is O~r 20n!,
whence~3+9! is not required+
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