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LONG AND SHORT MEMORY
CONDITIONAL HETEROSKEDASTICITY
IN ESTIMATING THE MEMORY
PARAMETER OF LEVELS

P.M. RoBINSON AND M. HENRY
London School of Economics

Semiparametric estimates of long memory seem useful in the analysis of long fi-
nancial time series because they are consistent under much broader conditions than
parametric estimateslowever recent large sample theory for semiparametric es-
timates forbids conditional heteroskedasticitye show that a leading semipara-
metric estimatgthe Gaussian or local Whittle onean be consistent and have the
same limiting distribution under conditional heteroskedasticity as under the condi-
tional homoskedasticity assumed by Robin&®05 Annals of Statistic23, 1630—

61). Indeed noting that long memory has been observed in the squares of financial
time serieswe allow under regularity conditiongor conditional heteroskedastic-

ity of the general form introduced by Robins@®91, Journal of Econometric47,
67-89, which may include long memory behavior for the squasesh as the
fractional noise and autoregressive fractionally integrated moving average form
and also standard short memory ARCH and GARCH specifications

1. INTRODUCTION

In recent yeargools for investigating possible long memory in time series have
been considerably developéthrly work of Mandelbrof1969 considered the pos-
sibility of long memory modeling in economic and financial time serfgswork

and that of Adensted1974 began parametric modeling of long memonrhereas
Geweke and Porter-Hud&k983 introduced semiparametric procedyssd em-
pirical applications have become numerodiseview of the literature from an
econometric standpoint is in Robins@®94). Very long approximately station-

ary seriessuch as series of asset returns and other financial measurearetitsst
analyzedat least at an initial stagby semiparametric estimatehey have the
advantage of avoiding precise specification in that they parametrically model only
the low frequency part of the spectral dengity the long-lagged autocovari-
ances, thus avoiding inconsistency in estimation of even the low frequency struc-
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ture that would be caused by misspecificationoverfitting) of the short memory
dynamicsSemiparametric estimates have a slower rate of convergence than para-
metric onegbutwith sufficient data this concern may be outweighed by their greater
robustness properties

We semiparametrically model long memory in a covariance stationary series
X,t=0, £1,..., by

f(A) ~GA™2"  asi — 07, (1.1)
wheres < H < 1 and 0< G < oo, f()) being the spectral density gf satisfying

¥j = COV(X¢, Xg+j) = fﬂ f(A)cos(jA)da, j=0,%1,.... (1.2)

Under (1.1), f(A) has a pole ah = 0 for 3 < H < 1 (when there is long
memory inx,), f(A) is positive and finite foH = 1 (which we identify with
short memory inx,), andf(0) = 0 for 0 < H < % (which we describe as
negative dependence or antipersistgnt&o leading semiparametric estimates
of the memory parametét are the log periodogram estimate of Geweke and
Porter-Hudak(1983 and the Gaussian or local Whittle estimate of Kiinsch
(1987. Only recently has asymptotic distributional theory of these estimates
been laid downby Robinson(1995a1995h, though earlier attempts in the
case of the log periodogram estimate appear in the literatune in fact the
version of the log periodogram estimate considered by Robifs@85h dif-
fers from the original and also provides efficiency improvemeBtgen with
such improvemenisthe Gaussian semiparametric estimate is the more effi-
cient Unlike the log periodogram estimaiéis not defined in closed forpbut
nonlinear optimization is only needed with respect to a single paranéter
and can be accomplished rapidly

The asymptotic theory of Robins@h995a 1995h rules out the possibility of
conditional heteroskedasticjignd this seems a drawback in the case of financial
series for which semiparametric estimates otherwise seem appropmidted
Robinson(1995h analyzed the log periodogram under the assumptionghat
GaussianFor the Gaussian semiparametric estimate he made the weaker assump-
tion

X = E(x) + > aj e, > ajz < o0, 1.3)
j=0 j=0

where thes, satisfy at least

E(e|F_1) = 0 almost surelyas.), (1.4)

of g V(e 1) = 0?as (1.5)

for all t, where %, is the o-field of events generated g, s =t) ando? is a
constantWe would like to relax1.5) to allow for the possibility of autocorrela-
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tion in thee?; for examplein some financial applicationshe levelsx, can be
approximated by a martingale difference sequefsoey; = 0, j > 0) but the
squares? = e cannof so that the sequenegis not a sequence of independent
random variabledn fact empirical evidencésege.g., Ding, Grangerand Engle
1993 has also suggested that dependence in the squares can fall off very, slowly
in a way that is possibly more consistent with long memory than with standard
short memory ARCH and GARCH specifications

In fact, prior to Ding et al (1993, GARCH-type models admitting the possi-
bility of long memory had already been proposed by Robind@91) and ap-
plied to financial time series by Whistl€1990. Robinson(1991) considered the
specifications

o2 = o2+ X (et — o?) (1.6)
j=1
and
o 2
0P = <0' + 2 sztj> .
j=1

We shall discuss only the ARQkb) specification(1.6). This can be reparam-
eterized as

of =B+ 2 el
=1

and includes both standard ARGtheny; = 0, j > p, for finite p) and GARCH
(when they; decay exponentiallynodels More generallyif, for complex val-
uedz,

Y(z2)=1- _21wj z) (1.7)
iz
satisfies
lp(2)| #0, |z|=1, (1.8)
define
$(2) = _Eosb; 2=y,  $o=1 (1.9)
iz

Then Robinsori1991) rewrote(1.6) as

et—o?= Zd)jvt,j, (1.10)
i=o



302 P.M. ROBINSON AND M. HENRY

where

v = g2 — of (2.11)
satisfies

E(v{| /1) =0 as (1.12)

by constructionThe requirement
0< D ¢pf<oo (1.13)
i=0

includes the traditional long memory specifications of moving average coeffi-
cients for example the autoregressive fractionally integrated moving average
(ARFIMA) case

b2
a(z)

¢(z)=(1-2¢ (1.14)

for 0 < d < 3 and finite order polynomiala(z) andb(z) whose zeros are outside
the unit circle in the complex planand the fractional noise case

8

¢’i¢i+j
i=0
corr(ef, efij) = —
> ¢
i=0

Robinson(1991) developed Lagrange multiplier tests for no-ARCH against
alternatives consisting of general finite parameterizatiofl @), specializing to
(1.14) and(1.15). In both these casethe autoregressive weights satisfy

= ST =2 2 4 129 (L15)

o]

j=0
Under
mtaxE(st“) < o0, 1.17)

it follows that
E(v?) = 2[E(gf) + E{E(ef| R-1)}?]
= 4E(gf) =K, (1.18)

whereK is a generic finite constaygo that the innovations in (1.10) are square
integrable martingale differences anglis well defined as a covariance station-
ary process and its autocorrelations can exhibit the usual long memory structure
implied by (1.14) or (1.15). Even if (1.17) does not holgdthe “autocorrelations”
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D0 b divi /20 P are well defined undeil. 13). Giraitis, Kokoszka and Lei-
pus(1998 derived sufficient conditions for a stationary solution(df), given
thate; = 0oy forindependent and identically distributéd.d.) »; andy; = 0 for
all j, which do not cover long memory i, so the character of solutions (f.6)
remains open to further study

Subsequent to Robinsd®991), similar long memory versions dfl..6) have
been pursued by BailljBollersley and Mikkelsen(1996, Ding and Granger
(1996, and othersfor example the model labeled4.27) in Ding and Granger
(1996 was discussed in Section 5 of Robingd®91), being the casa=b=1
in equationg1.10) and(1.14) of the current papeAlternative models that pro-
vide long memory in squares and short memory in levels were proposed by Rob-
inson and Zaffaron{1997, 1998.

In view of the empirical evidence of Whistl€1990 and Ding et al(1993, it
seems appropriate to allow for possible long memoryam inference on long
memory inx;. In this paperwe consider the Gaussian semiparametric estimate of
H in these circumstancgpartly because it is well motivated by superior effi-
ciency properties under the previous conditiarsd because the log periodogram
estimate(and some othejsare technically more complex and cumbersome to
handle when Gaussianity is relaxdecause of their highly nonlinear structure

The following section describes the Gaussian semiparametric estimgte of
Because the estimate is of the implicitly defined extremum tgpe has to es-
tablish consistency prior to deriving limiting distributional behayamd these
tasks are carried out in SectiontBe proofs appearing in the Append&ection
4 reports a small Monte Carlo study of finite sample behaBection 5 contains
some concluding comments

2. SEMIPARAMETRIC GAUSSIAN ESTIMATE

On the basis of observationg t = 1,...,n, define the periodogram

n
2 Xt eit)\
t=1

and consider estimating by

2

1
=5

H = argminR(h),

A=h=A,
where 0< A; < A, < 1 and

1M 1A 1m
R(h) = Iog{a > Ai‘z,{} —(2h—-1) 52 log A;,
i j=1

j=1
in whichm € (0,[n/2]) anda; = 27j/n. R

As explained in Robinsoi9953, for m= [n/2], H is a form of Gaussian or
Whittle estimate under the parametric motiel) = G| A|*™2H all A € (=7, 7],
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and its asymptotic properties would be approximately covered by Fox and Tagqu
(1986, Giraitis and Surgailig1990, and othersunder Gaussianifyor more
generally the assumption thatis linear with ii.d. innovations (These authors
considered continuousather than discref@veraging over frequencigdVhen

m < [n/2] such thatasn — oo,

1 m

— + — > oo, (2.1)

m n

H can be viewed as a semiparametric estimate basét Hrand can be derived

by concentrating out the scale factor from a narrow-band form of Whittle objec-
tive function Under(1.1), (1'3)T(1'5)’ and(2.1), and other regularity conditions
Robinson19953 showed thaH is consistent foH and under further conditions
that

mY2(H — H) -4 N(0,2) asn— oo. (2.2)

The bandwidth parameten is analogous to that employed in weighted peri-
odogram estimates of the spectral density of short memory proc&sisasly
(2.1) is a minimal requirement for consistency unded). Henry and Robinson
(1996 discussed optimal choices ofin the determination of.

The compact sditA,,A,] of admissibleh values in Robinsoi19953a can in-
clude values betweehand 1 where there is long memaryalues between 0 and
1, where there is negative dependence or antipersistand@ = 3, where there
is short memoryit seems desirable to avoid assumisgy 3 < H < 1, a priori,
but rather to allow also for the possibility thet< 3, especially in view of the
very mixed evidence of the existence of long memory in levels of financial series
(see eg., Lo, 1991 Lee and Robinsarl996), in view of the efficient markets
hypothesisunder whichH = 3, and in view of the possibility that log price levels
may be nonstationary with less than a unit t@otvhich case returns can exhibit
negative dependendas in Henry and Paynd 997). By contrast the bulk of
asymptotic theory relevant to long memory assumes a priori that long memory
exists

It turns out that not only i still consistent forH in the presence of the
(possibly long memoryARCH behavior described in the previous sectiait
though with stronger moment conditionbut (2.2) holds in detail with the same
asymptotic varianceso that no features of the ARCH structure definedb§) or
(1.10) enter This outcome is not entirely predictableecause ARCH-type be-
havior can affect limiting distributional propertiésee e.g., Weiss 1986 Kuer-
steiney 1997). It is especially desirable in the present caBlis is in the first
place because of the simplicity of the limiting variancg22), which is inde-
pendent of botlid andG. Moreover although maximum likelihood estimation of
parametric versions @fl.10), such ag1.14) and(1.15), is implicit in the deriva-
tion of Lagrange multiplie(LM ) tests by Robinso(i1991), no rigorous asymp-
totic theory exists for such estimategpart from the ARCH and GARCH special
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cases studied by Wei$%986, Lee and Hanse(i1994), and Lumsdain€1996.
Third, there is no asymptotic theory available for semiparametric estimation of
the memory parameter determining the asymptotic behavior ofjtlog ¢; in

(1.6) and(1.10). We will return to this last point in Section ®ur derivation of the
asymptotic properties ¢ follows the main steps of the proof in Robingd®995a

and uses a number of properties established theitét also differs significantly
posing new challenge3his appears to be the first paper that develops asymp-
totic theory in a long memory context that allows for ARCH structureng
memory is not covered by the mixing conditions stressed in much econometric
literature the long memory literature featuring either Gaussian processgs

Fox and Taqqul1986 Robinson 1995h, nonlinear functions of Gaussian pro-
cessede.g., Taqqu 1979, linear filters of ii.d. sequencese.g., Giraitis and
Surgailis 1990, nonlinear functions of such linear filte(#ppel polynomials”

see Giraitis and Surgaili4986), and the mode(1.3)—(1.5). None of these ap-
proaches represents conditional heteroskedasticity in a martingale difference
sequence

3. CONSISTENCY AND ASYMPTOTIC NORMALITY
OF THE GAUSSIAN SEMIPARAMETRIC ESTIMATE

We introduce the following assumptians

Assumption A1 ForH € [A,A,],0< A; < Ay, < 1, and 0< G < oo, f(A)
satisfies(1.1).

Assumption A2 In a neighborhood0, §) of the origin f(A) is differentiable
and

d
Y log f(A) =0(A™1) asA— 0"
Assumption A3 The process; satisfieg1.3), (1.4), and(1.17) with o2 given
by (1.6) such that1.16) holds and the; defined by(1.7)—(1.9) satisfy(1.13). In
addition either

E(ef|F_1) = E(ef) as, t=0,+1..., (3.1)
or
>y <o (3.2)

j=0

Assumption A4 The sequencm satisfies(2.1).

Assumptions A1A2, and A4 are identical to the equivalently numbered ones
of Robinson(19953. We stress that only locélo zerg assumptions are made on
f(A), so that it need not be smogtir even boundetbr nonzergoutside a neigh-
borhood of the originin place of the current Assumption ABRobinson(19953
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assumedl.3)—(1.5) with a homogeneity conditigrso that we require more mo-
ments while allowing for ARCH behavippossibly with long memoryThe re-
quiremen{3.1) that conditional third moments be nonstochastic is restrictive but
satisfied ife; has a conditionally symmetric density, onore speciallyif

& Fi-1 ~ N(O,09)). (3.3)

The alternative requireme(8.2) rules out long memory ia? but covers stan-
dard ARCH and GARCH specificationise., (1.14) with d = 0) and many pro-
cesses for which autocorrelation in squares decays more slowly than exponentially
Note that(1.17) itself entails a restriction on the magnitude of g see for
instance the results of Engl@982 and Bollerslev(1986 for ARCH(1) and
GARCH(1,1) processes und€B.3), and of Nelson(1990 under more general
distributional assumptiongHowever (1.17) is not a necessary conditipand
indeed under(3.2) it can be shown to be unnecessary by means of a longer
argumentinvolving truncationsthan that in the proof of the following theorem

THEOREM 1 Under Assumption81-A4,
H—,H, asn— oo

The limiting distributional properties dfi rest on stronger conditions than
those sufficient for consistency

Assumption AL For some3 € (0,2],
f(A) ~GAYT2H(1+ O(Af)) asr — 0,
whereG € (0,00) andH € [A4,A,].

Assumption A2 In a neighborhood0, §) of the origin «(A) is differentiable
and

d

da

- <|au>|> X
log|a(A)] = O . asi — 07,

wherea(A) = 32 ;€1
Assumption A3 The first sentence of Assumption A3 holdsd
mtaxEsf’ < o0, (3.4)
E(8t28u81171) = 07 E(8t48u|ﬂfl) = E(8t4858u|f;171) = Oa as,
t=u=v, (3.5
¢ =0(j%t), asj— oo, d<1i, (3.6)
a; = O(j""®2) asj— oo, (3.7)

and ther; are quasi-monotonically decreasing
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Assumption A4 Asn — oo

1 m*"?(logm)? mlogm)?
L (Zﬁg )* . (mlogm) S0 a8
m n n

and if (3.2) does not holgdfor the samal as in Assumption A3

m(log m)
n(Tgﬂti — 0. (3.9)
Compared to the corresponding assumptions in Robif8853, Assump-
tions Al and A2 are unchangetill restrictingf (A) only near the originsuch
thatg indicates the smoothnessfdgf)/GAl~2" there, but Assumptions A3and
A4’ trade off the relaxation of constant conditional innovations variances and
fourth moments with some strengthening of conditidrise eighth moment con-
dition (3.4) replaces the fourth moment condition of Robingd®954, whereas
when there is long memory in thg, extension of3.1) to (3.5) is again satisfied
in case(3.3). The strengthening of moment conditions is a matter both of prac-
tical concernin view of the characteristics of much financial dagad of theo-
retical concern in view of the results of EndlE982), Bollerslev(1986, Nelson
(1990, for example As with Theorem lit is likely that Theorem 2which fol-
lows, can be established under a milder moment condition by a more detailed
argumentNote howevey that Davis and Mikoscli1997) have shown that the
sample autocorrelations of squares of AR@Hsequences have nondegenerate
probability limits when fourth moments do not exi§tondition(3.5) is seen to
hold unden(3.3), on noting that then

E(ef|A-1) = 30, E(ef| A1) =150, as.

and applying these properties afi4), (1.6), and(1.16) recursively Condition
(3.6) strengtheng1.13) and is satisfied in the exampl€s.14) and(1.15). The
parameted can be arbitrarily close tg, so that(3.6) is not of great concern in
itself, except that3.9) strengthen$3.8) unlessd = (1—23)/(4B + 2), which is
possible only wheB < 3 is chosen in3.8), whereas when the leveis them-
selves have fractional noise or ARFIMAlong mem¢apalogous to mode(4.15)
and(1.14) for £2), B = 2 is available in Assumption Alin (3.8), the requirement
(mlog m)%/n — 0 was not in Robinsof19953, but it does not bind whef = 3.
Fractional noise and ARFIM&; satisfy(3.7), which is consistent with Assump-
tion Al’, and also satisfy the quasi-monotonicity assumption orothevhich
entails(see Yong1974), for all sufficiently largej
|Olj |

|aj - aj+1| =K J_ (3.10)

In fact, we believe that this requiremer&nd(3.9), could be removed or re-
laxed by a more detailed pradfut the quasi-monotonicity requirement does not
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seem very oneroysvhereag3.9) is also needed when tla@ have long memoty
and there always exists amsequence satisfying botB.8) and(3.9).

THEOREM 2 Under Assumption81’'-A4’, (2.2) holds

The most notable aspect of Theorem 2 is that the asymptotic varignce
achieved by Robinsoii995a is not affected by the conditional heteroskedasticity
For readers not wishing to go through the proof of Theorem 2 in the Appgndix
we provide here a briefemore intuitive explanation of this outcoria the case
of the simple ARCH1) model

of = B+ el q. (3.11)

The mostlikely way in which conditional heteroskedasticity could affect the as-
ymptotic variance is through the variance of the normalized soér&R(H )/dh.
Itturns out(see Robinsarl 9954 that this can be approximated by a quantity pro-
portional to

2 2, (3.12)
t=2
where
z = gy, & = 2 &sCi—s, (3.13)
s=1
2 VU IR B
Cs = By j;l b; cos(sp;), by = logj — m i:El|09 I (3.14)

Now the asymptotic variance ¢3.12) is unaffected by conditional heteroske-
dasticity if

i E{(oZ—c?)é2} -0, asn— oo. (3.15)

t=2

Under(3.11), (3.15) is proportional to

n t—1 n t—1
SIERCES E<Xt S sxs> .S E<X1_1 > qq>
t=2

s=1 vVFS

(3.16)

where y; = 2 — o2 The second term on the right is zero on applyiad.0),
nested conditional expectatiqgrn8.1), and(1.4). The first term on the right of
(3.16) is bounded in absolute value by

||M:>

g ~slvies-als (3.17)
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wherey; = COV(stz,stzﬂ). Equation(3.17) tends to zero by the Toeplitz lemma
becaus& (L, > 1 c? s — 1 (see Robinsarl995a andy; — 0 asj — co under
(3.11); in fact arbitrarily slow decay in the autocorrelations of the squafes

suffices

4. FINITE SAMPLE COMPARISON

Although the asymptotic properties Bfthat we have established are highly de-
sirable and reassuring in applications to long financial seitésof interest to ex-
amine their relevance to series of more moderate lefgihexampleconditional
heteroskedasticity might worsen the normal approximatid®.R), and if there is
considerable persistenad the ARCH or GARCH type or especially of the long
memory type that our asymptotics may also perthit variance ofl might differ
considerably from A(4m). It is also of interest to consider robustness to depar-
tures from the moment conditions of Theorems 1 arkdrfite sample performance
of Hwas examined under the presumption of no conditional heteroskedasticity by
Robinson1995a and compared with that of a version of the log periodogram es-
timate whereas Taqqu and Teverovsiy995 include such estimates in a more
comprehensive simulation study but again restricted to conditionally homoske-
dastic environment$Ve report a Monte Carlo study Bfapplied to simulated series
x; following an ARIMA (0, H — 3,0) parametric version dfL.3), for variousH and
various forms of conditional heteroskedasticityejn

We first tooke; = o7, where they, are NID(0,1), so that(3.3) is satisfiedand
o follows one of the specifications listed here

(i) ID:o? =02 Thesareii.d., sothat there is no conditional heteroskedastivity
can takeo 2 = 1 with no loss of generality

(i) ARCH: o2 =.5+ .5¢2 ;. Thee; are ARCH1) with modest autocorrelation in the
e?; they satisfy(1.17) but not(3.4) (Englg 1982.

(iii) GARCH: 02 = .05+ .5¢2, + .450,. The &, are GARCH1,1), with strong
autocorrelation in the? at “short” lags(nearly IGARCH); they do not satisfy
(1.17) (Bollersley 1986.

(iv) LMARCH: 02={1— (1—L)-?°}¢2. Thee; have(moderatglong memory ARCH
structure satisfying1.6)—(1.9) and(1.14) with a(z) = b(z) = 1, so that thes?
follow the ARFIMA (0, d,0) structure discussed in Section 5 of Robingb891),
with d = .25.

(v) VLMARCH: 02 ={1— (1— L)“}&2. Thee, have “very long memory” ARCH
structuresuch that the? follow the same type of model as(iv) but withd = .45,
close to the stationarity boundary

The model specificatiof1.6) adopted here fos? does not allow for asym-
metric response of conditional variances to positive and negative retunith
is reported in the empirical finance literature as the leverage efféethave
nevertheless also considered a form of Nelson's EGAR&Ison 1991), which
models the leverage effect
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(vi) EGARCH Ing2= -5+ .9Ino?, — .5m1 + .5|n;_1/, with 5, still NID (0,1).
The coefficient ofn,_, induces a strong leverage effeublatility rising in re-
sponse to unexpectedly low returie case of unexpectedly high returrtbe
volatility behaves as in an AR) stochastic volatility modelwith AR coefficient
calibrated on typical values in the empirical literature on financial volatilitidsch
are nearly always larger tha®; see¢ e.g., Ghysels Harvey and Renault(1996.
The innovationg; have finite unconditional moments of all orders

So far as the ARFIMAQ, H — 3,0) model forx, is concernedso that in relation
t0 (1.3), X2y L) = (1 - L)¥27H), we consider

(a) “Antipersistence’H = .25,

(b) “Short memory” H = .5,

(c) “Moderate long memory”H = .75,
(d) “Very long memory® H = .95,

We study each ofi)—(vi) with (a)—(d), covering a range of shoftbng/negative
memory ing; and a range of shoflong memory ins?.

Tables 11-14, 2.1-24, 3.1-34, and 41-4.4 dea] respectivelywith each of
the fourH values(a)—(d). In each case the results are baseaen64, 128 and
256 observationsvith bandwidtham = n/16, n/8, n/4, and 19000 replications
as in the Monte Carlo study of Robins¢t9953a with conditionally homoske-
dastice,. In each set of tables we reppfor the conditional variance specifica-
tions(i)—(vi), Monte Carlo bias of the Gaussian semiparametric estirvidate
Carlo root mean squared errdvISE); 95% coverage probabilities based on the
N(H,1/(4m)) approximation(2.2) for H; and also the efficiency of the log peri-
odogram estimate relative to the Gaussian estintlaée is the ratio of the Monte
Carlo mean squared erroesnd we can compare this with the ratio of the asymp-
totic variances/6/7 = .78. We make the comparison with the log periodogram
estimatg(the version in Robinsgri995h but with no trimming because it has
been popularly usedbut we do not otherwise report the results for this estimate

The innovationg, were generated recursively with starting values subsequently
discarded In particular &, = oyn, with o2 = 1, t = —1,000,...,0, and ¢ =
o?P(L)e?, t=1,...,2n, wheren, ~ NID(0,1) ando? andP(L) are the relevant
intercept and operator in cas@s—(v), the latter being truncated tqQDO lags in
the two long memory caséi/) and(v). In case(vi), In o2 was generated recur-
sively according to the formuldhe Gauss random number generator RNDN was
used with random seed starting at the valugl43389 A method based on the
Cholevsky decompositiofm; ;)?7_, of the Toeplitz matrixX p;_j|)?1-1, wherep;
are the autocovariances of an ARFINDAH — 3,0), was then used to simulate
from the errorss, asx, = >i_1mg &, t = 1,...,2n, the firstn values being sub-
sequently discardedror each series simulatgtthe periodogram was computed
by the Gauss fast Fourier transform algorithm &hdomputed using a simple
gradient algorithm The optimization was constrained to the compact set
[.001,.999] (chosen values fak, andA,, respectively and for selected replica-
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TABLE 1.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to an ARF\25,0)
series with five specified innovation structur@antipersistence”H = .25, n, ~ N(0,1))

n=64 n=128 n= 256
Model m=4 m=38 m=16 m=28 m=16 m= 32 m=16 m= 32 m= 64
IID 0.060 Q014 —-0.001 —0.006 -0.011 —0.004 —0.028 -0.017 —-0.004
ARCH 0.062 Q010 —-0.001 —0.003 —-0.016 —0.007 —0.028 -0.016 —0.006
GARCH 0065 Q020 Q005 —0.004 —0.010 —0.003 —0.026 —-0.018 —0.006
LMARCH 0.064 Q012 Q002 —0.001 —-0.012 —0.004 —-0.022 -0.014 —0.003
VLMARCH 0.064 Q018 Q001 —0.002 -0.010 —-0.004 -0.020 -0.013 —0.004
EGARCH —0.107 —0.054 —0.039 —0.033 —-0.012 —-0.017 —0.002 —0.002 —0.007

TaBLE 1.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to an AREHVIZ5,0)
series with five specified innovation structur@antipersistence”H = .25, n, ~ N(0,1))

n =64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
11D 0.34 024 016 023 016 011 016 011 Q07
ARCH 0.34 023 017 023 016 012 016 011 008
GARCH 034 025 Q19 024 019 014 018 014 011
LMARCH 0.34 024 Q17 024 Q16 Q12 Q16 Q12 008
VLMARCH 0.34 025 018 024 017 013 Q17 013 Q10

EGARCH Q37 026 Q018 025 017 013 017 011 008




clLe

TaBLE 1.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to an ARFLRB\0)
series with five specified innovation structur@antipersistence”H = .25, n, ~ N(0,1))

n==64 n=128 n= 256
Model m=4 m=238 m=16 m=28 m=16 m= 32 m=16 m= 32 m= 64
IID 0.85 090 084 091 084 089 083 088 091
ARCH 0.85 090 082 092 084 085 084 088 085
GARCH 084 088 Q75 090 Q076 Q76 Q77 Q77 Q74
LMARCH 0.84 090 082 091 083 085 082 086 086
VLMARCH 0.85 089 Q79 091 Q79 080 Q79 081 080
EGARCH Q81 086 080 088 083 084 084 088 086

TaBLE 1.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to an ARFIMAO,—.25,0) series with five specified innovation structurgantipersistence”H = .25, n, ~ N(0,1))

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
IID 0.56 068 Q73 068 Q76 Q078 Q76 080 Q78
ARCH 0.57 067 Q74 067 074 Q79 Q75 Q79 081
GARCH 057 067 Q74 066 074 080 Q73 080 084
LMARCH 0.57 068 Q74 067 Q75 080 Q76 081 081
VLMARCH 0.56 068 Q75 067 Q75 081 Q75 082 083

EGARCH Q56 067 Q73 067 074 080 Q75 080 081
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TABLE 2.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to white noise with five spec-
ified error structureg‘short memory? H = .5, n, ~ N(0,1))

n=64 n=128 n= 256
Model m=4 m=38 m=16 m=28 m=16 m= 32 m=16 m= 32 m= 64
IID —0.035 -0.029 —-0.025 -0.027 —0.026 -0.013 —0.020 —-0.013 —0.008
ARCH -0.034 —-0.030 -0.021 —-0.030 —-0.024 —0.016 -0.021 -0.015 -0.009
GARCH —0.033 —-0.034 -0.019 —0.037 —0.022 —-0.018 —0.026 -0.019 —-0.012
LMARCH —-0.031 —-0.034 —0.020 —0.032 —-0.021 -0.013 -0.019 —-0.011 —0.009
VLMARCH —-0.032 —0.032 —0.025 —0.033 -0.024 -0.016 -0.022 -0.015 —0.007
EGARCH —0.030 —0.036 —0.031 —0.031 —0.025 —0.020 —0.018 —0.015 —0.010

TABLE 2.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structurgéshort memory? H = .5, n, ~ N(0,1))

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
11D 0.37 027 018 027 018 011 018 011 Q07
ARCH 0.36 027 019 027 018 013 Q17 011 008
GARCH 036 029 021 028 020 Q15 020 Q15 011
LMARCH 0.37 028 Q19 027 018 Q12 018 Q12 Q08
VLMARCH 0.37 028 020 028 019 013 019 013 Q10

EGARCH Q36 027 Q019 027 018 013 017 011 009
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TABLE 2.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structurdsshort memory” H = .5, 5, ~ N(0,1))

n==64 n=128 n= 256
Model m=4 m=238 m=16 m=28 m=16 m= 32 m=16 m= 32 m= 64
11D 0.63 Q76 084 Q77 084 089 083 088 092
ARCH 0.65 Q77 081 Q77 083 084 085 088 086
GARCH 065 Q72 Q76 Q74 Q77 Q75 Q79 Q77 Q74
LMARCH 0.64 Q75 081 Q76 082 085 082 086 087
VLMARCH 0.64 Q75 Q79 Q75 080 081 080 081 081
EGARCH Q65 Q77 080 Q078 084 084 085 088 086

TABLE 2.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to white noise with five specified error structufeshort memory? H = .5, n, ~ N(0,1))

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
IID 0.60 Q78 082 Q78 084 080 084 082 Q77
ARCH 0.60 Q77 080 Q078 083 082 083 082 082
GARCH 060 Q76 081 Q77 084 084 084 086 085
LMARCH 0.60 Q78 082 Q078 084 082 084 083 081
VLMARCH 0.60 Q76 082 078 083 083 084 085 084

EGARCH 061 Q78 082 079 083 082 083 081 082
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TaBLE 3.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to an ARFER8/) series

with five specified innovation structurésmoderate long memoryH = .75, n, ~ N(0,1))

n=64 n=128 n= 256
Model m=4 m=38 m=16 m= m=16 m= 32 m=16 m= 32 m= 64
IID —-0.108 —-0.050 -0.027 —-0.040 —-0.012 —-0.010 —0.004 Q001 -0.007
ARCH -0.112 —-0.053 —-0.031 —-0.035 -0.014 —-0.015 —-0.003 —-0.004 —0.005
GARCH -0.113 —0.057 —0.033 —0.043 —0.020 —0.020 —-0.014 —0.007 —0.006
LMARCH -0.110 —0.051 —0.026 —0.038 —-0.013 -0.011 —0.005 Q001 —0.006
VLMARCH —0.104 —0.052 —-0.034 —0.044 -0.015 -0.010 —0.005 —0.004 —0.006
EGARCH —-0.107 —0.054 —0.039 —0.033 —-0.012 —-0.017 —0.002 —0.002 —0.007

TaBLE 3.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to an AREIRBA0)
series with five specified innovation structurémoderate long memoryH = .75, n, ~ N(0,1))

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
IID 0.38 026 017 026 017 011 017 011 007
ARCH 0.37 026 018 025 017 012 016 011 008
GARCH 037 028 020 Q27 020 Q15 019 014 011
LMARCH 0.38 027 018 026 017 Q12 Q17 Q12 Q08
VLMARCH 0.37 027 019 027 018 013 018 013 Q10
EGARCH Q37 026 018 025 017 012 017 011 008
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TABLE 3.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to an ARR2BA
0) series with five specified innovation structurgsoderate long memoryH = .75, n, ~ N(0,1))

n=264 n=128 n= 256
Model m=4 m=28 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
11D 0.80 086 083 087 084 088 084 089 091
ARCH 0.81 086 080 088 084 085 085 088 086
GARCH 080 084 Q75 086 Q76 Q76 Q79 Q77 Q75
LMARCH 0.80 085 081 087 083 085 082 086 087
VLMARCH 0.80 085 Q79 086 080 081 080 082 081
EGARCH Q81 086 080 088 083 084 084 088 086

TABLE 3.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to an ARFIMAQ, .25, 0) series with five specified innovation structurémoderate long memory™H = .75, n, ~
N(0,1))

n==64 n=128 n= 256
Model m=4 m=38 m=16 m=28 m=16 m= 32 m=16 m= 32 m= 64
11D 0.61 Q75 Q79 Q74 Q78 Q79 Q79 081 Q79
ARCH 0.62 Q75 Q78 Q74 Q79 080 078 082 080
GARCH 060 Q74 Q79 Q74 Q79 081 080 082 083
LMARCH 0.61 Q76 Q78 Q74 080 080 Q79 081 081
VLMARCH 0.61 Q75 080 Q74 Q79 081 Q79 082 081

EGARCH 061 Q75 080 074 079 081 078 080 080
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TABLE 4.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to an ARF#8/) series
with five specified innovation structuré$very long memory” H = .95, , ~ N(0,1))

n=64 n=128 n= 256
Model m=4 m=38 m=16 m= m=16 m= 32 m=16 m= 32 m= 64
11D —-0.201 -0.102 —-0.059 —-0.087 —0.044 —-0.027 —0.035 —-0.015 -0.013
ARCH -0.190 -0.107 -0.070 —-0.085 —0.047 —0.033 —-0.034 -0.017 -0.018
GARCH -0.210 -0.132 —0.088 —-0.110 —-0.073 —0.053 —0.060 —0.043 —-0.037
LMARCH -0.210 -0.117 —0.076 —-0.101 —0.060 —0.043 —0.052 —0.030 —0.024
VLMARCH —-0.218 —-0.121 —0.081 -0.112 —0.064 —-0.047 —0.056 -0.037 —0.032
EGARCH —-0.187 —0.105 —0.070 —0.084 —0.046 —0.034 —0.034 —0.017 —0.017

TaBLE 4.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to an AREINGAO)

series with five specified innovation structur@gery long memory” H = .95, n, ~ N(0,1))

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
11D 0.38 023 014 022 013 009 012 008 006
ARCH 0.37 023 016 021 014 010 012 008 007
GARCH 038 025 Q17 023 015 011 014 Q10 Q08
LMARCH 0.38 023 Q15 021 013 009 013 Q08 Q06
VLMARCH 0.38 024 016 022 014 Q10 013 009 Q07
EGARCH Q37 023 016 021 013 010 012 008 007
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TaBLE 4.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to an ARHBJA
0) series with five specified innovation structurégery long memory”? H = .95, , ~ N(0,1))

n==64 n=128 n= 256
Model m=4 m=238 m=16 m=28 m=16 m= 32 m=16 m= 32 m= 64
IID 0.80 086 089 088 091 093 093 094 095
ARCH 0.81 086 087 089 091 091 093 094 092
GARCH 081 085 085 087 088 087 090 090 086
LMARCH 0.81 086 088 089 091 091 092 094 093
VLMARCH 0.80 086 087 087 090 089 091 092 089
EGARCH Q82 087 087 089 092 091 093 094 092

TABLE 4.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to an ARFIMAQ, .45, 0) series with five specified innovation structuiggery long memory” H = .95, n, ~ N(0,1))

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
11D 0.61 065 064 062 061 063 Q57 059 065
ARCH 0.59 067 067 062 062 063 057 059 066
GARCH 062 067 065 063 061 061 057 057 060
LMARCH 0.61 065 064 061 059 061 056 054 059
VLMARCH 0.62 065 065 061 060 060 056 056 062

EGARCH 061 067 068 061 061 064 057 058 066
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tions R(h) was plotted on the interv@il-1,2] and was always found to be very
smooth with a single relative minimum

Perhaps the most striking feature of the results is the relatively poor perfor-
mance o and of the normal inference ru(@.2) provided by Theorem 2 in the
GARCH casecompared to the other process@sit of the 36H, m,n combina-
tions the GARCH bias is largest in 18 cas@gereas its MSE ties largest in 3
cases and is outright largest in.28oreover the deviation of 95% coverage prob-
abilities from their normal values ties largest 3 times and is outright largest 28
times for GARCH. Relative efficiencies to the log periodogram estimate are also
most out of line with their asymptotic values for the GARGHties with the
largest discrepancy 12 times and has the outright largest 10.tifoefsirther
investigate this relatively poor performancetbin the case of GARCH erroys
Monte Carlo empirical distribution functions of BA(H — H) are plotted for all
four values oH against the standard normal distribution function in Figures 1-3
which correspond to three different choices of the gajm), namely (64,4),
(12816), and(25664). These empirical distributions are truncated because the
estimate is restricted to the interJ&001,0.999]. In the case where = 64 and
m= 4, the empirical distributions are highly leptokurtic and a high proportion of
estimates hit a boundarywhenn andm increasethe tails become thinner

Looking at the other heteroskedastic specificatioisMARCH leads to a
slightly worse performance than LMARCH but with no reliable evidence that
this is significantly worse than ARCH or indeed lIBailure of the moment
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Ficure 1. Empirical distributions with GARCH error = 64, m= 4).
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conditions(1.17) and(3.4) has no evident effectn our series of modest length
the relatively poor behavior under GARCH may be better explained by the im-
pact of a near unit roofor much larger values af, LMARCH and VLMARCH
would presumably do worse than GARCbUt in such samples this is unlikely
to be a matter of great practical conceimabsolute termseven GARCH does
not perform so badly for us to question the usefulness of the asymptotic robust-
ness results in moderate sample six¥senH = 3, H has almost identical root
MSE and 95% coverage probabilities for EGARCH and ARGCHhe EGARCH
case Monte Carlo biases are typically larger when there is antipersistence and
smaller in the case of very long memory in levéis expectedMSE decreases
monotonically asr andmincreasesThe decay in bias with increasimgis less
noticeablewhereas the typical decay in bias with increasimig somewhat sur-
prising but broadly in line with results of Robins6t9953, in the case of frac-
tional Gaussian noise levelsvhich has similar spectral shape to that of the
ARFIMA (0,H — 3,0)). As in the no-ARCH finite sample results of Robinson
(19954, coverage probabilities are markedly sensitive to choicen,aind this
problem clearly requires further study beyond that of Henry and Robii$9®,
though for largen this is likely to be less of a problem

Finally, the effect of heavy-tailed conditional distributions fgris investi-
gated in Tables.3-54 and 61-64 in the case of short memory levéld = 0.5).
Monte Carlo biasesoot MSE'’s coverage probabilitiesnd relative efficiencies
of the log periodogram estimate are reported as before for méidels) only
with &, = oy 7, where they, are ii.d. t,in Tables 51-54 and ii.d. t, in Tables 61—
6.4, so thatn, has respectivelyinfinite fourth moment and infinite second mo-
ment Relative efficiency of the log periodogram estimate seems unaffected by
heavy-tailednes$ioweverwhen there is no conditional heteroskedastj&?tpn
the whole performs better wheq is t4 than when it is normal and better still
when itist,, in terms of Monte Carlo biag$SE, and coverage probabilit€on-
ditional heteroskedasticity produces a reverse pictline results fot, n, are
better than those for normay in only seven cases in respect of hi&sur in
respect of MSEand two in respect of coverage probabilitye results fot, are
better than those fdy in only one case in respect of bjdsur in respect of MSE
and four in respect of coverage probabilMoreoverthese exceptions are mostly
for then = 64, m= 8 combinationand frequently the deterioration produced by
extreme heavy-tailedness is substantiadd although bias and MSE typically
decrease with increasimgpndmfor t-distributedn;, suggesting that consistency
of H is maintainedthere is some tendency for coverage probabilities to actually
worsen(become smallgespecially fott,, so that not only is the heavy-tailedness
reflected in the distribution dfl but there is evidence that the limit distribution of
Theorem 2 may not hold under this violation of the moment conditionkne
with the evidence of Davis and Mikos¢h997) referred to earlier

Overall the results suggest that the possibility of conditional heteroskedasticity
can be a cause for concern in moderate sample,sigpecially for GARCH-like
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TABLE 5.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to white noise with five spec-
ified error structure¢‘short memory” H = .5, n; ~ t4)

n==64 n=128 n= 256

Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
11D —0.028 —-0.031 -0.020 —-0.026 —-0.022 —-0.011 —-0.021 -0.011 —0.005
ARCH —0.033 —-0.041 —0.035 —0.028 —0.030 —0.022 —0.025 —0.020 -0.019
GARCH —-0.041 —0.043 —-0.027 —0.042 —0.037 —0.027 —0.043 —0.029 —-0.024
LMARCH —-0.035 —-0.030 -0.027 —-0.031 —-0.023 -0.016 -0.023 -0.022 -0.013
VLMARCH —0.031 —0.036 —0.028 —0.029 —0.029 —-0.019 —0.030 —0.024 —0.019

TABLE 5.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structurgsshort memory” H = .5, n, ~ t,)

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
11D 0.37 027 017 028 017 011 017 011 007
ARCH 0.35 026 021 025 018 016 Q17 013 013
GARCH 036 030 024 Q30 025 021 026 022 018
LMARCH 0.36 028 020 028 020 Q15 022 Q16 011

VLMARCH 0.36 029 022 029 022 017 024 019 015
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TABLE 5.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structurg$short memory? H = .5, , ~ t,)

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
11D 0.64 Q76 085 Q77 085 089 085 089 091
ARCH 0.69 078 Q76 080 082 Q076 086 084 Q72
GARCH 066 068 069 069 065 061 063 058 053
LMARCH 0.65 074 Q078 073 078 Q77 Q74 Q75 Q74
VLMARCH 0.65 Q72 074 Q72 Q72 Q72 069 067 064

TABLE 5.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to white noise with five specified error structufeshort memory? H = .5, n, ~ t4)

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
IID 0.60 Q77 080 Q78 081 Q078 083 081 Q77
ARCH 0.61 Q77 080 078 083 082 082 083 083
GARCH 060 074 081 Q74 082 085 081 085 088
LMARCH 0.60 Q77 082 Q77 084 084 084 086 085

VLMARCH 0.60 076 083 076 083 085 083 087 086
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TABLE 6.1. Monte Carlo biases for the Gaussian semiparametric estimate of long memory applied to white noise with five spec-
ified error structure¢‘short memory” H = .5, 5, ~ t,)

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
11D —-0.018 -0.027 -0.019 -0.024 -0.018 —-0.010 -0.017 —-0.009 —0.006
ARCH —0.043 —0.047 —0.042 —0.042 —0.039 —0.037 —0.036 —-0.032 —-0.034
GARCH —0.047 —0.042 —0.035 —0.051 —0.048 —0.040 —0.055 —0.047 —0.038
LMARCH —-0.036 —0.038 —0.032 —0.040 —0.034 —-0.028 —-0.047 —0.038 —0.028
VLMARCH —0.042 —0.036 —0.037 —0.052 —0.043 —0.037 —0.054 —0.048 —0.037

TABLE 6.2. Monte Carlo root MSE for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structurgsshort memory” H = .5, n, ~ t,)

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
IID 0.35 025 Q16 026 016 010 Q16 Q10 Q07
ARCH 0.33 026 023 024 021 020 Q17 017 019
GARCH 035 031 026 031 028 024 028 026 023
LMARCH 0.36 029 023 Q30 025 021 028 024 Q20

VLMARCH 0.35 030 025 031 027 023 029 026 022
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TABLE 6.3. 95% coverage probabilities for the Gaussian semiparametric estimate of long memory applied to white noise with five
specified error structurg$short memory? H = .5, n; ~ t,)

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
1D 0.68 081 087 080 088 091 087 091 093
ARCH 0.74 078 071 083 Q078 065 086 Q76 056
GARCH 068 067 062 066 057 053 059 Q050 042
LMARCH 0.65 Q71 Q70 067 065 062 059 055 050
VLMARCH 0.68 068 065 066 061 056 058 050 045

TABLE 6.4. Relative efficiency of the log periodogram estimate compared to the Gaussian semiparametric estimate of long mem-
ory applied to white noise with five specified error structufshort memory? H = .5, n, ~ t,)

n=64 n=128 n= 256
Model m=4 m=8 m=16 m=8 m=16 m= 32 m=16 m= 32 m= 64
11D 0.61 Q76 Q79 Q78 080 Q078 083 080 Q77
ARCH 0.64 Q75 Q079 Q77 081 081 081 083 083
GARCH 062 073 Q78 Q73 080 083 Q078 082 084
LMARCH 0.60 Q74 080 Q74 081 084 080 085 086

VLMARCH 0.61 073 080 073 080 084 078 083 085
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behavior and when the conditional distributiorephas heavy tailsOn the other
hand some forms of conditional heteroskedasticity appear to have little gffect
and in these circumstancasse ofH and the associated large sample inference
rules of Robinso1i1995a seems warranted at least for reasonably large samples
though as is typically the case with smoothed nonparametric estimetjoort-

ing results for a range of bandwidths is a wise precaution

5. FINAL COMMENTS

This paper seems to be the first attempt to study the impact of conditional het-
eroskedasticity on the behavior of semiparametric estimates of long memory
Moreoverwe have allowed in the asymptotic theory not only for standard ARCH
and GARCH specifications of conditional heteroskedastibityfor the ARCHco)
model for squared innovations introduced by Robingb®91), which covers
ARFIMA structure The fact that the limiting distribution has the same simple
form as under conditional homoskedasticity not only implies that existing rules
of large sample statistical inference remain véintiuding the test fof (0) based
on the objective functioR(h) recently developed by Lobato and Robinsbg98,
but also suggests that the formulae for asymptotic mean squared errbrrs of
provided by Henry and Robinsqa996 will remain valid and the consequent
rules for the optimal choice of bandwidth So far as the technical contribution
of the current paper is concernéiseems that very similar methods can be used
to investigate the large sample distribution theory of other statistics in the pres-
ence of(possibly long memoryconditional heteroskedasticjtyuch as nonpara-
metric estimates of the spectral density of a process with short memory in levels
and also more elaborate statistics

The Gaussian semiparametric estimate can be used ataninitial stage in the analy-
sis of a series;, perhapsto test for a specific valugvuch aéA(as in Lobato and
Robinson1998, or to create a fractionally differenced seri¢s “/2x,, whereA
is the differencing operatofhis represents an asymptotically valid approxima-
tion to anl (0) series without any parametric assumption on the autocorrelation of
the underlying (0) procesa"~¥/?x,, so we might then proceed to identify the or-
der of a parametric model such as an ARMA on the basis afth&/?x,, possibly
then carrying out estimation ofthe ARFIMAmodel fqby a parametric Gaussian
methodAquestionthatthen arises is whether the innovations in the nfedalv-
alent to our,) have conditional heteroskedasticiéynd if sQ what are the nature
and extentof itThis is of interest whether or ngthas long memoryand even ik;
isamartingale differencg, = ¢,. If (1.10) is parameterizeday by(1.15) or(1.14),
then we can estimate the unknown parameters by applying the conditional Gauss-
ian loglikelihood underlying the LM tests developed by Robing#91), though
asymptotic properties of the parameter estimates remain to be established in the
long memory case and indeed in many short memory.dt@sever such a pro-
cedure carries the disadvantage that even the memory paraiwétebe incon-
sistently estimated if the short memory dynamics of the squares is misspgcified
whereas we may in any case prefer an exploratory approach at the initial stage
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One may thus consider applying a semiparametric procedure for estindating
to thee?, or their proxies For examplethe Gaussian method appears to be a
candidatebecausgalthough the:? cannot be GaussiaGaussianity ok, was not
assumed by Robinsdh9953 or in the current papeHowever although some of
the analysis of these papers will be relevamd(1.10) represents? as a linear
filter of martingale differences,, not only do thev; have conditional heteroske-
dasticity but their odd conditional moments are perforce stochastithat no
conditions analogous t@3.1) or (3.5) can be imposedrhe form of the limiting
distribution of the Gaussian semiparametric estimatesofd of its derivation are
thus open questions
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APPENDIX

Proof of Theorem 1. The main part of the proof of the corresponding Theorem 1 of
Robinson(1995a applies except for the proof that

mjl< r >2(A—H)+1 1
m r2

r=1

i(ZWJ()\j)—UZ) —5 0, (A1)
=1
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where

itA

I =

andA = A, whenH <  + A; andA € (H — %,H] otherwise (Note that unlike in
Robinson 19953 we take the unconditional variance ©fto beos 2 not unity)

The justification for the preceding claim rests on the fact that the remainder of the
aforementioned proof depends only on unconditional second moment proplertiesv
of (3.18) of Robinson(19953, (A.1) is implied if

n

E (e — 0?) = 0y(n) (A.2)
and

n
> see Al = 0,(r"™n), somen >0, (A.3)
s#t

1

uniformly inr € [L,m—1], WhereA(') i—1coq(s — t)A;]. The left side of(A.2) has
mean zero and variance

HM:

E HEWjvs ) = D D didjrsE(WE)) (A.4)

t,s=1j=0
in view of (1.4), with ¢; = 0, ] < 0. In view of (1.18) and the Cauchy inequalityA.4) is,
with &; = (272, ¢2)V3

o n—1
O(nE 2+ ndy > <I>j> =o0(n?)
i=0 =1

by the Toeplitzlemma and..9), thus verifying(A.2). To prove(A.3), the left hand side has
variance

n n
4E( >3 ssstsusUA“)AL’,}). (A.5)

u<v s<t
1 1

In view of (1.4) of Assumption A3it is clear that no summands for whi¢h# v can
contribute Thus (A.5) is

4E(28t <”2)+8E( > eZessy “W”) (A.6)

s<t u<s<t
1 1

The first term in(A.6) is bounded by

4 maxE(ef) 2 AL? = 0(rn?)
t st
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from (3.20) of Robinson(19954. Substituting(1.10) in the second term fA.6) gives

SE( E (0’ +2¢1V1 J)suasA(r)A(r))

u<s<t
1

=8 E o sE(vse eq) Ag (r) (r)

u<<s<t
1

=8 E b sE(e38,) AL AL

u<s<t
1

Under(3.1), this is identically zeroUnder(3.2), it is bounded in absolute value by

s<t s<t
1

1/2
8r maxE(s; )2 | E\ AY| = Krn(Z A(”Z) = 0(r¥2n?)

becauseAl)| <r. Thus (A.3) is verified

As explained by Robinsof19953, there is a lack of uniformity in the convergence of
R(h) aroundh = H — 3 that is of concern wheH = 1 + A, and then one has to show also
that

1 m

aE(aj - 1)(2m3(A) —0?) =, 0, (A7)
j=1

wherea; = (j/p)2*™ for 1=j = panda = (j/p)>*+H for p < j = m wherep =

exp(1/mX", logj). However by similar arguments to those used earlier we establish

(A.7) under Assumption A3n view of the propositionestablished in Robinsgi 9953,

that3i; X201 (g — Dcosi(s — 1)A;}]% = o(mr?). u

Proof of Theorem 2. Again, the basic structure of the proof of Robins@®9953 is
unchangegdand a number of properties established there are still afAg@in a mean
value theorem argument is applied and the scores approximated by a martiftuzale
approximation and the treatment of second derivativé¥ bf are affected by the changed
conditions but we postpone discussion of this until after we have established the asymp-
totic normality of the approximating martingalehose proof is considerably affected

With the definitions(3.12) and(3.14), > 5 z is a martingale and we wish to shpas in
Robinson(19953, that asn — o

E(z') >0, (A.8)

HM:

n
2 E(Z|F) »pot (A.9)
t=1

By the Schwarz inequalitf (z{) = (Es8)Y2(E£E)Y2 Because the, are martingale dif-
ferencesby Burkholder’s inequalityfBurkholder 1973 andc, inequalities

t—1

E(&?) =KE ( > Ct23832> = (maxEeg)ry = O((logm)¥/n*)

s=1
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uniformly in t by (4.22) of Robinson(19953, with r, = ¢ + ... + ¢2. Thus

n | 4
ZE(Z{‘)SK(Ogm) -0
t=1

to verify (A.8). To check(A.9), write
E(Z2| Fio1) = 022 = 0262 + (0 — 0?) €2

From(4.14) and(4.15) of Robinson(19953,

n n—1 n—1 n
2 512 —g?= 2 Xtln—t T 0'2{ 2 M-t — 1} + 2 E &r &sC—r Ci—s;, (A.10)
t=1 =1 t=1

t= t=2r#s

with y; = &2 — 2 The first term on the right has mean zero and variance

|
-

1

Yt—uln—tTn-u- (A.11)

1

n n

,_.
Il
i

u
Now
lyil = O(j?4 1), asj— o (A.12)

by (3.4) and(3.6), and

n—1

>r—1 asn—o (A.13)

t=1

established by Robinsdi9954. It follows from the Toeplitz lemma thdfA.11) tends to
zera Clearly the second term ifA.10) thus tends to zeravhereas the last term has mean
zero and variance bounded by

n  min(t—Lu—1)

z(mlaXEstAl> 2 2 |Ct—r Ct—sCu—r Cu—s- (A.14)

tu=2 r+s
1
This follows from the corresponding derivation in Robing®895a but upper bounding
E(e22) by the Schwarz inequalitfhe absolute value did not arise in Robingt895a

butitis clear from his derivation that the bound established there appliasitd), namely
O((logm)*(n~* + m~®)) — 0. It remains to show that

> (0@ —0?)EE—>,0. (A.15)
t=2
The left side is

n n t—1 n t—1
o? 2 (O'tz - Uz)rtfl + 2 (U'tz - 0'2) 2 Ctzfs/\/s+ E (O'tz - 0'2) E £,8sC— Ci—s.
t=2 t=2 s=1 t=2

vFS
1

(A.16)
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The first term is

T2 DXt = 0AS+ S),

t=2j=1
where
n—1 n—1 -n n—1
Si= 2 x5 2 e S= D XX b
j=1-n t=1 j=—o0 t=1

andy; = 0, j = 0. Now S; has mean zero and variance

_ o 2 2n—2
E ')’j k 2 r rtlﬁs J+1¢t k+1— Knrn 1(2 ‘//J|> E |'}’j|
j=0

j,k=1—n st=1 j=1

_ O((Iogm)

W) — 0, asn— oo,

using(1.16), (A.12), andr, = O((log m)“/n), which was established by Robins@953.
On the other hand

n—1 o

EISI=K> >yl >0 asn—ow
t=1 j=n

from (1.16) and(A.13), so that the first term i6A.16) is 0,(1). The second term ifA.16)
is

n 0 t—1
2 E E Ctz—sXva (A.17)
=2 v=—oo s—1
n t-1 t—1
Z Z Uiy Z Ctz—sXva- (A.18)

v=1 s=1

The expectation of the absolute valug(Af17) is bounded by
n oo}
K(maxEef') 3 3 [ulr-2—0
t=2 j=t
using(1.16), (A.13), and the Toeplitz lemmdA.18) includes the component

2 2
Ui-sCisXs»

HMI

whose absolute value has expectation that likewise tends toAse@emainder ofA.18)
can be written

t

n t—1

g CEsXuXst X Xty E CZ s Xo Xs- (A.19)

t=2 v=1 s=v+1

M:

,,
Il

20

Il
._\

The first term in(A.19) has mean square

v—1

; t— vE Ct E hu- qE Cu pE(XquXqXp) (A.20)

HM’



LONG AND SHORT MEMORY CONDITIONAL HETEROSKEDASTICITY 333

Now each(v, s,q, p) such thas < v, p < g satisfies one of the relations= g, s=q <,
g<s<v,p=v<qorv<p<q. The contribution from summands {A.20) such that
v = qis bounded by

n  min(t—Lu—1)

K(maxExt) 3 3

tu=2 v=1

v—1

v—1
o thu—s| 2 €25 X GO
s=1 p=1

0 2
= K(mlaxEstS)r,?_ln ( >l > = O((logm)¥n) — 0.
j=1

Next, forv >q=s p<aq,

q
E(XvXsXaXp) = E{_ > b Vj/\/sXqXp}v (A.21)
]:700
because
q
E(v|F) = 2 ¢y, as,  v>g, (A.22)

J:—DO
as follows from(1.10) and
E(y| 7)) = E(ef| Fy) — E(E(ef|F-1)|F) =0, as, q<].

Now (A.21) is bounded in absolute value by
q q 4 3
E’( > b Vj)XsXqXp = {E< > b Vj) <mtaXEXt4> }
j=—o0

j=—o0
q 2\1/4
j=—o0

q 1/4
= KCDUl/Zq(. > $ZEW] >

j=—o0

1/4

=K, 4

where the second inequality employs Burkholdéi’973 inequality and the final one
E(v{) = 8[E(e?) + E{E(e?| F-1)}* 1=K, by (3.4). Considering similarly the three cases
{p<g<s<v},{p=v<qgands<v}and{s<uv <p<qg}, we have

[ECxo XsXqXxp)| = K(®y_q+ s+ P, + Pg_p)

whenevess < v, p < g, andv # g, where®; = 0 forj < 0. Thus the contribution t¢A.20)
for v # qis bounded in absolute value by

n u—1

t—1 v—1 g-1
K> 2 o] 22 2 [thu gl 2 Cp(@yog + Pps+ Dy, + Dg_p)
q=1 p=1

t,u=2 v=1 s=1

n t—1 u—-1
=K E {E E d’tvl/’uq|q)vq}rtlrul

tu=2v=1 g=1

n

o n t—1 t—1
+ K Elhpj' E rufl 22 210[25{ 2 |$tv|¢’vs} . (A23)
j= u t=2 s=

=2 v=1
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The terms in braces are boundeekspectivelyby

2 [hi i+ jru—t| D}, 2\1//i|‘1’t—s—i,
i,j=0 i=1

which tend to zero alku — t| — oo and|t — s| — oo, respectivelyin view of (1.13) and
(1.16) and the Toeplitz lemmdahus (1.16), (A.13), and the Toeplitz lemma further imply
that(A.23) — 0 asn — oo, completing the proof that the first term 0&.19) is o,(1). The
second term ofA.19) can be treated in the same way to conclude (A&l8) is 0,(1). The
last term of(A.16) is

n t—-1

2> 2 Yo Xi 2 €08sCiyCios. (A.24)
t=2 j=—o0 u<s

Now, note that

E(x;eses xkereu) = 0, v<s, u<r, v#EU Or S#I.

This follows by proceeding recursively usiiy6) and nested conditional expectatipns
and the fact thaE (s, #-1), E(e?| Fi-1), E(ef' e| Fum1), t = uandE(ef' efey| F, 1), t =
u =y are all as. zero under Assumption A30n the other handor all indices

‘E(Xj Es€y Xk ér 8u)| = mtaXE(Sts) <

by Hélder’s inequalitylt follows that(A.24) has second moment

n min(t,u)—1
4 2 2 /. —j 2 1/ 2 Ct—uct—scu—ucu—sE(Xj stuzssz)
tLu=2 j=—o0 v<s
n  min(t,u)—1 (lOg m)4
= K E E |Ct*v CI*SCU*UCU*S| = o( 1/3
tu=2 v?s m

as in(A.14), to complete the proof thgA.10) —, 0 and thus ofA.9).

Application of the remainder of the proof of Robins(®954a requires estimation of
Uy —ro2andV; — U, whereU, = 277 31 J(4;), andV, = 3{_1 1 (A;)/GA} 2", for 1=
r =m. In Robinson(19953 itis shown that), — ro-2 = Oy(r /?), butinspection of the only
use that is made of this bound indicates #atr *~”) would suffice for anyn > 0. From
Robinson(19953,

n t—1

U —ro? = _E(at _02)+28t285dt s (A.25)

whereds = 2/n Ej’:l coss);. The first term of(A.25) has mean zero and variance

r2 n r2"l
O(; 21 |> = O(r?n?) = O(f e n1_2d>,
j=1
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and this iO(r 24-7) under(3.8) on takingn = 3 — d. The second term ifA.25) has mean
zero and variance

n t—1 n t—1
E{E U't2 2 8szdtz—s} + E{E O't2 2 Ssavdt—sdt—u}'
t=2  s=1 t=2  v#s

The first term isO,(n(max Esf) 2L, d?) = O(r) from Robinsorf 19953, whereas the

second term is zero frort8.5). Thus U; — ro? = Op(r*~"), somen > 0. The bound
established fo¥, — U, by Robinson19953 was

O,(r3(logr)2 + rFHin=F 4 r V2n~1/4), (A.26)

where(3.8) was assumed\gain, this bound is stronger than necessanyd it will suffice
to establish the bountA.26) + Oy(rn? */?). To approximate the scores by a suitable
martingale it is sufficient that

m (A
2}1 v, <G)f,-1]2'* - 0'2J()\j)> = 0,(M¥2), (A.27)

and the left side isby summation by parts arjtbgr — log(r + 1)| = r % bounded by

m—1
>
r=1

=ik

[V, — U, | + 2logm|V,, — Un|.

We can then invoké3.8) and (3.9) to establish(A.27), if indeedV, — U, = (A.26) +
Op(rn-®2)) In fact, part of the proof in Robinso(19953 thatU; — V; has boundA.26)
continues to holdbut not that relating to the contribution to the variancé/Af5) from
fourth cumulantsUnder the conditions of Robins@9954 that second and fourth con-
ditional moments are constagum(e,, e, &, €y) = cum(e;, &, &,&,) if r=s=t=u,and
zero otherwiseHowever under the present assumption® have

cum(e,,eg, &r,8,) = cum(e,, e, 8&r,8), r=s=t=u,
= Yr-s r=t#s=u, (A.28)
= Yr—ts r=s#t=u, (A.29)
=Yr—t> r=u#t=s (A.30)

and zero otherwis& he contributions fronfA.28)—(A.30) to the variance of, — U, will
thus be studiedin view of (A.28)—(A.30) the contribution of fourth cumulants to the
variance ofV, includes terms such as

G\2 .
<?> 2 (/\j /\k)ZHfl Z ’)’u—sau()\j)as(*/\j)as(/\k)au(*)\k)s (A.31)

j,k v#ES

wherea, (A) = 2111 a;_, e and we takey, = 0,t < 0. Now, () is identically zero when
v > n. On the other hand whan< 0 such that—v) * = O(| A|) we have by summation by
parts (3.7), and(3.10), that
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n—v—1 t n—v
(V= X o= awal| X e +lan,l| X %
t=1-v s=1-v s=1-v
— ) )H=@E/2)
S )M O(|A| @2 H),

[A]
whereas for < 1 such that-v = O(1/|A|)
1-v+s

(M= 2 | +

t=1-v

n—v

E a eit/\

t=1-v+s

(A.32)

for 1 = s < n. Applying summation by parts in the same way as previously to the
second term ofA.32) indicates that it iSO((1 — v + s)"~®?/|A|), whereas the first
term isO((1 — v + s)"~?), Choosings such that 1-— v + s ~ 1/|A| indicates that
(A.32) is alsoO(|A|¥27H), In the same wayit follows that for 1= v < n, a,(A) =
O(|A|*2=). It immediately follows tha(A.31) is O(r?n ' XL,|y;|) = O(r2n?1)

as desiredThe other fourth cumulant contributions to the variancé/oére treated in
the same wayand those to the covariance betwéérandU, and to the variance df,
follow if anything more easilyto complete the proof that the fourth cumulant contribu-
tion to V; — U; is Op(rn% */2). We have of course not assumei2) in the preceding
discussionbut if we do thenXZ,|y;| < oo, so it is easily seen thdA.31) is O(r #/n),
whence(3.9) is not required



