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THE EXISTENCE AND ASYMPTOTIC PROPERTIES OF A
BACKFITTING PROJECTION ALGORITHM UNDER

WEAK CONDITIONS1

BY E. MAMMEN,2 O. LINTON3 AND J. NIELSEN

Reprecht-Karls-Universitat Heidelberg, Yale University¨
and Codanhus

We derive the asymptotic distribution of a new backfitting procedure
for estimating the closest additive approximation to a nonparametric
regression function. The procedure employs a recent projection interpreta-
tion of popular kernel estimators provided by Mammen, Marron, Turlach
and Wand and the asymptotic theory of our estimators is derived using
the theory of additive projections reviewed in Bickel, Klaassen, Ritov and
Wellner. Our procedure achieves the same bias and variance as the oracle
estimator based on knowing the other components, and in this sense
improves on the method analyzed in Opsomer and Ruppert. We provide
‘‘high level’’ conditions independent of the sampling scheme. We then
verify that these conditions are satisfied in a regression and a time series
autoregression under weak conditions.

1. Introduction. Separable models are important in exploratory analy-
ses of nonparametric regression. The backfitting technique has long been the
state of the art method for estimating these models; see Hastie and Tibshi-

Ž .rani 1991 . While backfitting has proved very useful in application and
simulation studies, it has been somewhat difficult to analyze theoretically,
which has long been a drawback to its universal acceptance. Recently, a new
method, called marginal integration, has been proposed; see Linton and

Ž . Ž . Ž . �Nielsen 1995 , Tjøstheim and Auestad 1994 and Newey 1994 see also
Ž .�earlier work by Auestad and Tjøstheim 1991 . This method is perhaps

easier to understand for nonstatisticians since it involves averaging rather
than iterative solution of nonlinear equations. Its statistical properties are
trivial to obtain and have been established in the aforementioned papers.
Although tractable, marginal integration is not generally efficient. Linton
Ž . Ž .1997 and Fan, Mammen and Hardle 1998 showed how to improve on the¨
efficiency of the marginal integration estimator in regression. In the former
paper, this was achieved by carrying out one backfitting iteration from this
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initial consistent starting point. This modification actually achieves full
oracle efficiency, that is, one achieves the same result as if one knew the
other components. This suggests that backfitting itself is also efficient in the
same sense. Moreover, backfitting, since it relies only on one-dimensional
smooths, is free from the curse of dimensionality.

Ž . Ž .Recent work by Opsomer and Ruppert 1997 and Opsomer 1998 has
addressed the algorithmic and statistical properties of backfitting. Specifi-
cally, they gave sufficient conditions for the existence and uniqueness of a
version of backfitting, or rather an exact solution to the empirical projection

Ž .equations, suitable for any recentered smoother matrix. They also derived
an expansion for the conditional mean squared error of their version of
backfitting: the asymptotic variance is equal to the oracle bound while the
precise form of the bias, as for the integration method, depends on the way
recentering is carried out, but in any case the bias is not oracle, except when
the covariates are mutually independent. This important work confirms the

Ž .efficiency, at least with respect to variance, of their version of backfitting.
Unfortunately, their version of backfitting is not design adaptive, which is
somewhat surprising given that they use local polynomial smoothers
throughout. Furthermore, their proof technique required one rather strong
condition: specifically, the amount of dependence in the covariates was strictly
limited.

In this paper, we define a new backfitting-type estimator for additive
nonparametric regression. We make use of an interpretation of the Nadar-
aya�Watson estimator and the local linear estimator as projections in an
appropriate Hilbert space, which was first provided by Mammen, Marron,

Ž .Turlach and Wand 1997 . Our additive estimator is defined as the further
projection of these multivariate estimators down on the space of additive
functions. We examine this estimator and show how, in both the Nadar-
aya�Watson case and the local linear case, the estimator can be interpreted
as a backfitting estimator defined through iterative solution of the empirical
equations. We establish the geometric convergence of the backfitting equa-
tions to the unique solution using the theory of additive projections; see

Ž .Bickel, Klaassen, Ritov and Wellner 1993 . We use this result to establish
the limiting behavior of the estimates: we give both the asymptotic distribu-
tion and a uniform convergence result. Our procedure achieves the same bias
and variance as the oracle estimator based on knowing the other components,
and in this sense improves on the method analyzed in Opsomer and Ruppert
Ž .1997 . Although the criterion function is defined in terms of the high-dimen-
sional estimates, we show that the estimator is also characterized by equa-
tions that only depend on one- and two-dimensional marginals, so that the
curse of dimensionality truly does not operate here. Our first results are
established using ideas from Hilbert space mathematics and hold under
‘‘high level’’ conditions, which are formulated independently of specific sam-
pling assumptions. We then verify these conditions in an i.i.d. regression
model and in a time series autoregression with strong mixing data. Our
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Ž .conditions are weaker than those of Opsomer and Ruppert 1997 and do not
restrict the dependence between the covariates in any way.

The paper is organized as follows. In Section 2 we show how local polyno-
mial estimators can be interpreted as projections. In Section 3 we introduce
our additive estimators in the simplest situation, that is, for the Nadaraya�
Watson-like pilot estimator, establishing the convergence of the backfitting
algorithm and the asymptotic distribution of the estimator under high level
conditions that are suitable for a range of sampling schemes. In Section 4 we
extend the analysis to local polynomials. In Section 5 we give primitive
conditions in a time series autoregression that imply the high level condi-
tions. All proofs are contained in the Appendix.

2. A projection interpretation of the local polynomials. Let Y, X
Ž 1be random variables of dimensions 1 and d, respectively, and let Y ,

1. Ž n n. Ž .X , . . . , Y , X be a random sample drawn from Y, X . We first provide a
new interpretation of local polynomial estimators of the regression function
Ž . Ž � . Ž .m x , . . . , x � E Y X � x evaluated at the vector x � x , . . . , x , based1 d 1 d

Ž .on Mammen, Marron, Turlach and Wand 1997 . This new point of view will
be useful for interpreting our estimators of the restricted additive function
Ž . Ž . Ž .m x � m � m x � ��� �m x .0 1 1 d d
The full-dimensional qth order local polynomial regression smoother which

Ž . Ž 0Ž . s�1Ž ..Twe denote by m x � m x , . . . , m x satisfiesˆ ˆ ˆ

n iX � x1 1i 0 1m x � arg min Y � � � �Ž .ˆ Ý ½ ž /0 s�1 h� , . . . , � i�1

q 2iX � xd d s�1� ��� � � 5ž /h
1Ž .

d
i� K X � x ,Ž .Ł h l l

l�1

Ž . Ž . Ž . Ž .where K � � K ��h �h with K � a univariate kernel and h � h n ah
positive bandwidth sequence, while q is the order of the polynomial approxi-

q l � d � 1mation and s � Ý is the total number of distinct partial deriva-ž /l�0 d � 1

tives up to and including the qth order. In fact, for simplicity of notation we
will concentrate on the local linear case considered in Ruppert and Wand
Ž .1994 for which q � 1 and s � d � 1. The Nadaraya�Watson case, for which
q � 0 and s � 1, is even simpler; see below. For simplicity of notation, we use
product kernels that have the same kernel and the same bandwidth in each
component. Our results can be easily extended to the case of different kernels
and bandwidths.

For the new interpretation of local linear estimators we shall think of the
Ž 1 n.T Ž .data Y � Y , . . . , Y as an element of the space of tuples of n d � 1
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functions

FF � f i , j : i � 1, . . . , n; j � 0, . . . , d : Here, f i , j are functions from � d to � .	 4Ž .
i, 0Ž . i i, jŽ .We do this by putting f x � Y and f x � 0 for j � 0. We define the

following seminorm on FF:

2in d d1 x � Xj j2 i , 0 i , j i� �2 f � � f x � f x K X � x dx .Ž . Ž . Ž . Ž .Ý Ý ŁH h j jn h j�1i�1 j�1

Consider now the following subspaces of FF:

	 i, j 4FF � f � FF: f does not depend on i for j � 0, . . . , d ,full
	 i, 0Ž . Ž . Ž .FF � f � FF : f x � g x � ��� �g x for some functions g : � �add full 1 1 d d j

� � i, jŽ . jŽ . j� j � 1, . . . , d and f x � g x for some functions g : � � � forj
4j � 1, . . . , d .

Ž . i, jŽ . jŽ .The estimate m x defines an element of FF by putting f x � m x ,ˆ ˆfull
j � 0, 1, . . . , d. It is easy to see that m is the orthogonal projection, withˆ

� �respect to �, of Y onto FF . Below we introduce our version m of the˜full
Žbackfitting estimator as the orthogonal projection of m onto FF with respectˆ add

� � .to � . For an understanding of m it will be essential that it is the˜
orthogonal projection of Y onto FF . For the definition of such norms andadd
linear spaces for higher order local polynomials and for other smoothers we

Ž .refer to Mammen, Marron, Turlach and Wand 1997 . Each local polynomial
estimator corresponds to a specific choice of inner product in a Hilbert space,
and the definition of the corresponding additive estimators is then the
projection further down on FF . In particular, for the local constant estimatoradd
Ž .Nadaraya�Watson-like smoothers one chooses

FF � f i : i � 1, . . . , n : Here, f i are functions from � d to � ,	 4Ž .
FF � f � FF : f i does not depend on i ,	 4full

FF � f � FF : f i x � g x � ��� �g xŽ . Ž . Ž .	add full 1 1 d d

for some functions g : � � � ,4j

n d1 22 i i� �f � � f x K X � x dx .Ž . Ž .Ý ŁH h j jn j�1i�1

Ž 1 n.Note that for functions m in FF i.e., m � m � ��� � m we getfull

22� �m � � m x p x dx ,Ž . Ž .ˆH
Ž . �1 n 	 d Ž i .4where p x � n Ý Ł K X � x is the kernel density estimate ofˆ i�1 j�1 h j j

the design density. In particular, in this case m is the projection of the˜
full-dimensional Nadaraya�Watson estimate onto the subspace of additive

Ž .functions with respect to the norm of the space L p . We give a slightlyˆ2
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Ž .different motivation for the projection estimate m in the next section; see 7 .˜
There we will discuss the case of local constant smoothing in detail.

3. Estimation with Nadaraya–Watson-like smoothers. In this sec-
tion we will discuss how our projection idea can be applied to define Nadar-
aya�Watson backfitting smoothers. The first subsection will give details
about the implementation for the Nadaraya�Watson smoother. In the second
subsection we will discuss asymptotic properties of our backfitting estimates.
This will be done for a more general setup than Nadaraya�Watson smooth-
ing. We will show that the backfitting algorithm converges numerically and
we will give simple expansions for the stochastic and deterministic part of the
backfitting estimate. The conditions under which these expansions hold will
be verified in Section 5 for Nadaraya�Watson smoothers in both an i.i.d. and
an autoregression setting. The expansions will imply that the asymptotic
variance of our estimate does not depend on the number of additive compo-

Žnents and that in particular, they coincide with the case of only one compo-
.nent . Furthermore, the asymptotic bias is given by a simple geometric

operation. It is the projection of the usual asymptotic bias expansion of a
full-dimensional estimate onto the space of additive functions.

3.1. A backfitting Nadaraya�Watson estimator. In this subsection we
will motivate our backfitting estimate for Nadaraya�Watson regression
smoothers with product kernels,

Ýn Łd K x � X i Y iŽ .i�1 l�1 h l l
3 m x � .Ž . Ž .ˆ n d iÝ Ł K x � XŽ .i�1 l�1 h l l

Ž .The specific choice of 3 is not so important. One can show that the discus-
sion of this subsection can be extended to smoothers that have the ratio form

r xŽ .ˆ
4 m x � ,Ž . Ž .ˆ

p xŽ .ˆ
Ž . Ž .where p x is an estimator of p x , the marginal density of X, whichˆ

n 	 1 n4depends only on XX � X , . . . , X . The assumption that the pilot estimate
Žm exists i.e., is everywhere and always finite uniformly in n with probabilityˆ

.tending to 1 will be dropped in our asymptotic analysis in the next section,
which will allow us to include the case of high dimensions d. We assume for
the most part that

5 m x � m � m x � ��� �m x ,Ž . Ž . Ž . Ž .0 1 1 d d

Ž .for some functions m � , j � 1, . . . , d and constant m , although our defini-j 0
tions make sense more generally, that is, when the regression function is not
additive, in which case the asymptotic behavior of our estimate is more
difficult to analyze. For identifiability we assume that

6 m x p x dx � 0, j � 1, . . . , d ,Ž . Ž . Ž .H j j j j j
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Ž .where p � is the marginal density of X . Denote also the marginal density ofj j
Ž . Ž . Ž . Ž .X , X by p �, � , respectively j, k � 1, . . . , d . The vector X : k � j isj k jk k
denoted by X and its Lebesgue density by p .�j �j

Recall that backfitting is motivated as solving an empirical version of the
set of equations

� �m x � E Y X � x � m � E m X X � x	 4Ž . Ž .Ž .1 1 1 1 0 2 2 1 1

�� ��� �E m X X � x ,	 4Ž .d d 1 1
. .. � .. .

� �m x � E Y X � x � m � E m X X � x	 4Ž . Ž .Ž .d d d d 0 1 1 d d

�� ��� �E m X X � x .	 4Ž .d�1 d�1 d d

With only sample information available, one replaces the population quantity
Ž � . Ž .E Y X � x by one-dimensional smoothers m � , and iterates from someˆj j j

Ž . �arbitrary starting values for m � ; see Hastie and Tibshirani 1991, pagej

� Ž . �1 n d Ž i.108 . Let p x � n Ý Ł K x � X be the multidimensional kernelˆ i�1 l�1 h l l
Ž .density estimate and let m x be the multidimensional Nadaraya�Watsonˆ

Ž .estimate as defined in 3 . We define the ‘‘empirical projection’’ estimates
	 Ž . 4m � , j � 0, . . . , d as the minimizers of the following criterion:˜ j

22� �7 m � m � m x � m � m x � ��� �m x p x dx ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ ˆp Hˆ 0 1 1 d d

Ž . Ž .where the minimization runs over all functions m x � m � Ý m x , with0 j j j

Ž . Ž . Ž . Ž .Hm x p x dx � 0, where p x � Hp x dx is the marginal of the den-ˆ ˆ ˆj j j j j j j �j

Ž . Ž .sity estimate p x . This is the one-dimensional density estimate p x �ˆ ˆj j
�1 n Ž i. Ž .n Ý K x � X . A minimizer of 7 exists if the density estimate p isˆi�1 h j j

Ž . Ž . Ž . Ž .nonnegative. Equation 7 means that m x � m � m x � ��� �m x is˜ ˜ ˜ ˜0 1 1 j d
Ž .the projection in the space L p of m onto the subspace of additive functionsˆ ˆ2

	 Ž . Ž . Ž . Ž .4m � L p : m x � m � m x � ��� �m x . This is a central point ofˆ2 0 1 1 d d
Žour thesis. For projection operators, backfitting is well understood as a

.method of alternating projections; see below . Therefore, this interpretation
will enable us to understand convergence of the backfitting algorithm and the
asymptotics of m . We remark that not every backfitting algorithm based on˜ j
iterative smoothing can be interpreted as an alternating projection method.

Ž .The solution to 7 is characterized by the following system of equations
Ž .j � 1, . . . , d :

p x p xŽ . Ž .ˆ ˆ
8 m x � m x dx � m x dx � m ,Ž . Ž . Ž . Ž .˜ ˆ ˜ ˜ÝH Hj j �j k k �j 0p x p xŽ . Ž .ˆ ˆj j j jk�j

9 0 � m x p x dx .Ž . Ž . Ž .˜ ˆH j j j j j
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Straightforward algebra gives

p x n�1Ýn K x � X i Y iŽ .ˆ Ž .i�1 h j j
10 m x dx � � m x ,Ž . Ž . Ž .ˆ ˆH �j j jp x p xŽ . Ž .ˆ ˆj j j j

Ž i. Ž .because of HŁ K x � X dx � 1, where m x is exactly the corre-ˆl� j h l l �j j j

3sponding univariate Nadaraya�Watson estimator. Furthermore, m �˜ 0
Ž . Ž . d Ž i.Hm x p x dx, and because of HŁ K x � X dx � 1, we find, as inˆ ˆ l�1 h l l �j

Ž . �1 n iHastie and Tibshirani 1991 , that m � n Ý Y , that is, that m is the˜ ˜0 i�1 0
'sample mean. Therefore, m is a n -consistent estimate of the population˜ 0

mean and the randomness from this estimation is of smaller order and can be
effectively ignored. Note also that

11 m � m x p x dx for j � 1, . . . , d.Ž . Ž . Ž .˜ ˆ ˆH0 j j j j j

Ž .We therefore define a backfitting estimator m x , j � 1, . . . , d, as a˜ j j
� �solution to the system of equations j � 1, . . . , d

p xŽ .ˆ
m x � m x � m x dx � m ,Ž . Ž . Ž .˜ ˆ ˜ ˜Ý Hj j j j k k �j 0p xŽ .ˆj jk�j

0 � m x p x dx .Ž . Ž .˜ ˆH j j j j j

Ž .with m defined by 11 . Up to now we have assumed that multivariate˜ 0
estimates of the density and of the regression function exist for all x. This

Žassumption is not reasonable for large dimensions d or at least such
.estimates can perform very poorly . Furthermore, this assumption is not

Ž .necessary. Note that 8 can be rewritten as

p x , xŽ .ˆj , k j k
12 m x � m x � m x dx � m ,Ž . Ž . Ž . Ž .˜ ˆ ˜ ˜Ý Hj j j j k k k 0p xŽ .ˆj jk�j

Ž . �1 n Ž i. Ž i .where p x , x � n Ý K x � X K x � X is the two-dimensionalˆj, k j k i�1 h j j h k k

Ž .marginal of the full-dimensional kernel density estimate p x . In this equa-ˆ
tion only one- and two-dimensional marginals of p are used.ˆ

Up to now we have implicitly assumed that the support of X is unbounded
or at least that the density approaches zero at the boundary suitably fast. We
now consider a generalization of the method which takes care of the boundary
effects that are present when the densities have compact support. We do not

Ž . � Ž . Ž . �require that 11 holds i.e., Hm x p x dx may depend on j , nor that pˆ ˆ ˆj j j j j j

be a probability density, and we allow that p is not the marginal density ofˆj
p ; that is, it may not hold for all j � k thatˆj, k

13 p x � p x , x dx .Ž . Ž . Ž .ˆ ˆHj j j , k j k k

For instance, this may be the case for kernel density estimates of a density
with compact support. For details see Section 5. For this more general setting



E. MAMMEN, O. LINTON AND J. NIELSEN1450

Ž . Ž .we want to find now an appropriate modification of 12 . We rewrite 12 as

p x , xŽ .˜jk j k
14 m x � m x � Hm x dx � m ,Ž . Ž . Ž . Ž .˜ ˆ ˜ ˜Ýj j j j k k k 0, jp xŽ .ˆj jk�j

Ž . Ž .where m is chosen such that Hm x p x dx � 0 for all j. Under the˜ ˜ ˆ0, j j j j j j

Ž . Ž . Ž . Ž . Ž .assumption of 11 , 13 and Hp x dx � 1, this gives 12 . In general, 14ˆj j j
can be rewritten as

m x � m x � mŽ . Ž .˜ ˆ ˜j j j j 0, j

p x , xŽ .ˆjk j k� m x � p x dx ,Ž . Ž .˜ ˆÝ H k k k , � j�� k kp xŽ .ˆj jk�j

15Ž .

where for k � j,
�1

16 p x � p x , x dx p x dx ,Ž . Ž . Ž . Ž .ˆ ˆ ˆH Hk , � j�� k jk j k j j j j

Hm x p x dxŽ . Ž .ˆ ˆj j j j j
17 m � .Ž . ˜ 0, j Hp x dxŽ .ˆj j j

Ž .In the next section we will discuss estimates m that are defined by 15˜ j
along with their asymptotic properties. In practice, our backfitting algorithm
works as follows. One starts with an arbitrary initial guess m�0 � for m ; for˜ ˜j j

example m�0 � � m or m�0 � is the marginal integration estimator of Linton˜ ˆ ˜j j j

Ž .and Nielsen 1995 . In the jth step of the r th iteration cycle one puts

p x , xŽ .ˆjk j k� r � � r �m x � m x � m x � p x dxŽ . Ž . Ž . Ž .˜ ˆ ˜ ˆÝ Hj j j j k k k , � j�� k kp xŽ .ˆj jk�j

p x , xŽ .ˆjk j k� r�1�� m x � p x dx � m ,Ž . Ž .˜ ˆ ˜Ý H k k k , � j�� k k 0, jp xŽ .ˆj jk	j

18Ž .

and the process is iterated until a desired convergence criterion is satisfied.
The integrals are computed numerically; see Section 4 below for further
comments.

3.2. Asymptotics for the Nadaraya�Watson-like estimator. We now con-
Ž .sider estimates m that are defined by 15 , where m , p and p are some˜ ˆ ˆ ˆj j jk j

given estimates. The next theorem gives conditions under which, with proba-
Ž .bility tending to 1, there exists a solution m of 15 that is unique and that˜ j

can be calculated by backfitting. Furthermore, the backfitting algorithm
converges with geometric rate. Our assumptions, given below, are ‘‘high-level’’

�and only refer to properties of m , p and p e.g., we do not require that pˆ ˆ ˆj jk j
�be the underlying density of X or that m , p , and p are kernel estimatesˆ ˆ ˆj jk j

�these properties can be verified for a range of smoothers under quite
general heterogeneous and dependent sampling schemes, as we show in
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Section 5. In the sequel, all integrals are taken over the support of the
relevant variables. We use the convention that 0�0 � 0.

ASSUMPTIONS. We suppose that there exists a density function p on � d

with marginals

p x � p x dxŽ . Ž .Hj j �j

and

p x , x � p x dx for j � k .Ž . Ž .Hj , k j k �Ž j , k .

Ž .A1 For all j � k, it holds that

p2 x , xŽ .j , k j k
dx dx � �.H j kp x p xŽ . Ž .k k j j

Ž .A2 For all j � k, it holds that
2

p x � p xŽ . Ž .ˆj j j j
p x dx � o 1 ,Ž . Ž .H j j j Pp xŽ .j j

2
p x , x p x , xŽ . Ž .ˆj , k j k j , k j k� p x p x dx dx � o 1 ,Ž . Ž . Ž .H k k j j j k Pp x p x p x p xŽ . Ž . Ž . Ž .k k j j k k j j

2
p x , x p x , xŽ . Ž .ˆj , k j k j , k j k� p x p x dx dx � o 1 .Ž . Ž . Ž .H k k j j j k Pp x p x p x p xŽ . Ž . Ž . Ž .ˆk k j j k k j j

Furthermore, p vanishes outside the support of p , p vanishes outsideˆ ˆj j j, k
Ž . Ž .the support of p and p x , x � p x , x .ˆ ˆj, k j, k j k k , j k j

Ž .A3 There exists a finite constant C such that with probability tending to 1
for all j

m2 x p x dx � C.Ž . Ž .ˆH j j j j j

Ž .A4 For some finite intervals S 	 � that are contained in the support of pj j
� �1 � j � d we suppose that there exists a finite constant C such that
with probability tending to 1 for all j � k,

p2 x , xŽ .ˆj , k j k
sup dx � C.H j2p x p xŽ . Ž .ˆx �S k k j jk k

For the statement of our next assumption we suppose that the one-dimen-
sional smoothers m can be decomposed asˆ j

m � m A � mB .ˆ ˆ ˆj j j
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For s � A and s � B, we define ms as the solution of the following equation:˜ j

ms x � ms xŽ . Ž .˜ ˆj j j j

p x , xŽ .ˆjk j ks� m x � p x dxŽ . Ž .˜ ˆÝ H k k k , � j�� k kp xŽ .ˆj jk�j
19Ž .

� ms ,˜ 0, j

s sŽ . Ž . Ž . Awhere m � Hm x p x dx �Hp x dx . Existence and uniqueness of m˜ ˆ ˆ ˆ ˜0, j j j j j j j j j j
B Ž .and m is stated in the next theorem using the following assumption . Note˜ j

s Ž . sthat m is defined as m in 15 with m replaced by m . We get that˜ ˜ ˆ ˆj j j j
m � m A � mB.˜ ˜ ˜j j j

Ž .A5 There exists a finite constant C such that with probability tending to 1
for all j,

2Am x p x dx � CŽ . Ž .ˆH j j j j j

and

2Bm x p x dx � C.Ž . Ž .ˆH j j j j j

In the applications of our results we will put m A as the stochastic part andˆ j
B Žm as the expectation part of m or in case of a random design, as theˆ ˆj j

.conditional expectation of m given the design. In particular, in the case ofˆ j
Ž i i. i Ž i. iNadaraya�Watson smoothing of i.i.d. tuples X , Y with Y � m X � �

i AŽ . �1 n Ž i. i Ž .where � is mean zero, we will put m x � n Ý K x � X � �p xˆ ˆj j i�1 h j j j j
BŽ . �1 n Ž i. Ž i. Ž . Ž .and m x � n Ý K x � X m X �p x . Note that in this caseˆ ˆj j i�1 h j j j j

A B Žconditions on m and m are easy to verify because only one-dimensionalˆ ˆj j
. A Bsmoothing is applied whereas conditions on m and m are harder to treat˜ ˜j j

because these variables are defined only implicitly. The next assumption
states a condition on m A that can be used to treat the stochastic part m A.ˆ ˜j j

Ž . AA6 We suppose that for a sequence � � 0, the first component m satis-ˆn j
fies for j � k,

p x , xŽ .ˆj , k j k A20 sup m x dx � o � ,Ž . Ž . Ž .ˆH j j j P np xŽ .ˆx �S k kk k

p x , xŽ .ˆj , k j k A21 m x dx � o � .Ž . Ž . Ž .ˆH j j j P np xŽ .ˆk k 2

� � Ž .where ��� denotes the norm in the space L p . For simplicity of2 2 k
notation the index k is suppressed in the notation. The sets S havek

Ž .been introduced in A4 .

For the expectation term mB we suppose in the following assumption that˜ j
it stabilizes asymptotically around a nonrandom term. Below we will give
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assumptions on mB that are easier to check and that will imply the conditionˆ j
on mB.˜ j

Ž . Ž . Ž .A7 We suppose that there exist deterministic functions � � such thatn, j
the term mB satisfies˜ j

Bsup m x � � x � o � ,Ž . Ž . Ž .˜ j j n , j j P n
x �Sj j

Ž .where the sets S are introduced in assumption A4 .j

These conditions, which we discuss further below, are all straightforward
Ž .to verify, except A7 . They are weaker than those made by Opsomer and

Ž .Ruppert 1997 ; in particular, we do not restrict the dependence between the
covariates.

The following result is crucial in establishing the asymptotic properties of
the estimates.

Ž .THEOREM 1 Convergence of backfitting . Suppose that conditions A1�A3
Ž .hold. Then, with probability tending to 1, there exists a solution m of 15˜ j

that is unique. Furthermore, there exist constants 0 � 	 � 1 and c 	 0 such
that, with probability tending to 1, the following inequality holds:

2� r �m x � m x p x dxŽ . Ž . Ž .˜ ˜H j j j j j j j

d
22 r �0�� c	 1 � m x p x dx .Ž . Ž .˜	 4Ý H j j j j jž /j�1

22Ž .

�0 �Ž . �0 �Ž .Here, the functions m x , . . . , m x are the starting values of the back-˜ ˜1 1 d d
� r �Ž . � r �Ž .fitting algorithm. For r 	 0 the functions m x , . . . , m x are defined by˜ ˜1 1 d d

Ž .18 .
Furthermore, for s � A and s � B under the additional assumption of

Ž . s Ž .A5 , with probability tending to 1 there exists a solution m of 19 that is˜ j
unique.

Our next theorem states that the stochastic part of the backfitting
estimate is easy to understand. It coincides with the stochastic part of a
one-dimensional smooth. Therefore, for an understanding of the asymptotic
properties of the backfitting estimate it remains to study its asymptotic bias.
This will be done after the theorem under additional assumptions.

Ž . Ž .THEOREM 2. Suppose that conditions A1 � A6 hold for a sequence �n
Ž .and intervals S 1 � j � n . Then it holds thatj

A A Asup m x � m x � m � o � .Ž . Ž . Ž .˜ ˆ ˜j j j j 0, j P n
x �Sj j



E. MAMMEN, O. LINTON AND J. NIELSEN1454

Ž .If in addition A7 holds, then one gets
A A23 sup m x � m x � m � � x � o � .Ž . Ž . Ž . Ž . Ž .˜ ˆ ˜j j j j 0, j n , j j P n

x �Sj j

Typically the asymptotic stochastic behavior of m A is easy to understandˆ j
because it is a one-dimensional linear smoother. So if � is small enough,n
Theorem 2 gives the asymptotics of m A. We will discuss this below in detail.˜ j

We come now to the study of the expectation term mB. The asymptotic˜ j
Ž .expectation � x can be calculated by a projection under the followingn, j j

assumptions:

Ž .A8 Suppose that for j � k,

p x , x p x , xŽ . Ž .ˆj , k j k j , k j k
24 sup � p x dx � o 1 .Ž . Ž . Ž .H k k k Pp x p x p x p xŽ . Ž . Ž . Ž .ˆ ˆx �S j j k k j j k kj j

Ž . Ž . Ž .A9 There exist deterministic functions 
 x , . . . , 
 x , constantsn, 1 1 n, d d
Ž . Ž .
 	 , . . . , 	 and a function � x not depending on n , such thatn, 0 n, 1 n, d

2

 x p x dx � �,Ž . Ž .H n , j j j j j

2
� x p x dx � �,Ž . Ž .H

sup � x � �,Ž .
x �S , . . . , x �S1 1 d d


 u p u du � 	 � o � ,Ž . Ž . Ž .ˆH n , j j n , j P n

B25 sup m x � � � � x � o � ,Ž . Ž . Ž . Ž .ˆ ˆ ˆj j n , 0 n , j j P n
x �Sj j

2B 226 m x � � � � x p x dx � o � ,Ž . Ž . Ž . Ž .ˆ ˆ ˆ Ž .H j j n , 0 n , j j j j j P n

for a random variable � and whereˆn, 0

p x , xŽ .ˆj , k j k
� x � 
 � 
 x � 
 x dxŽ . Ž . Ž .ˆ Ý Hn , j j n , 0 n , j j n , k k kp xŽ .ˆj jk�j

p xŽ .
� � � x dx .Ž .Hn �jp xŽ .j j

We will discuss these assumptions after the following theorem.

Ž . Ž . Ž . Ž .THEOREM 3. Suppose that conditions A1 � A6 , A8 , A9 hold. Define a
� Ž . Ž . �constant � and functions � on � with H� x p x dx � 0 by0 j j j j j j

� , � , . . . , � � arg min � x � � � � xŽ . Ž . Ž .H0 1 d 0 1 1
� , . . . , �0 d27Ž .

2� ��� �� x p x dx .Ž . Ž .d d
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Then
Bsup m x � � x � o � ,Ž . Ž . Ž .˜ j j n , j j P n

x �Sj j

where

� x � 
 x � 	 � � � x ;Ž . Ž . Ž .n , j j n , j j n , j n j j

Ž . Ž .that is, A7 holds with this choice of � x .n, j j

Ž .Theorems 2 and 3 give the asymptotic behavior of m x in terms of � ,˜ j j n
AŽ . Ž .m x , 
 and � x , which quantities can be analyzed by standardˆ j j n, j j j

Ž . Ž . Ž . Ž .techniques. In Section 5 we will verify conditions A1 � A6 , A8 , A9 for
Nadaraya�Watson smoothing. In this case, as discussed in the last subsec-

Ž .tion, m x is defined asˆ j j

n
i i28 m x � K X � x Y �p xŽ . Ž . Ž .ˆ ˆŽ .Ýj j h j j j j

i�1

�and p and p are kernel density estimates of the densities of X andˆ ˆj jk j

Ž . � Ž . Ž . Ž . Ž .X , X , respectively . We will show that conditions A1 � A6 , A8 , A9j k

Ž . Ž .hold under the assumptions B1 � B7 , stated there; see Theorem 4. This will
be done with h of order n�1�5 and kernels K with boundary corrections. It

2 Ž .will turn out that the conditions hold with � � h and where 
 x isn n, j j

Ž . Ž .equal to m x plus a correction term O h at the boundary and wherej j P

d � 1

 � 229 � x � m x log p x � m x u K u du.Ž . Ž . Ž . Ž . Ž . Ž .Ý Hj j j j� x 2jj�1

Ž . 2 Ž .We remark that under strong conditions that we do not apply here h � x is
the asymptotic bias of a full-dimensional Nadaraya�Watson estimate. So
Theorem 3 shows that the bias terms of the backfitting estimates are given by
projections of the ‘‘theoretical’’ bias of a full-dimensional Nadaraya�Watson
estimate.

Ž .In the discussion of Section 5 we will assume that the additive model 5
holds. The discussion of the expectation part mB becomes very complicated˜ j

when the regression function is not additive. Then if the full-dimensional
BŽ .kernel density estimate p exists, one would expect that in first-order m xˆ ˜ 1 1

BŽ . Ž .� ��� �m x is equivalent to the L p projection of the regression function˜ ˆd d 2
onto the space of additive functions. Because of the slow convergence of p toˆ

Ž .p we conjecture that this differ from the L p projection by terms that are2
Ž �2�5.larger than O n .P

4. Estimation with local polynomials. For simplicity of notation we
consider only local linear smoothing. All arguments and theoretical results
given for this special case can be generalized to local polynomials of higher
degree.
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� Ž . �Define the matrices of dimension n � d � 1 and n � n, respectively

X 1 � x X 1 � x1 1 d d
1 . . .

h h
. . . .. . . .X x � ,Ž . . . . .

n nX � x X � x30Ž . 1 1 d d
 01 ���
h h
d d1

1 nK x � diag K X � x , . . . , K X � x .Ž . Ž .Ž .Ł Łh l l h l lž /n l�1 l�1

Ž .With these quantities the local linear estimate m x is defined asˆ

�1T T �1ˆ ˆ31 m x � X x K x X x X x K x Y � V x R x ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .	 4ˆ

1 n T ˆ T ˆ TŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .where Y � Y , . . . , Y , V x � X x K x X x and R x � X x K x Y.
Backfitting estimators based on local polynomials can be written in the

ˆ ˆ T ˆ�1 ˆŽ . Ž . Ž . Ž . Ž . Ž .form of 7 by choosing p x � V x � V x V x V x , whereˆ 0, 0 0, �0 �0, �0 0, �0

ˆ ˆV x V xŽ . Ž .0, 0 0, �0 TV̂ x � � X x K x X x ,Ž . Ž . Ž . Ž .ˆ ˆž /V x V xŽ . Ž .�0 , 0 �0, �0

ˆ �1 n d i ˆ ˆŽ . Ž . Ž . Ž .with the scalar V x � n Ý Ł K X � x , and V x , V x0, 0 i�1 l�1 h l l �0, 0 �0, �0
defined appropriately. This approach has two disadvantages. First, it may
work only in low dimensions, since for the asymptotics, existence of the

ˆ�1 ˆŽ . Ž .matrix V x and convergence of V x is required under our as-�0, �0 �0, �0
Ž .sumptions and this may hold only for low-dimensional argument x . Second,

the corresponding backfitting algorithm does not consist of iterative local
polynomial smoothing.

We now discuss another approach based on local polynomials that works in
higher dimensions and that is based on iterative local polynomial smoothing.

ˆŽ .We motivate this approach for the case in which V x does exist, but we will
see that the definition of the backfitting estimate is based on only one- and

ˆŽ .two-dimensional ‘‘marginals’’ of V x . So its asymptotic treatment requires
only consistency of these marginals, and the asymptotics work also for higher
dimensions. This is similar to the discussion in the last section where
consistency has been needed only for one- and two-dimensional marginals of
the kernel density estimate p.̂

Ž 0 d . j dFor functions f � f , . . . , f with components f : � � � and d � 1 by
Ž . Ž . Ž .d � 1 positive semi- definite matrix function M � , define the semi- norm

T� �f � f x M x f x dx .Ž . Ž . Ž .M H
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There is a one-to-one correspondence between functions f and functions in
ˆ � �FF . Furthermore, taking M � V we get that � is simply the seminormMfull

� � Ž . Ž 0Ž . dŽ ..Tinduced by � �. In Section 2 our version m x � m x , . . . , m x of˜ ˜ ˜
Žthe backfitting estimate was defined as the projection of the function in

. � Ž .� � �FF corresponding to m see 1 with respect to � � onto the spaceˆfull
ˆŽ .FF . Therefore, m coincides with the L V projection, with respect to the˜add 2

Ž . � �semi- norm f , of m onto the subspace MM , whereˆ ˆV add

T0 d 0�MM � u x � u x , . . . , u x � MM u xŽ . Ž . Ž . Ž .Ž .½add

� u � u x � ��� �u x , ul x � w xŽ . Ž . Ž . Ž .0 1 1 d d l l

for l � 1, . . . , d , where u , . . . , u are functions � � �1 d

ˆ jwith HV x u x dx � 0 for j � 1, . . . , d , where uŽ . Ž .0, 0 j j j j 0

is a constant and where w : l � 1, . . . , d are functions � � � ,5l

ˆ j ˆŽ . Ž . Ž . Ž .where for each j the d � 1 � d � 1 matrix V x � HV x dx andj �j

ˆ j 
 ˆ jŽ . � � Ž .
where V x 0 � l, l � d denote the elements of V x . Note that thel, l j j
ˆ jestimate V coincides with the marginal kernel density estimate p andˆ0, 0 j

ˆ j Ž . Ž .that therefore the norming HV x u x dx � 0 makes sense. This norm-0, 0 j j j j

Žing makes the definition of the additive components u unique. Clearly, thej
.definition of the set MM would not change if we omit this norming. Theadd
Žclass MM contains functions that are additive in the first component foradd

. Ž .l � 0 and where the other components for l � 1, . . . , d depend only on a
one-dimensional argument. A function f in MM is specified by a constant fadd 0
and 2 d functions � � �. Because f l, l � 1, . . . , d, depend only on one argu-

lŽ . lŽ .ment, in abuse of notation we write also f x instead of f x . Note thatl
there is a one-to-one correspondence between elements of MM and FF .add add

We now discuss how m is calculated by backfitting. Note that m is defined˜ ˜
� �as the minimizer of m � m . Recall that this is equivalent to minimizingˆˆ V

� � 2Y � m � over FF . We discuss now minimization of this quantity withadd
jŽ . Ž .respect to the jth components m x and m � m x . Define for each j,j 0 j j

2in d d1 x � Xj j2 i , 0 i , j i� �f x � f x � f x K X � x dxŽ . Ž . Ž . Ž .Ý Ý Łj Hj h j j �jn h j�1i�1 j�1

and note the obvious fact that

� � 2 � � 2f � � f x dx , j � 1, . . . , d.Ž .H j j j

Therefore, because such an integral is minimized by minimizing the inte-
� � 2Ž .grand, our problem is solved by minimizing Y � m x , for fixed x , withj j j

jŽ . Ž .respect to m x and m � m x , for j � 1, . . . , d. After some standardj 0 j j
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calculations, this leads to the following first order conditions:

ˆ j j ˆ jm x V x � m x V xŽ . Ž . Ž . Ž .˜ ˜j j 0, 0 j j j , 0 j

n1
i i jˆ� K X � x Y � m V xŽ .˜Ž .Ý h j j 0 0, 0 jn i�1

ˆ l , j� m x V x , x dxŽ . Ž .˜ÝH l l 0, 0 l j l
l�j

32Ž .

l ˆ l , j� m x V x , x dx ,Ž . Ž .˜ÝH l l , 0 l j l
l�j

ˆ j j ˆ jm x V x � m x V xŽ . Ž . Ž . Ž .˜ ˜j j j , 0 j j j , j j

n i1 X � xj j i i jˆ� K X � x Y � m V xŽ .˜Ž .Ý h j j 0 J , 0 jn hi�1

ˆ l , j� m x V x , x dxŽ . Ž .˜ÝH l l 0, j l j l
l�j

33Ž .

l ˆ l , j� m x V x , x dx .Ž . Ž .˜ÝH l l , j l j l
l�j

ˆHere we have used one- and two-dimensional marginals of the matrix V,

ˆ r ˆ34 V x � V x dx ,Ž . Ž . Ž .Hr �r

ˆ r , s ˆ35 V x , x � V x dx .Ž . Ž . Ž .Hr s �Žr , s.

ˆ r ˆ r , sŽ . Ž .The elements of these matrices are denoted by V x and V x , x withp, q r p, q r s

p, q � 0, . . . , d. Together with the norming condition

ˆ j36 m x V x dx � 0,Ž . Ž . Ž .˜H j j 0, 0 j j

Ž . Ž . j � l �32 and 33 define m , m and m for given Y and m , m : l � j .˜ ˜ ˜ ˜ ˜0 j l

Ž . Ž . Ž .Equations 32 , 33 and 36 can be rewritten as

37 m x � m x � m x ,Ž . Ž . Ž . Ž .˜ ˆ ˇj j j j j j

38 m j x � m j x � m j x ,Ž . Ž . Ž . Ž .˜ ˆ ˇj j j

Ž . Ž . jŽ . jŽ .where m x , m x , m x and m x are defined byˆ ˇ ˆ ˇj j j j j j

n1
j j j i iˆ ˆ39 m x V x � m x V x � K X � x Y ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ Ž .Ýj j 0, 0 j j j , 0 j h j jn i�1
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n i1 X � xj jj j j i iˆ ˆ40 m x V x � m x V x � K X � x Y ,Ž . Ž . Ž . Ž . Ž .ˆ ˆ Ž .Ýj j j , 0 j j j , j j h j jn hi�1

ˆ j j ˆ jm x V x � m x V xŽ . Ž . Ž . Ž .ˇ ˇj j 0, 0 j j j , 0 j

ˆ j ˆ l , j� �m V x � m x V x , x dxŽ . Ž . Ž .˜ ˜ÝH0 0, 0 j l l 0, 0 l j l
l�j41Ž .

l ˆ l , j� m x V x , x dx ,Ž . Ž .˜ÝH l l , 0 l j l
l�j

ˆ j j ˆ jm x V x � m x V xŽ . Ž . Ž . Ž .ˇ ˇj j j , 0 j j j , j j

ˆ j ˆ l , j� �m V x � m x V x , x dxŽ . Ž . Ž .˜ ˜ÝH0 j , 0 j l l 0, j l j l
l�j42Ž .

l ˆ l , j� m x V x , x dx ,Ž . Ž .˜ÝH l l , j l j l
l�j

ˆ j ˆ j43 m x V x dx � � m x V x dx .Ž . Ž . Ž . Ž . Ž .ˇ ˆH Hj j 0, 0 j j j j 0, 0 j j

Ž j.Note that m , m is the one-dimensional local linear fit of the observationsˆ ˆj
Y i onto X i.j

Ž . Ž . j � l �Again, 37 � 43 define m , m and m for given Y and m , m : l � j . In˜ ˜ ˜ ˜ ˜0 j l
the jth step of every cycle of the backfitting algorithm an update of m , m˜ ˜0 j

j Ž . Ž .and m will be calculated by solving 37 � 43 . In the next subsection we will˜
discuss asymptotics for the backfitting estimate in a more general setup. In

Ž l .particular, there we will not assume that m , m is a one-dimensional localˆ ˆl
ˆ l ˆ l, l


linear fit nor that V and V are motivated by local linear smoothing.
Furthermore, we will not make any assumptions on the stochastic nature of

Ž l . jthe sample. For arbitrary choices of m , m , we will define m and m byˆ ˆ ˜ ˜l j

ˆ jm � m x V xŽ . Ž .	 4˜ ˆj j j 0, 0 j
M̂ x � �mŽ . ˜j j 0, jj j jˆ
 0 
 0	 4m � m x V xŽ . Ž .˜ ˆ j j , 0 j

44Ž .
m xŽ .˜ l lˆ� S x , x dx .Ž .Ý H l , j l j llž /m xŽ .˜ ll�j

ˆ j45 m x V x dx � 0,Ž . Ž . Ž .˜H j j 0, 0 j j

where

ˆ j ˆ jV x V xŽ . Ž .0, 0 j j , 0 jˆ46 M x � ,Ž . Ž .j j j jˆ ˆ
 0V x V xŽ . Ž .j , 0 j j , j j
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ˆ l , j ˆ l , jV x , x V x , xŽ . Ž .0, 0 l j l , 0 l jˆ47 S x , x � .Ž . Ž .l , j l j l , j l , jˆ ˆ
 0V x , x V x , xŽ . Ž .j , 0 l j l , j l j

Note that again as for Nadaraya�Watson smoothing we allow m to˜ 0, j
depend on n. In particular, this may be the case if it does not hold that

ˆ l , j ˆ l48 V x , x dx � V xŽ . Ž . Ž .H r , s l j j r , s l

	 4 	 4for r � 0, l and s � 0, j .
jŽ . jŽ . 
 Ž . Ž .Not m x , but h m x is an estimate of the derivative m x of m x .˜ ˜j j j j j j

� �The reason is that in our definition of the seminorm � we have the linear
i, jŽ .Ž i. i, jŽ .Ž i. Ž .term f x x � X �h and not the term f x x � X ; see 2 and seej j j j

Ž . Ž .also the definition 30 of the matrix X x . Typically, estimates of derivatives
Ž 3.�1 Ž .�1have variance of order nh , compared to the order nh for estimates of

the functions itself. For this reason, one can show that, because of our
�1 jŽ .norming by the factor h , m x has variance that is of the same asymp-˜ j

Ž . jŽ .totic order as the variance of m x . The same holds for m x . This is the˜ ˆj j j
�1 � � Ž .reason why we have introduced the factor h in � and X x .

Let us finish this section by some computational remarks.

1. The backfitting algorithm runs now with the following iteration step
Ž .a � 0, 1, . . . :

ˆ m xŽ .ˆf xŽ . j jj j �1ˆ� � M xŽ .j jj� a�1� , j m xž /Ž .
 0 ˆm xŽ .˜ jj
49Ž .

m� a� xŽ .˜ l lˆ� S x , x dx .Ž .Ý H l , j l j l� a� , lž /m xŽ .˜l�j l

� a�1� ˆ ˆ ˆ j50 m x � f x � f u V u du .Ž . Ž . Ž . Ž . Ž .˜ Hj j j j j j 0, 0 j j

Ž .2. For the case in which 48 holds, in a faster implementation, the norming
Ž . � a�1�Ž .of m done in 50 could be omitted, that is, one could put m x �˜ ˜j j j

Ž . Ž .f x . After the final cycle all functions m could be replaced by m x �˜ ˜j j j j j
ˆ jŽ . Ž .Hm x V x dx and m defined appropriately. It is easy to see that˜ ˜j j 0, 0 j j 0

this algorithm does the same. If one is interested only in the estimation of
Ž . Ž .the sum m � m x � ��� �m x , the final norming could be omitted0 1 1 d d

or replaced by another norming.
3. A possible initialization of backfitting is given by putting m � 0, m � m˜ ˜ ˆ0 l l

and ml � ml for l � 1, . . . , d.˜ ˆ
4. Note that the estimates m and ml have to be calculated only at theˆ ˆl

beginning and do not have to be updated in each backfitting iteration.
	 l l5. For an implementation of backfitting, all estimates i.e., m , m , m , m ,ˆ ˆ ˇ ˇl l

l ˆ l ˆ l, l
.m , m , V and V have to be calculated on a grid and the integrals in˜ ˜l
Ž . Ž .41 and 42 have to be replaced by averages. It should be emphasized
that the grid need not coincide with the set of design points. In particular,
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for large data sets it may not be necessary or desirable that it contain the
same number of points.

4.1. Asymptotics for local polynomials. We discuss now asymptotics for
the backfitting local polynomials estimate. As for Nadaraya�Watson smooth-
ing, this will be done in a general setup. We assume that some estimates m ,ˆ l

l ˆ l l, l
 
 l� � �m , V and V l, l � 1, . . . , d are given and that m , m and m l �ˆ ˜ ˜ ˜0, l l
� Ž . Ž .1, . . . , d are defined by 44 � 47 . In particular, we will not assume that

l ˆ l ˆ l, l
Ž .m , m is a one-dimensional local linear fit and that V and V areˆ ˆl
motivated by local linear smoothing. Furthermore, we will not make any
assumptions on the stochastic nature of the sample.

ASSUMPTIONS. We suppose that there exists a density function p on � d

with marginals

p x � p x dxŽ . Ž .Hj j �j

and

p x , x � p x dx for j � kŽ . Ž .Hj , k j k �Ž j , k .

Ž . Ž . Ž .and a positive definite d � 1 � d � 1 deterministic matrix W with ele-
ˆ ˆŽ . Ž . Ž .ments W : 0 � r, s, � d. We define M x and S x , x as in 46 andr , s j j l, j l j

Ž .47 and we put
W W0, 0 j , 0

M x � p x ,Ž . Ž .j j j jW Wž /j , 0 j , j

W W0, 0 l , 0
S x , x � p x , x .Ž . Ž .l , j l j l , j l jW Wž /j , 0 l , j

We suppose that W � 1.0, 0

Ž 
.A1 For all j � k, it holds that

p2 x , xŽ .j , k j k
dx dx � �.H j kp x p xŽ . Ž .k k j j

Ž 
.A2 For all j � k, it holds that
2jV̂ x � p xŽ . Ž .0, 0 j j j

p x dx � o 1 ,Ž . Ž .H j j j Pp xŽ .j j

2j , kV̂ x , x p x , xŽ . Ž .0, 0 j k j , k j k� p x p x dx dx � o 1 ,Ž . Ž . Ž .H k k j j j k Pp x p x p x p xŽ . Ž . Ž . Ž .k k j j k k j j

2�1 �1 �1ˆ ˆM x S x , x � M x S x , x p x p x dx dxŽ . Ž . Ž . Ž . Ž . Ž .H j j k , j k j j j k , j k j k k j j j kr , s

� o 1Ž .P
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� � Ž . � �for r, s � 1, 2. Here ��� denotes the r, s element of a matrix ��� .r , s
ˆ ˆFurthermore, M vanishes outside the support of p , S vanishesj j j, k

ˆ T ˆŽ . Ž .outside the support of p and S x , x � S x , x .j, k j, k j k k , j k j

Ž 
.A3 There exists a constant C such that with probability tending to 1 for
all j,

2m x p x dx � CŽ . Ž .ˆH j j j j j

and
2jm x p x dx � C.Ž . Ž .ˆH j j j j

Ž 
.A4 For some finite intervals S 	 � that are contained in the support of pj j
� �1 � j � d we suppose that there exists a finite constant C such that
with probability tending to 1 for all j � k,

�2 �1ˆ ˆ ˆsup trace S x , x M x S x , x p x dx � C.Ž . Ž . Ž . Ž .H k , j k j j j k , j k j k k k
x �Sj j

We decompose the smoothers m and m j as m � m A � mB and m j �ˆ ˆ ˆ ˆ ˆ ˆj j j j

m j, A � m j, B. For s � A and s � B we define ms , ms and m j, s as theˆ ˆ ˜ ˜ ˜0, j j
solution of the following equations:

ms � ms xŽ .	 4˜ ˆj j j
M̂ xŽ .j j j , s j , s
 0	 4m � m xŽ .˜ ˆ j

ˆ j sV xŽ . m xŽ .˜0, 0 j l ls ˆ� �m � S x , dx ,Ž .˜ ÝH0, j l , j l j ll , sj ž /ˆ m xŽ .˜
 0V xŽ . ll�jj , 0 j

51Ž .

s ˆ j52 m x V x dx � 0.Ž . Ž . Ž .˜H j j 0, 0 j j

Existence and uniqueness of m A, mB, m j, A and m j, B is stated in the next˜ ˜ ˜ ˜j j

Ž s j, s. Ž j. Ž . Ž .theorem. Note that m , m is defined as m , m in 44 and 45 with˜ ˜ ˜ ˜j j
Ž j. Ž s j, s.m , m replaced by m , m .ˆ ˆ ˆ ˆj j

Ž 
.A5 There exists a constant C such that with probability tending to 1 for
all j,

2sm x p x dx � C , s � A , BŽ . Ž .ˆH j j j j j

and

2j , sm x p x dx � C , s � A , B.Ž . Ž .ˆH j j j j

Ž A j, A.In the applications of our results we will put m , m as the stochasticˆ ˆj

Ž B j, B . Ž j. �part and m , m as the expectation part of m , m or in case of aˆ ˆ ˆ ˆj j
Ž j. �random design, as the conditional expectation of m , m given the design .ˆ ˆj
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Ž i i.In particular, in the case of local linear smoothing of i.i.d. tuples X , Y with
i Ž i. i i Ž A j, A.Y � m X � � where � is mean zero, m , m is the local linear fit toˆ ˆj

Ž i i. Ž B j, B . Ž i Ž i..X , � and m , m is the local linear fit to X , m X .ˆ ˆj j j

Ž 
.A6 We suppose that for a sequence � we haven

Am xŽ .ˆ j j�1ˆ ˆsup M x S x , x dx � o � ,Ž . Ž . Ž .H k k k , j k j j P nj , Až /m xŽ .ˆx �S jk k 2

Am xŽ .ˆ j j�1ˆ ˆM x S x , x dx � o � ,Ž . Ž . Ž .H k k k , j k j j P nj , Až /m xŽ .ˆ j M , 2k

� � 2where ��� denotes the L norm in � and where for functions g:2 2
2 � � 2 Ž .T Ž . Ž .� � � we define g � Hg u M u g u du. The sets S haveM , 2 k kk

Ž 
.been introduced in A4 .

For the expectation term mB we suppose in the following assumption that˜ j
it stabilizes asymptotically around a nonrandom term. Below we will give

Ž B j, B .assumptions on m , m that are easier to check and that will imply the˜ ˜j
condition on mB.˜ j

Ž 
. Ž .A7 We suppose that there exist deterministic functions � � such thatn, j

Bsup m x � � x ,Ž . Ž .˜ j j n , j j
x �Sj j

Ž 
.where the sets S have been introduced in assumption A4 .j

We remark again that these conditions are all straightforward to verify,

 ˆŽ . Ž .except perhaps A7 . Note that we shall not require V x to converge in

Ž .probability to Wp x , because this would be affected by the curse of dimen-
sionality, a necessary condition would be that nhd � � for kernel smoothing,
which rules out the one-dimensional convergence rate when d 	 4.

We state now results that are similar to the ones for Nadaraya�Watson
smoothing in Section 3.


 Ž . Ž 
.THEOREM 1 Convergence of backfitting . Suppose that conditions A1 �
Ž 
.A3 hold. Then, with probability tending to 1, there exists a solution
� l � Ž . Ž .m , m , m : l � 1, . . . , d of 44 � 47 that is unique. Furthermore, there˜ ˜ ˜0, l l
exist constants 0 � 	 � 1 and c 	 0 such that, with probability tending to 1,
the following inequalities hold:

2� r � 2 rm x � m x p x dx � c	 
 ,Ž . Ž . Ž .˜ ˜H j j j j j j j

2j , � r � j 2 rm x � m x p x dx � c	 
 ,Ž . Ž . Ž .˜ ˜H j j j j j
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where

d
2 2�0� l , �0�
 � 1 � m x p x dx � m x p x dx .Ž . Ž . Ž . Ž .˜ ˜Ý H Hl l l l l l l l l

l�1

Here, for r � 0 the functions m�0 � , m�0 � and ml, �0� are the starting values of˜ ˜ ˜0, l l
the backfitting algorithm. For r 	 0 the functions m� r � and ml, � r � are defined˜ ˜l

Ž . Ž .by 49 and 50 .
Ž 
.Furthermore, provided A5 holds also, for s � A and s � B, with proba-

� s s j, s �bility tending to 1, there exists a solution m m and m : j � 1, . . . , d of˜ ˜ ˜0 j
Ž . Ž .51 � 52 that is unique.

Just as Theorem 2 stated for Nadaraya�Watson smoothing, the stochastic
part of the backfitting estimate coincides with a one-dimensional local linear

Ž .fit. This is stated in the following theorem. Under conditions analogous to 59
we get the following result.


 Ž 
. Ž 
.THEOREM 2 . Suppose that conditions A1 � A6 hold for a sequence �n
Ž .and intervals S 1 � j � n . Then it holds thatj

A A Asup m x � m x � m � o � .Ž . Ž . Ž .˜ ˆ ˜j j j j 0, j P n
x �Sj j

Ž 
.In addition, if A7 holds, one gets

A A53 sup m x � m x � m � � x � o � .Ž . Ž . Ž . Ž . Ž .˜ ˆ ˜j j j j 0, j n , j j P n
x �Sj j

Ž .We show now how the asymptotic expectation � x can be calculated.n, j j
This can be done by a more direct argument as for Nadaraya�Watson
smoothing. We use the following assumptions:

Ž 
.A8 Suppose that for all j � k,

�1 �1ˆ ˆsup M x S x , x � M x S x , x p x dxŽ . Ž . Ž . Ž . Ž .H j j k , j k j j j k , j k j k k kr , s
x �Sj j

� o 1 .Ž .P

for r, s � 1, 2.
Ž 
. Ž . Ž . 1Ž .A9 There exist deterministic functions 
 x , . . . , 
 x , 
 x , . . . ,n, 1 1 n, d d n 1

dŽ .
 x and constants 
 , 	 , . . . , 	 such thatn d n, 0 n, 1 n, d

2

 x p x dx � �,Ž . Ž .H n , j j j j j

2j
 x p x dx � �,Ž . Ž .H n j j j j
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ˆ j
 u V u du � 	 � o � ,Ž . Ž . Ž .H n , j 0, 0 n , j P n

Bsup m x � � � � x � o � ,Ž . Ž . Ž .ˆ ˆ ˆj j n , 0 n , j j P n
x �Sj j

2B 2m x � � � � x p x dx � o � ,Ž . Ž . Ž .ˆ ˆ ˆ Ž .H j j n , 0 n , j j j j j P n

j , B 0 jsup m x � � � � x � o � ,Ž . Ž . Ž .ˆ ˆ ˆj n n j P n
x �Sj j

2j , B j 2m x � � x p x dx � o � ,Ž . Ž . Ž .ˆ ˆ Ž .H j n j j j j P n

for random variables � and whereˆn, 0

� x 
 � 
 xŽ . Ž .ˆn , j j n , 0 n , j j
�j j� x 
 xž / ž /Ž . Ž .ˆn j n j


 xŽ .n , k k�1ˆ ˆ� M x S x , x dx .Ž . Ž .Ý H j j k , j k j kkž /
 xŽ .n kk�j


 Ž 
. Ž 
. Ž 
 . Ž 
.THEOREM 3 . Suppose that conditions A1 � A6 A8 , A9 hold. Then

Bsup m x � � x � o � ,Ž . Ž . Ž .˜ j j n , j j P n
x �Sj j

j , B jsup m x � � x � o � ,Ž . Ž . Ž .˜ j n j P n
x �Sj j

Ž . Ž . jŽ . jŽ . Ž 
.where � x � 
 x � 	 and � x � 
 x . In particular, A7n, j j n, j j n, j n j n j

Ž .holds with this choice of � x .n, j j

From Theorems 2
 and 3
 we get the asymptotic behavior of the backfit-
Ž . Ž .ting estimates defined in 44 � 47 . It turns out that for the local linear esti-

2 Ž . Ž .mator itself, the conditions hold with � � h , 
 x � m x �n n, j j j j
1 � 
2 2 jŽ . Ž . Ž . Ž .h m x Hu K u du and 
 x � hm x . We remark that under strongj j n j j j2

Ž . d Ž . Ž .conditions that we do not apply here Ý 
 x � m x is the asymptoticj�1 n, j j
bias of a full-dimensional local linear estimate.

5. Verification of conditions. We now provide sufficient conditions for
Ž . Ž . Ž . Ž .A1 � A6 , A8 , A9 to hold in a time series setting for the Nadaraya�Wat-

	 i i4�son smoother. We suppose that Y , X is a jointly stationary process.i�1
i Ž i�1 i�d .
This includes autoregression, where X � Y , . . . , Y , and regular

cross-sectional regression where X i is of dimensions d and the joint process
is i.i.d., as special cases. Let FF b be the �-algebra of events generated by thea

	 i i 4 	 i i4random variables Y , X ; a � j � b . The stationary processes Y , X are
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� Ž .�called strongly mixing Rosenblatt 1956 if

sup P A 
 B � P A P B � 
 k � 0 as k � �.Ž . Ž . Ž . Ž .
0 �A�FF , B�FF�� k

We assume that the additive model holds, that is,
�� �54 E Y X � x � m � m x � ��� �m xŽ . Ž . Ž .0 1 1 d d

Ž� � d .for x in a compact set 0, 1 , say . For identifiability we suppose that
Ž . Ž � �. iEm X 1 X � 0, 1 � 0. Let N be the number of points X that lie inj j j

� � d0, 1 . We define
n

d�1 i i i� �55 m x � N 1 X � 0, 1 K x , X Y �p x ,Ž . Ž . Ž .ˆ ˆŽ . Ž .Ýj j h j j j j
i�1

n
d�1 i i� �56 p x � N 1 X � 0, 1 K x , X ,Ž . Ž .ˆ Ž . Ž .Ýj j h j j

i�1
n

d�1 i i i� �57 p x , x � N 1 X � 0, 1 K x , X K x , X ,Ž . Ž .ˆ Ž .Ž . Ž .Ýj , k j k h j j h k k
i�1

where now
K u � vŽ .h� �58 K u , v � 1 u , v � 0, 1Ž . Ž . Ž .h 1H K w � v dwŽ .0 h

Ž . �1 Ž �1 .with, again, K u � h K h u . We will suppose that the kernel K hash
� � Ž . Ž .compact support �C , C , see B1 . For this reason we get that K u, v �1 1 h

Ž . � � � � Ž .K u � v for v � C , h, 1 � C h or for u � 2C h, 1 � 2C h . So K u, vh 1 1 1 1 h
Ž .differs from K u � v only on the boundary. This boundary modification ofh

Ž .the kernel will be needed for the verification of assumption A9 . All other
Ž .assumptions can be verified for the unmodified kernel K u � v . Assumptionh

Ž .A9 was needed to get an asymptotic expansion for the bias of m ; see˜ j
Ž . 1 Ž .Theorem 3. The norming 58 gives that H K u, v du � 1. Therefore we have0 h

1 Ž . Ž . 1 Ž .H p x , x dx � p x and H p x dx � 1. Because of these propertiesˆ ˆ ˆ0 j, k j k k j j 0 j j j
Ž .m is defined by 12 .˜ j

For simplicity of notation, again we assume that the kernels and the
bandwidths do not depend on j.

Ž . Ž� � .B1 The kernel K is bounded, has compact support �C , C , say , is1 1
symmetric about zero and is Lipschitz continuous; that is, there exists a

� Ž . Ž . � � �positive finite constant C such that K u � K v � C u � v .2 2

Ž . i Ž i i�l .B2 The density q of X and the densities q of X , X , l � 1, . . . , are0 0, l
uniformly bounded. Furthermore, q is bounded away from zero on0
� �0, 1 .

Ž . Ž � �� . 2Ž . � Ž . � �B3 For some � 	 2, E Y � �. Let � x � var Y � m X X � x .j j j j
Ž .B4 The second partial derivatives of the function m exist and are Lipschitz

continuous. The first partial derivatives of q exist and are continuous.0
Ž . Ž � .B5 The conditional densities f x y of X given Y andX � Y

Ž 0 l � 0 l . Ž i i�l . Ž i i�l .i i� l i i� lf x , x y , y of X , X given Y , Y , l � 1, . . . , ex-X , X �Y , Y
ist and are bounded from above.
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Ž . 	 i i4 � a	 Ž .41�2��B6 The process Y , X is strongly mixing with Ý i 
 i � � fori�1
some 2 � � � � and a 	 1 � 2�� .

Ž . � Ž . � Ž .B7 The strong mixing coefficients satisfy Ý � j; c � � and Ý � j; c �j�1 j�1

Ž . Ž Ž . Ž ..Ž 2 c .1�4 	 Ž .4� for c � 1, 2, where � n; c � nL n �r n nT �h log n 
 r n1 1 n 1
Ž . Ž c .1�2 Ž . Ž 2 c�2 .c�2with r n � nh �T log n and L n � nT �h log n with1 n 1 n

	 Ž .1�� 41�� Ž .T � n log n log log n for some 1 	 � 	 0, while � n; c �n
Ž Ž . Ž ..Ž c .1�4 	 Ž .4 Ž . Ž c .1�2nL n �r n n�h log n 
 r n with r n � nh �log n and2 2 2 2

Ž . Ž c�2 .c�2L n � n�h log n .2

These conditions are slight modifications of assumptions used in Masry
Ž .1996a, b . We will use results of these papers to achieve the main results of
this section. We conjecture that a direct proof works under weaker conditions.

Ž i i. Ž . Ž .When Y , X are i.i.d., we can dispense with B5 � B7 , and replace
Ž . Ž .B2 � B4 by:

Ž 
. � � dB2 The d-dimensional vector X has compact support 0, 1 and its density
� � dq is bounded away from zero and infinity on 0, 1 .0

Ž 
. Ž � �� . 2Ž . � Ž . � �B3 For some � 	 5�2, E Y � �. Let � x � var Y � m X X � x .j j j j
Ž 
.B4 The second partial derivatives of the function m exist and are continu-

ous. The first partial derivatives of q exist and are continuous.0

Ž 
. � � Ž 2�5.Condition B3 ensures that sup Y � o n . The following theo-1� i� n i P
Ž i i.rem could also be stated for the case of a stationary sequence Y , X where

X i has compact support.

Ž .THEOREM 4. Suppose that the model 54 applies and that conditions
Ž . Ž . Ž . Ž 
. Ž 
. Ž 
 .B1 � B7 hold, or B1 , B2 , B3 and B4 hold in the i.i.d. case, and that
Nadaraya�Watson backfitting smoothing is used; that is, m , p and p areˆ ˆ ˆj j j, k

Ž . Ž . Ž .defined according to 55 � 57 and m is defined by 12 . Suppose additionally˜ j
1�5 Ž � � d .that n h � c for a constant c with n � EN � nP X � 0, 1 . Then, for0 h h 0

Ž . Ž . Ž . Ž . Ž .closed subsets S , . . . , S of 0, 1 conditions A1 � A6 , A8 , A9 are satis-1 d
2 Ž . Ž . Ž .fied with � � h , with � as defined by 29 , with 
 x � m x �n n, j j j j


 Ž . Ž .Ž . � Ž . ��1 Ž . Ž . Žm x HK x , u u � x du HK x , v dh , 	 � 0, p x � q x 1 x �j j h j j h j n, j 0

� � d . Ž � � D . AŽ . �1 n Ž i.Ž i0, 1 �P X � 0, 1 , and with m x � N Ý K x , X Y �ˆ j j i�1 h j j
� i � i �. Ž . Ž .E Y X �p x . In particular, the uniform expansion 23 holds and theˆj j

Ž .following convergence holds in distribution for any x , . . . , x � 0, 1 ,1 d

m x � m xŽ . Ž .˜ 1 1 1 1
.2�5 .n0 .

m x � m xŽ . Ž .˜ d d d d

v x 0 ��� 0Ž .1 12c � xŽ . . .h 1 1 0 . .. . ..� N , ,. .. . . 0. .2c � xŽ .
 0h d d 0 ��� 0 v xŽ .d d
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Ž . Ž . �1 2Ž . Ž .where � is defined by 27 and where v x � c c � x �p x , j � 1,j j j h K j j j j
Ž .2. . . , d with c � HK u du. Consequently,K

d d
2�5 2n m x � m x � N c � x , v x .Ž . Ž . Ž . Ž .˜ Ý Ý0 h j j j jž /j�1 j�1

It is illuminating to relate the estimate m to the corresponding infeasible˜ j
estimate m that uses the knowledge of the other components m with l � j.¨ j l

Ž .Specifically, let m x be the one-dimensional kernel smooth of the unob-¨ j j
i i Ž i . iserved data Y� � Y � m � Ý m X on X , thus0 k � j k k j

Ýn K X i , x Y�iŽ .i�1 h j j
59 m x � , j � 1, . . . , d.Ž . Ž .¨ j j n iÝ K X , xŽ .i�1 h j j

� Ž .Under standard regularity conditions see, e.g., Hardle 1991 for the i.i.d.¨
�case ,

2�5 ¨60 n m x � m x � N b x , v x , j � 1, . . . , d ,Ž . Ž . Ž . Ž . Ž .	 4¨ ¨½ 50 j j j j j j j j

¨ 2 
 
 � 2Ž . 	 Ž . Ž . Ž . Ž . Ž .4 Ž . Ž .where b x � c m x p x �p x � 1�2 m x Hu K u du and v x¨j j h j j j j j j j j j j

Ž . Ž .� v x . Define also the centered version of m x ,¨j j j j

n1 dc i i � �61 m x � m x � m X 1 X � 0, 1 ,Ž . Ž . Ž .¨ ¨ ¨ Ž .Ž .Ýj j j j j jN i�1

¨c ¨Ž . Ž . Ž .which has the same asymptotic variance as m x but bias b x � b x �¨ j j j j
¨ cŽ . Ž .Hb x p x dx . Because in the construction of m knowledge of the other¨j j j j j

components is used, this estimate gives a target that we may not expect to
beat by using m . We see that m and the theoretical target estimate mc˜ ˜ ¨j j j
have the same asymptotic variance, whereas they differ in their asymptotic
bias. We will see below that backfitting estimates based on local linear will
have the same asymptotic bias and variance as their target estimate. The

Ž .basic reason is that the function � x is not additive whereas the correspond-
Ž .ing function in the local linear case is. Recall that � x corresponds to the
Ž .asymptotic bias of the full-dimensional estimate m x and that it is wellˆ

known that for the Nadaraya�Watson estimate the asymptotic bias depends
on the design density p whereas for the local linear estimate it does not.

We next state the theorem for the local linear estimator. We define now the
Ž . jŽ .marginal estimates m x and m x byˆ ˆj j j

nm xŽ .ˆ 1j j diˆ � �M x � 1 X � 0, 1Ž . Ž .Ýj j j Nm xž /Ž .ˆ j i�1
62Ž .

1
i i�K x , X Y ,�1 iŽ .h j j h X � xž /j j
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Ž . Ž .where K u, v is defined as in 58 and whereh

ˆ j ˆ jV x V xŽ . Ž .0, 0 j j , 0 j
M̂ x �Ž .j j j jˆ ˆ
 0V x V xŽ . Ž .j , 0 j j, j j

n1 di � �� 1 X � 0, 1Ž .ÝN i�1
63Ž .

�1 i1 h X � xj j
i�K x , X .Ž .h j j 2�1 i �2 i
 0h X � x h X � xj j j j

Furthermore we put

ˆ l , j ˆ l , jV x , x V x , xŽ . Ž .0, 0 l j l , 0 l j
Ŝ x , x �Ž .l , j l j l , j l , jˆ ˆ
 0V x , x V x , xŽ . Ž .j , 0 l j l , j l j

n1 di i i� �� 1 X � 0, 1 K x , X K x , XŽ .Ž . Ž .Ý h j j h l lN i�1
64Ž .

�1 i1 h X � xl l
� .�1 i �2 i iž /h X � x h X � x X � xj j j j l l

We get now our result for this version of the backfitting local linear
estimate. Now, the asymptotic bias is explicitly given and its formula does not
require a projection step.


 Ž .THEOREM 4 . Suppose that the model 54 applies and that conditions
Ž . Ž . Ž . Ž 
. Ž 
 . Ž 
 .B1 � B7 hold, or B1 , B2 , B3 and B4 hold in the i.i.d. case, and

j ˆŽ . Ž . Ž .that local linear backfitting smoothing is used, that is, m x , m x , M xˆ ˆj j j j j
ˆ jŽ . Ž .and S are defined according to 62 � 64 and m , m and m are defined˜ ˜ ˜l, j 0, j j

Ž . Ž . 1�5by 44 , 45 . Suppose additionally that n h � c for a constant c with0 h h
Ž � � d . Ž .n � EN � nP X � 0, 1 . Then, for closed subsets S , . . . , S of 0, 1 , con-0 1 d

Ž 
. Ž 
. Ž 
 . Ž 
.ditions A1 � A6 , A8 , A9 are satisfied with

� � h2 ,n

1 0
W � ,20 u K u duŽ .H
 0

A nm xŽ .ˆ 1j j d�1 iˆ � �� M x 1 X � 0, 1Ž . Ž .Ýj jj , A Nž /m xŽ .ˆ i�1j

1
i i i i�� �� K x , X Y � E Y X ,Ž .�1 iŽ .h j j h X � xž /j j
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h2
� 2
 x � m x � m x u K u du,Ž . Ž . Ž . Ž .Hn , j j j j j j2


 j x � hm
 x ,Ž . Ž .n j j j

h2Hu2K u duŽ .
�	 � � � m x p x dx ,Ž . Ž .Hn , j n , j j j j j j2

� � m x K x , u p u du dx .Ž . Ž . Ž .Hn , j j j h j j j

Ž .In particular, the uniform expansion 53 holds and the following convergence
Ž .holds in distribution for any x , . . . , x � 0, 1 ,1 d

m x � m x � �Ž . Ž .˜ 1 1 1 1 n , 12�5n0 m x � m x � �Ž . Ž .˜ d d d d n , d

v x 0 ��� 0Ž .1 12c � xŽ . . .h 1 1 0 . .. . ..� N , ,. .. . . 0. .2c � xŽ .
 0H d d 0 ��� 0 v xŽ .d d

where

Hu2K u duŽ .
� �� x � m x � m x p x dxŽ . Ž . Ž . Ž .Hj j j j j j j j j½ 52

Ž . �1 2Ž . Ž . Ž .2and where v x � c c � x �p x , j � 1, . . . , d with c � HK u du.j j h K j j j j K
Furthermore,

d d
2�5 2n m x � m x � N c � x , v x .Ž . Ž . Ž . Ž .˜ Ý Ý0 h j j j jž /j�1 j�1

¨cŽ .In this case, the bias functions coincide with the biases b x of thej j
cŽ .centered oracle estimate m x for j � 1, . . . , d. So, in this case, the asymp-¨ j j

totic bias and the asymptotic variance are identical to the bias and variance
Ž .of the centered oracle estimator based also on local linear estimation . That

means our estimate achieves the same first-order asymptotics as if the other
components were known. In particular, our estimate is design adaptive. This

Ž .is in contrast to Opsomer and Ruppert 1997 who propose a backfitting
estimate, based on the local linear smoother, that has design dependent bias.

2Ž .Finally, the variance � x can be consistently estimated from the residu-j j
i Ž i.als � � Y � m X , i � 1, . . . , n, which, along with the usual estimates of˜ ˜i

Ž . Ž . d Ž .p x , enables consistent estimation of v x and Ý v x .j j j j j�1 j j

APPENDIX

The proofs will make use of Lemmas 1�4 which we give below. Before we
come to this, let us collect some facts about iterative projections. Define the
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following spaces of additive functions:

HH � m � L p : m x � m x � ��� �m x p a.s.	 Ž . Ž . Ž . Ž . Ž .2 1 1 d d

for some functions m � L p , . . . , m � L p ,4Ž . Ž .1 2 1 d 2 d

HH 0 � m � HH : m x � m x � ��� �m x p a.s. ,Ž . Ž . Ž . Ž .1 1 d d½
m x p x dx � 0 ,Ž . Ž .H 5

HH 0, n � m � HH : m x � m x � ��� �m x p a.s. ,Ž . Ž . Ž . Ž .1 1 d d½
m x p x dx � 0 for j � 1, . . . , d ,Ž . Ž .ˆH j j j j j 5

HH � m � HH 0 : m x � m x p a.s. for a function m � L p ,Ž . Ž . Ž . Ž .	 4j j j j 2 j

HH n � m � HH 0, n : m x � m x p a.s. for a function m � L p .Ž . Ž . Ž . Ž .	 4j j j j 2 j

� � 2 2Ž . Ž .The norm in the space HH is denoted by m � Hm x p x dx for m � HH. For2
Ž . Ž . Ž . � � 2 2Ž . Ž .m � HH we get with m x � m x p a.s. that m � Hm x p x dx �2j j j

2Ž . Ž .Hm x p x dx . Here and in the following for simplicity of notation wej j j j j

Ž n. didentify functions m � HH or in HH that map � into � with functions m :j j j j
Ž . Ž .� � � by putting m x � m x .j j j

The projection of an element of HH onto HH is denoted by Ł , that is,j j
Ž . � Ž . � � � Ž .�Ł m x � E m X X � x � E m X . The operator � � I � Ł gives thej j j j j

projection onto the linear space

HH �� m � HH : m x � x p x dx � 0 for all � � HHŽ . Ž . Ž .Hj j j½ 5
� m � HH : m x p x dx � m x p x dx p a.s. .Ž . Ž . Ž . Ž . Ž .H H�j j½ 5

Ž . Ž . Ž .For m x � m x � ��� �m x � HH we get1 1 d d

�� m x � m x � E m X X � x � E m XŽ . Ž . Ž . Ž .j j j

� m x � ��� �m x � m� x � m xŽ . Ž . Ž . Ž .1 1 j�1 j�1 j j j�1 j�165Ž .
� ��� �m x ,Ž .d d

where

p x , xŽ .jk j k�66 m x � � m x dx � m u p u du .Ž . Ž . Ž . Ž . Ž .Ý ÝH Hj j k k k k k k k kp xŽ .j jk�j k

For m � HH the additive components m , . . . , m are only unique up to an1 d
additive constant. Note, however, that the value of � m does not depend onj
the special choice of m , . . . , m .1 d
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0, n Ž . Ž Ž . nFor functions m � HH with m x � m x � ��� �m x , m � HH we1 1 d d j j
ˆ � Ž . Ž .define the operator � as � but with m x on the right-hand side of 65j j j j

replaced by

p x , xŽ .ˆjk j k�67 m x � � m x � p x dx ,Ž . Ž . Ž . Ž .ˆ ˆÝ Hj j k k k , � j�� k kp xŽ .ˆj jk�j

Ž .where the function p has been defined in 16 . Note that for functionsˆk , � j��
Ž .m � HH we get � m x � 0, whilej j j j

p x , uŽ .k j k
68 � m x � m x � m u du.Ž . Ž . Ž . Ž .Hk j j j j p xŽ .k k

ˆ ˆ ˆPut T � � ��� � and T � � ��� � . We will see below that in our setupd 1 d 1
ˆthe backfitting algorithm is based on iterative applications of T. A central

tool for understanding backfitting will be given by the next lemma, which
describes iterative applications of T. For linear operators S: HH � HH we define

� � � � � �	 4S � sup Sf : f � HH , f � 1 ,2 2

� � � � 0 � �S � sup Sf : f � HH , f � 1 ,	 40 2 2

� � � � 0, n � �S � sup Sf : f � HH , f � 1 .	 40, n 2 2

� � Ž .LEMMA 1 Norm of the operator T . Suppose that condition A1 holds.
Ž .Then T : HH � L p is a positive self-adjoint operator with operator norm2

� � 0T � 1. Hence, for every m � HH we get0

� r � � � r � �69 T m � T m .Ž . 2 0 2

0 Ž .Furthermore, for every m � HH there exist m � HH 1 � j � d such thatj j
Ž . Ž . Ž . Ž .m u � m u � ��� �m u p. a.s. and for some constant c 	 0,1 1 d d

� � � � � �70 m � c max m , . . . , m .	 4Ž . 2 2 21 d

Ž . Ž . � � 2PROOF. We start by proving 69 . It is known that 69 holds with T �0
d 2Ž . Ž .1 � Ł sin � where cos � � � HH , HH � ��� �HH and where for two sub-j�1 j j j j�1 d

Ž .spaces L and L , the quantity � L , L is the cosine of the minimal angle1 2 1 2
Ž . 	 Ž . Ž . Ž .between L and L ; that is, � L , L � sup Hh x h x p x dx: h � L 
1 2 1 2 1 2 j j

Ž .� � � Ž .4L 
 L , h � 1 j � 1, 2 . This result was shown in Smith, Solomon21 2 j
Ž . Ž .and Wagner 1977 . For a discussion, see Deutsch 1985 and Bickel, Klaassen,

�Ž . �Ritov and Wellner 1993 , Appendix A.4 . We will show now that for 1 � j � d
Ž .the subspaces MM � HH � ��� �HH are closed subsets of L p . This impliesj 1 j 2

Ž . �Ž .that � HH , MM � 1 for j � 1, . . . , d � 1; see again Deutsch 1985 , Lemmaj�1 j

� �Ž .2.5 and Bickel, Klaassen, Ritov and Wellner 1993 , Appendix A.4, Proposi-
�tion 2 . To prove that MM is closed we will use the following two facts. For twoj

Ž .closed subspaces L and L of L p it holds that L � L is closed if and1 2 2 1 2
only if there exists a constant c 	 0 such that for all m � L � L there exist1 2

Ž . Ž . Ž . Ž .m � L and m � L with m u � m u � m u p a.s. and1 1 2 2 1 1 2 2

� � � � � �71 m � c max m , m .Ž . 2 2 21 2
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Furthermore, L � L is closed if the projection of L onto L is compact. For1 2 2 1
the proof of these two statements, see Bickel, Klaassen, Ritov and Wellner
�Ž . �1993 , Appendix A.4, Proposition 2 . Suppose now that it has already been
proved for j � j � 1 that MM is closed and that we want to show that MM iso j jo

�closed. As mentioned above, for this claim it suffices to show that Ł MM isj j �1o o

Ž .compact. We remark first that 71 implies that for every m � MM therej �1o

Ž . Ž . Ž . Ž . Žexist m � HH j � j � 1 such that m u � m u � ��� �m u pj j o 1 1 j �1 j �1o o

.a.s. and with a constant c 	 0,

� � � � � �72 m � c max m , . . . , m .Ž . 2 2 21 j �1o

We will prove that

j �1o2
22 � �73 m � const. R x , x p x p x dx dx mŽ . Ž . Ž . Ž .Ł Ý H 2j , j j j j j j j j jo o 0 0 0

j j�1o 2

with
p x , xŽ .j , j j jo oR x , x � .Ž .j , j j jo o p x p xŽ . Ž .j j j jo o

Ž . � Ž .Inequality 73 implies compactness of Ł MM . To see this one uses A1j j �1o o

and argues as in the standard proofs for compactness of Hilbert�Schmidt
Ž .operators; see, for example, Example 3.2.4 in Balakrishnan 1981 .

Ž . Ž .It remains to show 73 . This follows from 72 with applications of the
Cauchy�Schwarz inequality.

Ž . Ž .Equation 70 follows as 72 . �

ˆThe next lemma extends this result to the stochastic operator T.

ˆŽ . Ž . Ž .LEMMA 2 Norm of the operator T . Suppose that conditions A1 � A2
hold. Then

ˆ� �74 � � � � o 1 ,Ž . Ž .0, nj j P

ˆ� �75 T � T � o 1 .Ž . Ž .0, n P

� �Choose 	 with T � 	 � 1. Then, with probability tending to 1,0

ˆ� �76 T � 	 .Ž . 0, n

Furthermore, for some constant c 	 0 with probability tending to 1 it holds
that for every m � HH 0, n

� � � � � �77 m � c max m , . . . , m ,	 4Ž . 2 2 21 d

n Ž . Ž . Ž . Ž . Ž .where m � HH 1 � j � d with m u � m u � ��� �m u p a.s. .j j 1 1 d d

0, n Ž . Ž . Ž .PROOF. For a function m � HH we get m x � m x � ��� �m x1 1 d d
with functions m � HH n. We remark first that the distance between m� andj j j
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� � Ž . Ž .� Ž . Ž .m see 66 and 67 can be bounded with Hm x p x dx � 0 and withˆ ˆj k k k k k
the help of the Cauchy�Schwarz inequality as follows:

p x , x p x , xŽ . Ž .ˆjk j k jk j k� �� �m � m � m x � dxŽ .ˆ Ý2 Hj j k k kp x p xŽ . Ž .ˆj j j jk�j 2

� m x p x dxŽ . Ž .ˆÝ H k k k , � j�� k k
k�j

� m x p x dxŽ . Ž .Ý H k k k k k
k

p x , x p x , xŽ . Ž .ˆjk j k jk j k� m x � p x dxŽ . Ž .Ý H k k k k kp x p x p x p xŽ . Ž . Ž . Ž .ˆj j k k j j k kk�j 2

p x � p xŽ . Ž .ˆ ˆk k k , � j�� k� m x p x dxŽ . Ž .Ý H k k k k kp xŽ .k kk�j

p x � p xŽ . Ž .ˆk k k k� m x p x dxŽ . Ž .Ý H k k k k kp xŽ .k kk

� � � �� m U � R � m Q ,Ž .Ý Ý2 2k jk jk k k
k�j k

with

2
p x , x p x , xŽ . Ž .ˆj , k j k j, k j k2U � � p x p x dx dx ,Ž . Ž .Hjk k k j j j kp x p x p x p xŽ . Ž . Ž . Ž .ˆk k j j k k j j

2p x � p xŽ . Ž .ˆ ˆk k k , � j�� k2R � p x dx ,Ž .Hjk k k kp xŽ .k k

2p x � p xŽ . Ž .ˆk k k k2Q � p x dx .Ž .Hk k k kp xŽ .k k

� � � � Ž .With T � max U � R � max S , this and 70 imply with a constantj k � j jk jk k k
Ž .C not depending on m ,

� � � � � �m � m � C m T .ˆ 2 2j j j

Ž . Ž . Ž .Now because of A2 , U � o 1 and Q � o 1 . Furthermore,jk P k P

2p x � p xŽ . Ž .ˆk k k , � j�� k
p x dxŽ .H k k kp xŽ .k k

2
p x , x p x , xŽ . Ž .ˆjk j k jk j k� � p x dx p x dxŽ . Ž .H H j j j k k k½ 5p x p x p x p xŽ . Ž . Ž . Ž .j j k k k k j j
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2
p x , x p x , xŽ . Ž .ˆjk j k jk j k� � p x p x dx dxŽ . Ž .H k k j j j kp x p x p x p xŽ . Ž . Ž . Ž .j j k k k k j j

� o 1 ;Ž .P

Ž . Ž . Ž . Ž . Ž .therefore R � o 1 and T � o 1 . This shows 74 and 75 . Claim 76jk P j P
Ž .follows from 75 and

� � � �78 T � T � o 1 .Ž . Ž .0, n 0 P

Ž .It remains to show 78 . This follows immediately from

� �79 inf sup f � g � o 1 ,Ž . Ž .2 P
0, n 0f�HH � �g�HH , g �12

� �80 inf sup f � g � o 1 .Ž . Ž .2 P
0 0, nf�HH � �g�HH , g �12

Ž . Ž . nFor the proof of 79 and 80 note, for example, that for m � HH one hasj j

2 2

m x p x dx � m x p x � p x dxŽ . Ž . Ž . Ž . Ž .ˆH Hj j j j j j j j j j j

22� �� m p � p �pˆ2j j j j 2

� � 2� m o 1Ž .2j P

Ž . Ž . Ž .because of A2 . Similarly, one shows 77 ; see also 70 . �

Our next lemma builds on Lemma 2 to establish a stochastic expansion for
Ž . Ž . Ž . � �m x � m x � ��� �m x in terms of m 1 � j � d .˜ ˜ ˜ ˆ1 1 d d j

� � Ž . Ž .LEMMA 3 Stochastic expansion of m . Suppose that conditions A1 � A3˜
hold. Then there exist constants 0 � 	 � 1 and 0 � C, C
 � � such that with
probability tending to 1, the following stochastic expansion holds for all s � 1:

s
r � s �ˆm x � T � x � R x ,Ž . Ž . Ž .˜ ˆÝ

r�0

where

ˆ ˆ ˆ� x � � ��� � m x � m � ��� �� m x � mŽ . Ž . Ž .ˆ ˆ ˜ ˆ ˜d 2 1 0, 1 d d�1 0, d�1

� m x � mŽ .ˆ ˜d d 0, d

� s �Ž . � s �Ž . � s �Ž . 0, nand where R x � R x � ��� �R x is a function in HH with1 1 d d

� � s � � s81 R � C	 .Ž . 2j

Ž .Under the additional assumption of A4 it holds that


� s � s82 sup R x � C	 .Ž . Ž .j j
x �Sj j
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Ž .PROOF. We remark first that 15 can be rewritten as

ˆ83 m x � � m x � m x � m .Ž . Ž . Ž . Ž .˜ ˜ ˆ ˜j j j 0, j

Iterative applications of this equation for j � 1, . . . , d gives

ˆ84 m x � Tm x � � x .Ž . Ž . Ž . Ž .˜ ˜ ˆ
Ž .Iterative applications of 84 gives

�
rˆm x � T � x .Ž . Ž .˜ ˆÝ

r�0

ˆ� �The operator norm T is smaller than 	 , with probability tending to 1, for0, n

	 � 1 large enough. This was shown in the last lemma and it shows that the
infinite series expansion in the last equation is well defined. Furthermore,
this can be used to prove that for C 	 0 large enough, with probability1

� � s � � s Ž . Ž .tending to 1, R � C 	 . This implies claim 81 because of 77 .2 1
Ž . Ž .Assume now A4 . For the proof of 82 note that for C 	 0 large enough2

� �with probability tending to 1 for all functions g in HH with g � 1, it holds2j
for k � j that

p x , xŽ .ˆjk j k
85 sup g x dx � C ,Ž . Ž .H j j 2p xŽ .ˆx �S k kk k

p x , xŽ .ˆjk j k
86 g x dx � C .Ž . Ž .H j j 2p xŽ .ˆk k 2

Ž . Ž .Inequality 85 follows from assumption A4 by application of the Cauchy�
Schwarz inequality:

p x , xŽ .ˆjk j k
sup g x dxŽ .H j jp xŽ .ˆx �S k kk k

p x , xŽ .ˆjk j k� sup p x g x dxŽ . Ž .H j j j jp x p xŽ . Ž .ˆx �S k k j jk k

1�22p x , xŽ .ˆjk j k 2� sup dx g x p x dx .Ž . Ž .H Hj j j j j2p x p xŽ . Ž .ˆx �S k k j jk k

Ž .For the proof of 86 one applies again the Cauchy�Schwarz inequality and

p2 x , xŽ .ˆjk j k
87 p x p x dx dx � CŽ . Ž . Ž .H k k j j j k 32 2p x p xŽ . Ž .ˆk k j j

Ž . Ž .for a constant C with probability tending to 1 . Claim 87 follows from3
Ž . Ž .assumptions A1 and A2 .
Ž . Ž .Equations 85 and 86 imply that for C 	 0 large enough with probabil-4

� �ity tending to 1 for all functions h in HH with h � 1 it holds for 1 � j � d
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that

ˆ88 sup Th x � C ,Ž . Ž . 4
x�S

	 4where S � x: x � S . Now, because ofj j

�
� s � r � s�1�ˆ ˆR x � T � x � TR x ,Ž . Ž . Ž .ˆÝ

r�s�1

Ž .claim 82 now follows from

� s � � s�1�� �sup R x � C RŽ . 4
x�S

� C C 	 s�1 . �4 1

Ž .LEMMA 4 Behavior of the stochastic component of m . Suppose that˜
Ž . Ž .A1 � A6 hold. Then we have that

A A A89 sup m x � m x � m � o � .Ž . Ž . Ž . Ž .˜ ˆ ˜j j j j 0, j P n
x �Sj j

PROOF. We will show Lemma 4 for j � 1. Proceeding as in the last lemma
we get that, with probability tending to 1,

�
A r Aˆm x � T � x ,Ž . Ž .˜ ˆÝ

r�0

where

A A A A Aˆ ˆ ˆ� x � � ��� � m � m x � ��� �� m � m xŽ . Ž . Ž .ˆ ˆ ˜ ˆ ˜d 2 1 0, 1 d d�1 0, d�1

� m A x � m A ,Ž .ˆ ˜d d 0, d

m A x � m A x � ��� �m A x .Ž . Ž . Ž .˜ ˜ ˜1 1 d d

We argue now that the statement of the lemma follows from
�

r Aˆ90 sup T � x � o � ,Ž . Ž . Ž .ˆÝ P n
x�S r�1

	 4 Ž .where as above S � x: x � S . For seeing this, note that 90 implies thatj j

A A91 sup m x � � x � o � .Ž . Ž . Ž . Ž .˜ ˆ P n
x�S

A ˆ ˆ AŽ . Ž .Only the first summand of � x , that is, � ��� � m x depends on x .ˆ ˆd 2 1 1
ˆ ˆFurthermore, the operators � , . . . , � do not change the additive component2 d

AŽ . AŽ .of a function that depends on x . Therefore � x is of the form � x �ˆ ˆ1
AŽ . A Ž . Am x � � x , . . . , x where � is a function that does not depend on x .ˆ ˆ ˆ1 1 �1 2 d �1 1

�For this reason the claim of the lemma follows for j � 1. Note also that
Ž .� AŽ . A � Ž . AŽ . �Hp x m x � m dx � Hp x m x dx � 0.ˆ ˆ ˜ ˆ ˜1 1 1 1 0, 1 1 1 1 1 1 1
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Ž .For the proof of 90 note first that

ˆ A� �92 T� � o � .Ž . Ž .ˆ 2 P n

ˆ ˆŽ . � � � � ŽThis follows from 21 , T � 1 and � � 1 with probability tending0, n 0, nj
ˆ. � � Žto 1 ; see Lemma 2. Because of T � 	 with probability tending to 1 for a0, n

. Ž .	 � 1 92 shows that

�
r Aˆ93 T � � o � .Ž . Ž .ˆÝ P n

r�1 2

Ž .With 88 this shows

�
r Aˆsup T � x � o � .Ž . Ž .ˆÝ P n

x�S r�2

Ž .So for claim 90 it remains to show

Aˆsup T� x � o � .Ž . Ž .ˆ P n
x�S

ˆŽ . Ž . � � Ž .This can be done using 20 , 21 , � � 1 with probability tending to 1 ,0, nj
Ž .and 88 . �

PROOF OF THEOREM 1. For the proof, note first that by definition of our
� Ž .�backfitting algorithm see 18 ,

� r � ˆ � r�1�m x � Tm x � � x .Ž . Ž . Ž .˜ ˜ ˆ

Iterative application of this equation gives

r�1
� t � s r �0�ˆ ˆm x � T � x � T m x .Ž . Ž . Ž .˜ ˆ ˜Ý

s�0

Because of Lemma 3 this shows

�
� r � s r �0�ˆ ˆm x � m x � � T � x � T m x .Ž . Ž . Ž . Ž .˜ ˜ ˆ ˜Ý

s�r

ˆŽ . � � � � Ž . Ž .Because of A3 and � � � � o 1 � 1 � o 1 , we have for a constantj j P P

 � � 
C that � � C with probability tending to 1. So with Lemma 2 we get thatˆ 2


C
� r � �0� r� � � �m � m � � m 	˜ ˜ ˜2 21 � 	

Ž . Ž .with probability tending to 1. Claim 22 follows now by application of 70 .
For the proof of existence and uniqueness of m A and mB, one proceeds˜ ˜j j
similarly. �
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Theorem 2 follows from Lemma 4.

PROOF OF THEOREM 3. We put for 1 � j � d,

p x , xŽ .ˆjk j kB , 1m x � 
 x � 
 x � p x dx ,Ž . Ž . Ž . Ž .ˆ ˆÝ Hj j n , j j n , k k k , � j�� k kp xŽ .ˆj jk�j

p xŽ .
B , 2m x � � � x dx ,Ž . Ž .ˆ Hj j n �jp xŽ .j j

HmB u p u duŽ . Ž .ˆ ˆj jB , 3 B B , 1 B , 2m x � m x � � m x � m x ,Ž . Ž . Ž . Ž .ˆ ˆ ˆ ˆj j j j j j j jHp u duŽ .ˆj

where


 x � 
 x � 
 u p u du.Ž . Ž . Ž . Ž .ˆHn , j j n , j j n , j j

For r � 1, . . . , 3; j � 1, . . . , d we define now mB, r by˜ j

HmB , r x p x dxŽ . Ž .ˆ ˆj j j j jB , rm � ,˜ 0, j Hp x dxŽ .ˆj j j

mB , r x � mB , r xŽ . Ž .˜ ˆj j j j
94Ž .

p x , xŽ .ˆjk j kB , r� m x � p x dxŽ . Ž .˜ ˆÝ H k k k , � j�� k kp xŽ .ˆj jk�j

� mB , r .˜ 0, j

By these equations the quantities mB, r are uniquely defined. This has been˜ j
shown in Theorem 1.

BŽ . B, 1Ž . B, 2Ž . B, 3Ž .Note that m x � m x � m x � m x . We will show˜ ˜ ˜ ˜j j j j j j j j

B , 195 m x � 
 x ,Ž . Ž . Ž .˜ j j n , j j

B , 296 sup m x � � � x � o � ,Ž . Ž . Ž . Ž .˜ j j n j j P n
x �Sj j

B , 397 sup m x � o � .Ž . Ž . Ž .˜ j j P n
x �Sj j

Ž .These claims imply the statement of the theorem. For the proof of 95 note
B, 1 B, 1Ž . Ž . Ž . Ž .that m � 0 and that m x � 
 x solves 94 . This shows 95 .˜ ˜0, j j j n, j j

B, rŽ . B, rŽ . B, rŽ .For r � 2, 3 we get for m x � m x � ��� �m x ,˜ ˜ ˜1 1 d d

�
B , r k B , rˆm x � T � x ,Ž . Ž .˜ ˆÝ

k�0
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where

B , r B , r B , r B , r B , rˆ ˆ ˆ� x � � ��� � m � m x � ��� �� m � m xŽ . Ž . Ž .ˆ ˆ ˜ ˆ ˜d 2 1 0, 1 d d�1 0, d�1

� mB , r x � mB , r .Ž .ˆ ˜d d 0, d

Ž .For the proof of 96 we will show that
�

B , 2 k B , 298 sup m x � T � x � o � ,Ž . Ž . Ž . Ž .˜ Ý P n
x�S k�0

where
B , 2 B , 2 B , 2 B , 2 B , 2� x � � ��� � m � m x � ��� �� m � m xŽ . Ž . Ž .ˆ ˆd 2 1 0 d d�1 0

B , 2 B , 2� m x � m ,Ž .ˆ d d 0

B , 2 B , 2m � � � x p x dx � m � o � .Ž . Ž . Ž .˜H0 n 0, j P n

ˆŽBy the same arguments as in the beginning of the proof of Lemma 3 with T
.replaced by T one can see that

�
k B , 2� � x � ��� �� x � T � x .	 4Ž . Ž . Ž .Ýn 1 1 d d

k�0

Ž . Ž . Ž . � kTherefore 98 implies 96 . For the proof of 98 we write, with W � Ý T ,k�0
�

B , 2 k B , 2m x � T � xŽ . Ž .˜ Ý
k�0

�
k k B , 2 B , 2 B , 2ˆ� �� � T � T � x � W � x � � xŽ . Ž . Ž .ˆ ˆÝ

k�1

� k�1
l k�1�l B , 2 B , 2 B , 2ˆ ˆ� �� � T T � T T � x � W � x � � xŽ . Ž . Ž .ˆ ˆÝ Ý

k�1 l�0

B , 2 B , 2 B , 2 B , 2ˆ ˆ ˆ� �� �TV� x � T � T U� x � W � x � � x ,Ž . Ž . Ž . Ž .ˆ ˆ ˆ
where

� k�1
l�1 k�1�lˆ ˆ ˆ� �V � T T � T T ,Ý Ý

k�1 l�1
�

k�1ˆ ˆU � T .Ý
k�1

� B, 2 � Ž .One applies now that � � O � and thatˆ 2 P n

sup Tg x � O 1 ,Ž . Ž .P
x�S

ˆ� �sup T � T g x � o 1Ž . Ž .P
x�S

99Ž .

� � Ž . Ž . Ž .for functions g with g � O 1 ; see the proof of 88 and apply A8 .2 P
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ˆ ˆ ˆ B, 2� � Ž . � � Ž . � Ž .Because of V � o 1 and U � O 1 this shows sup TV� xˆ0, n 0, nP P x � S
ˆ ˆ B, 2� � Ž . � Ž . Ž .� T � G U� x � o � . For the proof of 98 it remains to showˆ P n

B , 2 B , 2100 sup W � x � � x � o � .Ž . Ž . Ž . Ž .ˆ P n
x�S

Ž . Ž .Claim 100 follows from 99 and

B , 2 B , 2101 sup � x � � x � o � ,Ž . Ž . Ž . Ž .ˆ P n
x�S

� B , 2 B , 2 �102 � � � � o � .Ž . Ž .ˆ 2 P n

Ž . Ž . Ž .For the proof of 101 and 102 one proceeds similarly to the proof of 88 . For
Ž .the statement of the theorem it remains to prove 97 . For this claim one

shows that
B , 3sup � x � o � ,Ž . Ž .ˆ P n

x�S

� B , 3 �� � o � .Ž .ˆ 2 P n

This can be done by showing for j � 1, . . . , d,

B , 3sup m x � o � ,Ž . Ž .ˆ j j P n
x �Sj j

� B , 3 �m � o � . �Ž .ˆ 2j P n

PROOFS OF THEOREMS 1

AND 2
. The theorems follow as Theorems 1

and 2 by essentially the same arguments. In particular, instead of
Ž . Ž . 	 Ž 0 d . j dL p we consider now L Wp � f � f , . . . , f : f : � � � with2 2
T Ž . Ž . Ž . 4 0 0, nHf x Wf x p x dx � � . Furthermore, now the spaces HH, HH , HH , HH andj

HH n are defined asj

HH � m � m0 , . . . , md � L Wp : m0 x � m x � ��� �m xŽ . Ž . Ž . Ž . Ž .	 2 1 1 d d

p a.s. for functions m � L p , . . . , m � L p , theŽ . Ž . Ž .1 2 1 d 2 d

functions m j depend only on x for j � 1, . . . , d ,4j

HH 0 � m � HH : m0 x p x dx � 0 ,Ž . Ž .H½ 5
HH � m � HH : m0 x depends only on x p a.s. and for l � jŽ . Ž .	j j

it holds that ml x � 0 p a.s. ,Ž . Ž . 4
HH 0, n � m � HH : m0 x � m x � ��� �m x p a.s. for functionsŽ . Ž . Ž . Ž .1 1 d d½

ˆ jm � L p , . . . , m � L p with m u V u du � 0 ,Ž . Ž . Ž . Ž .H1 2 1 d 2 d j j 0, 0 j j 5
HH n � m � HH 0, n : m x depends only on x p a.s. .Ž . Ž .	 4j j
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0Ž . Ž . Ž .For a function m � HH with m x � m x � ��� �m x for some func-1 1 d d
tions m we define now � m,j j

0
� m x � f x � ��� �f x ,Ž . Ž . Ž .j 1 1 d d

k k� m x � f x ,Ž . Ž .j k

where for k � j,

f x � m x ,Ž . Ž .k k k k

f k x � mk x ,Ž . Ž .k k

and where

f xŽ .j j �1� � M x S x , xŽ . Ž .Ý H j j j , k j kjf xž /Ž .j k�j

m x � m u p u duŽ . Ž . Ž .Hk k k k k k k
� dxk

k
 0m xŽ .k

m u p u duŽ . Ž .H j j j j j� .
 00
0, n 0Ž . Ž . Ž .Furthermore, for a function m � HH with m x � m x � ��� �m x1 1 d d

ˆ j ˆŽ . Ž .for some functions m with Hm u V u du � 0 we define now � m:j j j 0, 0 j j j

0
�̂ m x � f x � ��� �f x ,Ž . Ž . Ž .j 1 1 d d

k k�̂ m x � f x ,Ž . Ž .j k

where for k � j,

f x � m x ,Ž . Ž .k k k k

f k x � mk x ,Ž . Ž .k k

and where

ˆ jf x � g x � g u V u du ,Ž . Ž . Ž . Ž .Hj j j j j j 0, 0 j j

g xŽ . m xŽ .j j k k�1ˆ ˆ� � M x S x , x dx .Ž . Ž .Ý H j j j , k j k kj kž /f x m xž /Ž . Ž .j kk�j

Proceeding as above, one can show that the norm of the operators T � �d
ˆ ˆ ˆ Ž .��� � and T � � ��� � is smaller than 	 � 1 with probability tending to 1 .1 d 1

Theorems 1
 and 2
 follow by stochastic expansions of m. �˜

The proof of Theorem 3
 is similar to the proof of Theorem 3 and is omitted.
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Ž . Ž . Ž .PROOF OF THEOREM 4. We have to verify conditions A1 � A6 , A8 ,
Ž . Ž .A9 . Continuity of q implies that inf p x 	 0 for all j and0 0 � x �1 j jj

Ž . Ž .sup p x , x � �. This shows A1 .0 � x �1, 0 � x �1 j, k j kj k

In the proof we will make repeated use of

1�2 �3�10� �103 sup p x , x � p x , x � O log n n ,Ž . Ž . Ž .ˆ Ž .j , k j k j , k j k P
x �I , x �Ij h k h

1�2 �2�5� �104 sup p x � p x � O log n n ,Ž . Ž . Ž .ˆ Ž .j j j j P
x �Ij h

sup p x , xŽ .ˆj , k j k
0�x , x �1j k105Ž .

1 1 �1�5� K x , u du K x , v dv p x , x � O n ,Ž . Ž . Ž . Ž .H Hh j h k j , k j k P
0 0

1 �1�5106 sup p x � K x , u du p x � O n ,Ž . Ž . Ž . Ž . Ž .ˆ Hj j h j j j P
00�x �1j

� � c � . Ž � 2, c Ž cwhere I � 2C h, 1 � 2C h , I � 0, 2C h 
 1 � 2C h, 1 and I � Ih 1 1 h 1 1 h h
� �. Ž� � c.� 0, 1 
 0, 1 � I .h

Ž . Ž . Ž . Ž .A proof of 103 and 104 can be found in Masry 1996b . Claims 105 and
Ž . Ž .106 can be shown by a modification of the arguments in Masry 1996b .

Ž . Ž .Note that 105 and 106 imply that

107 sup p x , x � O 1 ,Ž . Ž . Ž .ˆj , k j k P
2, cŽ .x , x �Ij k hl02

�1108 sup p x � O 1 ,Ž . Ž . Ž .ˆj j P
cx �Ij h

109 sup p x � O 1 .Ž . Ž . Ž .ˆj j P
cx �Ij h

Ž . Ž . Ž .Assumptions A2 , A4 and A8 can be easily proved by application of
Ž . Ž . Ž . Ž .103 � 109 . Assumptions A3 and A5 follow from

1�2log n
A110 sup m x � O ,Ž . Ž .ˆ j j P ½ 5ž /nh� �x � 0, 1j

B111 sup m x � O 1 .Ž . Ž . Ž .ˆ j j P
� �x � 0, 1j

Ž . Ž . Ž .For a proof of 110 see again Masry 1996b . Claim 111 follows from

B 2112 sup m x � � x � o h ,Ž . Ž . Ž . Ž .ˆ ˆj j n , j j P
x �Ij h

B113 sup m x � � x � o h .Ž . Ž . Ž . Ž .ˆ ˆj j n , j j P
cx �Ij h
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Ž . Ž . Ž .Note that because of 112 and 113 , for the proof of A9 it suffices to check
that 	 can be chosen as 	 � 0. This follows fromn, j n, j

114 
 x p x dx � o � .Ž . Ž . Ž . Ž .ˆH n , j j j j j P n

Ž . Ž . Ž . Ž .So it remains to establish A6 , 114 , 112 and 113 .

Ž .PROOF OF 114 . By definition of 
 we getn, j


 x p x dxŽ . Ž .ˆH n , j j j j j

� m x p x dxŽ . Ž .ˆH j j j j j

�1

� m x K x , u u � x K x , v dv p x dx du.Ž . Ž . Ž . Ž . Ž .ˆH Hj j h j j h j j j j

By standard kernel arguments one can show that the right-hand side is equal
to

m x K x , u p u du dxŽ . Ž . Ž .H j j h j j j

�1

� m x K x , u u � x K x , v dvŽ . Ž . Ž . Ž .H Hj j h j j h j

�K x , w p w du dw dx � o � .Ž . Ž . Ž .h j j j P n

We argue now that the second term is equivalent to
�1


m x K x , u u � x K x , v dvŽ . Ž . Ž . Ž .H Hj j h j j h j

�K x , w p x du dw dx � o �Ž . Ž . Ž .h j j j j P n

� m
 x K x , u u � x p x du dx � o � .Ž . Ž . Ž . Ž . Ž .H j j h j j j j j P n

Putting these expansions together we get that


 x p x dxŽ . Ž .ˆH n , j j j j j

� m x K x , u p u du dxŽ . Ž . Ž .H j j h j j j

� m
 x K x , u u � x p x du dx � o �Ž . Ž . Ž . Ž . Ž .H j j h j j j j j P n

� m u K x , u p u du dx � o �Ž . Ž . Ž . Ž .H j h j j j P n

� m u p u du � o �Ž . Ž . Ž .H j j P n

� o � . �Ž .P n
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Ž . Ž .PROOF OF A6. We will give only the proof of 20 . Claim 21 follows from
Ž . Ž . Ž . Ž .107 , 108 , 110 and 20 . By the triangle inequality,

p x , xŽ .ˆ1 j , k j k Asup m x dxŽ .ˆH j j jp xŽ .ˆ0x �I k kk h

p x , xŽ .1 j , k j k� sup v x dxŽ .ˆH j j jp x p xŽ . Ž .0x �I j j k kk h

p x , x p x , xŽ . Ž .ˆ1 j , k j k j , k j k� sup � v x dxŽ .ˆH j j jp x p x p x p xŽ . Ž . Ž . Ž .ˆ ˆ0x �I j j k k j j k kk h

p x , xŽ .1 j , k j k 2� sup v x dx � o h ,Ž . Ž .ˆH j j j Pp x p xŽ . Ž .0x �I j j k kk h

Ž . Ž . Ž .because of 103 � 108 , 110 , where

1
i iv x � K x � X � ,Ž .ˆ Ž .Ýj j h j jN i�Jn

where
di � �J � i : X � 0, 1 , 1 � i � n .	 4n

Therefore,

p x , x 1Ž .ˆ1 j , k j k A i 2m x dx � � � x � o hŽ . Ž . Ž .ˆ ÝH j j j ni k Pp x NŽ .ˆ0 k k i�Jn

uniformly for x � I withk h

p X i � uh, xŽ .j , k j k
� x � K u duŽ . Ž .Hni k ip X � uh p xŽ .Ž .j j k k

by straightforward change of variables. The argument is now quite similar to
Ž .that given in Masry 1996b . We drop the k subscript for convenience. The

� � Ž .interval 0, 1 can be covered by a finite number c n of cubes I withn, r
Ž .centers u and with side length l n . We then haver

1 1
i isup � � u � max sup � � uŽ . Ž .Ý Ýni niN NŽ .1�r�c nu�I u�I 
Ii�J i�Jh h n , rn n

1 1
i i� max sup � � u � � � uŽ . Ž .Ý Ýni ni rN NŽ .1�r�c n u�I 
I i�J i�Jh n , r n n

1
i� max � � uŽ .Ý ni rNŽ .1�r�c n i�Jn

� Q � Q , say.1 2
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� Ž . Ž . � Ž .It is straightforward to see that � u � � u � al n for some constant ani ni r
Ž Ž ..and that Q � O l n with probability 1. To handle the second term we must1

use an exponential inequality and a blocking argument as in Masry’s proof.
Ž . ŽIn conclusion, by appropriate choice of c n , we obtain Q � Q � O log n�1 2' .n with probability 1. �

Ž . Ž .PROOF OF 112 AND 113 . Note that by definition,

mB x � N�1 K x , X i m X i �p xŽ . Ž . Ž .ˆ ˆŽ .Ýj j h j j j j
i�Jn

�1 i i i� N K x , X m � m X � ��� �m X �p xŽ .ˆŽ . Ž .Ž .Ý h j j 0 1 1 d d j j
i�Jn

and

�1
1
� x � m x � m x K x , u u � x du K x , u duŽ . Ž . Ž . Ž . Ž . Ž .ˆ H Hn , j j j j j j h j j h j

0

p x , xŽ .ˆj , k j k� m x dxŽ .Ý H k k kp xŽ .ˆj jk�j , k , j�Jn

p x , xŽ .ˆj , k j k
� m x K x , u u � xŽ . Ž . Ž .Ý H k k h k kp xŽ .ˆj jk�j , k , j�Jn

�1
1

� K x , v dv du dxŽ .H h k k
0

d � p x 1Ž .�1 
 �2� h d p x m x � p x m x dxŽ . Ž . Ž . Ž .Ý HK j j k k k k �j� x 2kk�1

2 Ž .with d � Hu K u du. We argue now that for j � 1, . . . , d,k

N�1 K x , X i m X i �p xŽ .ˆŽ . Ž .Ý h j j j j j j
i�Jn

� m x � m
 xŽ . Ž .j j j j

�1
1

� K x , u u � x du K x , u duŽ . Ž . Ž .H Hh j j h j
0

115Ž .

�1 
 
 �12 2� h u K u du p x p x m x � p x m xŽ . Ž . Ž . Ž . Ž . Ž .H j j j j j j j j j j2

� R xŽ .n , j j

� Ž . � Ž 2 . � Ž . � Ž 2 .cwith sup R x � o h and sup R x � O h . Further-x � I n, j j P x � I n, j j Pj h j h

more, we argue for j � k that
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N�1 K x , X i m X i �p xŽ .ˆŽ .Ž .Ý h j j k k j j
i�Jn

p x , xŽ .ˆj , k j k� m x dxŽ .H k k kp xŽ .ˆj j

p x , xŽ .ˆj , k j k
� m xŽ .H k k p xŽ .ˆj j

�1
1

� K x , u u � x K x , v dv du dxŽ . Ž . Ž .Hh k k h k k
0

116Ž .

�12� h d p xŽ .K j j

� p x , xŽ .j , k j k 
 �1� m x � p x , x m x dxŽ . Ž . Ž .H k k j , k j k k k k2� xk

� R xŽ .n , j , k j

� Ž . � Ž 2 . � Ž . � Ž 2 .cwith sup R x � o h and sup R x � O h . It canx � I n, j, k j P x � I n, j, k j Pj h j h

Ž . Ž . Ž . Ž .be easily verified that 115 and 116 imply 112 and 113 . So it remains to
Ž . Ž . Ž .show 115 and 116 . The proof of 115 is straightforward and will be

Ž . � �omitted. For the proof of 116 note that for k � j and uniformly for x � 0, 1 ,j

1
i iK x , X m XŽ .Ž .Ý h j j k kN i�Jn

1
i i i� K x , X K x , X m X dxŽ . Ž .Ž .Ý H h j j h k k k k kN i�Jn

1
i i� K x , X K x , XŽ .Ž .Ý H h j j h k kn i�Jn

2
 �1i i� m x � X � x m x � X � x m x dxŽ . Ž . Ž .Ž . Ž .k k k k k k k k k k k2

� o h2Ž .P

1
2� p x , x m x dx � U x � V x � o h ,Ž . Ž . Ž . Ž . Ž .ˆ ÝH jk j k k k k i j i j PN i�Jn

where

U x � K x , X i K x , X i X i � x m
 x dx ,Ž . Ž .Ž . Ž .Ž .Hi j h j j h k k k k k k k

117Ž .
2 �1i i iV x � K x , X K x , X X � x m x dx .Ž . Ž .Ž . Ž .Ž .Hi j h j j h k k k k k k k2
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Ž . Ž .For x � I , claim 116 follows now from 104 andj h


sup E U x � m x p x , xŽ . Ž . Ž .Hi j k k j , k j k
x �Ij h

� K x , u u � x du dxŽ . Ž .h k k k118Ž .
� p x , xŽ .j , k j k 
2 2�h d m x dx � o h ,Ž . Ž .HK k k k� xk

�12 2119 sup E V x � h d p x , x m x dx � o h ,Ž . Ž . Ž . Ž . Ž .Hi j K j , k j k k k k2
x �Ij h

�1
1
sup m x p x , x K x , w dwŽ . Ž . Ž .ˆH Hk k j , k j k h k

0x �Ij h

�p x , xŽ .j , k j k120Ž .

2�K x , u u � x du dx � o h ,Ž . Ž . Ž .h k k k P

2121 sup U x � E U x � o h ,Ž . Ž . Ž . Ž .i j i j P
x �Ij h

2122 sup V x � E V x � o h ,Ž . Ž . Ž . Ž .i j i j P
x �Ij h

Ž . Ž .Claims 118 and 119 follow by standard kernel arguments. For the proof of
Ž . Ž . Ž . Ž . Ž .12 one applies 103 and 105 . For the proof of 121 and 122 one proceeds

Ž . Ž .similarly to Masry 1996b ; see also the proof of A6 . So it remains to show
Ž . c116 for x � I . This can be done by similar arguments. �j h

PROOF OF THEOREM 4
. Theorem 4
 can be shown by arguments similar to
ˆ Ž .the proof of Theorem 4. First one shows uniform convergence of M x toj j

ˆ 
Ž . Ž . Ž . Ž .M x and of S x , x to S x , x . For the proof of A9 one needs anj j l, j l j l, j l j
expansion of

B nm xŽ .ˆ 11j j d�1 i iˆ � �� M x 1 X � 0, 1 K x , XŽ . �1 iŽ . Ž .Ýj j h j jj , B h X � xž /N j jž /m xŽ .ˆ i�1j

i i� m � m X � ��� �m X .Ž . Ž .0 1 1 d d

For the treatment of this quantity one has to consider for k � j the term

n 11 di i i� �1 X � 0, 1 K x , X m X .Ž .�1 iŽ . Ž .Ý h j j i kh X � xž /N j ji�1
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Ž i . Ž . Ž .Using HK x , X dx � 1 and with V x defined as in 117 one gets thath k k k i j
this term is equal to

n 11 di i i i� �1 X � 0, 1 K x , X K x , X m X dxŽ . Ž .�1 iŽ . Ž .Ý H h j j h k k k k kh X � xž /N j ji�1

n 11 di i i� �� 1 X � 0, 1 K x , X K x , XŽ . �1 iŽ . Ž .Ý H h j j h k k h X � xž /N j ji�1

1 V xŽ .
 i ji 2� m x � m x X � x dx � � o hŽ . Ž . Ž .	 4 Ýk k k k k k k Pž /N 0i�Jn

1m xŽ . V xŽ .k k i j 2ˆ� S x , x dx � � o h .Ž . Ž .ÝH 
j , k j k k Pž /ž /hm x NŽ . 0k k i�Jn

Ž . Ž .For a further treatment of this expansion one uses now 119 and 122 and
proceeds similarly to the proof of Theorem 4. �
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