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THE EXISTENCE AND ASYMPTOTIC PROPERTIES OF A
BACKFITTING PROJECTION ALGORITHM UNDER
WEAK CONDITIONS!

By E. MAMMEN,? O. LINTON® AND J. NIELSEN

Reprecht-Karls-Universitit Heidelberg, Yale University
and Codanhus

We derive the asymptotic distribution of a new backfitting procedure
for estimating the closest additive approximation to a nonparametric
regression function. The procedure employs a recent projection interpreta-
tion of popular kernel estimators provided by Mammen, Marron, Turlach
and Wand and the asymptotic theory of our estimators is derived using
the theory of additive projections reviewed in Bickel, Klaassen, Ritov and
Wellner. Our procedure achieves the same bias and variance as the oracle
estimator based on knowing the other components, and in this sense
improves on the method analyzed in Opsomer and Ruppert. We provide
“high level” conditions independent of the sampling scheme. We then
verify that these conditions are satisfied in a regression and a time series
autoregression under weak conditions.

1. Introduction. Separable models are important in exploratory analy-
ses of nonparametric regression. The backfitting technique has long been the
state of the art method for estimating these models; see Hastie and Tibshi-
rani (1991). While backfitting has proved very useful in application and
simulation studies, it has been somewhat difficult to analyze theoretically,
which has long been a drawback to its universal acceptance. Recently, a new
method, called marginal integration, has been proposed; see Linton and
Nielsen (1995), Tjgstheim and Auestad (1994) and Newey (1994) [see also
earlier work by Auestad and Tjgstheim (1991)]. This method is perhaps
easier to understand for nonstatisticians since it involves averaging rather
than iterative solution of nonlinear equations. Its statistical properties are
trivial to obtain and have been established in the aforementioned papers.
Although tractable, marginal integration is not generally efficient. Linton
(1997) and Fan, Mammen and Hérdle (1998) showed how to improve on the
efficiency of the marginal integration estimator in regression. In the former
paper, this was achieved by carrying out one backfitting iteration from this
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initial consistent starting point. This modification actually achieves full
oracle efficiency, that is, one achieves the same result as if one knew the
other components. This suggests that backfitting itself is also efficient in the
same sense. Moreover, backfitting, since it relies only on one-dimensional
smooths, is free from the curse of dimensionality.

Recent work by Opsomer and Ruppert (1997) and Opsomer (1998) has
addressed the algorithmic and statistical properties of backfitting. Specifi-
cally, they gave sufficient conditions for the existence and uniqueness of a
version of backfitting, or rather an exact solution to the empirical projection
equations, suitable for any (recentered) smoother matrix. They also derived
an expansion for the conditional mean squared error of their version of
backfitting: the asymptotic variance is equal to the oracle bound while the
precise form of the bias, as for the integration method, depends on the way
recentering is carried out, but in any case the bias is not oracle, except when
the covariates are mutually independent. This important work confirms the
efficiency, at least with respect to variance, of (their version of) backfitting.
Unfortunately, their version of backfitting is not design adaptive, which is
somewhat surprising given that they wuse local polynomial smoothers
throughout. Furthermore, their proof technique required one rather strong
condition: specifically, the amount of dependence in the covariates was strictly
limited.

In this paper, we define a new backfitting-type estimator for additive
nonparametric regression. We make use of an interpretation of the Nadar-
aya—Watson estimator and the local linear estimator as projections in an
appropriate Hilbert space, which was first provided by Mammen, Marron,
Turlach and Wand (1997). Our additive estimator is defined as the further
projection of these multivariate estimators down on the space of additive
functions. We examine this estimator and show how, in both the Nadar-
aya—Watson case and the local linear case, the estimator can be interpreted
as a backfitting estimator defined through iterative solution of the empirical
equations. We establish the geometric convergence of the backfitting equa-
tions to the unique solution using the theory of additive projections; see
Bickel, Klaassen, Ritov and Wellner (1993). We use this result to establish
the limiting behavior of the estimates: we give both the asymptotic distribu-
tion and a uniform convergence result. Our procedure achieves the same bias
and variance as the oracle estimator based on knowing the other components,
and in this sense improves on the method analyzed in Opsomer and Ruppert
(1997). Although the criterion function is defined in terms of the high-dimen-
sional estimates, we show that the estimator is also characterized by equa-
tions that only depend on one- and two-dimensional marginals, so that the
curse of dimensionality truly does not operate here. Our first results are
established using ideas from Hilbert space mathematics and hold under
“high level” conditions, which are formulated independently of specific sam-
pling assumptions. We then verify these conditions in an ii.d. regression
model and in a time series autoregression with strong mixing data. Our
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conditions are weaker than those of Opsomer and Ruppert (1997) and do not
restrict the dependence between the covariates in any way.

The paper is organized as follows. In Section 2 we show how local polyno-
mial estimators can be interpreted as projections. In Section 3 we introduce
our additive estimators in the simplest situation, that is, for the Nadaraya—
Watson-like pilot estimator, establishing the convergence of the backfitting
algorithm and the asymptotic distribution of the estimator under high level
conditions that are suitable for a range of sampling schemes. In Section 4 we
extend the analysis to local polynomials. In Section 5 we give primitive
conditions in a time series autoregression that imply the high level condi-
tions. All proofs are contained in the Appendix.

2. A projection interpretation of the local polynomials. Let Y, X
be random variables of dimensions 1 and d, respectively, and let (Y1,
X1),...,(Y", X") be a random sample drawn from (Y, X). We first provide a
new interpretation of local polynomial estimators of the regression function
m(xq,...,x,) = E(Y|X = x) evaluated at the vector x = (x,,..., x,), based
on Mammen, Marron, Turlach and Wand (1997). This new point of view will
be useful for interpreting our estimators of the restricted additive function
m(x) = my + myxy) + - +my(x,).

The full-dimensional gth order local polynomial regression smoother which

we denote by m(x) = (m%(x),..., m* " Y(«x))! satisfies
n ‘ Xi—x
m(x) =arg min ), Y‘—GO—(;)G1
0°,..., 6371i=1 h
Xi-xg\" )\
(1) __(_) 0}
h

d

where K,(-) = K(-/h)/h with K(-) a univariate kernel and % = h(n) a
positive bandwidth sequence, while ¢ is the order of the polynomial approxi-

e 1) is the total number of distinct partial deriva-

tives up to and including the gth order. In fact, for simplicity of notation we
will concentrate on the local linear case considered in Ruppert and Wand
(1994) for which ¢ = 1 and s = d + 1. The Nadaraya—Watson case, for which
g = 0 and s = 1, is even simpler; see below. For simplicity of notation, we use
product kernels that have the same kernel and the same bandwidth in each
component. Our results can be easily extended to the case of different kernels
and bandwidths.

For the new interpretation of local linear estimators we shall think of the
data Y= (Y,..., Y™ as an element of the space of tuples of n(d + 1)

mation and s = (z]:o(
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functions
F={(f":i=1,...,n;j=0,...,d): Here, f"/ are functions from R? to R}.

We do this by putting f>% x) =Y’ and f"/(x) = 0 for j # 0. We define the
following seminorm on .%:

2

i

1o d
@ IflE = [~ X f"°(x)+Zf”(x) TIE(X] = x)) d.

Consider now the following subspaces of .#:

Fran = {f €F: f"7 does not depend on i for j = 0,...,d},
Faa = F €Ty F0(x) = gi(x)) + - +g4(xy) for some functions g;: R —
Rlj=1,...,d] and f*/(x) = g/(x;) for some functions g’: R — R for

j=1,...,d.

The estimate m(x) defines an element of %, by putting f"/(x) = m/(x),
j=0,1,...,d. It is easy to see that m is the orthogonal projection, with
respect to || ||, of Y onto #,;,. Below we introduce our version m of the
backfitting estimator as the orthogonal projection of  onto 7,44 (with respect
to || ll4). For an understanding of m it will be essential that it is the
orthogonal projection of Y onto Z4,. For the definition of such norms and
linear spaces for higher order local polynomials and for other smoothers we
refer to Mammen, Marron, Turlach and Wand (1997). Each local polynomial
estimator corresponds to a specific choice of inner product in a Hilbert space,
and the definition of the corresponding additive estimators is then the
projection further down on % 4,. In particular, for the local constant estimator
(Nadaraya—Watson-like smoothers) one chooses

={(f:i=1,...,n): Here, f' are functions from R? to R},
Fen = {f € F: f' does not depend on i},
Fadd = {fe%ull: fi(x) =gi(x;) + - +g4(x4)

for some functions g;: R — [R{},
, 1~ ,d .
15 = [= X [F ()] T (X] — x,) da.
-1 Jj=1
Note that for functions m in 7, (i.e., m :=m! = - = m") we get
Imll% = [m(x)*H(x) dx,
where p(x) =n"1Yr I{Hjl=1Kh(Xj — xj)} is the kernel density estimate of
the design density. In particular, in this case m is the projection of the

full-dimensional Nadaraya—Watson estimate onto the subspace of additive
functions with respect to the norm of the space L,(p). We give a slightly
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different motivation for the projection estimate m in the next section; see (7).
There we will discuss the case of local constant smoothing in detail.

3. Estimation with Nadaraya-Watson-like smoothers. In this sec-
tion we will discuss how our projection idea can be applied to define Nadar-
aya—Watson backfitting smoothers. The first subsection will give details
about the implementation for the Nadaraya—Watson smoother. In the second
subsection we will discuss asymptotic properties of our backfitting estimates.
This will be done for a more general setup than Nadaraya—Watson smooth-
ing. We will show that the backfitting algorithm converges numerically and
we will give simple expansions for the stochastic and deterministic part of the
backfitting estimate. The conditions under which these expansions hold will
be verified in Section 5 for Nadaraya—Watson smoothers in both an i.i.d. and
an autoregression setting. The expansions will imply that the asymptotic
variance of our estimate does not depend on the number of additive compo-
nents (and that in particular, they coincide with the case of only one compo-
nent). Furthermore, the asymptotic bias is given by a simple geometric
operation. It is the projection of the usual asymptotic bias expansion of a
full-dimensional estimate onto the space of additive functions.

3.1. A backfitting Nadaraya—Watson estimator. In this subsection we
will motivate our backfitting estimate for Nadaraya—Watson regression
smoothers with product kernels,

Z?=11_[7[=1Kh(9€z - Xzi)Yi
Z?:1n§j:1Kh(xz - le)

The specific choice of (3) is not so important. One can show that the discus-
sion of this subsection can be extended to smoothers that have the ratio form

(4) () = 2
m(x) = ———,

p(x)
where p(x) is an estimator of p(x), the marginal density of X, which
depends only on 2" = {X!,..., X"}. The assumption that the pilot estimate
m exists (i.e., is everywhere and always finite uniformly in n with probability
tending to 1) will be dropped in our asymptotic analysis in the next section,
which will allow us to include the case of high dimensions d. We assume for
the most part that

(5) m(x) =my+ my(x;) + - —my(xy),

(3) m(x) =

for some functions m j(-), J=1,...,d and constant m,, although our defini-
tions make sense more generally, that is, when the regression function is not
additive, in which case the asymptotic behavior of our estimate is more
difficult to analyze. For identifiability we assume that

(6) Jmi(x)pi(x) dx; =0, j=1,...d,



1448 E. MAMMEN, O. LINTON AND J. NIELSEN

where p;(-) is the marginal density of X;. Denote also the marginal density of
(X;, X},) by p;,(, ), respectively (j,k =1,...,d). The vector (X,: k #j) is
denoted by X_; and its Lebesgue density by p_;

Recall that backfitting is motivated as solving an empirical version of the
set of equations

mq(x,) = E(Y|X1 = x1) - My — E{mz(X2)|X1 = xl}
- _E{md(Xd)|X1 = xl}’

md(xd). = ‘E‘(Yle = xd) —my — E{ml(X1)|Xd = xd}
- _E{md—l(Xd—1)|Xd = xd}'

With only sample information available, one replaces the population quantity
E(YIXJ = xj) by one-dimensional smoothers 7 j(-), and iterates from some
arbitrary starting values for mj(-); see Hastie and Tibshirani [1991, page
108]. Let p(x) = n 'X?  IT¢ ,K,(x, — X}) be the multidimensional kernel
density estimate and let #i(x) be the multidimensional Nadaraya—Watson
estimate as defined in (3). We define the “empirical projection” estimates
{m (), j=0,...,d} as the minimizers of the following criterion:

(1) lh —mll3 = /[ﬁl(x) —my —my(xy) — - —md(xd)]2ﬁ(x) dx,

where the minimization runs over all functions m(x) = m, + X;m (x;), with
Jm(x)p(x;)dx; =0, where p,(x;) = [p(x)dx_; is the marginal of the den-
sity estimate p(x) This is the one-dimensional density estimate p(x;) =
n'yr K W, — X} ). A minimizer of (7) exists if the density estimate p is
nonnegative. Equatlon (7) means that m(x) = m, + my(x)) + - +m(x,) is
the projection in the space L,( p) of /2 onto the subspace of additive functions
{m € Ly(p): m(x) = my + my(x;) + --- +m (x,)}. This is a central point of
our thesis. For projection operators, backfitting is well understood (as a
method of alternating projections; see below). Therefore, this interpretation
will enable us to understand convergence of the backfitting algorithm and the
asymptotics of ;. We remark that not every backfitting algorithm based on
iterative smoothing can be interpreted as an alternating projection method.

The solution to (7) is characterized by the following system of equations
(Gj=1,...,d:

o o
ey 2 B e

(9) 0= fn'lj(xj)ﬁj(xj) dx ;.

(8) my(x) = [r(x)
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Straightforward algebra gives

p(x) - _n T Ky(x XY
(10)  [m(x) B & e (),
because of [I1,, ;K,(x, — X/)dx_;
3sponding univariate Nadaraya—Watson estimator. Furthermore, m, =
Ji(x)p(x) dx, and because of [I1{,K,(x, —X/)dx ; =1, we find, as in
Hastie and Tibshirani (1991), that m, = n~ 'Y Y, that is, that 7, is the
sample mean. Therefore, m, is a Vn -consistent estimate of the population
mean and the randomness from this estimation is of smaller order and can be
effectively ignored. Note also that

= 1, where 7 (x;) is exactly the corre-

(11) Mo = [(x,)B,(x;) dx; forj=1,....d.
We therefore define a backfitting estimator m(x,), j=1,...,d, as a
solution to the system of equations [j = 1,..., d]

p() B

Bi(xy) i T

iy x;) =1y x;) - kﬂfmk(xk)

0= [rm;(x;)B,(x,) dx,.

with 7, defined by (11). Up to now we have assumed that multivariate
estimates of the density and of the regression function exist for all x. This
assumption is not reasonable for large dimensions d (or at least such
estimates can perform very poorly). Furthermore, this assumption is not
necessary. Note that (8) can be rewritten as

b i, p(x j» Xk )
b j( X j)
where p, ,(x;, x,) = n L7 K, (x; — X))K,(x;, — X}) is the two-dimensional
marginal of the full-dimensional kernel density estimate p(x). In this equa-

tion only one- and two-dimensional marginals of p are used.

Up to now we have implicitly assumed that the support of X is unbounded
or at least that the density approaches zero at the boundary suitably fast. We
now consider a generalization of the method which takes care of the boundary
effects that are present when the densities have compact support. We do not
require that (11) holds [i.e., [ ;(x;)p,(x,) dx; may depend on j], nor that p;
be a probability density, and we allow that p; is not the marginal density of
Dj 1; that is, it may not hold for all j # £ that

(13) Bi(x)) = [B;.4(x;, ;) day.

For instance, this may be the case for kernel density estimates of a density
with compact support. For details see Section 5. For this more general setting

(12) ) = () — T [ra(xy) dx, — 1,
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we want to find now an appropriate modification of (12). We rewrite (12) as

- A - Pir(x;, xp) -

(14) m;(x;) =m;(x;) — Y () == dxy, — my

k+j Pj( xj)

where m, ; is chosen such that [m(x,)p(x;)dx; =0 for all j. Under the

assumption of (11), (13) and [p,(x,) dx; = 1, this gives (12). In general, (14)
can be rewritten as

(15) _ ﬁjk(xjaxk) N
— my(x,))| —————— — P ;:.(x dx, ,
kgj/ o) =5y () | dxy
where for & # j,
-1
(16) ﬁk,[jJr](xk) =/ﬁjk(xjaxk)dxj[fﬁj(xj) dxj} >

fmj(xj)ﬁj(xj) dxj
/p;(x;) dx;
In the next section we will discuss estimates m; that are defined by (15)

along with their asymptotic properties. In practice, our backfitting algorithm
works as follows. One starts with an arbitrary initial guess I’)—’LB-O] for m;; for

(17) ’ho,j =

example m’! =, or mlP! is the marginal integration estimator of Linton
and Nielsen (1995). In the jth step of the rth iteration cycle one puts

ﬁjk(xj’ x)

il (x) = () = L [ml(x)

- ﬁk,[jJr](xk)l dx),

k< pi(x;)
(18) 55,0 %)
. Pjp\ Xj, Xp, N -
=Y AU | S = By (%) | dx, — g s
k>]f k k pj(xj) k,[j+] k k 0,/

and the process is iterated until a desired convergence criterion is satisfied.
The integrals are computed numerically; see Section 4 below for further
comments.

3.2. Asymptotics for the Nadaraya—Watson-like estimator. We now con-
sider estimates 712, that are defined by (15), where ;, p;, and p; are some
given estimates. The next theorem gives conditions under which, with proba-
bility tending to 1, there exists a solution 7m; of (15) that is unique and that
can be calculated by backfitting. Furthermore, the backfitting algorithm
converges with geometric rate. Our assumptions, given below, are “high-level”
and only refer to properties of 7i2;, p;, and p; [e.g., we do not require that p
be the underlying density of X or that 7, p;,, and p; are kernel estimates]
—these properties can be verified for a range of smoothers under quite
general heterogeneous and dependent sampling schemes, as we show in
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Section 5. In the sequel, all integrals are taken over the support of the
relevant variables. We use the convention that 0/0 = 0.

AssuMPTIONS. We suppose that there exists a density function p on R¢
with marginals

pi(x;) = fp(x) dx_;
and

p; (%), ) = fp(x) dx_ , forj+Ek.

(A1) For all j # k, it holds that
/ pjz,k(xj’xk)
pk(xk)pj(xj)
(A2) For all j # k, it holds that

dx; dx; <

ﬁj(xj) - pj(xj)
pj(xj)

pk(xk)pj(xj) dxj dx, = op(1),

f

Py (x;, x,) P (%) %)

pk(xk)pj(xj) pk(xk)pj(xj)

l p;(x;) dx; =o0p(1),

/
/

Furthermore, p; vanishes outside the support of p;, p; , vanishes outside
the support of p; , and p; ,(x;, x,) = p, (x;, x)).

(A3) There exists a finite constant C such that with probability tending to 1
for all j

2

D n(x;, %) P (%), %)
AT LR pi(x,) pj(x;) dx; dx;, = 0p(1).

Pk(xk)ﬁj(xj) - pk(xk)pj(xj)

J2(x)py(x)) dx,; < C.

(A4) For some finite intervals S; C R that are contained in the support of p,
[1 <j < d] we suppose that there exists a finite constant C such that
with probability tending to 1 for all j # k&,

A9

pip(x:, x
sup / Lf’e) dx, < C.
x,€8, Pr(x,)p;(x;)

For the statement of our next assumption we suppose that the one-dimen-
sional smoothers 7; can be decomposed as

A AA A B
m; =m; +mj.
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For s = A and s = B, we define 7} as the solution of the following equation:

n'%j(xj) = mi(x;)

- ﬁjk(xj’xk) N
(19) - (2 )| =7~ —Drpj+(x) | dx
k¢]‘[ k k pj(xj) k,[Jj+] k k
_ mo,j’

where m§ ; = [mi(x;)px;)dx;/[p,(x,) dx; Existence and uniqueness of rﬁf‘
and ﬁzB is stated in the next theorem (using the following assumption). Note
that m; is deﬁned as m; in (15) with 7; replaced by m;. We get that

th—m +m

(A5) There exists a finite constant C such that with probability tending to 1
for all j,

[ (x) py(x)) dx; < €

and
[P ()" (%)) dx; < C.

In the applications of our results we will put n%JA as the stochastic part and
rﬁf as the expectation part of ; (or in case of a random design, as the
conditional expectation of 7i2; given the design.) In particular, in the case of
Nadaraya Watson smoothlng of ii.d. tuples (X', Y?) with Y = m(X' ) + &!
where &' is mean zero, we will put mA(x ) = n’lZ 1Ko(x; — X7 )e‘/pj(x )
and MmP(x;)=n""L/_ K, (x; — X/ )m(X )/pj(xj) Note that (in this case)
conditions on n%f and rhf are easy to verify (because only one-dimensional
smoothing is applied) whereas conditions on n”'LJA and ﬁzf are harder to treat
because these variables are defined only implicitly. The next assumption
states a condition on n%JA that can be used to treat the stochastic part n"zj‘.

(A6) We suppose that for a sequence A, — 0, the first component n%f satis-

fies for j + k&,

ﬁj k(xj’ x) . A
(20 sup || —————m(x;)dx;|=o0p(A,),
) x, €8, Pr(xy) ! J) ! e
ﬁj k(xj7 x) . A

21 ————————m%(x;)dx;|| =o0p(4A,).
(21) J = ey i) | = on(A,)

where ||+ ||z denotes the norm in the space L,(p,). For simplicity of

notation the index k& is suppressed in the notation. The sets S, have
been introduced in (A4).

For the expectation term n'zf we suppose in the following assumption that

it stabilizes asymptotically around a nonrandom term. Below we will give
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assumptions on n%f that are easier to check and that will imply the condition
~ B
on m;.

(A7) We suppose that there exist (deterministic) functions w, ;() such that
the term /m? satisfies

sup |n~1f(x]) - Mn,j(xj)| =o0p(4,),

x;€S;
where the sets S; are introduced in assumption (A4).

These conditions, which we discuss further below, are all straightforward
to verify, except (A7). They are weaker than those made by Opsomer and
Ruppert (1997); in particular, we do not restrict the dependence between the
covariates.

The following result is crucial in establishing the asymptotic properties of
the estimates.

THEOREM 1 (Convergence of backfitting). Suppose that conditions A1-A3
hold. Then, with probability tending to 1, there exists a solution m; of (15)
that is unique. Furthermore, there exist constants 0 < vy < 1 and ¢ > 0 such
that, with probability tending to 1, the following inequality holds:

f[ﬁzg-’](xj) - ﬁ?’j(xj)rpj(xj) dx;

(22) . 2
<cy?|1+ ) f{n‘zg-o](xj)} pi(x;) dx;|.
j=1
Here, the functions mP(x,), ..., m9(x,) are the starting values of the back-

fitting algorithm. For r > 0 the functions m{"}(x,), ..., ml/(x,) are defined by
(18).

Furthermore, for s =A and s = B under the additional assumption of
(A5), with probability tending to 1 there exists a solution m} of (19) that is
unique.

Our next theorem states that the stochastic part of the backfitting
estimate is easy to understand. It coincides with the stochastic part of a
one-dimensional smooth. Therefore, for an understanding of the asymptotic
properties of the backfitting estimate it remains to study its asymptotic bias.
This will be done after the theorem under additional assumptions.

THEOREM 2. Suppose that conditions (A1)—(A6) hold for a sequence A,
and intervals S; (1 < j < n). Then it holds that

s'ggm;.*(xj) — [md(x;) — i ;]| = 0p(A,).
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If in addition (A7) holds, then one gets
(23) sup [;(x;) = [Mmf(x;) = me; + (2] = 0p(A,).

x;€8;

Typically the asymptotic stochastic behavior of n%jA is easy to understand
because it is a one-dimensional linear smoother. So if A, is small enough,
Theorem 2 gives the asymptotics of ThJA. We will discuss this below in detail.

We come now to the study of the expectation term ﬁzf. The asymptotic
expectation u, j(xj) can be calculated by a projection under the following

assumptions:
(A8) Suppose that for j # k&,
pia(x;, x Bya(x,,
(24)  sup [ (8 x) P ) | e = 0(1).
x;€S; pj(xj)pk(xk) pj(xj)pk(xk)

(A9) There exist deterministic functions «, (x,),...,a, 4,(x,), constants
@, 0Yn. 15> Yo,q and a function B(x) (not depending on n), such that

/an,j(xj)ij(xj) dx; < o,

[B(x)*p(x) dx <,
sup | B(x)] <,
%,€81,..., x €8,
e (@) Bi(w) du =, ;= 0p(A,),
(25) sup |’7A1f(xj) —fyo — I:\Lnj(xj)| =o0p(4,),

x;€8;

N A ~ 2
(26)  [|mP(x;) = o = B ()| Pi(5) iy = 0p(83),

for a random variable i, , and where

N pj,k(xj’xk)
My (x n + an X ) + Z an (x ) A
5 J J) 0 J( k#‘]/ k k p](xj)

+ 4, [B(x) E))

We will discuss these assumptions after the following theorem.

dux,,

THEOREM 3. Suppose that conditions (A1)-(A6), (A8), (A9) hold. Define a
constant B, and functions B; on R [with [B{x)p(x;) dx; = 0] by

(50,31,---,Bd)—arg m1n fﬁ(x)_ﬁo Bi(x;)
en - B

— = By(xa)]*p(x) dx.
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Then
Sup |mj (x ) — M, ](x])| _OP(A )

x;€8
where

o, () =, () = %, + A, Bi(%);
that is, (A7) holds with this choice of w, (x)).

Theorems 2 and 3 give the asymptotic behavior of 7 ,(x;) in terms of A,
A(x) @, ; and B{(x;), which quantities can be analyzed by standard
techmques In Section 5 we will verify conditions (A1)-(A6), (A8), (A9) for
Nadaraya—Watson smoothing. In this case, as discussed in the last subsec-
tion, m;(x;) is defined as
(28) mj(xj) = ZlKh(Xf - xj)Yi/ﬁj(xj)
and p;, and p, are kernel density estimates [of the densities of X, and
(X, X;,), respectively]l. We will show that conditions (A1)—(A6), (A8), (A9)
hold under the assumptions (B1)-(B7), stated there; see Theorem 4. This will
be done with A of order n~1/5 and kernels K with boundary corrections. It
will turn out that the conditions hold with A, = h* and where a, (x,) is
equal to m,(x;) plus a correction term Op(h) at the boundary and where

d

(29)  B(x) = T |m(x;) 75— logp<x)+ m(x» JuK (u) du.

Jj=1

We remark that under strong conditions (that we do not apply here) ~28(x) is
the asymptotic bias of a full-dimensional Nadaraya—Watson estimate. So
Theorem 3 shows that the bias terms of the backfitting estimates are given by
projections of the “theoretical” bias of a full-dimensional Nadaraya—Watson
estimate.

In the discussion of Section 5 we will assume that the additive model (5)
holds. The discussion of the expectation part ﬁzf becomes very complicated
when the regression function is not additive. Then if the full-dimensional
kernel density estimate p exists, one would expect that in first-order m?(x,)
+ -+ +mB(x,) is equivalent to the L,( ) projection of the regression function
onto the space of additive functions. Because of the slow convergence of p to
p we conjecture that this differ from the L,(p) projection by terms that are
larger than Op(n~2/5).

4. Estimation with local polynomials. For simplicity of notation we
consider only local linear smoothing. All arguments and theoretical results
given for this special case can be generalized to local polynomials of higher
degree.
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Define the matrices [of dimension n X (d + 1) and n X n, respectively]

X! —x, X} —xy
; -
X(x) = | : ; S

(30) L X Xiox
h

1

h
1 d d
With these quantities the local linear estimate m(x) is defined as

(31)  1(x) = {X(x)"K(0)X(x)) X(x)"K()Y = V" }()R(x),

where Y = (Y1,..., ™), V(x) = X(x)" K(x)X(x) and R(x) = X(x)"K(x)Y.
Backfitting estimators based on local polynomials can be written in the

form of (7) by choosing p(x) = V o(x) — VI _o(x)VZ5 _(x)V, _o(x), where

Vo,o(x) Ao,—o(x)

. N = X(x)"K(x)X(x R
V—o,o(x) V—o,—o(x) () B(0)X()

V(x) =

with the scalar V, o(x) = n 'Zr_ IT¢ K (X] — 1)), and V_g (), V_g _o(x)
defined appropriately. This approach has two disadvantages. First, it may
work only in low dimensions, since for the asymptotics, existence of the
matrix Vj _,(x) and convergence of V_, _((x) is required under our as-
sumptions (and this may hold only for low-dimensional argument x). Second,
the corresponding backfitting algorithm does not consist of iterative local
polynomial smoothing.

We now discuss another approach based on local polynomials that works in
higher dimensions and that is based on iterative local polynomial smoothing.
We motivate this approach for the case in which V(x) does exist, but we will
see that the definition of the backfitting estimate is based on only one- and
two-dimensional “marginals” of V(x). So its asymptotic treatment requires
only consistency of these marginals, and the asymptotics work also for higher
dimensions. This is similar to the discussion in the last section where
consistency has been needed only for one- and two-dimensional marginals of
the kernel density estimate p.

For functions f = (f°,..., f%) with components f/: R » R and d + 1 by
d + 1 positive (semi-)definite matrix function M(-), define the (semi-)norm

IFlle = [£(x)"M(x)f(x) d.
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There is a one-to-one correspondence between functions f and functions in
Fan- Furthermore, taking M =V we get that ||-[|); is simply the seminorm
induced by |-|l,. In Section 2 our version m(x) = (m°%(x),..., m4x)7 of
the backfitting estimate was defined as the projection of (the function in
Fean COrresponding to) m [see (1)] with respect to II-1l, onto the space
Z.44- Therefore, m coincides with the L (V) projection, with respect to the
(semi-)norm || f Iy, of M onto the subspace Moq4, Where

Hga = {u(x) = (1(x),...,ul(x))" ealu’(x)

=y — uy(x,) + o Fug(xg), u(x) = w(x)
forl=1,...,d, where u,,...,u, are functions R —» R

with [ V{§ o(x;)u;(x;) dx; = 0for j = 1,...,d, where u,

is a constant and where w;: [ = 1,..., d are functions R — R},

where for each j the (d + 1) X (d + 1) matrix Vj(x )= [V(x)dx_; and

=J
where Vl ,(x ) [0 <, I’ <d] denote the elements of VJ(x ). Note that the
estimate Vg o coincides with the marginal kernel density estlmate p; and
that therefore the norming [ V0 olx;)u,(x;) dx; = 0 makes sense. This norm-
ing makes the definition of the add1t1ve components u; unique. (Clearly, the
definition of the set .Z,;; would not change if we omit this norming.) The
class .#,,, contains functions that are additive in the first component (for
I = 0) and where the other components (for [ = 1,...,d) depend only on a
one-dimensional argument. A function f in .Z,4, is specified by a constant f
and 2d functions R — R. Because f!, [ = 1,...,d, depend only on one argu-
ment, in abuse of notation we write also f!(x,) instead of f'(x). Note that
there is a one-to-one correspondence between elements of .Z,,; and 7 4,

We now discuss how m is calculated by backfitting. Note that m is defined
as the minimizer of || — m|ly. Recall that this is equivalent to minimizing
Y — mll?I< over % 44. We discuss now minimization of this quantity with
respect to the jth components mf(x ) and m, + m (x;). Define for each j,

_i2

I d
wwup=fzglﬂ%x%+2ﬂ%x) TIE(X] =) dx,

J
and note the obvious fact that
A% = fIFI3 () dxyy =1, d.
Therefore, because such an integral is minimized by minimizing the inte-

grand, our problem is solved by minimizing [[Y — mII?( x;), for fixed x;, with
respect to mj(xj) and m, + mj(xj), for j=1,...,d. After some standard
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calculations, this leads to the following first order conditions:
m;( xj)V({,o( x;) + m/( xj)‘/j{o( x;)
1=z . _ A
- — .ZlKh(X; —x;) Y = mo Vi o( 1))
im

(32) = X [rux) V(. x) dx,

l#]j

= X [l (x) Vi (%, %)) dxy,
1#)
Jo(x;) +ml(x;)V/ (%))

i=1

oo\

n"zj(xj)

S| =

33 71,
(33) ~ % [)Vei(x, x,) dxy

l#j

= L [ (x) Vi (%), %)) dx,.

l+#j

Here we have used one- and two-dimensional marginals of the matrix V,

ro

(34) Vi(x,) = [V(x)dx_
(35) Vo, x,) = [V(x) dx_,

The elements of these matrices are denoted by Vp': ,(x,) and Vp': . (x,, x,) with
p,q=0,...,d. Together with the norming condition

(36) Ji(x) V3 o( %)) dx; = 0,

(32) and (33) define m,, m; and m’ for given Y and [m,, m’: | # j].
Equations (32), (33) and (36) can be rewritten as

(37) ’hj(xj) = rhj(xj) - rhj(xj)’
(38) rhj(xj) = ﬁLj(xj) + rhj(xj),

where 1 (x;), m(x;), m/(x;) and m’(x;) are defined by
A A A 1z A 4
(39)  1m;(x;)V§ o(x;) + m/(x;)V/o(x;) = W )y Kh(Xf - xj)Yl’

i=1
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. . . 12 Xi—x, 4
(40) 1 (2)Vio(x)) + 1l (x) V] (%)) = — -=21 %Kh(le - x,)Y",
ﬂlj(xj)v({,o(xj) + m](xj)vfo(xj)

= —mVio(x,) = X [m,(x)Vid(x, %)) dx,
(41) 1]

- Z f’ﬁl(xz)vll,’oj( Xy, xj) dx;,
1#j

my(x,)Vio(x;) + i/ (x,)V/ (x))

= —moVio(x)) = ¥ [y (x)Vii(x,, x,) da,

(42) l#j
= X [l (x) Vi (2, %)) dxy,
1+j
(43) () V3 o(x,) de; = = [ (%) Vi o)) dac;.

Note that (n% s m7’) is the one-dimensional local linear fit of the observations
Y" onto X/

Again, (37)-(43) define m,, m; and m’ for given Y and [, m': [ #j]. In
the jth step of every cycle of the backfitting algorithm an update of m,, m;
and 7’ will be calculated by solving (37)-(43). In the next subsection we will
discuss asymptotics for the backfitting estimate in a more general setup. In
particular, there we will not assume that (17, ') is a one-dimensional local
linear fit nor that V! and V%’ are motivated by local linear smoothing.
Furthermore, we will not make any assumptions on the stochastic nature of
the sample. For arbitrary choices of (7%2;, '), we will define ; and m’ by

{m; — () ] [ Vi o(x))

- ~ : = mo’ i A
{m/ — '} (x;) " Vio())

Mj(xj)(

(44)
A m;(x;)
_lgfsl’j(xl,xj)(ml(xl))dxl.
(45) Jmi(x) Vi o x;) dx; = 0,
where
N V({,O(xj) Vj{o(xj)
(46) M;(x;) =

Vj{o(xj) Vj{j(xj) ’
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Vol,’({( X5 xj) Vzl,’oj( X, xj)
Vj{’oj( Xp, ;) Vzl,’jj( X, X;)

Note that again as for Nadaraya-Watson smoothing we allow m, ; to
depend on n. In particular, this may be the case if it does not hold that

(48) JVEi(x, x) dxy = V(%))

for r €{0,1} and s € {0, j}.

Not m/(«x,), but h m/(x;) is an estimate of the derivative m’(x;) of m (x)).
The reason is that in our definition of the seminorm || ||, we have the linear
term f/(x)(x; — X})/h and not the term f*/(x)(x; — X}); see (2) and see
also the definition (30) of the matrix X(x). Typically, estimates of derivatives
have variance of order (nh®)~!, compared to the order (nh)~! for estimates of
the functions itself. For this reason, one can show that, because of our
norming by the factor A1, m/(x ;) has variance that is of the same asymp-
totic order as the variance of 7,(x;). The same holds for /2/(x;). This is the
reason why we have introduced the factor 27! in || ||, and X(x).

Let us finish this section by some computational remarks.

(47) él,j(xl?xj) =

1. The backfitting algorithm runs now with the following iteration step
(a=0,1,...):

fi(x)) (”A%(xj) . 1
e = s T M)
mlatihic 4. ni( x. AN/
(49 (%) (x))
XZ[S (%, x;) () dx,.
L+#j LIATE mlel l(xl) :
(50) w0 x)) = fi(x)) = [F(u)Vio(w;) du,.

2. For the case in which (48) holds, in a faster implementation, the norming
of /m; done in (50) could be omitted, that is, one could put ﬁz[f“](x )=
fi(x,). After the final cycle all functions 7, could be replaced by m (x;) —
fm (x )VO o(x;)dx; and m, defined approprlately It is easy to see that
thls algorlthm does the same. If one is interested only in the estimation of
the sum m, + m(x;) + -+ +m (x,), the final norming could be omitted
or replaced by another norming.

3. A possible initialization of backfitting is given by putting m, = 0, m, = m,
and m' =mlforl=1,...,d.

4. Note that the estimates 7, and 7' have to be calculated only at the
beginning and do not have to be updated in each backﬁtting iteration.

5. For an implementation of backfitting, all estimates {i.e., 7, ', m,, m',
m,, m', V! and V%) have to be calculated on a grid and the 1ntegrals in
(41) and (42) have to be replaced by averages. It should be emphasized
that the grid need not coincide with the set of design points. In particular,
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for large data sets it may not be necessary or desirable that it contain the
same number of points.

4.1. Asymptotics for local polynomials. We discuss now asymptotics for
the backfitting local polynomials estimate. As for Nadaraya—Watson smooth-
ing, this will be done in a general setup. We assume that some estimates m,,
ml, V! and V4! [[,I'=1,...,d] are given and that m, ,, m, and m! [l =

.,d] are defined by (44)—(47). In particular, we will not assume that
(#,, ') is a one-dimensional local linear fit and that V! and V! are
motivated by local linear smoothing. Furthermore, we will not make any
assumptions on the stochastic nature of the sample.

AssuMPTIONS. We suppose that there exists a density function p on R?
with marginals

pj(xj) =fp(x) dx—j
and
pjn(x;, %) = fp(x) dx_ forj+k

and a posmve definite (d + 1) X (d + 1) (deterministic) matrix W with ele-
ments W, : 0 <r, s, <d. We define M (x;) and S, (%, x;) as in (46) and
(47) and we put

W0 7,0
M;(x;) = | pi(x)),
J J j,O VVj,j J J
Woo Wi
S, (%, x;) = (VVj,O W, , Py, (x5 %)
We suppose that W, ; = 1.
(AY) For all j # k, it holds that
2 (x;,x
f—pj’k( %) dx; dx, <

pk(xk)pj(xj)
(A2') For all j # k, it holds that

/

/ v({:g(xj’xk) _ pj,k(xj’xk)

pk(xk)pj(xj) pk(xk)pj(xj)
N 1A _ 2 _

/[Mj(xj) lsk,j(xk’xj) _Mj(xj) lsk,j(xk’xj)]ryspk(xk) lpj(xj) dxjdxk

= o0p(1)

Vio(x,) —pi(x) | B
py(x) ] Pyl &% = oe(D,

} pk(xk)pj(xj) dxj dx), = op(1),
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for r,s = 1,2. Here [ -], , denotes the (r, s) element of a matrix [ ]
Furthermore M Vamshes outside the support of p,, SJ x vanishes
outside the support of p,, and S alxj, 1) = Sk (xg, x)).

(A3') There exists a constant C such that with probability tendmg to 1 for
all j,

Jrii(x;)" py(x)) dx; < €
and
Ji/(x,)p,(x,) dx; < C.

(A4') For some finite intervals S; C R that are contained in the support of p,
[1 <j < d] we suppose that there exists a finite constant C such that
with probability tending to 1 for all j # k&,

sup [ trace[S, (x,,x)M,(x,) "8, ;(x,, )] pu(x,) " dx, < C.

x;€8;

We decompose the smoothers 72, and mi as m; =
m?>4 +m’8 For s=A and s =B we define m
solution of the following equations:

) {m7* —m’ e} (x;)
e o %;) (%)
Vi, o(x; A ny(x;
i gy |~ B8 iy o
(52) J s (x) V4 o)) dx; = 0,

Existence and umqueness of m , mB m”4 and m’ B is stated in the next

theorem. Note that (i ms, S mb®) is deﬁned as (m m’) in (44) and (45) with
(m;, m’) replaced by (3, me ).

(A5') There exists a constant C such that with probability tending to 1 for
all j,

f’ﬁf(xjfpj(xj) dx;<C, s=A,B
and
fmj,s(xjfpj(xj) dx; < C, s=A,B.

In the applications of our results we will put (mA M’ 4) as the stochastic

part and (m m’B) as the expectation part of (m m?) [or in case of a
random de51gn as the conditional expectation of (m m’) given the design].
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In particular, in the case of local linear smoothing of i.i.d. tuples (X*,Y") with
Y'=m(X") + &' where &' is mean zero, (rﬁf‘, n%”"“) is the local linear fit to
(X}, &) and (77, m” ) is the local linear fit to (X}, m(X")).

(A6') We suppose that for a sequence A, we have

mA(x;)
A —1A J J
sup M, (x) Sk, (2, %) L dx;|| =op(A,),
x, €8, [ ! ! mJ’A(xj) ’ 2
mA(x,)
A —1A J J
IV () Sy ()| LT de| = 0p(4,),
m’ 2 (x;)
M,,?2
where ||+ ||, denotes the L, norm in R* and where for functions g:

R — R? we define lglitr, 2 = [g(w)"M,(w)g(u) du. The sets S, have
been introduced in (A4').

For the expectation term ﬁlf we suppose in the following assumption that
it stabilizes asymptotically around a nonrandom term. Below we will give
assumptions on (n’lf, m’ B) that are easier to check and that will imply the

condition on n‘lf.

(A7) We suppose that there exist deterministic functions w, ,(-) such that

sup |n~1f(xj) - /"Ln,j(xj)|’
xJESj

where the sets S; have been introduced in assumption (A4').

We remark again that these conditions are all straightforward to verify,
except perhaps (A7'). Note that we shall not require V(x) to converge in
probability to Wp(x), because this would be affected by the curse of dimen-
sionality, a necessary condition would be that nkA¢ — « for kernel smoothing,
which rules out the one-dimensional convergence rate when d > 4.

We state now results that are similar to the ones for Nadaraya—Watson
smoothing in Section 3.

THEOREM 1 (Convergence of backfitting). Suppose that conditions (Al)-
(A3') hold. Then, with probability tending to 1, there exists a solution
[, My, mb: 1=1,...,d] of (44)—(47) that is unique. Furthermore, there
exist constants 0 < y < 1 and ¢ > 0 such that, with probability tending to 1,
the following inequalities hold:

,[[’ﬁg‘r](xj) - ﬁq‘j(xj)]2pj( x;) dx; < cy®'T,

[y mi(x;)| py(x;) dx; < ey T,
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where

d

=1+ Elf[ﬁulm(xl)fpl(xl) dx; + f[ﬁll’“”(xz)]sz(xz) dx;.

Here, for r = 0 the functions my, mY’" and m"') are the starting values of

the backfitting algorithm. For r > 0 the functions m\"! and m"!"! are defined
by (49) and (50).

Furthermore, provided (A5') holds also, for s = A and s = B, with proba-
bility tending to 1, there exists a solution [mgy m? and m¥s j=1,...,d] of
(561)-(52) that is unique.

Just as Theorem 2 stated for Nadaraya—Watson smoothing, the stochastic
part of the backfitting estimate coincides with a one-dimensional local linear
fit. This is stated in the following theorem. Under conditions analogous to (59)
we get the following result.

THEOREM 2'. Suppose that conditions (A1)-(A6') hold for a sequence A,
and intervals S; (1 < j < n). Then it holds that

Sub | i (x)) = [Ri(x) — @ ]| = 0p(A,).
xXjE5;

In addition, if (A7') holds, one gets

(53)  sup |m;(a;) — [mA(x;) — md; + m, (x)]| = 0p(4,).

x;€8;

We show now how the asymptotic expectation w, ;(x;) can be calculated.
This can be done by a more direct argument as for Nadaraya—Watson
smoothing. We use the following assumptions:

(A8') Suppose that for all j # k&,

sup f‘[Mj(xj)_ISk,j(xk; x;) = M;(x;)8, (%, xj)]r,s‘pk(xk) dx,

x;€8;
=o0p(1).
for r,s=1,2.
(A9') There exist deterministic functions a, 4(x1),..., a, 4(xy), ai(xy),...,
af(x,) and constants a, o, ¥, 1,---, ¥, 4 Such that

[ (2" pi(x)) dac; < =,

Jeai(x)?pi(x)) dx; < =,
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fan,j(u)v({,O(u) du = ’Yn,j + OP(An)>

sup |ﬁLJB(xJ) = [y 0 — l"\l’n_](x‘])| =o0p(4,),

x;€8;

. . . 2
/|mf(xj) ~ Mno T Mn,j(xj)| pj(xj) dxj = OP(A2,1)>

sup |m B (x;) — A9 — pd(a;)| = op(A,),

xjE€8,;
~ : A : 2
f|mJ’B(xj) = (%)) | pi(x)) dx; = 0p(83),
for random variables @, , and where

l:“nj(x_])) _ (an,O + a, ;( xJ))

ML(%) O‘r{( xj)

+ Z‘fMj(xj)ilsk,j(xk’ x;)

k+j

(an,k(xk) dx
k-

af(xk)

THEOREM 3. Suppose that conditions (A1)-(A6') (A8'), (AY') hold. Then

Sup |r;LJB(x_]) - Mn,j(xj)| =o0p(4,),
x;€8;

sup [P (x;) — wi(x))| = 0p(A,),

x;€8;

where w, (x;) = a, (x;) =y, ; and pi(x;) = aj(x,). In particular, (AT")
holds with this choice of w, j(x)).

From Theorems 2’ and 3' we get the asymptotic behavior of the backfit-
ting estimates defined in (44)-(47). It turns out that for the local linear esti-
mator itself, the conditions hold with A, = h* «, (x;) = mix) +
R*sm/i(x)[u”K(u) du and o)(x;) = hm/(x;). We remark that under strong
conditions (that we do not apply here) Zj-L 1@, (x;) — m(x) is the asymptotic
bias of a full-dimensional local linear estimate.

5. Verification of conditions. We now provide sufficient conditions for
(A1)-(A6), (A8), (A9) to hold in a time series setting for the Nadaraya—Wat-
son smoother. We suppose that {Y’, X'}"_, is a jointly stationary process.
This includes autoregression, where X' = (Y~ !, ...,Y'"?)Y, and regular
cross-sectional regression where X' is of dimensions d and the joint process
is i.i.d., as special cases. Let .7, be the o-algebra of events generated by the

random variables {Y!, X!; a <j < b}. The stationary processes {Y!, X'} are
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called strongly mixing [Rosenblatt (1956)] if
sup |[P(ANB) — P(A)P(B)|=a(k) >0 ask — .
AeF ", BeF”
We assume that the additive model holds, that is,
(54) E[YIX=x]=my+ my(x;) + - +my(x,)
for x in a compact set ([0,1]¢, say). For identifiability we suppose that
Emj(Xj)l(Xj €1[0,1])) = 0. Let N be the number of points X' that lie in
[0, 1]¢. We define

(55) mi(x;) =N~! ill(Xi e [o,1]d)Kh(xj,X;)Yi/ﬁj(xj),
(56) pi(x;) =N"" i 1(X' € [0,1]Y)K,(x;, X}),
i=1

(57)  pja(x;,x,) =N"2 Y 1(X7€[0,1])K,(x;, X} )K,(x,, X)),
i=1
where now
K,(u—v)
JoKy(w —v) dw

with, again, K,(u) = A 'K(h~'u). We will suppose that the kernel K has
compact support [ —Cy, C;], see (B1). For this reason we get that K,(u,v) =
K,(u —v) for v €[C{, h,1 — C,h] or for u € [2C,h,1 — 2C R]. So K,(u,v)
differs from K,(uz — v) only on the boundary. This boundary modification of
the kernel will be needed for the verification of assumption (A9). All other
assumptions can be verified for the unmodified kernel K,(z — v). Assumption
(A9) was needed to get an asymptotic expansion for the bias of m; see
Theorem 3. The norming (58) gives that [} K,(u,v) du = 1. Therefore we have
Jobj w(x;, %) dx, = p(x;) and [{p/(x;) dx; = 1. Because of these properties
m; is defined by (12).

For simplicity of notation, again we assume that the kernels and the
bandwidths do not depend on .

(58) K,(u,v) = 1(u,v €[0,1])

(B1) The kernel K is bounded, has compact support ((—C;,C,], say), is
symmetric about zero and is Lipschitz continuous; that is, there exists a
positive finite constant C, such that |K(u) — K(v)| < Cylu — vl.

(B2) The density g, of X’ and the densities g, ;, of (X’, X'*)), 1 =1,..., are
uniformly bounded. Furthermore, g, is bounded away from zero on
[0, 1].

(B3) For some 6 > 2, E(|Y]?) < . Let crjz(xj) =var[Y — m(X)IXj = xj].

(B4) The second partial derivatives of the function m exist and are Lipschitz
continuous. The first partial derivatives of g, exist and are continuous.

(B5) The conditional densities fyy(x|y) of X given Y and
fxi xivnyi yier(x®, 2!y, y8) of (X7, X+ given (Y, Y'*), 1 =1,..., ex-
ist and are bounded from above.
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(B6) The process {Y?, X'} is strongly mixing with ¥7_,i?{a(i)}' %" < « for
some2<v<6anda>1-2/v.

(B7) The strong mixing coefficients satisfy X7_, ¢(j;¢) < ©and X7_,#(j;¢) <
w for ¢ = 1,2, where ¢(n;c) = (nL,(n)/r(n)XnT?/kh¢log n)* *a{r (n)}
with r,(n) = (nh®/T, log n)/? and L,(n) = (nT?/h°*?log n)*/? with
T, = {nlog n(loglog n)**°}1/% for some 1> &> 0, while (n;c) =
(nLy(n)/ro(n))Xn/h¢ log )" *a{ry(n)} with ry(n) = (nh¢/log n)*/? and
L,(n) = (n/h**%log n)*/2

These conditions are slight modifications of assumptions used in Masry
(1996a, b). We will use results of these papers to achieve the main results of
this section. We conjecture that a direct proof works under weaker conditions.

When (Y¢, X') are ii.d., we can dispense with (B5)-(B7), and replace
(B2)-(B4) by:

(B2') The d-dimensional vector X has compact support [0, 1
q, is bounded away from zero and infinity on [0, 1]¢.

(B3') For some 6 > 5/2, E(Y|?) < . Let sz(xj) = var[Y — m(X)IXj = xj].

(B4') The second partial derivatives of the function m exist and are continu-
ous. The first partial derivatives of g, exist and are continuous.

1? and its density

Condition (B3') ensures that sup, _, . ,|Y;| = 0,(n*/®). The following theo-
rem could also be stated for the case of a stationary sequence (Y*, X*) where
X' has compact support.

THEOREM 4. Suppose that the model (54) applies and that conditions
(B1)-(B7) hold, or (B1), (B2'), (B3') and (B4') hold in the i.i.d. case, and that
Nadaraya—Watson backfitting smoothing is used; that is, t;, p; and p; , are
defined according to (55)—(57) and m; is defined by (12). Suppose additionally
that nl/°h — c, for a constant c, with n, = EN = nP(X € [0, 1]%). Then, for
closed subsets Sq,...,S,; of (0,1) conditions (A1)-(A6), (A8), (A9) are satis-
fied with A, =h*, with B as defined by (29), with «a, (x;)=mjx;) +
m'(x ) (K, (x;, ulu — x;) dul [K,(x;,v)dh]™", vy, ;= 0, p(x)=qx)l(x e
(o, 1]d)/P(X e [0, 11?), and with n%j‘(xj) = N_IZZLIKh(xj, in)(Yi -
E[Y'|X'D/p/x)). In particular, the uniform expansion (23) holds and the
following convergence holds in distribution for any x, ..., x,; € (0, 1),
my(x1) — my(x,)

i :
mg(xq) —mg(xq)
v,(x 0 0
ci Bi(x1) 1(0 1) .
X N . ,

C}%Bd(xd) O . 0 vd(xd)
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where B; is defined by (27) and where v/(x;) = c;cha'jz(xj)/pj(xj), j=1
,d with cx = [K(w)? du. Consequently,

d d
ng/?[m(x) —m(x)] X N|c} g’l'gj(xj)’ ~§lvj(xj) )

It is illuminating to relate the estimate m; to the corresponding infeasible
estimate 72, that uses the knowledge of the other components m,; with [ # j.
Specifically, let 72,(x;) be the one-dimensional kernel smooth of the unob-

served data Y. =Y' — m, — X, ;m,(X}) on X/, thus
K (X x)Y
=1Kh(in’ xj)

(59) mi(x;) = ., Jj=1,....d.

Under standard regularity conditions [see, e.g., Hardle (1991) for the i.i.d.
casel],

(60) ¥/ (x)) — my(x)} X N{B(x), (%))}, Jj=1,....d,

where b,(x;) = c{m/(x)pi(x;)/pj(x;) + (1/2)m'(x )} [u*K(u) du and ,(x;)
= v;(x,). Define also the centered version of 72 ;(x,),

1z : ‘ d
(61) () = my(x) = & ; (X)X e [0,1]7),

which has the same asymptotic variance as 7i2,(x;) but bias bc(x) = b](x)
[b(x)p,(x;) dx;. Because in the construction of " knowledge of the other

components is used this estimate gives a target that we may not expect to
beat by using ;. We see that m; and the theoretical target estimate 2]
have the same asymptotic variance, whereas they differ in their asymptotic
bias. We will see below that backfitting estimates based on local linear will
have the same asymptotic bias and variance as their target estimate. The
basic reason is that the function B(x) is not additive whereas the correspond-
ing function in the local linear case is. Recall that B(x) corresponds to the
asymptotic bias of the full-dimensional estimate 7(x) and that it is well
known that for the Nadaraya—Watson estimate the asymptotic bias depends
on the design density p whereas for the local linear estimate it does not.

We next state the theorem for the local linear estimator. We define now the
marginal estimates 772 ;(x;) and m/(x;) by

(62)
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where K,(u,v) is defined as in (58) and where
V({,o( X;) V/o(xj)
Vj{o(xj) Vj{j(xj)

M,(x,)

(63) ~ an 1(X' e[0,1]%)

Furthermore we put

él j(xl, xj) = A . A .
Vj{’oj( X5 xj) Vzl,’jj(xl, xj)

Vid(x, %) Vid(x, x)) ]

1 . p . .
(64) =5 ;11()0 € [0,1]°) K, (x;, X)) K, (x;, X})
y 1 R X} - x]

AUX] - x] RTX - ][ X -]

We get now our result for this version of the backfitting local linear
estimate. Now, the asymptotic bias is explicitly given and its formula does not
require a projection step.

THEOREM 4'. Suppose that the model (54) applies and that conditions
B1)-B7) hold, or (B1), (B2'), B3') and (B4') hold in the i.i.d. case, and

that local linear backfitting smoothing is used, that is, m(x;), m (x ), M (x;)
and Sl ; are defined according to (62)—~(64) and m, ;, m; and m’ are deﬁned
by (44) (45). Suppose additionally that nl/°h - c, for a constant ¢, with
n, = EN = nP(X € [0, 1]9). Then, for closed subsets S, ..., S, of (0,1), con-
ditions (A1)-(A6'), (A8'), (A9') are satisfied with

An=h27
1 0
W= /uzK(u)du ’
(%)) s L, 12 L_ .
(mj,A(xj)) = Mj(xj) ﬁi:ZII(X S [0,1] )

‘ 1 ‘ o
X Kh(xj, le)(h_l[in _ xj] )(Y‘ - E[Y'|X']),
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h2
) = () + )[R
a,{(xj) = hm,j(xj),

h*[u*K(u) du

Yog = g+ g () pi(xy) dy,
Vn,j = fmj(xj)Kh(xj, u)p;(u) dudx;.

In particular, the uniform expansion (53) holds and the following convergence
holds in distribution for any x,..., x4 € (0, 1),

my(x;) —my(xy) + v, 4

n2/5
my(xg) —mg(xy) + v, 4

0

v(xy) 0 0
cid1(x1) 0 . :
X N . , . ,
9 ’ . . 0
CHSd(xd) 0 .. 0 v (.’)C )
alXg
where
[u?K(u) du

8,(x)) = g i) = [t () i,

and where v{(x;) = c; cxo?(x)/px)), j=1,...,d with cx = [K(u)*du.
Furthermore,

nZ/*[m(x) —m(x)] XN

d d
c? ;1 8,(x;), ;,1 vj(xj)).

In this case, the bias functions coincide with the biases bf(x j) of the
centered oracle estimate mj(x j) for j =1,...,d. So, in this case, the asymp-
totic bias and the asymptotic variance are identical to the bias and variance
of the centered oracle estimator (based also on local linear estimation). That
means our estimate achieves the same first-order asymptotics as if the other
components were known. In particular, our estimate is design adaptive. This
is in contrast to Opsomer and Ruppert (1997) who propose a backfitting
estimate, based on the local linear smoother, that has design dependent bias.

Finally, the variance (rjg(x ) can be consistently estimated from the residu-
als & =Y'—m(X"), i =1,..., n, which, along with the usual estimates of
p;(x,), enables consistent estimation of v,(x;) and L¢_v,(x;).

APPENDIX

The proofs will make use of Lemmas 1-4 which we give below. Before we
come to this, let us collect some facts about iterative projections. Define the
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following spaces of additive functions:
Z={m e Ly(p):m(x) =mqy(x;) + - +my(x,) (pas.)

for some functions m; € Ly(p,),...,my € Ly(p,)},

70 = {m e m(x) =my(x;) + - +my(x,) (pas.),

Jm(x)p(x) dx = 0},

70 = {m eZ:m(x) =my(x;) + - +my(xy) (pas.),

Jmi(x)B,(x,) dx; = 0 for j = 1,...,d},

Z,

/= {m €7’ m(x) =m,(x;) (p as.) for a function m; € Lz(pj)},

2" = {m ex"":m(x) =m;(x;) (p a.s.) for a function m; € Lz(pj)}.

The norm in the space 7 is denoted by ||m||3 = [m?*(x)p(x) dx for m €% For
m €% we get with mj(xj) =m(x) (p a.s.) that lmll3 = [m*(x)p(x) dx =
Jm?(x;)p/(x;) dx;. Here and in the following for simplicity of notation we
identify functions m; € 7 (or in Z") that map R? into R with functions m it
R — R by putting m (x;) = m (x).

The projection of an element of # onto % is denoted by II;, that is,
[T,m(x) = E[m(X)IX; = x,;] — E[m(X)]. The operator ¥, =1 — IT; gives the
projection onto the linear space

%l= {m e fm(x)q‘)(xj)p(x) dx = 0 for all ¢ E/“?;}

- {m e [m(x)p(x)dx_;= [m(x)p(x)dx (p, a.s.)}.
For m(x) = my(x;) + -+ +my(x,) €7 we get
Wm(x) = m(x) - E[m(X)IX, = x| + E[m(X)]
(65) =my(x;) + o Amy(x; ) +mi(x;) +my(x,,)
+otmg(xg),
where
pjk(xj7xk)

(66) mf(xj)=—k§jfmk(xk) o (n)

dx, + %fmk(uk)pk(uk) duy,.

For m €% the additive components m,,..., m, are only unique up to an
additive constant. Note, however, that the value of W;m does not depend on
the special choice of mq,..., m,.
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For functions m €7%" with m(x) = m,(x, + -+ +my(x,), m; €Z" we
define the operator \I’ as W, but with m%(x;) on the right-hand side of (65)
replaced by

ﬁjk(xj’xk) A

(67)  mi(x)) = —kgjfmk(xk) Ty Prun(m)|du

where the function p, ;. has been defined in (16). Note that for functions
m; €% we get V;m (x) = 0, while

pkj(xk’ u)
(68) Wym(x) =m,(x;) — fmj(u)T

Put T=W, - ¥, and T =¥, --- ¥,. We will see below that i in our setup
the backfitting algorlthm is based on 1terat1ve applications of 7. A central
tool for understanding backfitting will be given by the next lemma, which
describes iterative applications of 7'. For linear operators S: #— .7 we define

S|l = sup{lISfllz: f €2, lIfll: < 1},
ISllo = sup{lISfllz: f€2°, IIflls < 1},
ISllo, » = sup{llSflla: f €2, lIflls < 1}.

du.

LEMMA 1 [Norm of the operator T']. Suppose that condition (Al) holds.
Then T: #— Ly(p) is a positive self-adjoint operator with operator norm
IT|lo < 1. Hence, for every m € #° we get

(69) 1T mlls < T Imlls.

Furthermore, for every m €%° there exist m; €% (1 <j <d) such that
m(u) = m(u,) + -+ +my(u,) (p. a.s.) and for some constant ¢ > 0,

(70) Imlly > ¢ max{llmllz, ..., Imylls}.

Proor. We start by proving (69). It is known that (69) holds with ||T]|2 <
1 — [T}, sin®(r;) where cos 7; = p(%, %, , + - +7%;) and where for two sub-
spaces L; and L2, the quantlty p(Ll, L,) is the cosine of the minimal angle
between L1 and L,; that is, p(L,, Ly) = sup{[h(x)hy(x)p(x) dx: h; € L; N
(Ly nLy™+, 2]l < 1(j = 1,2)}. This result was shown in Smith, Solomon
and Wagner (1977). For a discussion, see Deutsch (1985) and Bickel, Klaassen,
Ritov and Wellner [(1993), Appendix A.4]. We will show now thatfor 1 <j < d
the subspaces .#; =7, + -+ +% are closed subsets of L,(p). This implies
that p(Z,,, #) <1for j=1,...,d — 1; see again Deutsch [(1985), Lemma
2.5] and Bickel, Klaassen, Ritov and Wellner [(1993), Appendix A.4, Proposi-
tion 2]. To prove that .Z; is closed we will use the following two facts. For two
closed subspaces L, and L, of Ly(p) it holds that L, + L, is closed if and
only if there exists a constant ¢ > 0 such that for all m € L; + L, there exist
m, € L; and m, € L, with m(uv) = m,(u,) + my(u,) (p a.s.) and

(71) Imlly > ¢ max[|lmylls, Im,ll2] .
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Furthermore, L, + L, is closed if the projection of L, onto L, is compact. For
the proof of these two statements, see Bickel, Klaassen, Ritov and Wellner
[(1993), Appendix A.4, Proposition 2]. Suppose now that it has already been
proved for j < j, — 1 that .#; is closed and that we want to show that .7, is

closed. As mentioned above, for this claim it suffices to show that I jol/é}a_ 1 1s
compact. We remark first that (71) implies that for every m €4, _; there
exist m; €% (j <j, — 1 such that m(w) = my(u;) + - +m; _(u; _,) (p
a.s.) and with a constant ¢ > 0,

(72) lmlly = ¢ max[limyllz, ..., lIm; 2]
We will prove that
jo_

1
< const.l Y ijz»’jo(xj, x; ) p;j(x;)p;(x;) dx; dx;, lmll3
j=1

(73)

[Im
jO

2
2
with

P (%), %;)

R, (x;,x;) = —22n L 2he
JodoN 2 e pjn(xjo)pj(xj)

Inequality (73) implies compactness of I; |.#; _,. To see this one uses (A1)
and argues as in the standard proofs for compactness of Hilbert—Schmidt
operators; see, for example, Example 3.2.4 in Balakrishnan (1981).

It remains to show (73). This follows from (72) with applications of the
Cauchy—Schwarz inequality.

Equation (70) follows as (72). O

The next lemma extends this result to the stochastic operator T.

LEMMA 2 (Norm of the operator 7). Suppose that conditions (A1)~(A2)
hold. Then

(74) ¥ — Willo,» = 0p(1),

(75) 1T = Tllo, n = 0p(1).

Choose y with ||Tlo < y < 1. Then, with probability tending to 1,
(76) 1 llo,n < .

Furthermore, for some constant ¢ > 0 with probability tending to 1 it holds
that for every m € #%"

(77) Imlly > ¢ max{llmlls,..., Imylls},

where m; €7" (1 <j < d) with m(w) = m,(u,) + - +my(u,) (p a.s).

ProOF. For a function m € #%" we get m(x) = my(x;) + -+ +m (x,)
with functions m; € Z". We remark first that the distance between mj‘ and
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¥ [see (66) and (67)] can be bounded with [m,(x,)p,(x;) dx;, = 0 and with
the help of the Cauchy—Schwarz inequality as follows:

sk ok o x ﬁjk(xj’xk) _ pjk(xj’xk)
5 =il = X fmaCon) | 7505 oy ]d 4,
+k2‘ fmk(xk)ﬁk,[jﬂ(xk)dxk
+Xkl /mk(xk)pk(xk)dxk
_ ﬁjk(xj’xk) _ pjk(xj7xk)
A SRl Fresrren il e ren] LASRL |
Dr(xy) _ﬁk,[jﬂ(xk)
+k§j fmk(xk) Pa(%y) pr(x;) dx,,
+zk: /mk(xk) pk(x;)k(;f;(xk)}pk(xk)dxk
< Z ||mk||2(UJk +Rjk) + Z”mk”.‘ZQk,
k) )

with
2

[ P r(x;, x;) P (%), x3)
pk(xk)pj(xj) dxj dx,,

Uik = f_pk(xk)pj(xj) ACNACH)

B2 _ [ Du(x)) = Prj+1(%2)
W)

pr(xy) } Pu( 1)

9 [ Bi(x,) — pi( )
? '[ pr(xy)

With 7, = max, , ;|U;, + R;| + max,|S,|, this and (70) imply with a constant
C (not depending on m),

} pr(xy) dxy.

Lo S *
vt = m*ll < Climll T,

Now because of (A2), U;, = 0p(1) and @, = 0p(1). Furthermore,

/

Pr(xy) _ﬁk,[j+](xk)
pr(xy)

- f[f{ ZICTL Pyl xk)) }pj(xj) dxj] pr(xy) dx,

} pr(xy) dx,

pi(x;) pr(xy) - pi(x) Pi( %,
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2

Dir(x;, x) B Din(x;, %) i e
f pi(x)pp(x,)  pr(xp)pi(x;) pr(x,) pi( x;) dx; dx,,
=o0p(1);

therefore R;, = 0p(1) and T; = 0p(1). This shows (74) and (75). Claim (76)
follows from (75) and

(78) ”T”O,n = ”T”O + Op(l)-

It remains to show (78). This follows immediately from

(79) info' sup If—glls = 0p(1),
FEZ™" gex®, lgla=1

(80) inf sup If—glls = 0p(1).

0
feZ” gez®m,llglz=1

For the proof of (79) and (80) note, for example, that for m; €.%7" one has

2

= ‘/mj(xj)[pj( xj) - ﬁj(xj)] dxj

‘fmj(xj)p(xj) dx;
. 2
< lmllz| [ p; = 5,1 /p,,
= ”mj”%()p(]-)
because of (A2). Similarly, one shows (77); see also (70). O

Our next lemma builds on Lemma 2 to establish a stochastic expansion for
m(x) = my(x;) + - +my(x,) in terms of m; [1 <j < d].

LEMMA 3 [Stochastic expansion of m]. Suppose that conditions (A1)—(A3)
hold. Then there exist constants 0 < y < 1 and 0 < C, C' < © such that with
probability tending to 1, the following stochastic expansion holds for all s > 1:

m(x) = Y, T%(x) + R¥(x),

‘
17

where
T(x) = ‘i'd \ifz[n%l(x) — Mg ] + +‘i'd[ﬁ1d—1(x) — Ty 1]
+hg(xg) — Mg q
and where RN(x) = R\¥)(x,) + - +RUN(x,) is a function in #*" with
(81) IRy < Cy?®.
Under the additional assumption of (A4) it holds that
(82) sup |R5-s](xj)| < C'y*.

x;€8;
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PrOOF. We remark first that (15) can be rewritten as

(83) m(x) = Vin(x) = i x;) = g, ;.
Iterative applications of this equation for j = 1,..., d gives
(84) m(x) = T(x) + #(x).

Iterative applications of (84) gives
m(x) = Y T%(x).
r=0

The operator norm IIYA’IIO, » 1s smaller than y, with probability tending to 1, for
v < 1 large enough. This was shown in the last lemma and it shows that the
infinite series expansion in the last equation is well defined. Furthermore,
this can be used to prove that for C, > 0 large enough, with probability
tending to 1, ||R*!||l; < C,y°®. This implies claim (81) because of (77).

Assume now (A4). For the proof of (82) note that for C, > 0 large enough
with probability tending to 1 for all functions g in 7 with [/glls < 1, it holds
for k£ # j that

Di(xj, xp)
(85) sgg —]ﬁk(Jxk) —g(xj) dxj < Cz,
Xk k
ﬁjk(xj’xk)
(86) SIRTP TR (%)) da|| < C,.
’[ pk(xk) ! ! 2 ?

Inequality (85) follows from assumption (A4) by application of the Cauchy-
Schwarz inequality:

ﬁjk(xj’ xp)

sup ~ g(x;) dx;
x, €8, Pr(xy) ! !
ﬁjk(xj’xk)
sup || ——————p;i(x;)g(x;) dx;
x,€8;, bPr(xy)pi(x;) 7" ! !
" 1/2
Pi(x;, xp)
<| sup f;dxjng(xj)pj(xj) dx;

x,E€S), ﬁl%(xk)pj(xj)

For the proof of (86) one applies again the Cauchy—Schwarz inequality and

(87)

no
Dip(x;, xp)
f—Jk Lk pr( %) pj(x;) dx; dx;, < Cy

ﬁk(xk)PjZ(xj)
for a constant C,; (with probability tending to 1). Claim (87) follows from
assumptions (Al) and (A2).

Equations (85) and (86) imply that for C, > 0 large enough with probabil-
ity tending to 1 for all functions A in /# with ||A|| < 1 it holds for 1 <j < d
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that
(88) sup|Th(x)| < C,,

xeS

where S = {x: x; € SJ-}. Now, because of

oo
A

RU(x) = Y T7%(x)=TRCY(x),

r=s+1

claim (82) now follows from

sup | RI(x)| < C, IR

xeS

< C,Ciy* 1. ad
LEMMA 4 (Behavior of the stochastic component of m). Suppose that
(A1)-(A6) hold. Then we have that

(89) sup |mf(x;) — mi(x;) +md | =op(4,).

J
x;€8;

Proor. We will show Lemma 4 for j = 1. Proceeding as in the last lemma
we get that, with probability tending to 1,

mA(x) = ¥ T4 (x),
where
FAx) =, B[ md - ml | (x) + A [mg - md ] (%)
+ rh?(xd) - njl’(‘)q,d’
mA(x) = mi(xy) + - +mi(xy).

We argue now that the statement of the lemma follows from

¥ 7734(x)

r=1

(90) sup

xeS

= OP(An)’

where as above S = {x: x; € S}}. For seeing this, note that (90) implies that

(91) sup [ (x) = #4(x)| = 0p(A,).

xeS

Only the first summand of j—A(x), that is, U, - W, mA(x) depends on x,.
Furthermore, the operators W,,...,V, do not change the additive component
of a function that depends on x,. Therefore 7#“(x) is of the form 74(x) =
mi(x,) + 24(xy,..., x,) where 74, is a function that does not depend on x;.
For this reason the claim of the lemma follows for j = 1. [Note also that

fﬁ1(x1)[ﬁ7/f(x1) - ﬁlg‘,ﬂ dx, = fﬁ1(x1)’ﬁf(x1) dx, = 0]
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For the proof of (90) note first that
(92) 17545 = 0p(A,).
This follows from (21), IICZA"IIO,,Z <1 and II‘i'J»IIo,n < 1 (with probability tending

to 1); see Lemma 2. Because of [|T'lly, , < y (with probability tending to 1 for a
v < 1) (92) shows that

(93)

With (88) this shows

sup =0p(A,).
xeS

T734(x)
2

r=

So for claim (90) it remains to show

sup|T34(x)| = 0p(A,).

xeS

This can be done using (20), (21), II‘iijIO, » < 1 (with probability tending to 1),
and (88). O

ProOF oF THEOREM 1. For the proof, note first that by definition of our
backfitting algorithm [see (18)],

m(x) = Tl U(x) + #(x).

Iterative application of this equation gives

r—1 . .

mll(x) = Y, T%(x) + T"ml%(x).

s=0

Because of Lemma 3 this shows
Al (x) —m(x) = — ¥ T%(x) + T"ml%x).
s=r

Because of (A3) and II\iijI = |I¥;ll + 0p(1) = 1 + 0p(1), we have for a constant
C’ that ||7||; < C’ with probability tending to 1. So with Lemma 2 we get that

!

Il — mlly < [1 + IIﬂtlollla}V’

with probability tending to 1. Claim (22) follows now by application of (70).
For the proof of existence and uniqueness of rhf and rhf, one proceeds
similarly. O
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Theorem 2 follows from Lemma 4.
ProOF OF THEOREM 3. We put for 1 <j < d,

PP (%)) = @, () + kgj/an,k(xk) % B | dxy,
p(x)

P

fr?LJB(u)ﬁJ(u) du "B 1

P 3 (%) = mj(x;) - O (x;) —mj?(x)),

mP2(x;) = A, [B(x)

where
@, (%) = a, (%) — [a, (w)B,(u) du.
Forr=1,...,3;j=1,...,d we define now nﬁf” by

_ IR (x) (%) dx;

o fﬁj(xj) dx; ’
~B,r _ A B,r
(94) my"(x;) = my " (x5) » |
Pip\ X5 Xy, n
— Y [mE (x| T = By (%) | dx
kﬂf k pi(x)) ko [i+1\ Yk k
— B,

B,r

By these equations the quantities m;

shown in Theorem 1.

are uniquely defined. This has been

Note that m?(x,) = m?(x)) + mP2(x;) + m?3(x,). We will show
(95) mp () = a, (%),
(96) sup |’7~1;3’2(xj) —A, Bj(xj)| =o0p(4,),
XjED;
(97) sup |mB3(x;)| = op(A,).
x;€8;

These claims imply the statement of the theorem. For the proof of (95) note
that m{ ! = 0 and that m? '(x;) = @, ;(x,) solves (94). This shows (95).
For r = 2,3 we get for mB r(x) 7 B r(xl) + - +mBr(xy),

el
B Z kABrx)
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where
#B(x) =Wy o B[P — mBr|(x) + -+ [ B —mBr ] (%)
+mb (xd)_moBo?

For the proof of (96) we will show that

(98) szg mB2(x) — Z T'rB2(x)| = 0p(A,),
where
B2(x) =W, - W, [rhf 2 —mb 2](.96) + - +‘I’d[ﬁ1§’_ mg: 2](x)

- md Z(xd) - moB %

m§? = A, [B(x)p(x)dx=mE? +o0p(A,).

By the same arguments as in the beginning of the proof of Lemma 3 (with 7
replaced by T') one can see that

An{Bl(xl) +oe +Bd(xd)} = kgoTkTB’z(x)-

Therefore (98) implies (96). For the proof of (98) we write, with W = ¥7_ T*,

]

mB2(x) — ¥ Th2(x)

Il

|
u 13
.

= TH#%2(x) + W[5 (x) — 72 (2)]

: ii DT~ P 502 () + W[E2(x) — 772 ()]

= —TV3B2(x) + [T - T1U#B2(x) + W[3B2(x) — rP%(x)],
where
A * k_l A A
V=Y Y 1T - T]T" ',
k=11=1
U= Yy 7*!
k=1

One applies now that [[75:2]l; = O,(A,) and that
sup |Tg(x)| = Op(1),

x€eS
sggl[f— T]g(x)| = op(1)

for functions g with ||glls = Op(1); see the proof of (88) and apply (A8).

(99)
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Because of |[Vllo,, = 0p(1) and |[Ullo,, = Op(1) this shows sup, _ ¢|TV#%2(x)
+ [T — GIU?%2(x)| = 0p(A,). For the proof of (98) it remains to show

(100) sup [W[#5:2(x) — 722(2)]| = 0p(4,).
xeS
Claim (100) follows from (99) and
(101) sup[#5:2(x) — 75 %(x)[ = 0p(4,),
xeS
(102) 1752 — 75:2]l; = 0p(4,).

For the proof of (101) and (102) one proceeds similarly to the proof of (88). For
the statement of the theorem it remains to prove (97). For this claim one
shows that

sup|#5:3(x)| = 0p(4,),

xeS
1723y = 0p(A,).

This can be done by showing for j = 1,...,d,

sup |ﬁlf3(xj)| =o0p(4,),
ijSj

1723y = 0p(A,). O

ProoFs oF THEOREMS 1 AND 2'. The theorems follow as Theorems 1
and 2 by essentially the same arguments. In particular, instead of
L,(p) we consider now L,(Wp) = {f=(f%...,f): f: R? » R with
JfT(x)Wf(x)p(x) dx < o). Furthermore, now the spaces 7, #°, 7%, #%" and
Z" are defined as

Z = {m =(m°...,m?%) € Ly(Wp): m°(x) = my(x;) + - +my(x,)
(p a.s.) for functions m; € Ly( py),...,my; € Ly( py), the

functions m’ depend only on x;forj=1,..., d},
70 = {m EZ: /mo(x)p(x) dx = O},

Z = {m €7 m°(x) depends only on x; (p a.s.) and for [ # j

it holds that m!(x) = 0 (p a.s.)},

Z0n = {m e m®(x) =my(x,) + - +my(x,) (p a.s.) for functions

m, € Ly(p,),...,m,; € Ly( p;) with fmj(uj)‘}({’o(uj) du; = O},

A" = {m €7 ": m(x) depends only on x; (p a.s.)}.
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For a function m €.# with m°(x) = m(x,) + -+ + m (x,) for some func-
tions m; we define now V¥;m,

[W,m]°(x) = fi(xy) + - +Fa(%4),
[Wm]"(x) = F*(x,),
where for & # j,
fr(xy) =my(x;),
fk(xk) =mk(xk)’

and where

fi(x;) 1
(fj(xj)) k§J/M (x)SJ k(xJ,xk)

my(x,) — fmk(uk)pk(uk) du,,

dx,
m* ()
fmj(uj)pj(uj) du;
0
Furthermore, for a function m €. 2" with m®(x) = my(x,) + -+ +m(x,)

for some functions m; with [m (u )VO ole;) du; = 0 we define now ‘I’ m:
[Fm]"(x) = Fi(e) + - a0,
Y
(] (x) = (),

where for & + j,
fr(xp) = my(x,),
fk(xk) =mk(xk)7

and where
£i(x;) = g,(x) — [&;(u))V3,o(x;) du,,
gj(xj) 1 r(x1)
ff’(x,-)) L m (xf)s““("f”‘k)( mh(,) |

Proceeding as above, one can show that the norm of the operators T' = ¥,
- ¥, and T = \If \If is smaller than y < 1 (with probability tending to 1).
Theorems 1 and 2’ follow by stochastic expansions of m. O

The proof of Theorem 3’ is similar to the proof of Theorem 3 and is omitted.
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ProoF oF THEOREM 4. We have to verify conditions (A1)-(A6), (AS8),
(A9). Continuity of g, implies that inf,_, ., pj(x;) >0 for all j and
SUP) < 1 <1, 0< 5, <105, 5(%, %) < o°. This shows (AD).

In the proof we will make repeated use of

(103) sup |ﬁj,k(xjaxk) _pj,k(xj, xk)| ZOP([IOg n]1/2n73/10),
x; €Iy, x €1}
(104) Sup |ﬁ](xj) _pj( x])| = OP([log n]l/zn*2/5),
ij h

sup
O<xj,x,<1

ﬁj,k(xj’ x)

(105)
1 1
= [ Koy w) du [ Ky(x,0) dvp, (25, 6) | = Op(n ™17,
A 1 —
(106) 0<su21 bi(x;) — j;) Ky(x;,u)dup;(x;)| = Op(n"'?),

where I, = [2C,h,1 — 2C,h], If =[0,2C,h) U (1 — 2C,h,1] and I2° = (I}
x [0,1]) U ([0, 1] X I}).
A proof of (103) and (104) can be found in Masry (1996b). Claims (105) and
(106) can be shown by a modification of the arguments in Masry (1996b).
Note that (105) and (106) imply that

(107) sup | p; (x5, x,)| = Op(1),
102 (xj,xk)EI,%'”
(108) sup | p;(x;) "' | = 0p(1),
xjel,j
(109) sup | p;(x;)| = 0p(1).
ijIﬁ

Assumptions (A2), (A4) and (A8) can be easily proved by application of
(103)-(109). Assumptions (A3) and (A5) follow from

. A log n \"/?

(110) mzzflJ'nj(xj)|= Op ( — ) ,
(111) sup |mP(x;)| = 0p(1).

xje[O,l]
For a proof of (110) see again Masry (1996b). Claim (111) follows from
(112) SuII’ |’7A7ff(xj) - lan](x])| = OP(hZ),

x/e n
(113) sup |’7A1f(x;) - l:l’n_](xj)| = op(h).

c
x;el
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Note that because of (112) and (113), for the proof of (A9) it suffices to check
that vy, ; can be chosen as v, ; = 0. This follows from

(114) Jen i(2)B,(x,) dx; = 0p(A,).
So it remains to establish (A6), (114), (112) and (113).

PRrOOF OF (114). By definition of a, ; we get
[t (2) (%)) dx;
= [m(x)) (%)) dx,

+fm'j(xj)Kh(xj,u)(u - xj)[th(xj,v) dv] pi(x;) dx; du.

By standard kernel arguments one can show that the right-hand side is equal
to

/mj(xj)Kh( x;,u)p;(u) dudx;

+fmlj(xj)Kh(xj, u)(u - xj)[th(xj,U) dv]_
XK, (x;,w)p(w) dudwdx; +op(A,).

We argue now that the second term is equivalent to

fm’j(xj)Kh(xj, u)(u — xj)[th( X;,0) dv}_
XK (x;,w)p;(x;) dudwdx; + op(A,)

= fm/j(xj)Kh(xj, u)(u —x;)p;(x;) dudx; + op(A,).

Putting these expansions together we get that
[t i(2) (%)) dx;
= [m,(x,) Ky(x;, ) p(u) dudz,
+ [ (x) Ky (5, w) (@ = x;) py((x;) dudx; + op(A,)
+ [mi(w) Ky( x5, u) p,(u) duds; + op(A,)

= [m,(u)p;(u) du + 0p(4,)

= OP(An)‘ u
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ProoF oF A6. We will give only the proof of (20). Claim (21) follows from
(107), (108), (110) and (20). By the triangle inequality,

1 ﬁj,k(xj: xy)

A A
sup ~ ma(x;) dx;
x,€1, |70 Pr(xy) T !
1 Pj X, X A
< sup Mvj(xj) dx;
x,€1, |70 pj(xj)pk(xk)
+ sup | [ Bir%p ) - Piwl%p %) 0;(x;) dx;
x,el, |70 ﬁj(xj)ﬁk(xk) pj(xj)pk(xk) 7 !
1 DjplX;, X
< sup Maj(xj) dx;| + op(h2),
x,€1, |70 pj(xj)pk(xk)

because of (103)—(108), (110), where

1 L
0;(x;) = N h Kh(xj —Xj’)s’,

ied,
where
J,={i: X' €[0,1]°,1 <i < n}.
Therefore,
—’A ma(x. dx=— 8lni X + o0 hZ
fo Dr(xy) J( J) ! NieZJn il 74 p(4%)

uniformly for x, € I, with

pjvk(in — uh, xk)
pj(le - Uh)Pk(xk)
by straightforward change of variables. The argument is now quite similar to
that given in Masry (1996b). We drop the %2 subscript for convenience. The

interval [0, 1] can be covered by a finite number c(n) of cubes I, with
centers u, and with side length [(n). We then have

&l xy) = fK(u)

r

1 ‘ 1 )
sup | Y. e,:(u)| = max  sup N 2 e€,(u)
wel, ied, 1grsc(n)uelhml,z,, ied,
1 _ 1 .
< max sup | X eé,(u) - = X £€,(u,)
1<r<c(n) yer,ni,, NieJn NieJn

+ max
l<r<ec(n)

1 )
N Z 8§ni(ur)

ied,

=@, +Q,, say.
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It is straightforward to see that | £,;(u) — £,;(u,)| < al(n) for some constant a
and that @, = O(I{(n)) with probability 1. To handle the second term we must
use an exponential inequality and a blocking argument as in Masry’s proof.
In conclusion, by appropriate choice of c(n), we obtain @, + @, = O(log n/
Vn ) with probability 1. O

Proor oF (112) AND (113). Note that by definition,

mf(xj) =N"! Z Kh(xj7in)m(Xi)/ﬁj(xj)

ied,
=N ¥ Ky(x;, X)) [mo + my(X]) + - +my(X3)]/B;(x;)
ied,

and
b, (x;) =m;(x;) + m’j(xj)/Kh(xj, u)(u —x;) du[folKh(xj, u) du}_

ﬁ',k(x" xk)
+ ) /mk(xk)jf\—J
k+j k,jed, pi(x;)

ﬁ. X, X
+ X fm'k(xk)—”’i( » )
k+j,k,jed, j( j)

dx,,

Ky (xp,u)(u —xy)

1
X flKh(xk,v) dv| dudx,
0

dp(x)

1
P my(x,) + Ep(x)m,l/e(xk) dx_;

d
+h2dej(xj)71 Zf
k=1
with d, = [u?K(u) du. We argue now that for j = 1,...,d,
N~ Y Ky(x;, Xj)m;(X])/D;(x;)
ied,
=m;(x;) + m(x;)
1 -1
(115) X/Kh(xj,u)(u—xj) du[f K, (x;,u) du}
0
+ B2 [u?K (u) dup;(x) " [ pj(x,)m(x) + 50,2 mi( ;)]
+ R, (x;)

with sup, c, IRnJ(xj)I = 0p(h?) and supij[ﬁIRn’j(xj)I = Op(h?). Further-
more, we argue for j # k& that
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Nt Y Kh(xj’ in)mk(Xlé)/ﬁj( x;)
ied,
ﬁj,k(xj’ xy)
pi(x;)
ﬁj,k(xp xy)

ﬁj( xj)

= [mi(x,) dx,

+fm/k(xk)

(116) ) o
XKh(xk,u)(u—xk)[AKh(xk,v) dv] du dx,

+ thKpj(xj)f1

<f

+ R, ;(x;)

‘9Pj,k(xj’ xy)
axy,

my(x,) + %pj,k(xj’ xk)m/lle(xk)} dx),

with sup, R, ; (x)l = 0p(h?) and sup, . IR, ; ;(x)l = Op(R?®). It can
be easily verified that (115) and (116) imply (112) and (113). So it remains to
show (115) and (116). The proof of (115) is straightforward and will be
omitted. For the proof of (116) note that for £ # j and uniformly for x; € [0, 1],

1 | .
N Ez:; Ky (%), X[ )mi(X3)

1 A 4 A
~ Y th(xj,X;)Kh(xk,X,;)mk(X,;)dxk

ied,

1 . .
— Y /Kh(xj,X;)Kh(xk,X,;)

ied,
x[my(2,) + (Xi — ) mi(x,) + 3(XE - x,) my ()]
+ op(h?)
= [Bu(x, %) my(x,) dxy, + %;J [U(x) + Vi(x)] + op(h?),
where
i Ul(x;) = th(xj,X;)Kh(xk,X,;')(X,g — x, )M (x,) day,

‘/l(xj) = th(xja in)Kh(xk’ Xlé)%(Xli - xk)zm,l/e(xk) dxy,.
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For x; € I, claim (116) follows now from (104) and

(118)

(119)

(120)

(121)

(122)

Claims (118) and (119) follow by standard kernel arguments. For the proof of
(12) one applies (103) and (105). For the proof of (121) and (122) one proceeds
similarly to Masry (1996b); see also the proof of (A6). So it remains to show

sup
xJEIh

E[Uz(xj)] - fmlk(xk)pj,k(xj’ Xp)

X K, (x,,u)(u —x,) dudx,

ap; (%, x1)
_ 12 J> J ' — 2
Widy [ =2y () dxy | = o),
sup | E[[Vi(x))] = hd [ 3p; 4(xj, ) mi() ds | = o(h?),
x; €1
1 -1
sup | [ ()| B, (5 50)| [ K34 0) |
x;€1

_pj,k(xj’ xk)}

XKy( %y, u)(u = x,) dudx, | = op(h?),

sup |Ui(xj) _E[Ui(xj)” = OP(h2)>

x; €1

sup |V1(xj) _E[Vl(xj)” = OP(h2)’

x;€1,

(116) for x; € I;. This can be done by similar arguments. O

ProOF OF THEOREM 4'.

expansion of

i B(x))

(;ﬁf(xj)

i=1

. L1 . . 1
) () £ 100 2 018,503 4 o |

X[mg + my(X) + - +my(X0)].

For the treatment of this quantity one has to consider for 2 # j the term

A d A 1 .
1(Xle[m1])KAxPXﬂ(h]{X;_xA)miXD.

J

1
N .

1

=

1

Theorem 4’ can be shown by arguments similar to
the proof of Theorem 4. First one shows uniform convergence of M (x;) to
M (x;) and of S, (x;, x,) to S, ;(x;, x;). For the proof of (A9') one needs an
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Using [K,(x,, X}) dx; = 1 and with V,(x,) defined as in (117) one gets that
this term is equal to

||[\1:

(Xie[0,1]d)th(xj,X;)Kh(xk,X,;')(h [Xll_ ])mk(Xk)dxk

1
N,

1
N,

I
H M§

. d i i 1
(Xl e[0,1] )th(xj:X;)Kh(xk’X/;)(h1[in - xj] )

/ i 1 Vz(xj) 2
x[mk(xk) + ml (%) { X} — xk}] dx), + ﬁign( 0 + op(h%)

my(xy)
m),(xy)

For a further treatment of this expansion one uses now (119) and (122) and
proceeds similarly to the proof of Theorem 4. O

5 y Vi(x;)
ied,

=fS]k(xJ,xk) dx) +

+ 0p(h?).
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