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Abstract

In a market where sellers compete by posting trading mechanisms, we allow for a general search
technology and show that its features crucially affect the equilibrium mechanism. Price posting
prevails when meetings are rival, i.e., when a meeting by one buyer reduces another buyer’s meeting
probability. Under price posting buyers reveal their type by sorting ex ante. Only if the meeting
technology is sufficiently non-rival, price posting is not an equilibrium. Multiple buyer types then
visit the same sellers who screen ex post through auctions.
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1 Introduction

Prices are much more prevalent than auctions, yet common wisdom has it that auctions can achieve more
than prices can. In this paper we argue that while this wisdom is true in the partial equilibrium setting
of a monopolistic principal, in competitive markets with competing mechanisms this need not be true.
In particular, we show that the prevalence of prices over more general auction-like mechanisms crucially
depends on the features of the meeting technology. If buyers only rarely end up simultaneously bidding
for the same good, sellers choose price posting. In contrast, when buyers do tend to simultaneously
compete, for example in art or antique auctions, prices are dominated. Our findings highlight the role
of the search process for mechanism design. The important insight here is that it is not necessarily
the fine details of the mechanism space that determine the competitive sales mechanism, but rather
the properties of the meeting process. We can thus characterize the prevalence of price posting as a
function of the meeting technology.1

The role of the meeting technology can best be illustrated by considering two extreme versions
that are commonly assumed. First, consider a purely non-rival meeting technology, as is often done
in much of the directed search literature. Buyers simultaneously meet a given seller and they all
contemporaneously compete for the good for sale. Each additional meeting by another buyer does
not affect one’s chances of meeting with the seller. Key here is the distinction between meeting and
matching (or trade). Even if meeting is non-rival, the good itself is clearly rival: the more buyers meet,
the lower the trading probability. As an example of a non-rival meeting technology, consider a seller
of a piece of art who fixes a date and time when the good will be sold. Irrespective of how many
other buyers turn up, the opportunity to enter the auction is invariant. Second, consider a purely rival
meeting technology, as in much of the competitive search literature. At any given seller, there is always
at most one buyer at the time. Another buyer’s meeting clearly reduces one’s own meeting probability.
This is often the case in environments without recall where in any small time interval there is at most
one meeting which must immediately end up in trade or separation. For example, a firm continuously
hires and once a candidate turns up, a hiring decision is made.2 There is of course a whole continuum in
between these extreme meeting technologies. Suppose several workers simultaneously apply for a job,
but the firm only considers say half of the applications (there could be many reasons: it is too costly,
only those that have been referred by trusted friends and colleagues are considered,...). This renders a
meeting technology partially rival. We are not aware of work that considers the impact of variations in
the meeting technology, and this work attempts to fill the gap.

The approach in most of the search literature is to assume a particular trading arrangement (typically
1Price posting is pervasive in many economic transactions. Even the internet auction house eBay derives 40% of its

revenue from price posting. There could be many reasons why prices are pervasive, including low transaction costs (see for
example Wang (1993)). Our objective is to find out under which conditions price posting is an efficient trading mechanism
in the presence of search frictions, and without assuming different transaction costs for other mechanisms.

2The purely rival meeting technology is maintained in work by Moen (1997); Acemoglu and Shimer (1999); Mortensen
and Wright (2002); Moen and Rosen (2006). The purely non-rival meeting technology is assumed in such work as Peters
(1991, 1997a, 1997b, 1999, 2000); (1991); Peters and Severinov (1997); Burdett, Shi and Wright (2001); Shi (2001, 2002);
Shimer (2005). Even in random search, often a rival meeting function is assumed where bad types negatively affect good
types (see for example Albrecht and Vroman (2002)), but alternatives with non-rival meeting technologies have recently
been proposed (see for example Moscarini (2001) and Albrecht and Vroman (2002)).

2



price posting, but in other instances also competition in auctions) without questioning whether this
particular mechanism would actually be chosen as an equilibrium outcome when a set of different
mechanisms are available. In contrast, the competing mechanism design literature (McAfee (1993),
Peters (1997b)) does ask what the equilibrium mechanism is, but it analyzes this in the presence of
a particular purely non-rival meeting technology only. They show that in their setting second price
auctions are always a weak best reply for an individual seller. They derive an equilibrium where buyers
visit all sellers with equal probability, thus rendering visit strategies purely random. Once buyers turn
up, sellers use the auctions for ex post screening.

In contrast, when sellers are restricted to using simple price posting mechanisms, they will offer
different prices for different buyer types to induce separation of buyers. Lower type buyers choose to
visit sellers who offer low prices and corresponding low odds of trade, while high type buyers consume
at high prices and enjoy a high probability of trade. Such trading mechanism leads to ex ante sorting,
with buyers endogenously revealing their type in equilibrium by choosing the price at which they want
to trade. Due to the separation, each seller knows exactly the type of buyer he faces, and has ex-post
no incentive to use type-revealing mechanisms.

A priori, it is not clear whether ex ante sorting or ex post screening will prevail in equilibrium.
We are interested in how the nature of the meeting process affects the equilibrium trading mechanism.
In particular, we investigate under which circumstances a simple price posting mechanism obtains in
equilibrium. The key feature is to analyze posted prices as an equilibrium mechanism, even when
other mechanisms are available. Our paper thus spans the literatures of directed/competitive search
and competing mechanisms design, and links the prevalence of posted price mechanisms tightly to the
properties of the meeting technology.

We have four distinct results that highlight how the equilibrium trading mechanism depends on
the meeting technology and the degree of heterogeneity in buyer preferences. First, in the absence of
heterogeneity, we obtain an equivalence result independent of the exact nature of the meeting technology.
For any mechanism, seller revenues are identical conditional on leaving the same expected surplus to
buyers. Given revenue equivalence, sellers do not care whether they compete in posted prices, second
price auctions or other mechanisms, and therefore competition in posted prices does constitute an
equilibrium. There is a continuum of other equilibria in different mechanisms, but in all equilibria visit
strategies are random and payoffs are invariant.

Our second result concerns purely rival meetings and establishes that fixed price mechanisms consti-
tute an equilibrium and it is constrained efficient. Extending the usual notion of constrained efficiency
for given fixed price mechanisms to encompass competition in larger classes of mechanisms, the key
observation is that random visit strategies are not efficient because this leaves sellers unsure about the
type of buyer they face. While there are still alternative ways of screening buyer types such as lotteries,
incentive compatibility induces a cost in terms of wasteful destruction. More importantly, non-random
visit strategies outperform random visit strategies because meetings are rival: When low types enter the
same market as high types, then the probability of meeting a seller goes down for the high types. This
makes it beneficial to keep buyers apart in separate markets. Ex-post screening is then no longer nec-
essary because efficiency requires sellers to go to different markets. These efficiency concerns also drive
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equilibrium behavior, and sellers post different mechanisms that attract different buyer types. Since
sorting leaves not residual uncertainty about the buyer types, again ex-post screening mechanisms are
not necessary and prices suffice to shift resources between buyers and sellers.

Our third main result shows that the constrained efficiency and the equilibrium nature of fixed
price mechanisms does not carry over to purely non-rival meeting technologies. This arises even though
each seller knows exactly the type of buyers that he faces in equilibrium when only fixed prices are
available, i.e., there is perfect sorting. Despite the fact that the well-known Hosios (1990) condition
for constrained efficiency is fulfilled for each market when only prices are available, other mechanisms
generate higher surplus and are more profitable for an individual buyer. This has to do with the meeting
technology: under ex post screening, visit strategies are random in equilibrium which leads to strictly
more meetings than non-random visit strategies. The gain from having more meetings is not eroded
by the fact that low types search in the same market as high types, precisely because meetings are
non-rival. Therefore, random visit strategies of all buyer types in one market and allocating the good
via auctions is constrained efficient and arises in equilibrium. Even if all other sellers offer posted prices,
a single deviant can exploit the constrained efficiency gain of random visit strategies by having all buyer
types visit him. This is consistent with the result in McAfee (1993) that second price auctions are weak
best replies in his setting with non-rival meetings.

Our fourth result establishes that the prevalence of price posting as an equilibrium mechanism holds
true generally for partially rival meeting technologies and does not exclusively hinge on the pure rival
nature. As long as the degree of partial rivalry is high enough, ex ante sorting via price posting will
dominate ex post screening. Even if there is some ex post competition and multiple buyers meet the
seller, it is not in the interest of the seller to announce a mechanism that screens ex post. While ex-post
screening through auctions would arise in a partial equilibrium setting, in the presence of competition
from other sellers, an individual seller attracts more buyers by announcing a fixed price mechanism and
thus generates a higher surplus.3

Our work relates to existing work on constrained efficiency in search markets. While the random
search model is typically inefficient (Hosios 1990), Moen (1997) shows that in the competitive search
model with identical agents and rival meetings, the price posting equilibrium is constrained efficient.
He considers a planner who faces the same meeting frictions and allocates the good with the same
mechanisms (in his case, prices) as the agents in the decentralized economy. Then with quasi-linear
preferences and in the presence of lump sum transfers, Pareto efficiency is equivalent to maximizing the
surplus of trade.

Our contribution on the issue of efficiency is two-fold. From the equivalence result in the case
of identical buyers, it follows that Moen’s result extends beyond a non-rival meeting technology and
for different trading mechanisms. For heterogeneous buyers, we show that for purely rival and purely
non-rival meeting technologies, the equilibrium outcome – posted prices under purely rival meetings,

3Observe that when price posting is an equilibrium, there may exist other equilibrium mechanisms that are payoff
equivalent. For example, sellers may offer an auction with a reserve price that is high enough to attract only one type and
that therefore effectively does not screen ex post. This can generate the same expected surplus, which resembles our first
result for homogeneous agents.
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second price auctions under purely non-rival meetings – is constrained efficient. We establish this result
for the pure private value case and abstract from any common-value components. In particular, we do
not consider adverse selection and associated lemon’s problem. Guerrieri, Shimer and Wright (2009)
combine differences in valuations of buyers, as in our setting, with adverse selection for the seller.
Focussing on purely rival meetings, their equilibrium features separation of types, confirming more
broadly the separation that we find in our environment. We conjecture that even in such a setting, the
equilibrium will feature pooling once the rivalry becomes less severe, but since ours is the first step to
see the implications of different meeting technologies, such results are beyond the scope of the present
paper.

The next section outlines and analyzes the model with homogeneous buyers for a general meeting
technology that allows for any degree of partial rivalry, spanning from purely rival to purely non-rival
specifications. The third section extends the setup to encompass buyer heterogeneity. We focus on
two buyer types for tractability, yet the analysis extends to any finite number of buyers. Section four
analyzes the outcome when sellers are restricted to post prices. Section five analyzes the equilibria
and efficiency when other mechanisms are also available. The analysis covers the cases of multilateral
meetings (purely rival meetings), bilateral meetings (purely non-rival meetings), as well as those meeting
technologies that are partially rival. Section six offers some concluding remarks.

2 Homogeneous buyers

2.1 The model

Consider an economy with a measure s of homogeneous sellers and a measure b of buyers. We start here
with the case of homogeneous buyers, and later extend the setup to heterogeneous buyers. Sellers are
endowed with one unit of a good for sale. Buyers have a valuation v for the good. If a buyer and a seller
trade at a transfer t from the buyer to the seller, then the buyer’s payoff is v− t and the seller’s payoff
is t. Payoffs from no trade are normalized to zero. We are interested in trading procedures where search
is directed in the sense that buyers can post a mechanism and sellers can choose which mechanism to
participate in.

The Market Interaction. Each seller decides on a mechanism m from some Borel-measurable mech-
anism space M, which we will define in detail below. The mechanisms posted by sellers can be sum-
marized by the measure µs, where µs(M) denotes the measure of sellers that post mechanisms in set
M ⊂ M. Different mechanisms trade in different markets. Buyers can see which mechanisms are of-
fered, and decide in which market to search.4 This means that they can direct their search towards the
mechanisms they find most attractive. Their trading decisions can be summarized by measure µb, where
µb(M) denotes the measure of buyers that search in markets that offer a mechanism in set M ⊂M. The

4Following most of the literature, sellers are assumed to search only for one mechanisms. For simultaneous search for
multiple mechanisms see for example Albrecht, Gautier and Vroman (2006), Galenianos and Kircher (2009) and Kircher
(2009).
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measures cannot exceed the overall measure of agents in the population.5 The requirement that buyers
can only search for mechanisms that are actually offered by some sellers is captured by the assumption
that µb is absolutely continuous in µs. The Radon-Nikodym (RN) derivative λ = dµb/dµs then delivers
the buyer-seller ratio in each market place in the support of µs.6 Since λ(m) depends on the mechanism
that is offered, sellers can affect the number of buyers that they attract by changing the mechanism
that they offer. The buyer-seller ratio will be crucial in determining the meeting probabilities between
buyers and sellers, and only the buyers that actually meet a seller can take part in the seller’s posted
mechanism.

Meetings. If the ratio of buyers to sellers in a particular market is λ, there is a probability Pn(λ)
that n buyers will show up at a given seller. Pn is assumed to be twice differentiable. From a buyer’s
perspective, there is a probability Qn (λ) that he arrives at a seller who has n buyers, with Q0(λ) being
the probability of not finding any seller.7 Since buyers and sellers meet jointly, there is a particular
consistency condition that links Pn and Qn. When there are σ sellers and β buyers in a market such
that λ = β/σ, consistency requires for every n > 0 that

σPn(λ) =
βQn(λ)

n
.

The left hand side gives the number of sellers in a meeting with n buyers. The numerator on the right
hand side gives the number of buyers in “n-buyer” meetings, and since there are n of them per seller
the denominator scales it down to the number of sellers in such meetings. Rearranging this equation
gives

nPn(λ) = λQn(λ). (1)

For n = 0 the fact that probabilities add to unity implies that Q0(λ) = 1−
∑∞

n=1Qn(λ). We also require
that for any λ > 0 there are some meetings, i.e. 0 < 1− P0(λ), but due to frictions not all sellers meet
a buyer, i.e. 0 < P0(λ). Moreover, we require that a higher buyer-seller ratio increases the meeting
chances for a seller, i.e., we assume that the probability that no buyer shows up strictly decreases in λ

and that the probability of meeting less than N buyers decreases (and the probability of meeting more
than N buyers increases). Formally, we assume a shift in terms of first order stochastic dominance:

P ′0(λ) < 0 and (2)
N∑
n=0

P ′n(λ) ≤ 0 for all N.

5For sellers there always exists a weakly profitable mechanism (e.g., a positive price), and therefore we require µs(M) =
s. Sellers might not see any mechanism in the support of µs that gives them a higher payoff then abstaining, and therefore
we only require µb(M) ≤ b.

6The Radon-Nikodym derivative is almost everywhere unique on the support of µ in the sense any two RN-derivative
coincide almost everywhere. To have well-defined payoffs, we also assume a selection device that selects a unique RN
derivative.

7Our meeting technology is inherently static, but it can capture the notion of a dynamic search process. For example,
Pinheiro (2008) proposes a dynamic model where the number of traders that meet the seller is a function of the time spent
searching.
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The first line is assumed throughout the literature to capture the idea that more buyers per seller makes
it easier for a seller to find some buyer to trade with. Our main extension is in the second line which
covers meetings with multiple buyers. The higher the buyer-seller ratio, the higher the number of buyers
that will arrive (in stochastic terms). For the buyers, we assume a similar property. In particular, we
assume that the distribution satisfies first order stochastic dominance, i.e.

∑∞
n=N Q

′
n(λ) ≤ 0 for all

N with strict inequality for some N. This immediately implies that
∑∞

n=1
Q′n(λ)
n < 0, which in turns

implies the following relationship that will be useful later on: 1 + λP ′0(λ?)− P0(λ?) > 0.8

Additionally we assume that
P0 is strictly convex. (3)

This convexity property has to hold for some λ ∈ [0,∞) since P0(λ) ∈ [0, 1] is bounded, and we make
the standard assumption that this property extends to the entire domain. Again, this condition is
standard in the literature.

Examples: The standard example in the directed search literature is that buyers randomly visit one
of the sellers that offers the mechanism that they like. Clearly the probability that the buyer meets a
sellers is one, and the only question is how many other buyers are present. The randomness in a given
market leads to a Poisson distribution Pn(λ) = λne−λ

n! (and associated Qn(λ) = λn−1e−λ

(n−1)! when n > 0).
A specification from the monetary literature (see e.g. Kiyotaki and Wright (1993)) is one where agents
are randomly matched into pairs, and trade only if the pair includes a buyer and a seller. If a seller is
paired with another seller, there is no meeting that can lead to trade. For a seller, the probability to
be in a meeting with a buyer rather than with another seller when there are σ sellers and β buyers is
P1(λ) = σ

σ+β = λ
1+λ . The probability of a meeting without any buyers is P0(λ) = 1−P1(λ), and clearly

it is impossible to meet more than one buyer so that Pn(λ) = 0 for n > 1.

Mechanisms. Sellers compete in mechanisms from some Borel-measurable set M with the following
restrictions. We require that M includes the set of all fixed price mechanisms, i.e., sellers post a price
and sell at this price to one of the buyers that show up. If several buyers show up the seller picks one
at random to whom to sell. We require the set M to include only anonymous mechanisms that do
not condition on the other mechanisms that are present.9 In particular, a mechanism specifies for each
number n of sellers some extensive form game Γnm that induces some expected payoff πmn for the seller
and some expected payoff umn for each of the buyers.10 Since only a surplus v is realized, we require that
the payoffs at each end node of Γnm sum to weakly less than v. This immediately implies πmn +numn ≤ v.

8Since (1 − P0(λ)) =
P∞
n=1 λ

Qn(λ)
n

we have that − 1−P0(λ)+λP
′
0(λ)

λ2 =
P∞
n=1

Q′
n(λ)

n
, and the result follows fromP∞

n=1

Q′
n(λ)

n
< 0.

9Since buyers observe all other mechanisms, the seller could elicit information about other sellers from the buyers. This
is ruled out by assumption in most of the literature such as McAffee (1993) or Peters (1997b, 1999). In large economies or
in a pure strategy equilibrium in a finite economy each seller knows the distribution of other mechanisms with certainty,
and there is no benefit from conditioning on other mechanisms when no seller does so. Therefore, equilibria survive even if
sellers can condition on the mechanisms offered by other sellers. Yet additional equilibria can arise. For a deeper discussion
and modeling of mechanisms that condition on other mechanisms, see Epstein and Peters (1999) and Peters (2001).

10If the game has multiple equilibria and therefore multiple expected payoffs, we assume additionally that the seller can
post an equilibrium selection device Sm. In general this is not an issue because when there are alternative games (such as
direct commitment to the payoffs) that give the desired outcome uniquely.
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The mechanisms do not have to obey any participation constraints, as sellers can always choose to stay
away from any mechanism if their expected payoffs (averaged over the expectation of n, the number of
other buyers that are expected to turn up) is too low.11 Obviously if there are no buyers, then um0 = 0
and πm0 = 0.

Examples: Fixed price mechanisms where sellers post price p have payoffs πn = p and un = [1 − p]/n
conditional on being in a meeting with n buyers. Other feasible mechanisms include first price auctions,
second price auctions, all-pay auctions with reserve price, as well as more esoteric mechanisms such as:
If no more than 5 buyers show up, one of them gets the good for free. If more than 5 buyers show
up, each has to pay a price p and one gets the good. This yields payoffs πn = 0 and un = 1/n for
n ∈ {1, .., 5} and πn = np and un = 1/n− p for n ∈ {6, 7, ...}.

Payoffs. Consider the expected payoffs for an individual agent when the trading strategies of the other
agents are summarized by µs and µb. The agent understands how crowded all markets are. Consider
first the expected payoff to a buyer who chooses some mechanisms in the support of µs :

U(m|µs, µb) =
∑∞

n=1
Qn(λ(m))umn , (4)

which simply captures the probability of being in a match with n buyers times the payoff from playing
the mechanism. Similarly, a seller who offers a mechanisms in the support of µs obtains expected
profits:

Π(m|µs, µb) =
∑∞

n=1
Pn(λ(m))πmn . (5)

Finally, we have to specify the payoffs that a seller expects to obtain if he offered a mechanism that no
other seller is offering, i.e., if he posts m outside of the support of µs. At this point the buyer-seller ratio
is not tied down by the trading strategies µb and µs in the sense that the Radon-Nikodym derivative
is arbitrary. We complete the specification following the literature (e.g. Acemoglu and Shimer 1999,
Eeckhout and Kircher 2009) by appealing to a notion of subgame perfection. It requires that the buyer-
seller ratio that a deviant expects gives buyers as high a payoff as they would obtain elsewhere in the
market. Formally, let the queue length λ(m) at a deviant who offers mechanisms m outside the support
of µs satisfy ∑∞

n=1
Pn(λ(m))πmn = sup

m∈suppµs
U(m|µs, µb), (6)

if this equality can be achieved for some λ(m) > 0, and otherwise let λ(m) = 0.12 This specification
captures the following idea: A strictly positive buyer-seller ratio means that some buyers must be willing
to search for the deviant. These sellers would only be willing to do so if the utility from searching in
the market of the deviant (left hand side) is at least as high as the utility they get on the equilibrium
path (right hand side). The utility at the deviant can also not be strictly higher than the utility on the
equilibrium path, because in this case all buyers would want to search in his market which would drive
up the buyer-seller ratio. While this is an informal argument, (6) can be derived as the subgame perfect

11If they arrive they are assumed to sign an agreement to participate before n is revealed.
12In connection with Footnote 6, existence of an equilibrium requires the selection device to fulfill (6) even on the

support of µs if possible.
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equilibrium of particular finite market games when the market size grows large (see e.g. Peters 1991,
1997a, 1997b, 2000). For many mechanisms such as price setting and standard auctions, (6) determines
the queue length uniquely. In case of multiplicity, we follow McAffee (1993) and others and assume
that the seller believes that he can coordinate buyers in the way that is most desirable to him. Given
λ(m), payoffs are determined as in (5).

Equilibrium. We define an equilibrium as a large game (Mas-Colell 1984), where each agent individ-
ually acts optimally, taking the overall trading strategies of the other agents as given. An equilibrium
is a tuple (µs, µb) such that

1. Seller Optimality: Π(m|µs, µb) ≥ Π(m′|µs, µb) for any m in the support of µs and any m′ ∈M.

2. Buyer Optimality: U(m|µs, µb) ≥ U(m′|µs, µb) for any m in the support of µb and any m′ in the
support of µs.

Constrained Efficiency. Consider a social planner who faces the same restrictions as the decentralized
economy. In particular, he can choose the trading strategies (µs, µb), but is subject to the same meeting
and information frictions and the same set of feasible trading mechanisms as the decentralized economy.
Due to quasi-linear preferences, Pareto-optimality is equivalent to maximizing surplus (if lump-sum
transfers are available). Therefore, a tuple (µs, µb) is constrained efficient if the associated RN-derivative
λ generates surplus that is larger than the surplus generated by any other (µ′s, µ

′
b) and associated RN-

derivative λ′. That means:

s

∫
M

[∑
n
Pn(λ(m))(πmn + numn )

]
dµs ≥ s

∫
M

[∑
n
Pn(λ′(m))(πmn + numn )

]
dµ′s.

Clearly, if the meeting frictions are reduced or the set of mechanisms is increased, the constraints on
the planner become less severe and higher levels of surplus might become possible.

Random Visit Strategies. Some of our results hinge on the degree of directedness of the visit
strategies of the buyers. In equilibrium, relatively more buyers might search for some mechanisms than
for others, or they may search equally across all mechanisms. The latter means that the buyer-seller
ratio µb(M)/µs(M) = b/s is constant across all sets M ⊂suppµs offered mechanisms, which equivalently
means that the RN-derivative λ(m) = b/s is constant across all m ∈suppµs. We call this “random visit
strategies” since in equilibrium the strategies appear random, even though a deviating seller would
attract a different amount of buyers.

2.2 Analysis

We will show that there is an equilibrium in fixed prices in this setting, and also every other class of
mechanisms that allows the surplus to be shifted between buyers and sellers (e.g., by means of a reserve
price in an auction) includes mechanisms that constitute an equilibrium.
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Consider first the problem of an individual seller. In equilibrium, he maximizes (5) knowing that
his queue length is determined according to (6). This holds off the equilibrium path by assumption and
on the equilibrium path by the second equilibrium condition. Therefore, in equilibrium his choice of
mechanism and the resulting queue length solve:

max
λ∈R+,m∈M

∞∑
n=1

Pn(λ)πmn (7)

s.t.
∞∑
n=1

Qn(λ)umn ≤ U?, with equality if λ > 0, (8)

where U? = supm∈suppµs U(m|µs, µb) represents the utility that buyers can get at other sellers. The
constraint represent (6), and so the program clearly reflects the equilibrium conditions when (6) deter-
mines the buyer-seller ratio uniquely. If this is not the case, the mechanism has to give the queue length
that is best for the seller. The reason is that the seller always has the option to deviate and choose a
mechanism that implements the desired queue length uniquely and gives at least the same revenues,
for example by choosing a fixed price.13

Assume that the space of mechanisms includes mechanisms such that any umn and πmn with numn +
πmn ≤ 1 is feasible.14 For a given U? we call a mechanism m full-trade mechanism if numn + πmn = 1.
That is, the mechanism induces trade with certainty.

Lemma 1 Given U?, any mechanism m ∈M that is not a full-trade mechanism is revenue-dominated
by a full-trade mechanism m′ ∈M with queue λ(m′).

Proof. Mechanism m has numn +πmn < 1. Let m′ give identical utilities to buyers um
′

n = umn but different
profit π′n = 1− numn + πmn to the seller. Clearly, buyers obtain identical payoffs and thus λ(m′) = λ(m)
is feasible, but the seller achieves weakly higher profits when n buyers arrive. If Pn(λ(m)) > 0, the
full-trade mechanism yields strictly higher profits.

Therefore, for equilibrium play we only have to restrict attention to full-trade mechanisms. For the
following proposition, let with slight abuse of notation Π(m,λ) =

∑∞
n=1 Pn(λ)πmn be the expected seller

payoff for a mechanism m with feasible queue λ according to (8) and let U(m,λ) =
∑∞

n=1Qn(λ)umn the
expected buyer utilities.

Proposition 1 (Equivalence Result) For given U?, consider some full-trade mechanism m ∈ M with
feasible λ > 0. Any other full-trade mechanism m′ with U(m′, λ) = U(m,λ) achieves Π(m′, λ) =
Π(m,λ).

Proof. The queue length λ satisfies (8) for mechanism m means that U(m,λ) = U?. Since U(m′, λ) =
U(m,λ), λ also solves (8) for mechanism m′. Since m is a full-trade mechanism, we have 1−numn = πmn

13It can be shown that under price posting (6) selects a queue length uniquely, and for a given queue length it yields
higher profits than any other mechanism. See Proposition (1).

14Any sequence umn and πmn can be implemented by a mechanism that charges price pn to all buyers, and trade occurs
with probability αn (in which case one of the buyers is selected at random): pn = πmn /n and αn = n[umn + p− 1].
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and therefore

Π(m,λ) =
∞∑
n=1

Pn(λ)πmn =
∞∑
n=1

Pn(λ)[1− numn ]

= 1− P0(λ)−
∞∑
n=1

Pn(λ)numn

= 1− P0(λ)− λ
∞∑
n=1

Qn(λ)umn

= 1− P0(λ)− λU(m,λ),

where the third line follows from (1). Similarly, since m′ is also a full-trade mechanism we have
Π(m′, λ) = 1− P0(λ)− λU(m′, λ). Since U(m′, λ) = U(m,λ) we have Π(m′, λ) = Π(m,λ).

We call a class of mechanisms payoff-complete if for any λ > 0 and any U there exists a mechanisms
such that U(m,λ) = U. Clearly the class of price posting mechanisms is complete, since U(p, λ) =∑∞

n=1Qn(λ)[1 − p]/n and Q1(λ) > 0 [as P1(λ) > 0]. Similarly, the class of second price auctions with
reserve price is complete: since Q1(λ) is positive, the reserve price – which can be negative – can be
adjusted to yield the right payoff to buyers. Also, the set of mechanisms that offer with probability
γ a fixed price and with probability (1 − γ) give the good away for free is complete. Proposition 1
implies that for any U?, if there is an optimal mechanism, there is an optimal mechanisms within any
payoff-complete class of mechanisms.

Proposition 2 There exists an equilibrium in any class of payoff-complete full-trade mechanisms, and
the equilibrium is constrained efficient. It remains an equilibrium and remains constrained efficient
even if additional mechanisms become available. The expected payoffs are identical in every equilibrium
as long as sellers compete in a class of payoff-complete full-trade mechanisms.

Proof. We will prove existence in the space of second-price auctions with reserve price. The second
and third statement follow immediately from our Equivalence Proposition 1: the same expected payoffs
yield an equilibrium in any other payoff-complete class of full-trade mechanisms such as price posting.
For a given reserve r the seller gets π1 = r and the buyer u1 = 1 − r if one buyer arrives. If more
buyers arrive the seller gets πn = 1 and the buyers get un = 0. Payoffs with reserve r are therefore
given by Π(r, λ) = P1(λ)r + (1 − P1(λ) − P2(λ)) and U(r λ) = Q1(λ)(1 − r). For a given U?, first
order stochastic dominance condition (2) implies that under the optimal λ constraint (8) binds. Sellers
therefore maximize

max
r

P1(λ)r + (1− P0(λ)− P1(λ))

s.t.
P1(λ)
λ

(1− r) = U?.
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Substituting out the constraint leaves

max
λ

1− λU? − P0(λ).

Since P0 is strictly convex, each seller has a unique optimum, and therefore an equilibrium has all sellers
posting the same reserve price r. It is characterized by the unique first order condition

−P ′0(λ) = U?.

Since all sellers in equilibrium post the same r, they will face a queue length of λ? = b/s. Therefore
equilibrium utility U? = −P ′0(λ?), yielding equilibrium profits of 1 + λP ′0(λ?) − P0(λ?), which means
that the equilibrium reserve price is

r? = 1 +
λ?P ′0(λ?)
P1(λ?)

.

Efficiency follows because in equilibrium visit strategies are random. We elaborate on that point below.

The reserve price r? can in general be different from zero. Therefore, Peters’ (1997) conjecture that
the reserve price in the homogeneous agent case may lie in the open set (0, 1) obtains for many meeting
specifications. For the specific urn-ball meeting technology of the directed search literature that Peters
(1997) considers this is not true, though.

Corollary 1 Under urn-ball meetings (Pn(λ) = λne−λ

n! ) the equilibrium second price auction has a
reserve price r? = 0.

Together with the previous proposition this clarifies why under urn-ball meetings competition in
fixed prices leads to the same surplus as in the case when sellers do not post anything but simply run
second price auctions without reserve (Kultti, 1999): If sellers could compete in auctions, they would
indeed choose to set a zero reserve under urn-ball meetings. Different meeting technologies would lead
to a different reserve price, though. While we have compared different equilibria so far, the combination
of Proposition 1 and Proposition 2 readily yield the following multiplicity of mechanisms within the
same equilibrium. It arises when sellers have alternative mechanisms available that generate the same
expected surplus for the buyers, such as fixed prices and second price auctions.

Corollary 2 If the mechanism space contains to disjoint classes of payoff-complete full-trade mech-
anisms, there exists a continuum of equilibria in which sellers announce different payoff-equivalent
mechanisms.

Finally, we relate our findings to the constrained efficiency of random visit strategies.

Corollary 3 Since the equilibrium is in random visit strategies, it is constrained efficient in the sense
of creating the highest number of trades at mechanisms that have full trade.
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To see the constrained efficiency result, observe that a necessary requirement for constrained effi-
ciency is that sellers offer full trade mechanisms. Let MF be the set of full-trade mechanisms, which
includes all fixed-price mechanisms. Full-trade ensures that every time a seller is present, the good
is exchanged. Apart from this, constrained efficiency then means to maximize the number of trades.
Observe that the number of trades is maximized under

max
µs,µb

s

∫
[1− P0(λ(m))] dµs

s.t. λ = dµb/dµs, µs(MF ) = s, µb(MF ) ≤ b.

The strict concavity of [1− P0(λ)] immediately implies that the solution to this program has λ(m) = b/s

constant for all mechanisms in the support of µs, i.e., the efficient allocation features random visit
strategies.

Note again why in equilibrium all sellers always have the same queue length, no matter which class of
payoff-complete full-trade mechanisms they compete in. Suppose this were not the case and there exist
at least two sets of firms that face different queue lengths in equilibrium. From revenue equivalence,
these firms could post second price auctions, possibly with different reserve prices. But because there is
a unique solution to the first order condition of a seller posting an auction (see proof of Proposition 2),
and given concavity of the seller’s profit function, there can only be one optimal auction and associated
reserve price. By revenue equivalence, at least one of the mechanisms that the firms initially announced
does not maximize profits, therefore contradicting that firms face different queue lengths.

Therefore, whenever the market utility assumption holds in the limit of finite economies as the
population size grows large, the same expected equilibrium payoffs arise no matter the class of mecha-
nisms in which the sellers compete (as long as the class is payoff-complete). This result highlights why
competition in prices (e.g. the limit in Burdett, Shi and Wright (2001)) yields the same expected profit
as competition in auctions (see e.g. Julien, Kennes and King (2000)). The market utility assumption
holds for particular price posting games (Peters 1991, 1997), and holds for competition in more general
mechanisms as long as long as sellers compete in a bounded payoff space (Virag 2007). Of course, this
equivalence in expected payoffs holds only in the limit. In a finite economy, changes in the announce-
ment of an individual seller changes the market utility of the buyers due to market power, and multiple
equilibria are possible.15

3 Heterogeneous buyers

Consider the extended model with two buyer types: measure b of low type buyers and measure b of
high type buyers. As before, there is a measure s of homogeneous sellers. The low buyer type has a
valuation v > 0 for the good, the high buyer type has valuation v > v, and sellers have no value for the
good or cost of production. Again, utilities are linear in the amount of money that is transferred, and

15For a finite agent model with a continuum of equilibria, including asymmetric ones where the queue length of one
firm is larger than the other, see Coles and Eeckhout (2003). See also Galenianos, Kircher and Virag (forthcoming) for an
elaboration on market power in finite economies.
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payoffs from no trade are normalized to zero.

The Market Interaction. The market interaction is essentially unchanged from the previous section.
µs(M) still denotes the measure of sellers that post mechanisms in set M ⊂M. The trading decisions by
buyers are now summarized by two measures, µ

b
and µb, for the low and high buyer types, respectively.

Both are required to be absolutely continuous in µs. Now the buyer-seller ratios for each type are
λ = dµ

b
/dµs and λ = dµ̄b/dµs, and the total buyer-seller ratio is λ = λ+ λ.

Meetings. Meetings happen exactly as in the previous section, i.e., the definitions of the probabilities
Pn(λ) and Qn(λ) are unchanged. We also assume that the type of the buyer does not affect his chances
of meeting a seller. It might affect his probability of trade since the mechanism might distinguish
between types, but the probability of getting to the mechanism is type-independent.16 Therefore,
from the seller’s perspective, the probability of being in a match with n low and n high types is
P̃n,n(λ, λ) = Pn+n(λ+λ)Bn,n(λ, λ) where Bn,n(λ, λ) is the binomial probability of drawing n low types
out of all n + n buyers, when the probability of drawing one low type is λ/(λ + λ). For a buyer who
meets a seller, the probability of being in a match with n + n other buyers of which n are low types
and n high types is Q̃n,n(λ, λ) = Qn+n+1(λ+ λ)Bn,n(λ, λ).

Mechanisms. A mechanism now specifies for a given number n of low type buyers and n of high
type buyers the expected payoff πmn,n for the seller and umn,n (umn,n) for low (high) valuation buyers. The
payoffs have to be implemented in a way such that buyers are willing to truthfully reveal their type.
To specify this constraint, it is useful to decompose the payoffs into the probability of trade xmn,n (xmn,n)
for low (high) valuation buyers when n low valuation and n high valuation buyers are present. Clearly
probabilities cannot add to more than unity, i.e. n xmn,n + n xmn,n ≤ 1, and the seller cannot give out
more surplus than is created

πmn,n + n umn,n + n umn,n ≤ n xmn,n v + n xmn,n v, (9)

or in ex-ante terms

∞∑
n=0

∞∑
n=0

Pn,n(λ, λ)
[
πmn,n + n umn,n + n umn,n

]
≤
∞∑
n=0

∞∑
n=0

Pn,n(λ, λ)
[
n xmn,n v + n xmn,n v

]
. (10)

Incentive compatibility constraints require that a low type buyer is willing to reveal his type, i.e., the
payoff he receives is higher than the payoff when pretending to be a high type. Ex-ante incentive
compatibility is therefore:

∞∑
n=0

∞∑
n=0

Q̃n,n(λ, λ)umn+1,n ≥
∞∑
n=0

∞∑
n=0

Q̃n,n(λ, λ)
[
umn,n+1 + xmn,n+1(v − v)

]
(11)

16We do not model different search intensities for the buyers. If differences in search intensity were introduced, the
number of buyers in the market would have to be weighted by their respective search intensity.
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The left hand side is the payoff when announcing to be a low type. The right hand side is the payoff
when pretending to be the high type. The right hand side comprises the payoff that the high type would
obtain, adjusted for the fact that the low type only obtains v instead of v when he trades. Similarly,
the high type is willing to reveal his type if

∞∑
n=0

∞∑
n=0

Q̃n,n(λ, λ)
[
umn+1,n + xmn+1,n(v − v)

]
≤
∞∑
n=0

∞∑
n=0

Q̃n,n(λ, λ)umn,n+1 (12)

Here the right hand side is the payoff for the high type, and the left hand side is the payoff of the low
type adjusted for the fact that the high type obtains more when trading.

Payoffs. Given the trading strategies of all other agents, the payoffs from choosing m ∈suppµs for an
individual seller and a low and high type buyer, respectively, are

Π(m|µs, µb, µb) =
∞∑
n=0

∞∑
n=0

Pn,n(λ, λ)πmn,n, (13)

U(m|µs, µb, µb) =
∞∑
n=0

∞∑
n=0

Q̃n,n(λ, λ)umn+1,n, (14)

U(m|µs, µb, µb) =
∞∑
n=0

∞∑
n=0

Q̃n,n(λ, λ)umn,n+1. (15)

The buyer-seller ratio for a deviating seller is again given by the indifference of the buyers. The deviating
seller expects (λ(m), λ(m)). His expectation can only include λ(m) > 0 if buyers are indeed willing to
come to his mechanism rather than to the mechanisms offered on the equilibrium path:

∞∑
n=0

∞∑
n=0

Q̃n,n(λ(m), λ(m))umn+1,n = max
m∈M

U(m|µs, µb, µb). (16)

Similarly, he can expect λ(m) > 0 only if

∞∑
n=0

∞∑
n=0

Q̃n,n(λ(m), λ(m))umn,n+1 = max
m∈M

U(m|µs, µb, µb). (17)

Similar to the previous section, for most mechanisms including price posting or standard auctions the
pair (λ(m), λ(m)) that satisfies (16) and (17) is unique. For mechanisms where multiplicity is possible,
we again follow McAffee (1993) and others and assume that the seller believes that he can coordinate
buyers and choose the combination of queue length that is most desirable to him.

Equilibrium. An equilibrium is a tuple (µs, µb, µb) such that

1. Seller Optimality: Any m ∈suppµs solves maxm′∈MΠ(m′|µs, µb, µb).
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2. Low Buyer Optimality: Any m ∈suppµ
b

solves maxm′∈suppµs U(m′|µs, µb, µb).

3. High Buyer Optimality: Any m ∈suppµb solves maxm′∈suppµs U(m′|µs, µb, µb).

Constrained Efficiency. Consider again a planner who can determine the trading strategies, but
is constrained by the same meeting frictions and available trading mechanisms as the decentralized
equilibrium. A tuple (µs, µb, µb) is constrained efficient if the resulting RN-derivatives λ(m) and λ(m)

generate a higher surplus s
∫
M

[∑∞
n=0

∑∞
n=0 Pn,n(λ, λ)

(
πmn,n + n umn,n + n umn,n

)]
dµs than the re-

spective surplus under any other tuple (µ′s, µ
′
b
, µ′b) and its resulting RN-derivatives.

Preliminaries. Similar to the derivation of maximization problem (7) in the homogeneous buyer
case, an individual seller now anticipates that his queue length arises according to (16) and (17). He
maximizes his expected profits, understanding that the number of buyers is governed by (16) and
(17). Given the market utility U? = maxm∈M U(m|µs, µb, µb) and U

? = maxm∈M U(m|µs, µb, µb), this
amounts to the problem

max
(λ,λ)∈R2

+, m∈M

∞∑
n=0

∞∑
n=0

Pn,n(λ, λ)πmn,n (18)

such that

∞∑
n=0

∞∑
n=0

Q̃n,n(λ, λ)umn+1,n ≤ U?, with equality if λ > 0, (19)

∞∑
n=0

∞∑
n=0

Q̃n,n(λ, λ)umn,n+1 ≤ U
?
, with equality if λ > 0, (20)

and incentive compatibility constraints for truthful type revelation (11) and (12) and the resource
constraint (9) have to hold. The constraints ensure thus (16) and (17) indeed apply.17 This formulation
resembles the standard mechanism design approach: Buyers offer transfers and trading probabilities
such that types are revealed and participation constraints are met, only now the level of the participation
constraint is endogenous.

4 Price Posting Mechanisms

Consider first the set of equilibria in a price posting environment. Under price posting, the good is
allocated indiscriminately and with equal probability to any one of the buyers that arrives. The surplus
then is

πmn,n + n umn,n + n umn,n =
n

n+ n
v +

n

n+ n
v ≤ n v + n v.

17Again, the buyer-seller ratios are choice variables even if the constraints permit several solution because we assumed
that off equilibrium path the seller can coordinate the buyers. On the equilibrium path, this still holds if the seller has
deviations available to him that allow such a coordination of the equilibrium path, e.g. when other mechanisms achieve
the same expected payoffs but implement the desired buyer-seller ratios uniquely. It can be shown that a combination of
auctions and prices does indeed achieve this.
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Full surplus is only realized if n or n is equal to zero. A price p induces payoffs πn,n(p) = p if
either n or n or both are strictly positive, and one of the buyers obtains the good at random so that
un,n(p) = v−p

n+n and umn,n = v−p
n+n . Taking U? and U

? as given, we can consider (18) for an individual
firm. For price posting mechanisms the maximization becomes particularly simple: the seller only cares
about the probability of trade times the price [1− P0(λ+ λ)]p, while the buyers only care about their
probability of trade times their gain

∑∞
n=1Qn(λ + λ)v−pn . Using nPn(λ) = λQn(λ) from (1) we get∑∞

n=1Qn(λ+ λ)/n = [1− P0(λ+ λ)]/(λ+ λ) and therefore

max
(λ,λ)∈R2

+,p∈R+

[1− P0(λ+ λ)]p (21)

such that

1− P0(λ+ λ)
λ+ λ

[v − p] ≤ U?,with equality if λ > 0, (22)

1− P0(λ+ λ)
λ+ λ

[v − p] ≤ U
?
, with equality if λ > 0. (23)

Note that in this case we can omit the truth-telling constraint as the seller will always choose to trade
with the buyer type where he can achieve the highest queue length λ = λ+ λ and the other type then
is either indifferent or strictly prefers not to appear. We first show:

Lemma 2 For given U? and U?, consider the restricted problem (21) where the price is fixed and only
(λ, λ) are chosen optimally: There exists p̂ such that at prices below p̂ the solution has λ = 0 and only
low types are attracted, while at prices above p̂ the solution has λ = 0 and only high types are attracted.
Moreover, in the full problem (21) where the price is also chosen optimally, setting a price of p̂ is never
optimal, and a seller restricted to the set of prices [0, p̂] (or restricted to [p̂,∞)) has a unique optimal
price within that set.

Proof. Consider the restricted problem (21) where the price p is given. As long p < v̄, the optimal
queue lengths maximize λ = λ + λ such that at least one constraints is still met at equality. If the
constraint holds with equality we have (1−P0(λ))

λ [v − p] = C for some C which implicitly defines λ, and
implicit differentiation gives

∂λ

∂p
= − (1− P0(λ))λ

(1− P0(λ) + λP ′0(λ)) (v − p)
,

which is negative and strictly increasing in v. This single crossing property immediately implies that
there exists some price p̂ such that at price p < p̂ the optimal λ has the low type’s constraint (22)
binding, while at p > p̂ the optimal λ has the high type’s constraint (23) binding. It also implies that
no seller would like to cater to both low and high types by offering p̂ : if it is profitable to increase one’s
price up to p̂ even though the queue length is falling a lot when trading with low types, it will clearly
be profitable to increase it strictly above p̂ because there the queue length is falling less drastically due
to a price change. We will make this argument precise below.
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We know that a seller who sells at a price below p̂ will have a queue length determined by (22)
holding with equality. Substituting the constraint, the optimal utility of such a seller is given by the
optimization problem

max
λ∈[λ̂,∞)

[1− P0(λ)]v − λ U?, (24)

where λ̂ is the queue length at p̂ if (22) holds with equality. This problem is strictly concave. Therefore
every buyer will choose the same queue length λ?(U?, U?) dependent on U? (and associated price)
when trading with low types. The dependence on U

? only arises because it might affect λ̂. Similarly,
the optimization problem for a seller that considers trading with high buyer types is

max
λ∈[0,λ̂]

[1− P0(λ)]v − λ U? (25)

which is also strictly concave. Therefore every buyer will choose the same queue length λ
?(U?, U?)

dependent on U
? and U? (and associated price) when trading with low types.

It is easy to see that it is not optimal to trade at λ̂. For an individual firm, trading at λ̂ is only
optimal if profits at higher queue length according to (24) are not profitable, i.e. the right derivative
has to be −P ′0(λ̂)v − U? ≤ 0. By a similar logic the left derivative of (25) has to be positive, i.e.
−P ′0(λ̂)v − U? ≥ 0, which together imply −P ′0(λ̂) [v − v] ≥ U

? − U?. Since λ̂ is the point where both
(22) and (23) hold, we have U?−U? = [v−v](1−P0(λ̂))/λ̂. Therefore the prior inequality becomes after
some rearranging 1− P0(λ̂) + λ̂P ′0(λ̂) ≤ 0, which delivers a contradiction. Therefore no seller caters to
both buyer types.

This leads to the following result:

Proposition 3 Assume the mechanism space M includes fixed price mechanisms only. A unique
equilibrium exists with one “market” for each buyer type that trades: If the low types trade in equilibrium,
then exactly two prices are offered in equilibrium and all low type buyers trade at the low price and all
high type buyers trade at the high price. If only high type sellers trade in equilibrium, only one price is
offered at which they trade.

Proof. Since λ̂ is never an optimal choice for an individual seller, and neither zero nor infinity can be
optimal choices, in equilibrium the optimal choice of a firm has to be characterized by the first order
condition. For (24) this is

−P ′0(λ)v = U?.

Since all sellers will choose the same queue length, the buyer-seller ratio is λ = b
γs when γ is the fraction

of sellers that trade with low types. With slight abuse of notation let λ?(γ) = b
γs . Profits are then

π(γ) =
[
1− P0(λ?(γ)) + λ?(γ)P ′0(λ?(γ))

]
v. (26)
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Figure 1: The Separation of Buyer Types

Similar logic for high types implies U? = −P ′0(λ? (1− γ))v and λ
? (1− γ) = b

(1−γ)s and

π(γ) =
[
1− P0(λ? (1− γ)) + λ

? (1− γ)P ′0(λ? (1− γ))
]
v. (27)

In equilibrium it cannot be that only the low type buyers trade, as then U? = 0 and it would be optimal
to trade with the high types. If π(0) ≤ π(0) then even if it is most attractive to trade with low types
it is not worthwhile and therefore in equilibrium γ? = 0. Otherwise the equilibrium has γ? uniquely
determined by π(γ?) = π(γ?). This uniquely characterizes the equilibrium.

The separation result is illustrated in Figure 1. Indifference curves satisfy single crossing as derived
in the proof of Lemma 2. For high valuation buyers v, the IC is everywhere flatter than that of low
valuation buyers v. All sellers are identical and in equilibrium they will obtain equal profits catering
to both types of buyers. Observe that if the price p̂ is offered to both types of buyers, a seller has
an incentive to deviate by offering either a strictly higher (or strictly lower) price, thereby catering
exclusively to the high type (low type) buyers. Such a deviation is profitable since the isoprofit curve
at p̂ (dashed line) is not tangent, and maintaining the same utility level for at least one of the buyers, a
seller can achieve a position on a strictly higher iso-profit. This continues to be the case as long as the
isoprofit curve is not tangent to both indifference curves simultaneously. In equilibrium, a seller makes
equal profits from both types of buyers, and the buyer types have strict preferences over which (p, λ)
pair to choose. High type buyers prefer high prices and low queue lengths, and low type buyers prefer
low prices and high queue lengths.
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It is interesting to note that profit equations (26) and (27) fulfill the Hosios (1990) condition, which
is important for constrained efficiency in search models, because it gives agents the correct incentives
to enter one market rather than another. Writing profits as π = (1−P0)(1− (−λP ′0/(1−P0)))v shows
that conditional on matching the share of the surplus that goes to the seller is equal to one minus the
elasticity of the matching function (and full-trade ensures that trade takes place whenever at least one
buyer is present). The matching function is the probability 1−P0(λ) of being able to trade. The Hosios
condition induces constrained efficiency as long as we only consider non-screening mechanism – but can
sometimes be too weak a notion to guarantee constrained efficiency when larger classes of mechanisms
are allowed. This depends on the meeting technology as we discuss in the following sections.

To establish such constrained efficiency in the class of non-screening mechanisms formally, we con-
sider a planner that takes the frictions as given and can only use mechanisms that give the good to one
of the buyers at random. We will show that even if the planner assigns to each seller i its personalized
mechanism with queue lengths λp(i) and λp(i) of low and high buyer types and even if the planner does
not have to consider any incentive constraints, he will not achieve a higher surplus than the decentral-
ized economy. Here i can be viewed as the name of the mechanism of this seller. These functions λp(i)
and λp(i) are feasible if they are measurable and indeed reflect the ratio of buyers to sellers in the sense
that ∫ s

0
λp(i)di ≤ b and

∫ s

0
λ
p(i)di ≤ b. (28)

The realized surplus is

S(λp, λp) =
∫ s

0

[
1− P0

(
λp(i) + λ

p(i)
)][λp(i)v + λ

p(i)v̄
λp(i) + λ

p(i)

]
di, (29)

where the first brackets reflect the probability that the seller has a buyer, in which case his probability
of selecting a high type is λp(i)/(λp(i)+λp(i)) and v is realized, and with the complementary probability
v is realized.

The price posting equilibrium in which a fraction γ caters to the low valuation sellers can be
represented as a planners strategy λp(i) = λ?(γ) for all i ∈ [0, γs] and zero otherwise, and λp(i) = λ

?(γ)
for i ∈ (γs, s] and zero otherwise. We will show that this ”price posting” assignment is constrained
efficient in the space of mechanisms that give away the good at random.

Proposition 4 Consider a mechanism space M that includes fixed prices and possibly other mecha-
nisms, but only includes non-screening mechanisms. Then the equilibrium when sellers can only compete
in fixed prices is constrained even underM. In particular, the realized surplus in the price posting equi-
librium is higher than under any other feasible queue length functions λ(.) and λ(.).

Proof. Consider some queue length functions λp(.) and λp(.). We will first show that it is sufficient to
concentrate on queue length functions that assign strictly positive λp(σ) only if λp(.) = 0. To see this,
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write the surplus as

S(λp, λp) = v

∫ s

0

[
1− P0

(
λ̌(i)

)]
f(i)di+ v

∫ s

0

[
1− P0

(
λ̌(i)

)]
f(i)di

= v

∫ s

0

[
1− P0

(
λ̌(i)

)]
dF (i) + v

∫ s

0

[
1− P0

(
λ̌(i)

)]
dF (i)

where λ̌(i) = λp(i) +λ
p(i), f(i) = λp(i)

λp(i)+λ
p
(i))

and F (i) =
∫ s

0 f(i)di, likewise for f, F . The first term can
be interpreted as assigning all low valuation buyers to a measure F (s) of firms and all high valuation
buyers to a measure F (s) if firms match according to the assignment function λ̌(i). Another way of
seeing this is to rewrite the expression as

S(λp, λp) = v

∫ F (s)

0

[
1− P0

(
λ̌(F (x))

)]
dx+ v

∫ s

F (s)

[
1− P0

(
λ̌(F (x− F (s)))

)]
dx

which is identical to a feasible assignment function that assigns queue length λ(i) = λ̌(F (i)) to all firms
in [0, F (s)] and λ(i) = 0 otherwise, and λ(i) = λ̌(F (i − F (s))) to all firms in [F (s), s] and λ(i) = 0
otherwise.

Next, observe that 1 − P0 (λ) is strictly concave, and therefore it is optimal to assign an identical
queue length λ to all firms that sell to low valuation buyers and an identical queue length λ to all
firms that sell to high valuation buyers. If a fraction α of the firms sell to low valuation buyers, those
achieve a buyer seller ratio of b/(αs). This ratio depends on α, and we will denote it with slight abuse of
notation by λ(α) = b/(αs). For the fraction (1−α) of firms that sell to the high types, the buyer-seller
ratio is b/(1 − α). Again, with slight abuse of notation we denote this as λ(1 − α) = b/(1 − α). The
maximization problem of the planner reduces to

max
α∈[0,1]

α(1− P0(λ(α)))v + (1− α)(1− P0(λ(1− α)))v.

The planner clearly chooses α < 1. If he chooses to trade with low valuation buyers, the first order
condition for optimality is

(1− P0(λ(α)) + λ(α)P ′0(λ(α)))v = (1− P0(λ(1− α)) + λ(1− α)P ′0(λ(1− α)))v, (30)

where we used the fact that (∂λ(α)/∂α) = −λ(α)/α and (∂λ(1−α)/∂α) = λ(1−α)/(1−α). Note that
this is identical to the condition that profits according to (26) and (27) have to be equal. Moreover,
it is easy to show that α = 0 if the left hand side of (30) evaluated as α = 0 is smaller then the right
hand side of (30) evaluated at α = 0, which again coincides with the equilibrium.

In the following, we will extend the mechanisms spaceM to allow for ex-post screening mechanisms
such as auctions. This changes the available mechanisms for the sellers and, thus, possibly the nature
of the equilibrium. It also relaxes the constraints on the planner, and higher surplus might be possible.
In particular we investigate under which meeting technologies the extended mechanism space actually
changes equilibria and constrained efficiency, and under which it does not.
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5 Competition in Mechanisms

5.1 Purely non-rival meetings

Here we consider meeting technologies in which a seller can meet multiple buyers simultaneously. More
specifically, meetings are purely non-rival in the sense that the meeting probability for a buyer is not
affected by the presence of other buyers in the market: the probability 1 − Q0(λ) of a meeting is
independent of λ. This means in particular that an increase in the number of low types in a market
does not diminish the chances for high types of meeting a seller. It might diminish their trading
probability e.g., in the case when prices are used and a seller tries to attract both types of buyers. Yet
in terms of simply meeting one of the sellers there are no spillovers. This is for example true under
urn-ball meetings where buyers choose one seller in their desired market at random. In that case the
probability of not meeting any seller is zero. The probability of trading will change when there are
more buyers because it is harder to obtain the good, but the probability of meeting is constant. The
urnball meeting technology is the standard assumption of the competing mechanism design literature
(Peters (1997, 1999)). The set of non-rival meeting functions is substantially larger than the urn-ball
meeting function, though.18

Under the non-rival meetings assumption we will prove that an equilibrium in which all sellers use
second price auctions with a reserve below v and buyers use random visit strategies yields strictly higher
surplus than the equilibrium when sellers were restricted to use prices only. With slight modification it
can be shown that any class of mechanisms that does not allow for ex-post screening will not be con-
strained efficient. The result obtains even though we have seen that sellers can perfectly screen between
buyers by using prices, and therefore no seller in a price posting environment has any uncertainty about
the type of buyer he is facing. Note that under purely non-rival meetings, the probability of having a
match with n other high type depends only on λ and is Qn(λ).

Proposition 5 Consider non-rival meetings. The equilibrium in a price posting environment, i.e., an
environment where M only includes fixed price mechanisms, is not constrained efficient under mecha-
nism setM′ that also includes second price auctions: UnderM′ all sellers posting second price auctions
with reserve below v and buyers using random visit strategies is constrained efficient.

Proof. We compare the outcome of the equilibrium where sellers could only use fixed prices to the
outcome when all sellers post second price auctions with reserve price below v and buyers use random
visit strategies. Consider the case when both buyer types can trade in a price posting environment. The
proof has two steps. First, we prove that there are strictly more trades in the auction environment.
Second, we prove that high valuation buyers have strictly more trades. Together this establishes that
the auction environment is more efficient.

18We do not have a full characterization for this rather large set of meeting technologies. Even starting from the urn-ball
meeting function, lots of other meeting functions can be constructed that are non-rival and differ substantially from urn-
ball. For example, all buyers in one-buyer matches can be coordinated into pairs, which increases the number of two-buyer
matches and decreases the number of one-buyer matches: Let QU be the urn-ball meeting technology. Then Q0 = QU0 ,
Q1 = 0, Q2 = QU2 + QU1 /2 and Qn = QUn for n > 2 is also a non-rival meeting technologies. Along this line, many other
transformations are possible.
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For the first part of the argument, observe that in a price posting environment some fraction α of
sellers has a low queue length λ = b/αs while a fraction 1− α has a high queue length λ = b/(1− α)s.
The total number of trades in a price posting economy is

T (α) = αs

[
1− P0

(
b

αs

)]
+ (1− α)s

[
1− P0

(
b

(1− α) s

)]
The first order condition for the optimal number of trades is[

1− P0

(
b

αs

)]
+

b

αs
P ′0

(
b

αs

)
−
[
1− P0

(
b

(1− α) s

)]
− b

(1− α) s
P ′0

(
b

(1− α) s

)
= 0,

which is, under P0 convex, only satisfied if b/αs = b/(1−α)s, i.e., when agents’ visiting probabilities are
the same at all firms. This is not achieved in a price posting environment which induces non-random
visit strategies. Since T ′′(α) < 0 at all α, the first order condition indeed characterizes the optimal
number of trades. The random visit strategies of the auction environment indeed yield the highest
number of trades.

For the second part of the argument, we show that the high valuation buyers have strictly more
trades under random visit strategies with auctions than in a price posting environment. Under auctions,
the queue length for high buyer types is λa = b

s . The trading probability is

∞∑
n=1

Qn(λa)
1
n

=
∞∑
n=1

Pn(λa)
λ
a =

1− P0(λa)
λ
a .

Similarly, under price posting only a fraction (1−α) of firms attract high types which induces a queue
of λp = b/[(1−α)s]. A high buyer’s trading probability is then by a similar logic (1−P0(λp))/λp. Since
P0 is convex we have the trading probability increasing in λ, and since λa > λ

p the high types can trade
more often in the auction environment and therefore more often the high valuation surplus is realized.

Finally, consider the case when only the high valuation buyers can trade in a price posting equi-
librium. They do not trade more often than in the auction environment, as we have shown that the
auction environment maximizes the number of trades for high types. In fact, it achieves an identical
amounts of trade for high types compared to price posting where only high types trade. Moreover,
the auction environment allows some low types to trade when no high type is present, which strictly
raises the surplus. Constrained efficiency of the auction environment follows trivially from the fact
that auctions maximize the overall number of trades as well as the number of trades for high valuation
buyers.

Observe that any mechanism that does not screen buyers ex post will generate less surplus than
an equilibrium in second price auctions. We know from McAfee (1993) and Peters (1997) that an
equilibrium in second price auctions exists under urn-ball meetings, and their approach can be extended
to our setting by generalizing the meeting technology. They do not prove uniqueness. Here we show
that there does not exist another equilibrium in which all sellers post fixed prices (or a mechanism
without ex post screening) when a larger set of ex-post screening mechanisms is allowed. The reason is
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that a seller can offer buyers the same payoff as under price posting, while enjoying exactly the efficiency
gains that an auction environment implements.

Proposition 6 Consider non-rival meetings. If all sellers post prices, it is strictly profitable for a
deviating seller to post a second price auction coupled with a show-up fee.

Proof. The the equilibrium when sellers can only compete in prices delivers some utility U? and U? for
the low and high type buyers, as well as some profit π? for the sellers. Now consider a seller who posts
a second price auction with show-up fee −f and reserve r. The reserve r is due only when a single buyer
is present, and we assume that buyers commit to paying this reserve when they are the only buyers,
even if r > v. With such a mechanism, the seller obtains a payoff πf,rn,n = r − f when there is one low
or high buyer, obtains πf,rn,n = v − (n + n)f when n = 1, n ≥ 1, or when n ≥ 2 and n = 0; and obtains
πf,rn,n = v + (n + n)f when n ≥ 2. In all other cases his payoff is zero. The seller solves the following
program

max
(λ,λ)∈R2

+,(f,r)∈R2

∞∑
n=0

∞∑
n=0

Pn,n(λ, λ)πf,rn,n (31)

such that

(1−Q0(λ+ λ))f + Q̃0,0(λ, λ) [v − r] ≤ U?, with equality if λ > 0, (32)

(1−Q0(λ+ λ))f + Q̃0,0(λ, λ) [v − r] +
∞∑
n=1

Q̃n,n(λ, λ) [v − v] ≤ U
?
, with equality if λ > 0. (33)

where the first constrained arises because the low type buyers obtain the good only when they are
alone. The second constraint arises because high types only make positive profits when there are no
other high types in the auctions, in which case they either pay the bid of the low type buyer if one
is present, or they pay the reserve price. Incentive compatibility is trivially fulfilled for second price
auctions.

Clearly the seller can implement the average queue length λ = b/s and λ = b/s with some com-
bination of his instruments f and r. Now assume all sellers would use such an auction. Then the
average queue length would be implemented at all sellers, which is feasible. We know from Proposition
5 that the surplus in this environment is higher than under price posting. But we have constructed the
environment in such a way that the buyers obtain exactly the same utility as in the price posting envi-
ronment, which means that the sellers must get higher profits. This in turn means that our deviating
seller enjoys strictly higher profits than those sellers who do not screen buyers ex post.

5.2 Purely rival meetings

Here we assume that meetings are purely rival. Pure rivalry can be captured by the condition λ(1 −
Q0(λ)) = 1 − P0(λ). For a unit measure of sellers, the right hand side gives the number of them that
meet at least one buyer. The left hand side gives the number of buyers in the market that meet at
least one seller. Taking the total derivative with respect to λ and rearranging reveals the following:
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When more buyers enter the market, the meetings for existing buyers change by λQ′0(λ), which equals
the change in overall meetings P ′0(λ) minus the meetings (1−Q0(λ)) for new buyers. Every new buyer
therefore takes one-for-one away from the meeting prospects for existing buyers.

It is easy to see from (1) that this happens if and only if meetings are bilateral. That is, Pn(λ) = 0
for all n > 1. This immediately implies that only Q0(λ) and Q1(λ) can be strictly positive. In this case
we have

1−Q0(λ) = Q1(λ) =
P1(λ)
λ

=
1− P0(λ)

λ
.

Since P ′0(λ) < 0 we cannot have Q′0(λ) = 0 , and therefore the meeting probability of say high types
changes when more low types enter the market. This is unavoidable in models with bilateral meetings.
It constitutes the main externality in this setting.

We want to show that price posting is optimal for the sellers, i.e., no other mechanism performs
better, and it is an equilibrium. Other mechanisms could still elicit buyers’ types via wasteful destruc-
tion, yet the key insight with purely rival meetings is that ex-ante separation of types achieves type
revelation without wasteful destruction.

Proposition 7 Under purely rival meetings, price posting is always a best response by a seller.

Proof. A seller now solves the program

max
(λ,λ)∈R2

+, m∈M
P1(λ+ λ)

[
λπm1,0 + λπm0,1

λ+ λ

]
(34)

= max
(λ,λ)∈R2

+, m∈M
Q1(λ+ λ)

[
λπm1,0 + λπm0,1

]
such that

Q1(λ+ λ)um1,0 ≤ U?, with equality if λ > 0, (35)

Q1(λ+ λ)um0,1 ≤ U
?
, with equality if λ > 0, (36)

and the incentive compatibility constraints for truthful type revelation have to hold:

Q1(λ+ λ)um1,0 ≥ Q1(λ+ λ)
[
um0,1 − xm0,1(v − v)

]
Q1(λ+ λ)

[
um1,0 + xm1,0(v − v)

]
≤ Q1(λ+ λ)um0,1

as well as the resource constraints πm1,0 +um1,0 ≤ xm0,1v and πm0,1 +um0,1 ≤ xm0,1v. The incentive compatibility
conditions can be rewritten as

xm0,1 ≥
um0,1 − um1,0
v − v

≥ xm0,1

Optimality clearly has xm0,1 = 1. Thus, any difference ∆u = um0,1 − um1,0 < v − v involves no trade with

low types with probability ∆u
v−v . Therefore,

λ[πm1,0+um1,0]+λ[πm0,1+um0,1]
λ+λ

≤ λ∆uv+λ v

λ+λ
, it is easy to see that it
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is optimal to have this hold with equality. This reduces the problem to

max
(λ,λ)∈R2

+, m∈M
Q1(λ+ λ)

[
λ
um0,1 − um1,0
v − v

(
v − um1,0

)
+ λ

(
v − um0,1

)]
such that

Q1(λ+ λ)um1,0 ≤ U?, with equality if λ > 0,

Q1(λ+ λ)um0,1 ≤ U
?
, with equality if λ > 0,

0 ≤ um0,1 − um1,0 ≤ v − v.

Assume the optimal program has some contract m and λ > 0 and λ > 0. If λ
um0,1−um1,0
v−v

(
v − um1,0

)
≤

λ
(
v − um0,1

)
then there exists an optimal contract m′ and λ′ > 0 and λ′ = 0. The reason is that at least

the same payoff can be obtained by choosing λ′ = λ + λ and um
′

0,1 = um0,1 and um0,1 − um
′

1,0 = v − v. Yet
this can be achieved with a price posting contract where the posted price p is such that um0,1 = v − p.

If λ
um0,1−um1,0
v−v

(
v − um1,0

)
> λ

(
v − um0,1

)
then there exists an optimal contract m′ and λ′ = 0 and λ′ > 0.

The reason is again that at least the same payoff can be obtained by choosing λ′ = λ+λ and um
′

0,1 = um0,1
and um

′
0,1−um

′
1,0 = v− v. This again can be achieved with a price posting contract with a price such that

um0,1 = v − p.

Given that an equilibrium exists when sellers can only use price posting strategies, and given that
no other mechanism achieves higher profits, we have

Corollary 4 Under purely rival meetings, an equilibrium exists if the set of mechanisms M includes
all price posting mechanisms. One equilibrium is identical to the price posting equilibrium of Section 4.

Our final result concerns the constrained efficiency of the equilibrium. Again, constrained efficiency
involves finding functions λp(σ) and λ

p(σ) such that (28) is fulfilled. We could additionally specify
functions that destroy some of the surplus in order to induce truthful type revelation, but it is clear
that a social planner would always want the seller to trade once a buyer shows up. The realized surplus
that is to be maximized is then

S(λp, λp) =
∫ s

0
[P1,0(λp(σ) + λ

p(σ))v + P0,1(λp(σ) + λ
p(σ))v]dσ. (37)

Proposition 8 The price posting equilibrium is constrained efficient.

Proof. Since P1,0(λ, λ) = P1(λ+λ) λ

λ+λ
and P0,1(λ, λ) = P1(λ+λ) λ

λ+λ
and under purely rival meetings

P1(λ+ λ) = 1− P0(λ+ λ) the surplus (37) is identical to the surplus specified in (29) in Section 4, for
which we have shown that the queue length that arise under price posting are optimal.
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5.3 Partially rival meetings

For a synthesis that clearly highlights the constrained efficiency considerations that drive the choice of
mechanisms, consider the intermediate case where meetings are partially rival. That means that neither
1−Q0(λ) is constant as in the purely non-rival case, nor λ(1−Q0(λ))− 1 +P0(λ) is constant as in the
purely rival case. Even though the literature including much of our present paper has focussed on the
extreme cases, such intermediate cases constitute an important avenue for future research.

Partially rival meeting functions are particularly important in our context because they show that
the dominance of price posting is not an artifact of bilateral meetings, where price posting is optimal
even in a non-competitive setting (Riley and Zeckhauser (1983)). Rather, it is directly linked to the
negative externality of low types on high types before they meet a seller. Partially rival meetings imply
that at least some of the meetings are multilateral (since purely rival is equivalent to bilateral meetings).
Therefore, in any partially rival meeting process buyers can use auctions at least for those meetings in
which multiple buyers are present. And a monopolist seller who is allocated exogenously some random
number of buyers would optimally use auctions to screen between buyers whenever multiple buyers are
present. Here we show that with competing sellers, it is efficient to separate buyer types into separate
markets when rivalry is strong, and in this case the equilibrium also features separation of types and
prices constitute an equilibrium mechanism.

To state our results, it will be useful to introduce some notation first. Let the full information
surplus of a market with unit measure of buyers, λ low buyers and λ high buyers be

SF (λ, λ) =
∞∑
n=0

∞∑
n=1

Pn,n(λ, λ)v +
∞∑
n=1

Pn,0(λ, λ)v. (38)

This is the surplus when every seller who has at least one high type sells the good to a high type, and
every seller who has only low types sells the good to one of the low types. It is the highest surplus
that can be achieved in this market. Now consider the surplus if a fraction α of the sellers attract all
the low type buyers to some market and sell whenever they have at least one buyer, and the remaining
fraction 1 − α of sellers attract all the high type buyers to some other market and sell whenever they
have at least one buyer. In this case the total surplus is

(1− α)SF (0, λ̄/(1− α)) + αSF (λ/α, 0). (39)

We will consider the case where for any λ > 0 and λ > 0 there exists α such that (39) is strictly
larger than (38), so that it is efficient to separate markets. In this case we show that price posting
always constitutes an equilibrium. This condition is demanding because it requires an ordering of (38)
and (39) for all λ > 0 and λ > 0. A less demanding condition is needed to rule out a price posting
equilibrium. Consider the overall buyer-seller ratios in the market λ = b and λ = b, and the optimal
fraction αp of firms that cater to the low types is characterized in (30). If for these values (38) is larger
than (39), than it is efficient to join markets and screen ex-post, and price posting cannot be part of any
equilibrium. Before stating and proving this result formally, it might be instructive to discuss which
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type of meeting functions obtain such an ordering of (38) and (39).
Consider a meeting technology P for sellers that is a convex combination of a purely rival meeting

technology PR and a purely non-rival meeting technology PN , i.e.,19

P = (1− γ)PR + γPN . (40)

This is a permissible meeting technology since consistency (1), stochastic dominance (2) and convexity
(3) are preserved. Now fix some λ and λ. In the previous analysis, subsection 5.1 considered the extreme
case where γ = 1 and we showed that (38) is larger than (39), while subsection 5.2 analyzed the extreme
case of γ = 0 and we showed that (38) is smaller than (39). By continuity, (38) is larger than (39)
if the most of the weight is on PN and (39) is larger than (38) if most weight is on PR. To rule out
price posting, we have to show that a deviant can generate higher profits. For some specifications of
the rival and non-rival meeting technology, αP as characterized in (30) does not depend on γ, and since
λ = b and λ = b do not depend on γ either it is obvious that (38) is larger than (39) for γ sufficiently
large.20 To sustain price posting, we have to ensure that a deviant does not obtain higher profits. The
deviant might attract very different buyer-seller ratios, and therefore we require efficiency of separation
for all possible combinations of high and low types in a market. In the appendix we discuss that there
indeed exist PR and PN and γ > 0 such that (38) uniformly dominates (39). Therefore, if meetings
are predominantly governed by a rival meeting function, price posting constitutes an equilibrium even
though sellers can commit to auctions when meetings are multilateral.

The following shows formally that the nature of the efficiency ordering between (38) and (39)
crucially affects the types of mechanisms used in equilibrium. For the second part of the proposition,
recall that αp is the fraction of firms that cater to low types when only fixed price mechanisms are
available.

Proposition 9 If the meeting technology is such that for all λ̄ > 0 and λ > 0 there exists an α ∈ [0, 1]
and

SF (λ, λ̄) < αSF (λ/α, 0) + (1− α)SF (0, λ̄/(1− α)), (41)

then there exists an equilibrium in which all sellers post prices.
If the meeting technology is such that

SF (b, b) > αpSF (b/αp, 0) + (1− αp)SF (0, b/(1− αp)), (42)
19A more structural reason for hybrid meeting technologies is the following. Consider buyers who can send one letter to

one of the buyers indicating that they want to trade (i.e., think of workers that have time to fill out one job application).
But assume that sellers only have time to open and read up to N envelopes. The case N = 1 amounts to bilateral meetings:
The seller can only see one buyer and cannot screen between any applicants any longer. With N → ∞ we are in the
standard urn-ball meeting environment with purely non-rival (multilateral) meetings, and sellers have full control whom
to give the object to by choosing the appropriate auction format. To the extent that one can make N divisible, e.g., by
interpreting N = 1.5 as a 50%-50% chance that the seller has time to open one or two envelopes, then N → 1 has the
same effect as γ → 0 in the following.

20Note also that (39) dominates (38) for given partially rival meeting technology and given v1 if v2 is sufficiently large,
since the rival nature in the meeting function will make it too costly to put both types in the same market.
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then there exists no equilibrium in which all sellers post prices if the mechanisms space is rich enough
(e.g., includes second price auctions with reserve and participation fee).

Proof. For the first part, assume (41) holds. Consider a candidate equilibrium. We will show that no
matter what mechanism m an individual seller considers to post, he can make weakly higher profits by
posting a price. This establishes the result.

Consider any mechanism m. It has to satisfy resource constraint (10). This constraint is most
relaxed if the good is always given to the high type when possible, i.e. xmn,n = 1 if n > 0 and zero
otherwise, and xmn,n = 1 if n = 0 but n > 0 and zero otherwise. In this case constraint (10) reduces to∑

n

∑
n

Pn,n(λ, λ)[πmn,n + n umn,n + n umn,n] ≤ SF (λ, λ) (43)

Define the expected profit using this mechanism as Π =
∑

n

∑
n Pn,n(λ, λ)πmn,n. Further, note that in any

optimal mechanism (if it attracts the low type) the participating constraint (19) binds
∑

n

∑
n Q̃n,n(λ, λ)umn+1,n =

U. Similar for high types. Using the relationship between P and Q in (1) and the other properties on
the meeting technology, we show in the appendix that (43) can equivalently be written as

Π + λ U + λ U ≤ SF (λ, λ). (44)

This has the clear-cut interpretation that the expected profit for the seller plus the expected number
of low types times their individual expected utility plus the expected number of high types times their
individual expected utility has to be less than the expected surplus generated by an individual seller.
Since we started with the premise that (41) holds with strict inequality if both λ and λ are strictly
positive, we have

Π + λ U + λ U < αSF (
λ

α
, 0) + (1− α)SF (0,

λ

1− α
), (45)

if both λ and λ are strictly positive, and by continuity it holds with a weak inequality otherwise.
Now consider an individual seller who contemplates to post a price. He considers price p such that

participation constraint (19) for the low types is exactly met at buyer-seller-ratio λ/α. Therefore, his
profit is at least Π(p) = (1 − P0(λ/α))p.21 Since there is always trade if at least one buyer shows up,
all the rest of the surplus goes to the buyers and it is easy to show that SF (λα , 0) = Π(p) + λ

αU.

Alternatively, he can contemplate posting a high price p such that participation constraint (20)
for the high types is exactly met at buyer-seller-ratio λ/(1 − α). He makes at least profit Π(p) =
(1 − P0( λ

1−α))p. Again the rest of the surplus goes to the buyers and SF (0, λ
1−α) = Π(p) + λ

1−αU.

21Participation constraint (19) is binding if (1−Q0(λ/α))(v− p) = U. By (16) this will indeed be the queue length that

this seller attracts if (1 − Q0(λ/α))(v̄ − p) ≤ U, since in this case he does not attract any high types. He could attract

even more buyers if (1 − Q0(λ/α))(v̄ − p) > U, because then the buyer-seller ratio is determined by indifference of the
high types according to (17), and a higher buyer-seller ratio at the same price means even higher profits.
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Therefore, we can write (45) as

Π + λ U + λ U < α[Π(p) + (λ/α)U ] + (1− α)[Π(p) + (λ/(1− α))U ]

⇔ Π < αΠ(p) + (1− α)Π(p)

⇒ Π < max{Π(p),Π(p)}.

where the inequality is weak if either λ or λ is zero. Therefore, price posting is always at least as
profitable as posting any other mechanism. Thus, equilibrium in which sellers compete only in prices
remains an equilibrium even if other mechanisms are available. Moreover, posting the optimal price is
strictly more profitable than any mechanism that attracts both buyer types with positive probability.
Therefore, any equilibrium has strict separation of types in different markets.

The second part of the proof is essentially a reversal of the above arguments. The logic of Proposition
6 applies, and the price posting equilibrium cannot survive.

This highlights that price posting is not an artifact of purely rival meetings. Rather, it arises from
the interaction of buyers in the search process. If the externalities in the search process are strong in the
sense that bad types induce an externality such that good types find it difficult to reach the mechanism,
sellers do not find it optimal to attract both types of buyers even if they could screen them apart in
the event that multiple buyers reach the mechanism. Such externalities arise, e.g., when the seller is
time constrained and cannot interact with all potential buyers (see also Footnote 19). The analysis of
competition in mechanisms therefore crucially relies on the properties of the underlying meeting process
that hitherto has not been considered in the literature.

6 Conclusion

Posted prices are prevalent in many economic environments, yet theory from the literature on search
and competing mechanism design tells us that auctions generate higher surplus. In this paper we have
shown that the characteristics of the meeting technology are crucially important for which equilibrium
sales mechanism is used. When meetings are rival, low buyer types significantly affect the prospects
of the high types obtaining the good and ex post screening as in auctions is very costly. Instead,
under price posting different buyer types adequately sort ex ante, ensuring that high types trade with
sufficiently high probability.

In order to rationalize the prevailing equilibrium mechanism observed in markets, we offer this as
a novel explanation. Much of the mechanism design literature focuses on the role of variations in the
mechanism space. For example, can competing sellers condition their mechanism on the mechanism of
other sellers (see Epstein and Peters (1999))? As an alternative, our results show that the characteristics
of the search frictions can explain the nature of the observed equilibrium trade mechanism. Because of
frictions, valuable information is obtained from ex ante selection even before the mechanism is called
to act. Such selection is an integral feature of competition.

We finish by pointing out a parallel in our findings to standard price theory. In general equilibrium,
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when goods are rival the price mechanism works well in the allocation process, while other mechanisms
are required when goods are non-rival. In our setting, goods are purely rival, but the meeting technology
may not be. When meetings are rival, prices allocate resources well. In contrast, when meetings are
non-rival, other mechanisms outperform the price mechanism.
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Appendix

Elaboration on rival and non-rival meeting technologies PR and PN in (40):
As a special case of a purely non-rival meeting technology, consider the urn-ball technology with

PNn (λ) = e−λλn

n! . We can transform this into a purely rival meeting technology by assuming that when-
ever several buyers are present, only one is selected at random to enter the mechanism and the others
are excluded. This yields the purely rival meeting technology PR such that PR0 (λ) = PN0 (λ) = e−λ,
PR1 (λ) =

∑∞
n=1 P

N
n (λ) = 1− e−λ, and PRn (λ) = 0 for n > 0.

Now consider the convex combination P = γPR + (1 − γ)PN . For this meeting technology, it is
clear that the surplus from having buyers in separated markets: αSF (λ/α, 0)+(1−α)SF (0, λ/(1−α)),
is independent of γ for all λ, λ and α. This is apparent because in separate markets it does not matter
which buyer is selected by the mechanisms because in each market buyers are homogenous. Therefore,
whether the mechanism selects the buyer as in PN or one buyer is chosen at random as under PR does
not affect efficiency. The full information efficiency when having both types search in the same market
does change with γ, though. When γ is low, then the meeting function randomly selects a buyer and
a low type might be chosen instead of a high type, and separation would be preferable (Proposition
8). When γ is high than most buyers enter some mechanism and the higher type is chosen when both
types are present, and pooling is preferable (Proposition 5). Applying the logic of Proposition (6) rules
out the existence of a price posting equilibrium in the latter case.

Showing that a price posting equilibrium does exist requires by the first part of Proposition (9) that
the surplus from separating surpasses the surplus from pooling for all combinations of buyer-seller ratios
of the two types. We will briefly discuss that there indeed exists a γ > 0 such that P = γPN +(1−γ)PR

has this property. Consider first the surplus from separation. We have

αSF (
λ

α
, 0) + (1− α)SF (0,

λ

1− α
) = α(1− e−

λ
α )v + (1− α)(1− e−

λ
1−α )v.

The optimal αP is αP = 0 if v1 − (1− e−λ2 − λ2e
−λ2)v2 < 0. Otherwise it is uniquely characterized by

the first order condition

(1− e−
λ1
αp − λ1

αp
e−

λ1
α )v1 − (1− e−

λ
1−αp − λ

1− αp
e−

λ
1−αp )v = 0,

which corresponds to (30) in the main text. The surplus at the optimal αP is a function of λ and λ, but
is not affected by γ. Now the difference between the pooling and the separating surplus can be written
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as

∆(λ, λ, γ) = SF (λ, λ)− αpSF (
λ

αp
, 0)− (1− α)SF (0,

λ

1− αp
) (46)

= γ(1− e−λ)v + γe−λ(1− e−λ)v (47)

+(1− γ)(1− e−λ−λ)
(

λ

λ+ λ
v +

λ

λ+ λ
v

)
(48)

−αP (1− e−
λ

αP )v − (1− αP )(1− e−
λ

1−αP )v, (49)

where lines (47) and (48) give the surplus under pooling: (47) is the surplus under non-rival meetings
when the good is given to the high type whenever at least one high type is present and to the low type
only if no high type is present, while (48) represents the surplus under the rival part of the meeting
function whenever one buyer is selected at random when at least one buyer is present. For given λ > 0
and λ > 0, ∆(λ, λ, 0) < 0 by Proposition (8), while ∆(λ, λ, 1) > 0 by Proposition (5). By continuity
there exists γ(λ, λ) > 0 such that ∆(λ, λ, γ(λ, λ)) = 0.

Condition (41) has to hold for all λ > 0 and λ > 0, which is equivalent to requiring that γ(λ, λ)
remains bounded away from zero for all λ > 0 and λ > 0. This is not obvious since ∆(λ, λ, 1) converges
to zero when either λ or λ converges to zero. The reason is that in the presence of (essentially) only
a single type the gain from pooling over separation is rather low. But to the same extent ∆(λ, λ, 0)
converges to zero because the gain from sorting in different markets rather than taking a random buyer
is also rather low. Both together mean that increasing γ yields only moderate benefits in (47) but also
induces only moderate costs in (48) relative to the constant surplus from separation in (49). While (46)
remains analytically intractable, to assess whether γ(λ, λ) remains bounded away from zero we have
evaluated γ(λ, λ) on a (logarithmic) grid for (λ, λ). The grid spans values for (λ, λ) from (0.0001, 0.0001)
up to (1000, 1000). The value of γ is smallest when both queue length are small. Varying the values of
(λ, λ) by a factor of 100 [going from (0.01, 0.01) to (0.001, 0.001) to (0.0001, 0.0001)] changes the value
of γ by only less than half a percent [from 0.17215 to 0.17163 to 0.17158], suggesting that γ is bounded
away from zero.

Derivation of inequality (44) from (43):
In the following derivation we repeatedly use (1), Q̃n,n(λ, λ) = Qn+n+1(λ + λ)Bn,n(λ, λ), and the

fact that Bn,n(λ, λ) n
n+n

λ+λ
λ = Bn−1,n(λ, λ) and Bn,n(λ, λ) n

n+n
λ+λ

λ
= Bn,n−1(λ, λ) :
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∑
n

∑
n︸ ︷︷ ︸

n+n>0

Pn,n(λ, λ)
[
n umn,n + n umn,n

]
=
∑
n

∑
n︸ ︷︷ ︸

n+n>0

Pn+n(λ+ λ)Bn,n(λ, λ)
[
n umn,n + n umn,n

]

=
∑
n

∑
n︸ ︷︷ ︸

n+n>0

Qn+n(λ+ λ)Bn,n(λ, λ)
λ+ λ

n+ n

[
n umn,n + n umn,n

]

= λ
∑
n>0

∑
n

Qn+n(λ+ λ)Bn,n(λ, λ)
n

n+ n

λ+ λ

λ
umn,n + λ

∑
n

∑
n>0

Qn+n(λ+ λ)Bn,n(λ, λ)
n

n+ n

λ+ λ

λ
umn,n

= λ
∑
n>0

∑
n

Qn+n(λ+ λ)Bn−1,n(λ, λ) umn,n + λ
∑
n

∑
n>0

Qn+n(λ+ λ)Bn,n−1(λ, λ) umn,n

= λ
∑
n

∑
n

Qn+n+1(λ+ λ)Bn,n(λ, λ) umn+1,n + λ
∑
n

∑
n

Qn+n+1(λ+ λ)Bn,n(λ, λ) umn,n+1

= λ
∑
n

∑
n

Q̃n,n(λ, λ) umn+1,n + λ
∑
n

∑
n

Q̃n,n(λ, λ) umn,n+1 = λU + λU.
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