
861

[ Journal of Political Economy, 2009, vol. 117, no. 5]
� 2009 by The University of Chicago. All rights reserved. 0022-3808/2009/11705-0003$10.00

Efficiency of Simultaneous Search

Philipp Kircher
University of Pennsylvania and Institute for the Study of Labor

This paper presents an equilibrium labor search model in which work-
ers can simultaneously apply to multiple firms to increase their search
intensity. They observe firms’ wage postings before choosing where
to apply. Owing to coordination frictions, a firm may not receive any
applications; otherwise it is able to hire unless all its applicants have
better offers. It is shown that the equilibrium converges to the efficient
Walrasian outcome as application costs vanish. Even for nonnegligible
application costs, the entry of firms, the search intensity, and the
number of filled vacancies are constrained efficient. Wage dispersion
is essential for constrained efficiency.

I. Introduction

In many markets, the decentralized nature of the interaction prevents
efficient (Walrasian) exchange. For example, in the labor market, an
unemployed worker who applies for a job might not be the only ap-
plicant, in which case one of the other applicants might be hired and
he remains unemployed. Nevertheless, when the intensity of search is
sufficiently high, one might expect the market allocation to be approx-
imately Walrasian. This is indeed the case in sequential search models
in which workers apply to one firm at a time, as long as the period
length between applications becomes sufficiently small (e.g., Gale 1987;
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Mortensen and Wright 2002; Lauermann 2006; Satterthwaite and Shney-
erov 2007).

In many search environments the period length may not be small,
though. The hiring process, for example, may induce a substantial lag
between the time when a worker applies for a job and the point at which
the final hiring decision is reached. Van Ours and Ridder (1992) find
in Dutch data a delay of 1–2 months to select an employee from an
initial pool of applicants.1 Delays are even larger in occupations in which
entry positions are filled only in fixed (e.g., annual) intervals. In such
environments the efficient Walrasian outcome is unattainable if workers
can apply to only one firm in each selection period. However, the threat
of not obtaining a job and having to wait another period is exactly what
provides incentives for workers to send multiple applications simulta-
neously to several firms. The idea to model search as a simultaneous
application process goes back to the foundations of labor search in
Stigler (1962), and the ability of this channel to generate efficient equi-
librium outcomes has recently been explored by Acemoğlu and Shimer
(2000), Gautier and Moraga-Gonzáles (2005), Albrecht, Gautier, and
Vroman (2006), and Galenianos and Kircher (2008). None of these find
convergence to the Walrasian limit when the application costs vanish.2

This paper considers the efficiency of simultaneous search in a di-
rected search environment in which each firm has one job and posts a
wage to attract workers. Subsequently, workers decide to which firms
they want to apply. Search frictions imply that workers might not obtain
the job they apply for, which provides incentives to apply to several firms
despite the fact that applications are costly. The frictions arise because
workers cannot coordinate their applications and sometimes multiple
workers apply for the same job. In contrast to the earlier literature that
has restricted firms to communicate with only one of their applicants
and to leave the job vacant if this applicant turns down the offer (even
if many other workers applied for the job), here firms are allowed to
communicate with all their applicants. It is shown that the market al-

1 A concern for delays in hiring is warranted mainly in skill-intensive occupations. Van
Ours and Ridder (1992) find little delay for low-education jobs, but delays become sub-
stantial as the educational requirement of the job increases.

2 Acemoğlu and Shimer (2000) and Albrecht et al. (2006) explicitly consider limit results,
which still feature a non-Walrasian component. Gautier and Moraga-Gonzáles (2005) and
Galenianos and Kircher (2008) do not explicitly consider limit results, but by the close
resemblance of their trading environment with that of Albrecht et al., they inherit the
inefficiencies of that model. Classical equilibrium search papers such as Butters (1977)
and Burdett and Judd (1983) also consider simultaneous search but focus on the distri-
bution of wages. Except for the costs of information acquisition, these classical papers
lack a margin of efficiency, since each firm can service the entire market. Efficiency
questions are also absent in the original contribution by Stigler (1962), since he models
the workers in a partial equilibrium setting in which the benefit from matching for the
firms is not considered.
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location approaches the Walrasian outcome when search costs become
small. This result highlights how Stigler’s notion of simultaneous search
provides a foundation for Walrasian equilibrium when search costs are
small and wages are determined by optimizing firms. Furthermore, it
is shown that the equilibrium is constrained efficient even when search
costs are nonnegligible.

The theory presented in this paper relies on two assumptions re-
garding the ability of firms to interact with workers: firms can compete
for workers through binding wage announcements, and firms are able
to communicate with all their applicants in the hiring process. To in-
corporate the latter, a new theory of matching is proposed. It is based
on the idea that communication leads to a stable matching among the
firms and their applicants. Stability here means that a firm does not
leave the job vacant while one of its applicants starts to work at a lower
wage or remains unemployed.3 In such a case, both the firm and the
worker would be better off by deviating and forming a match between
themselves. While stability is imposed by assumption, it arises naturally
if firms offer their job sequentially to applicants and workers are free
to reconsider their options. During such a process a high-wage firm can
entice a worker away from lower-wage competitors, and a job remains
vacant only if all the firm’s offers get rejected in favor of better alter-
natives.4 In this setup, a firm can communicate only with those workers
who applied to the firm, and therefore the model naturally differs from
the existing stability analysis that presumes that all agents in the econ-
omy communicate with one another.

The central results in this paper concern the efficiency of the equi-
librium. The efficient Walrasian outcome obtains in the limit as search
costs vanish. Even when search costs are nontrivial, the equilibrium
interaction is constrained efficient. The miscoordination between work-
ers in their application decisions renders perfect matching impossible,
leading to the standard result of the search literature that the labor
market does not perfectly clear and therefore some workers face pro-
longed unemployment. Nevertheless, given the miscoordination and the

3 Wages are treated as fixed in the matching stage. The implications and the applicability
of this assumption are discussed in Sec. VI. This notion of stability has been successfully
applied in many areas. In a recent paper, Bulow and Levin (2006) also deploy matching
at fixed wages after a noncooperative wage-setting stage but assume that all workers apply
to all firms.

4 Such a sequential process resembles the well-known deferred acceptance process. For
finite economies, it converges in finite time. For the continuum economy, stability is
imposed to capture the spirit of a process by which firms contact all their applicants. In
contrast to the standard matching literature that pioneered these concepts (see Gale and
Shapley 1962), this paper deals with much less heterogeneity (essentially coming only
through the wage-setting process, though some additional heterogeneity is discussed in
Sec. VI) but adds the novelty that stability is defined only for agents that got to know each
other in the application process.
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notion of stability, the equilibrium is constrained efficient along the
following operative margins even when application costs are nonnegli-
gible. Entry efficiency: the constrained optimal number of firms enter.
Efficiency of search intensity: the number of applications that workers send
is constrained efficient. Search efficiency: workers send their applications
in a way that induces the optimal number of matches. Thus, even when
workers choose their search intensity strategically by deciding on a finite
set of firms to which they apply at nonnegligible costs, market wages
are such that workers make the socially optimal application decisions
and firms provide the socially optimal number of jobs.

As a by-product the analysis reveals that wage dispersion is crucial to
achieve constrained efficiency when workers apply for more than one
job, even though workers and firms are homogeneous and risk neutral.
Low-wage jobs endogenously create a safety net for workers who are
unsuccessful with their other applications. In contrast, with a single
wage, workers would apply randomly to firms, which too often generates
several offers for some workers and none to others. The idea that match-
ing frictions induce wage dispersion even in settings in which workers
and firms are homogeneous has been pursued in a large body of work,5

yet the insight that wage dispersion might arise in such a setting as the
optimal response of the market to deal with the matching frictions is
new to the literature. In this model, wage dispersion divides the market
into separate wage segments that attract one application from each
worker. These segments resemble standard one-application markets, and
the insights from the simpler one-application models carry over. In par-
ticular, the equilibrium wage in each segment is characterized by a
modified version of Hosios’ (1990) condition for optimal entry by firms.

Earlier work on simultaneous search did not find constrained efficient
outcomes, nor convergence in the limit to the Walrasian allocation. This
has two main reasons. In Acemoğlu and Shimer (2000) and Gautier
and Moraga-Gonzáles (2005), workers do not observe all wage offers
when they make their search decision, which induces equilibrium wages
that do not reflect the workers’ marginal product. In directed search
models, workers can observe all wage offers, and a central insight of
this literature is that equilibrium wages do reflect the workers’ marginal
product (see, e.g., Moen 1997; Shi 2001; Shimer 2005) when workers
send one application. Albrecht et al. (2006) and Galenianos and Kircher
(2008) show that this insight might not be valid when workers apply to
multiple firms. The main reason is a contractual incompleteness: A
firm’s wage offer rewards a worker only for applying to it, but this reward

5 See, e.g., Butters (1977), Burdett and Judd (1983), Burdett and Mortensen (1998),
Acemoğlu and Shimer (2000), Mortensen (2003), Delacroix and Shi (2004), Albrecht et
al. (2006), Gaumont, Schindler, and Wright (2006), and Galenianos and Kircher (2008).
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is not conditional on the other firms to which the worker applied (even
though job offers from these other firms potentially affect the first firm
negatively). In these earlier models this problem was exacerbated by
the assumption that each firm can talk to only one of its applicants and
its job remains vacant if this applicant declines its offer in favor of a
different firm. This has the counterintuitive effect that the number of
matches may go down when workers apply more often since some work-
ers get multiple offers that prevent others from obtaining jobs. This
feature prevents convergence to the Walrasian limit. In this model, firms
can communicate with all workers in a way that leads to a stable match-
ing. While stability is no guarantee for efficiency, it does have the feature
that a worker who rejects a job does not block other workers from getting
employed there, which is crucial for the limit result. Additionally, in
equilibrium the contractual incompleteness is solved because of the
interaction among workers themselves: if some applicants apply else-
where, the job becomes more attractive and other workers will apply
there more strongly. Through this channel the noncontracted exter-
nality is internalized. This point is somewhat subtle and is elaborated
on in the discussion section.

To my knowledge, this is the first attempt to integrate the two-sided
strategic considerations of a search environment with stability concepts
used in matching markets.6 The paper draws on three strands of liter-
ature. Insights from the directed search literature (e.g., Peters 1991;
Burdett, Shi, and Wright 2001) informed the modeling of the frictions
and information flows in the market. With multiple applications, work-
ers face a simultaneous portfolio choice. For this type of problem Chade
and Smith (2006) consider an individual agent’s choice and derive a
simple characterization of the optimal decision rule; Galenianos and
Kircher (2008) derive implications in an equilibrium search framework.
For the final matching, the stability concept pioneered by Gale and
Shapley (1962) is applied to the network formed in the search process.

Since notation and exposition are much more tractable when at most
two applications per worker are considered, Sections II–IV are restricted
to this case. Section II presents the model. Section III characterizes the
constrained optimal allocation. Section IV shows that the decentralized
economy implements the constrained efficient allocation. Section V lifts
the restriction of two applications per worker and, additionally, discusses
convergence when application costs vanish. Section VI discusses in more
detail why efficiency prevails in this environment but failed in related
models and which of the assumptions are crucial for this result. It also

6 Gautier and Moraga-González (2005) present a three-player example with a similar
concept for random search.



866 journal of political economy

outlines how heterogeneity can be introduced into this setting. Section
VII presents conclusions. Omitted proofs are gathered in the Appendix.

II. The Model

This section presents the physical environment, as well as some restric-
tions on the equilibrium set that are intended to capture the search
frictions of a large market.

Players and preferences.—The economy consists of a continuum of size
1 of unemployed workers and a large continuum of firms, with a measure
v active in equilibrium.7 Each firm has a single vacant job, which, if
filled, produces one unit of output. All agents are risk neutral. Each
firm maximizes its expected output minus wage and entry costs. Each
worker maximizes his expected wage payments minus the cost of ap-
plying for jobs.

The labor market interaction.—The market interaction proceeds in three
stages. In the first stage, firms can become active by posting a wage that
they commit to pay when they hire a worker. A firm that becomes active
incurs an entry cost that reflects the costs of setting up the jobK ! 1
and advertising it to workers. In the second stage, workers observe all
active firms and their wage postings. Each worker decides on the number
i of applications he wants to send at cost , which subsumes monetaryc(i)
as well as time and effort costs. A worker who does not send applications
does not incur any costs. The marginal costs arec p c(i) � c(i � 1)i

everywhere weakly increasing, and they are strictly positive at some finite
. The worker also selects the i active firms to which he applies.i � �

For expositional simplicity, the restriction is initially imposed; ai ≤ 2
generalization to an arbitrary number of applications is presented in
Section V. After the applications are sent out, they form the links in a
network between workers and firms: each worker is linked to the firms
to which he applied and each firm is linked to its applicants. In the
final stage, workers and firms form matches, the announced wage is
paid, and matched pairs start production.

Matching.—The matching in the final stage is assumed to be stable
on the network: matches form such that a firm’s job remains vacant
only if either it has no applicants or all its applicants are matched at
weakly higher wages. This concept of pairwise stability is motivated by
the fact that otherwise the vacant firm could offer its job to the applicant
who is matched at a lower wage, and both would be jointly better off
by forming a match between themselves. For economies with a finite
number of workers and firms, a stable matching is reached by an ex-

7 Since constant returns to scale in matching will be assumed, only the ratio of workers
to active firms matters.
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tensive form game in which firms successively make offers to workers,
workers hold on to the best offer they have so far received and decline
others, and rejected firms make additional offers until every firm either
has a worker or has no applicants left to whom it could offer the job
(see Gale and Shapley 1962). The approach in this paper can be viewed
as a limit of such an interaction when the number of agents gets large,
but following the literature on matching with a continuum number of
agents, the paper imposes stability directly rather than considering the
convergence of the extensive form.8 The difference between this paper
and the earlier literature is that here stability refers only to firms and
workers that got to know each other through the (endogenous) appli-
cation process. The main implication of pairwise stability is that firms
with higher wages hire “first,” and firms at lower wages can hire only
those applicants who have not obtained a higher-paying job. This notion
of stability presumes that firms cannot react to other firms’ offers and
are committed to their wage announcement—an assumption that is
discussed in detail in Section VI, where the forces leading to efficiency
are highlighted.

Anonymity assumptions.—There exist many subgame-perfect strategies
by which workers might apply for jobs after observing the wages, in-
cluding the frictionless case in which each worker applies to a different
firm (if enough firms entered). Here the attention is on a market that
is large and anonymous. To capture this, in the spirit of the directed
search literature, consider equilibrium strategies that are symmetric and
anonymous. Anonymity means that agents that are observationally iden-
tical except for their name are treated identically. Anonymity is assumed
both at the application and the hiring stages. In particular, the following
assumptions are made:

8 The extensive form process terminates in finite time, i.e., after a finite number of
rounds of offers, for any economy with a finite number of workers and firms as shown in
Gale and Shapley (1962). Yet as the size of the economy extends to infinity, the time to
termination might tend to infinity as well. In this regard, note the following: If workers
who currently hold an offer inform all firms with lower offers that they are no longer
available, even in this continuum economy the process terminates in finite time in the
optimal assignment and in the decentralized equilibrium. In particular, the number of
rounds of offers equals the highest number of applications sent by an individual worker.
This cannot be ensured for suboptimal assignments and nonequilibrium interactions,
though. Even for such interactions, Kircher (2006) shows that the measure of agents that
are not stably matched (in the sense that they could form blocking pairs among the agents
they are linked to) converges to zero as the number of rounds goes to infinity. Nevertheless,
full stability might not be reached in finite time.

For stability in continuum models, see, e.g., Kaneko and Wooders (1986) or Gretzky,
Ostroy, and Zame (1999).
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1. A firm only observes whether a worker applied to it or not. It cannot
obtain a report or direct evidence from a worker about the other
firms to which he has applied. Anonymity then implies that a firm
hires at random one of those applicants who lack better offers.

2. All workers use the same application strategies and do not condition
on the firms’ identities. They treat firms at different wages differ-
ently, but firms with the same wage are treated identically.

The first assumption deals with ties in the hiring process that arise
because workers are identical. These ties are broken randomly, which
implies that the process selects neither the best nor the worst stable
matching. To see this, consider a firm that has two applicants A and B
and breaks the tie between them by randomly hiring one of them. If
applicant A applied nowhere else whereas applicant B also applied for
a lower-wage job for which he is the only applicant, then it would be
strictly more efficient to deterministically break the tie in favor of A and
strictly less efficient to break it in favor of B. Note, though, that firms
do not directly benefit from improved matches at other (lower-wage)
firms. Therefore, any small amount of noise about match-specific quality
of the applicants would lead firms to pick the most suitable candidate
in a way that looks random to an outsider rather than choose the can-
didate who improves the match at another firm.

The second assumption creates the frictions that make tie-breaking
necessary: the use of identical and anonymous strategies by the workers
implies that they randomize equally over firms with the same wage and
sometimes miscoordinate in the sense that several of them apply for
the same job that only one of them can get.9 The next section discusses
in detail how these assumptions translate into the hiring probabilities
in the economy.

III. Social Planner’s Problem

Before turning to the equilibrium interaction between workers and
firms, it is instructive to first consider the related problem of a social
planner. Following Pissarides (2000) and others, consider a planner who
has the same choice margins and restrictions that the agents in the
decentralized equilibrium face. In terms of choice margins, the planner
determines the number of firms that enter the economy, the number
of applications that workers send, and where these applications are sent.
In terms of restrictions, the planner is subject to the two anonymity

9 Miscoordination arises even when there are fewer workers than firms, and even when
all firms offer different wages. In the latter case, symmetric, i.e., identical, strategies still
imply that workers all apply to any given set of firms with the same probability. For a
careful argument in one-application environments, see Peters (1997).
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restrictions and to the final matching stage that was imposed on the
decentralized equilibrium. Placing these restrictions on the planner
gives a relevant benchmark for comparing the efficiency of the decen-
tralized wage competition. Without the anonymity restrictions the plan-
ner could trivially do better by assigning only one worker to each firm
and avoiding the miscoordination in the application process, or by co-
ordinating the tie-breaking in the matching stage across firms. Since
the efficiency concept takes these features of the environment as given
and does not assess which other matching concepts can improve the
outcome further, the resulting optimum is called constrained efficient.

A. Planner’s Choices, Resulting Output, and Efficiency Criterion

Planner’s choice set.—The social planner can choose the measure v of
firms in the economy. He can also choose the probability that a workergi

sends i applications. By the usual law of large number convention, this
coincides with the fraction of workers who send i applications. Since we
are considering the case in which workers have at most two applications,
the planner chooses a search intensity in the three-g p (g , g , g )0 1 2

dimensional unit simplex D3.
In the decentralized economy, firms are distinguished only by a one-

dimensional attribute, the wage. This one-dimensional attribute allows
workers to discriminate between firms. Symmetry and anonymity pre-
clude any further differentiation. While the planner does not care about
wages per se because they are just transfers, he might want to distinguish
between firms to allow workers to apply in a better way. To incorporate
this, the planner is allowed to distinguish firms along a single dimension
by assigning them to different locations. Stability in the final matching
stage translates into the requirement that a firm remains vacant only if
all its applicants are matched at a weakly higher location.

The planner can choose a finite set of locations and can thenL O �

assign firms and applications to any location . To formalize thel � L
assignment, let and be the set of cumulative distribution functions1 2F FL L

over L and . Then the planner chooses a distribution for1L # L F � FL

the firms, where is the fraction of firms at locations weakly lowerF(l)
than l. For workers who send one application, let denote the1G � F1 L

distribution of their choice of location, where again is the fractionG (l)1

of the one-application workers who send their application to a location
weakly lower than l. Workers who send two applications send them
according to , where is the fraction of these workers2G � F G (l , l )2 L 2 1 2

who send their first application to firms at a location weakly below l 1

and their second application to firms at a location weakly below . Thesel 2

distributions are fully characterized by their respective mass points f,
, and , where is the measure of firms at location l, isg g vf(l) g g (l)1 2 1 1
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the measure of workers who apply to l and send one application, and
is the measure of workers who send two applications tog g (l , l ) l2 2 1 2 1

and . Without loss of generality let the first argument refer to thel 2

lower location; that is, only if .g (l , l ) 1 0 l ≤ l2 1 2 1 2

Output and hiring probabilities.—The output in the economy coincides
with the number of matches in the economy. How these are determined
by the application behavior and the assumptions on matching is laid
out in the following. Let denote the probability that a firm at locationhl

l hires a worker, and let be the probability that a worker who appliespl

to location l would get hired there if he wants the job (i.e., if he has
no offer from a higher location). As in other directed search models,
the probabilities and depend on the number of applications relativeh pl l

to the number of firms at a given location. This ratio is called the gross
queue length because it describes the average queue of applications per
job at a location l and is defined as

L ′ ′g g (l) � g � [g (l , l) � g (l, l )]′1 1 2 2 2l p1
l p (1)l vf(l)

when . When , the absence of firms trivially impliesvf(l) 1 0 vf(l) p 0
that there are no matches at this location.

The important novelty in this setup is that a firm might not be able
to hire even if it obtains an application, because the applicant might
have applied to another firm at a higher location and obtained a job
there. Applications are called “effective” if the applicant does not obtain
a higher job. Denote by the fraction of applications that are notwl

effective in the sense that the applicant is unavailable for hiring because
of higher-ranked alternatives. The ratio of effective applications to firms
at location l is called the effective queue length at location l and is defined
as

m p (1 � w)l . (2)l l l

Owing to the anonymity of the workers’ strategy, the effective appli-
cations that are sent to firms at location l are uniformly distributed over
these firms. Therefore, the number of effective applications at any in-
dividual firm at this location is random. It has been shown that the
distribution of effective applications at any individual firm is given by
a Poisson distribution with parameter , which implies that the prob-ml

ability that a firm receives no effective applications is .10 If the firm�mle

10 This is obtained by considering a finite number of effective applications that are
randomly distributed to a finite number of firms and by taking the limit as the number
of applications and firms converges to infinity while retaining a ratio . A simple derivationml

is provided, e.g., in Burdett et al. (2001). They also provide careful and intuitive derivations
for the following expressions for the hiring probabilities and in eqq. (3) andh(7) p(7)
(4).
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receives at least one effective application, it is able to fill its vacancy,
because once a firm has a worker who is not employed at a better
location, it will not remain unmatched by our stability assumption.
Therefore, the hiring probability for a firm at location l is

�mlh p 1 � e . (3)l

Next, consider the probability of getting a job at location l for a worker
who wants to obtain a job at that location, that is, who is effective in
the sense that he did not get a job offer from a higher location. The
worker cares about only those rival applicants who do not have a higher
offer either, because those workers who take higher jobs are not com-
peting for this job. Given that there are matches per firm and�ml1 � e

effective applications per firm, the probability of an effective appli-ml

cation yielding a match is given by
�ml1 � e

p p , (4)l
ml

with the convention that if .p p 1 m p 0l l

The probability that an applicant is not available for hiring becausewl

he accepts some (weakly) higher offer is trivially zero if workers send
only one application and irrelevant if no worker applies to location l.
Otherwise, consider some application sent to location l, and let ′ĝ(l Fl)
denote the probability that the sender mailed a second application and
sent it to location .11 The applicant takes a job from a strictly higher′l
location if he applied to a strictly higher location and receives an offer.
He takes an equally high offer if he applied to another firm at the same
location, this other firm also wants to hire him, and the applicant
chooses the other firm over the current firm. One can think about
workers who apply twice to the same location as randomizing in advance
about which offer they would prefer to accept in case they get equivalent
offers. Since workers do not condition their choices on the identities
of firms, both firms have equal chances of attracting the worker, and
therefore an application is not effective with probability be-ĝ(lFl)p /2l

cause of offers from other equally high firms. Then is given bywl

pl′ˆ ˆw p p g(l Fl) � g(lFl). (5)′�l l′ 21l l

The system defined by (2), (4), and (5) is recursive: At the highest

11 The likelihood that an application at l was sent from someone who sent another
application to is′l

′ ′g [g (l , l) � g (l, l )]2 2 2′ĝ(l Fl) p .′′ ′′g g (l) � g � [g (l , l) � g (l, l )]′′1 1 2 2 2l �L
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location the probabilities , , and can be uniquely determinedp h wL L L

without knowledge of hiring probabilities at other locations. This is due
to the assumption that ties are broken irrelevant of the matching at
lower locations. These values are then used to evaluate the correspond-
ing terms at lower locations. Since the specification allows firms to hire
any worker who is not matched at a higher or equally high location,
the final matching is stable in the sense that no firm is vacant while
one of its applicants is unmatched or matched at a strictly lower location.

Planner’s objective.—The firms’ hiring probability is uniquely deter-hl

mined by the planner’s choice of entry v, number of applications
, number of locations L, and distributions F, , andg p (g , g , g ) G0 1 2 1

for firms and workers over these locations. LetG M(v, g, L, F, G ,2 1

denote the resulting output in the economy. TheG ) p v � [h f(l)]2 ll

economy is called constrained efficient if its surplus is maximized, that
is, if output minus costs achieves the maximum of

max M(v, g, L, F, G , G ) � vK � g c(1) � g c(2). (6)1 2 1 2
v,g,L,F,G ,G1 2

The optimal solution can be characterized in three successive steps.
First, search efficiency is analyzed by considering the optimal application
behavior when the number of firms v and the search intensity g are
taken as given. Next, entry efficiency is analyzed by additionally consid-
ering the optimal entry of firms. Finally, the efficiency of the search
intensity is analyzed by additionally characterizing the optimal number
of applications. The last step coincides with the notion of constrained
efficiency.

B. Search Efficiency, Given Entry and Search Intensity

Take entry v and search intensity as given and considerg p (g , g , g )0 1 2

the solution to the maximization problem (6) over the restricted pa-
rameter set {L, F, , }. The solution to this restricted problem isG G1 2

called “search efficient.” Clearly, if either or , there is noth-v p 0 g p 10

ing to analyze because there will be no matches in the economy. The
case in which workers send only one application ( ) is well un-g p 02

derstood: Search efficiency is achieved with only one location at which
workers who send an application randomly apply for jobs (see, e.g.,
Shimer 2005).

Here, the focus is on the novel case in which at least some workers
send two applications (i.e., ). Given the possibly large number ofg 1 02

locations and the possibility to correlate applications across locations,
this is a nontrivial problem. The first result significantly simplifies the
problem by showing that search efficiency does not require more lo-
cations than applications sent by an individual worker, which means that
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two locations suffice. Moreover, the optimal search strategyL p {1, 2}
is simple: every worker with a single application sends it to location 1
and workers with two applications send one to location 1 and the other
to location 2.

Lemma 1. For given entry and search intensity g with ,v 1 0 g 1 02

output is maximized with locations,M(v, g, L, F, G , G ) L p {1, 2}1 2

, , and appropriate F.g (1) p 1 g (1, 2) p 11 2

The intuitive argument behind the formal proof, which is presented
in the Appendix, is the following. Any location with effective queue
length m can be subdivided into two locations that both have queue
length m. This does not change the number of matches since firms hire
with exactly the same probability as before. Moreover, it is possible to
assign low and single applications to one of the locations and high
applications to the other while retaining the ratio m of effective appli-
cations to firms at each location, because the number of firms at each
of the locations can be varied appropriately. That leaves us with a set
of locations that receive low (or single) applications and a set of locations
that receive high applications. Because the firms’ matching probability

is concave, it is optimal that all locations in each set have the�m1 � e
same queue length, and so the locations in each set can be merged
without loss of efficiency. There is no loss to optimality by having both
single and low applications at the same location, because a worker who
sends two applications but is unsuccessful with his high application is
in the same situation as a worker who sends only one application. So
conditional on failing at the high location, their problem looks identical.
The trade-off for high and low applications is different, though, and it
will not be optimal to have equal expected queue lengths in both lo-
cations, as we will see in the following.

Given lemma 1, we have to characterize only the distribution F, that
is, the fraction of firms at each of the two locations. Let f(1) p 1 � r

and . The social planner chooses the optimal fraction of firmsf(2) p r

at each of the locations to maximize the output according to

�m �m˜ 1 2max M(r) p (1 � r)v(1 � e ) � rv(1 � e ), (7)
r�[0,1]

where the first term reflects the measure of firms at the low location
times their matching probability. Similarly, the second term accounts
for the firms at the high location. By equations (1)–(4) we have p pi

with , , and�mi(1 � e )/m m p l p g /(vr) m p [1 � g p /(g � g )]li 2 2 2 1 2 2 1 2 1

. The first-order condition to problem (7) isl p (g � g )/[v(1 � r)]1 1 2
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given by12

˜dM 1
�m �m �m �m �m1 1 2 2 1p �(1 � e � m e ) � (1 � e � m e )(1 � e ) p 0. (8)1 2dr v

Since the first two terms in parentheses are strictly increasing in ,mi

equation (8) immediately implies that . Therefore, it is optimalm 1 m2 1

that jobs at the lower locations are easier to get. The intuition for this
result comes from the idea of a safety net: Those workers who end up
getting jobs at the low location will be unemployed if they do not get
the job, and so the planner assigns many firms to this location to make
it easy for these workers to get matched. In contrast, those workers who
get jobs at the high location also applied for low-location jobs and might
get hired there even in the absence of the high-location job. Therefore,
workers who end up at the high location are less at risk, and it is optimal
to make it harder for them and easier for the others.

Equation (8) becomes even more intuitive when we interpret it from
the firms’ point of view. The terms reflect the additional�m mi i1 � e � m ei
probability of generating a match at location i when adding one more
firm to that location. It entails the probability that the additional�mi1 � e
firm can hire minus the “business stealing” effect on other firms at the
same location. The latter effect coincides with the probability thatmim ei
the other firms had exactly one applicant who is stolen from them. At
location 1, business stealing is restricted to this location only, because
no worker with a job offer from location 2 will be “stolen” by an ad-
ditional firm at location 1. This is different at location 2. Every additional
match created at location 2 takes away an effective applicant from lo-
cation 1. Therefore, the additional output is not one unit but is de-
creased by the probability that the firm at the low location had only�m1e
this one worker and can no longer produce.13 Equation (8) therefore
equates the marginal benefit of a firm at the first location to the marginal
benefit at the second location. Since both ’s are functions only of themi

fraction r of firms at the high location (given g and v), equation (8)

12 The first derivative of (7) is
�m˜ 1dM dp d l e d l2 1 2�m �l �l1 2 2p �(1 � e ) � (1 � e ) � �g l � (g � g � g p ) � re v.2 1 1 2 2 2{ [ ] }dr dr d r vl d r1

The last summand in the braces equals , the third summand equals�l �m2 1�l e e [�(1 �2

, and .�l �l2 2e � l e ) � m ] m p l2 1 2 2
13 The adjustment also coincides with the probability that a low-location firm�m11 � e

hires a worker, but this is coincidence in the special case in which all firms have equal
productivity, as can be seen in n. 36, which considers differences in firms’ productivities.
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suffices to determine the optimal fraction of firms uniquely.14 Optimality
is ensured by global concavity.15

Since high-location firms have an additional business stealing effect,
the optimal number of firms relative to the number of effective appli-
cations is lower. Therefore, despite homogeneity of labor, it is optimal
to implement different hiring probabilities at different firms, which
necessitates more than one location.

Lemma 2. For given entry v and search intensity g with , theg 1 02

output with locations is always strictly smaller than the optimalFLF p 1
output with locations.FLF p 2

In the following, let be the planner’s solution for the optimalPM (v, g)
number of matches according to optimality condition (8), let Pp (v, g)i

be the optimal probability of getting hired at each location, and let
be the optimal fraction of firms at the high location.Pr (v, g)

C. Optimal Entry, Given Search Intensity

We now additionally derive the condition for optimal entry, for given
search intensity g with . The objective isg ! 00

Pmax M (v, g) � vK. (9)
v��

In the Appendix the following first-order condition with respect to entry
v is derived, which uniquely determines the level of entry as a function
of the fixed entry cost:

�m �m1 1K p 1 � e � m e . (10)1

Together with condition (8) for efficient search this implies

�m �m �m2 2 1K p (1 � e � m e )(1 � e ) (11)2

if . Similarly to the previous discussion of equation (8), the right-g 1 02

hand side of these equations captures the marginal benefit of adding
one more firm to the first and second location, respectively. Optimality
requires these to equal the entry cost. Let be the optimal level ofPv (g)
entry given the application behavior, and let and denote the uniqueP Pm m1 2

effective queue lengths that solve (10) and (11).

14 Some tedious algebra establishes uniqueness. It can be found in Kircher (2006, lemma
1, pt. 1).

15 We have
2 2 �l �m �m �l �l 2˜ 2 1 1 2 2d M l e (1 � e ) e (1 � e � l e � m )2 2 1p �v � ! 0.2 [ ]dr r 1 � r
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D. Optimal Search Intensity

Finally, the optimal number of applications solvesg p (g , g , g )0 1 2

P P Pmax M (v (g), g) � v (g)K � g c(1) � g c(2). (12)1 2
g�D3

This objective is equivalent to the notion of constrained efficiency in
program (6). The optimal solution for this program is derived in the
Appendix. Note that equations (10) and (11) uniquely determine the
optimal effective queue lengths and at each location independentP Pm m1 2

of the exact search intensity g. The reason is that under optimal entry,
the number of firms adjusts to keep the hiring probabilities constant.
The optimal search intensity is determined by two cutoffs, and

PP �m1t p e1

, in the following way:
P PP �m �m2 1t p e (1 � e )2

Pg p 1 if c ! t ,2 2 2

P Pg p 1 if c ! t but c 1 t ,1 1 1 2 2

Pg p 1 if c 1 t . (13)0 1 1

These cutoffs have a straightforward interpretation: is the proba-Pt 1

bility of sending the first application to a firm that does not yet have
an applicant. The benefits from sending any applications are positive
only if the costs are lower than this threshold. The term correspondsPt 2

to the probability that the second application goes to a firm that
P�m2e

does not yet have an applicant times the probability that the
P�m11 � e

first application goes to a firm that has an applicant, in which case the
second application leads to a new match. Again, a second application
is worthwhile only if this benefit outweighs the costs. When , thePc p t1 1

surplus from having workers and firms interact is exactly zero as long
as no worker sends more than one application, so any is efficient asg1

long as . Similarly, for , the surplus from sending a secondPg p 0 c p t2 2 2

application is zero, and any is efficient as long as .g g p 02 0

In summary, this section has laid out a set of necessary and sufficient
conditions for optimality in (10), (11), and (13).

IV. The Decentralized Economy

This section focuses on the interaction in the decentralized economy,
and it is shown that it implements the constrained efficient solution.

A. Strategies, Expected Payoffs, and Equilibrium Definition

Strategies.—In the decentralized economy, a pure strategy for a firm
that enters is a wage offer . In order to highlight the con-w � [0, 1]
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nection between the decentralized problem and the social planner’s
problem, with slight abuse of notation, the same names will be used for
distributions over wages that were used in the planner’s problem for
distributions over locations. Then F denotes the wage distribution, with
support denoted by . That is, gives the proportion of firms thatF F(w)
offer wages below w. A worker observes the distribution of posted wages
and then chooses the number of applications and the firms to which
he sends them. Given the focus on anonymous strategies, a worker
applies with equal probability to all firms with the same wage.16 There-
fore, his choice of firm can be summarized by its wage. A mixed strategy
for a worker is then given by the tuples andg p (g , g , g ) G p (G ,0 1 2 1

. The term is the probability of sending i applications; givesG ) g G (w)2 i 1

the probability that the worker sends his application to a firm with a
wage below w when he sends just one application; and givesG (w , w )2 1 2

the probability that the worker applies for a job with a wage below w1

with the first and below with the second application when he sendsw 2

two applications, where we assume throughout. Since we assumew ≥ w2 1

that workers use symmetric strategies, these probabilities also reflect the
fraction of the population that undertake a given action.

Expected payoffs.—Expected payoffs for firms and workers obtain as
follows. Let denote the probability that a firm posting wage w hiresh(w)
a worker. Let be the probability that an effective applicant at wagep(w)
w gets hired. These probabilities depend on the strategies, as described
below. The expected profit of a firm posting wage w, omitting entry
costs, is

p(w) p h(w)(1 � w). (14)

The profits equal the hiring probability multiplied by the profit margin
if a worker is hired.

The utility of a worker who sends no application is . A workerU p 00

who sends one application to a firm with wage w obtains utility

U (w) p p(w)w � c(1), (15)1

that is, the expected wage minus the cost of the application. A worker
who applies for a job with wages , , obtains utility(w , w ) w ≥ w1 2 2 1

U (w , w ) p p(w )w � [1 � p(w )]p(w )w � c(2). (16)2 1 2 2 2 2 1 1

The worker’s utility is given by the wage if he is hired at that wage,w 2

which happens with probability . With the complementary prob-p(w )2

ability , he does not receive an offer at the high wage, and his1 � p(w )2

16 This is optimal if all other workers also follow anonymous strategies. At the expense
of substantial additional notation, one can show that symmetry rather than anonymity of
the workers’ strategy is sufficient to yield identical hiring probabilities to firms with the
same wage.
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utility is if he gets an offer for his low-wage application, which happensw1

with probability . He always incurs the cost for the two applications.p(w )1

Hiring probabilities.—The hiring probabilities are analogous to those
in the planner’s problem. Let be the effective queue length,h(w)

the gross queue length, and the probability that an applicantl(w) w(w)
is not available for hiring at wage w. In direct analogy to equations (2)–
(4) we have

m(w) p [1 � w(w)]l(w), (2 ′)

�m(w)h(w) p 1 � e , (3 ′)

and

�m(w)1 � e
p(w) p , (4 ′)

m(w)

with the convention that if .p(w) p 1 m(w) p 0
To fix the probability that an applicant is not effective, considerw(w)

some application sent to a firm with a wage w in the support of the
wage offer distribution, and let denote the probability that the′Ĝ(w Fw)
sender mailed a second application and sent it to a firm with a wage
weakly lower then . Let be the probability that the sender′ ˆw g(wFw)
mailed another application to a firm with the same wage.17 Similar to
(5), is given byw(w)

p(w)′ ′ˆ ˆw(w) p p(w )dG(w Fw) � g(wFw). (5 ′)� 2′1w w

Finally, the gross queue length is still the ratio of applications to firms.
It turns out to be more convenient to characterize it by the following
condition that relates the measure of applications that workers send to

17 To define the dependence of distribution on the equilibrium strategies, let′Ĝ(w Fw)
denote the conditional and the marginal distribution of with respect1 1G (w Fw ) G (w ) G2 1 2 2 1 2

to the first wage, and let denote the conditional and the marginal2 2G (w Fw ) G (w )2 1 2 2 2

distribution of with respect to the second wage. Then there are single ap-G g dG (w)2 1 1

plications, low applications, and high applications at w, adding to a1 2g dG (w) g dG (w)2 2 2 2

total measure . Then1 2T(w) p g dG (w) � g dG (w) � g dG (w)1 1 2 2 2 2

2 jg dG (w)2 2′ �j ′Ĝ(w Fw) { G (w Fw),� 2[ ]T(w)jp1

where . Moreover, is the size of a′ ′ ′′ˆ ˆˆ�j � {1, 2}/{j} g(w Fw) { G(w Fw) � lim G(w Fw)′′ ′w ↗w

possible mass point of .Ĝ(7Fw)



efficiency of simultaneous search 879

the measure of applications that firms receive:18

w

˜ ˜g G (w) � g [G (w, 1) � G (1, w)] p v l(w)dF(w) Gw � [0, 1].1 1 2 2 2 �
0

(1′)

The left-hand side denotes the mass of applications that are sent to firms
with wages up to w. It is given by the probability that workers who send
one application send it to firms with wages up to w and the probability
that workers who send two applications send either their low- or their
high-wage application to firms with wages up to w. These are dispersed
over the firms that offer wages up to wage w. The mass of received
applications is specified on the right-hand side. It is given by the ratio
of applications per firm aggregated over all relevant wages, multiplied
by the amount v of active firms in the market.

Equilibrium definition.—Equations (1′)–(5′) give the trading probabil-
ities at wages that are offered in equilibrium, that is, at wages in .F
By (15) and (16) a worker can evaluate the optimal utility U * {i

of sending i applications to firms offering these wages,sup U(w)iw�F i

where w denotes the tuple of wages for which he applies. Then the
highest utility that a worker can achieve with the optimal number of
applications is , which will be referred to as the mar-U * { max U *i�{0,1,2} i

ket utility.
Similarly, every firm that offers a wage in can assess the expectedF

profit that it will get. For a firm that deviates and offers a wage w that
is not offered by any other firm ( ), the effective queue length isw � F
not determined by (1′)–(5′) because no worker is currently applying for
that wage. The firm has to anticipate how workers will apply if it offers
that wage. Given some effective queue length for the deviant firm,m(w)
let be the highest utility that a worker can obtain by applying forÛ(w)
w and possibly some other wage offered by some other firm.19 Workers

18 Queue length is simply the Radon-Nikodym derivative, defined on tol(7) � ∪ {�}�

account for the case in which a zero measure of firms might receive a mass of applications.
19 Given , a worker who applies for w with one application obtains utilitym(w)

given by (15). A workers who applies for w and for some wage offered byÛ (w) p U (w)1 1

another firm obtains at best

ˆ ˜ ˜U p max sup U (w, w), sup U (w, w) ,2 2 2{ }
˜ ˜ ˜ ˜ 1{w�FFw≤w} {w�FFw w}

where the two expressions in the max operator distinguish the case in which the other
firm offers a lower wage from the case in which the other firm offers a higher wage. The
maximum utility from applying to the deviant is then , whereˆ ˆU(w) p max U (w)i�{0,1,2} i

.Û (w) p 00

When we consider fixed search intensity in lemma 3, we have to treat the(g , g , g )0 1 2

application costs as sunk and allow utility combinations and only when some workersˆU* Ui i

actually send i applications ( ).g 1 0i
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will apply to the deviant firm in a way that exactly allows them to obtain
the market utility that they could get by applying to other firms. That
is, has to be such that (if possible, otherwiseˆm(w) U(w) p U * m(w) p

). If workers would get more utility at the deviant than at other firms,0
all workers would apply to the deviant, driving up its queue length. If
workers would get less utility at the deviant, workers would not want
to apply there, which lowers its queue length (but no further than
zero). This specification of subgame perfection is known as the market
utility condition.20 It defines the effective queue length at all wages, and

denotes the optimal profit that firms can obtain.p* { sup p(w)w�[0,1]

An equilibrium can now be defined as follows.

Definition 1. An equilibrium is a tuple such that{v, F, g, G , G }1 2

there exists satisfying the following conditions:m(7)
1. Profit maximization and free entry:

a. for all .p(w) p p* w � F
b. if , and if .p* p K v 1 0 p* ≤ K v p 0

2. Utility maximization for given search intensity and optimal choice
of search intensity:
a. For any , for all , with equalityii � {1, 2} U (w) ≤ U * w � [0, 1]i i

for all .w � supp Gi

b. if .U * p max U * g 1 0i j�{0,1,2} j i

3. Consistency: is consistent with (1′)–(5′) and fulfills the marketm(7)
utility condition.

Condition 1a specifies that firms set wages to maximize their profits.
Condition 1b specifies the zero profit condition for free entry and en-
sures that firms abstain from the market only if they cannot earn positive
profits. Condition 2a states that workers who send i applications send
them optimally; that is, they get the highest utility on the support of
their strategy and weakly less elsewhere. Condition 2b requires that work-
ers send out the optimal number of applications. Condition 3 reiterates
the conditions on the effective queue length. For conditions 1 and 2,
the distinction between a and b allows the discussion of an exogenous
number of applications and an exogenous number of firms using the
appropriate subset of conditions.

The following subsections characterize the equilibrium properties of
the model and show the following. Equilibria exist and are constrained
efficient. Generically, the following hold: The equilibrium is unique, all workers
send the same number of applications, the number of offered wages equals the

20 This approach to subgame perfection is an axiomatic one. Papers by Peters (1991,
1997, 2000) and Burdett et al. (2001) rigorously establish equivalence of the market utility
condition and the symmetric equilibrium among workers in the subgame after the wage
announcements in (a limit of) finite economies in which workers send one application.
For multiple-application models, such equivalence has not yet been proven.
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Fig. 1.—Illustration of market interaction, given . The curves and are(u , u ) IC IC1 2 1 2

workers’ indifference curves for the low- and high-wage applications, respectively; isIP
the iso-profit curve when all firms post the same wage; and is the iso-profit curve inÎP
an equilibrium with two wages. Note that this depicts a special case; in general, the tuple

and, thus, curves and , consistent with equilibrium condition 2a, might(u , u ) IC IC1 2 1 2

change when firms offer two wages rather than one.

number of applications that each worker sends, and each worker applies with
one application to each wage. A brief graphical illustration is presented
first to clarify the main working of the model and the main results. The
formal proofs follow.

B. Graphical Illustration

In this model, workers and firms care about two things: the wage w and
effective queue length m. Therefore, the equilibrium interaction can be
illustrated in the two-dimensional plane of figure 1 that resembles an
Edgeworth box. Firms prefer points with a low wage w and a high(w, m)
effective queue length m (northwest) and workers prefer the opposite
(southeast).

Workers’ preferences can best be represented by two sets of indiffer-
ence curves. First, if they send a single application, their expected utility
is given by (15). Recalling that is the probability of being�m(1 � e )/m
hired, we can write an indifference curve according to (15) as [(1 �

. This describes all combinations of m and w that yield net�me )/m]w p u 1

utility level for a low application (where is net of the applicationu u1 1

cost). The curve in figure 1 corresponds to a particular value ofIC 1

. Even workers who send two applications and obtain an expectedu 1
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utility according to (16) have such indifference curves over the low wage
, because the part associated with the low wage is still the product ofw1

the wage times the probability of being hired.
Second, workers have a separate set of indifference curves for their

high application. If they can obtain utility for their low application,u 1

then the indifference curve for according to (16) isw 2

�m �m1 � e 1 � e
w � 1 � u p u .1 2( )m m

The curve in figure 1 describes all combinations of m and w thatIC 2

give a particular net utility (net of application costs and conditionalu 2

on the first application yielding ). In other words, a worker whou 1

obtains a point on with one application and a point on with hisIC IC1 2

other application achieves net utility with his low application and netu 1

utility overall.u 2

Note that is steeper than because workers who fail to get aIC IC2 1

high-wage job still anticipate a chance of getting a job at the low wage.
The low-wage application induces a fallback option that makes workers
more risky with their high-wage application.21 Further, note that when
all workers optimize according to equilibrium condition 2a, the resulting
utilities and fully determine the queue lengths, which are givenu u1 2

by the upper contour of the associated indifference curves andIC IC1 2

(the dashed line). If there would be a wage–queue length combination
below the dashed line, workers could raise their utility beyond oru 1

by applying there.u 2

Figure 1 also represents the iso-profit curves of the firms. Firms care
about effective applications but not whether they come from high or
low applications. Therefore, they have only one set of iso-profit curves,
given by equation (14): . The curves and�m ̂(1 � e )(1 � w) p p IP IP
depict such iso-profit curves for different profit levels and . Theˆp̄ p

problem of an individual firm can now be understood as follows: The
firm anticipates that workers can obtain utilities ( , ) elsewhere, andu u1 2

it can therefore predict that the relationship between its wage offer and
its effective queue length is given by the dashed line. Therefore, it looks
for a point on the dashed line associated with the highest iso-profit
curve.

From figure 1 one can infer the following three results: First, whenever
some workers send multiple applications, there has to be wage disper-
sion. The reason is the following. If firms offer only a single wage, then

21 Figure 1 is also related to models of on-the-job search, such as Delacroix and Shi
(2005). Here different wage segments arise because workers who fail at the high wage
still have the hope of getting a job at the low wage. In on-the-job search models, workers
who fail at a higher wage still have their current job.
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workers will send both applications there because of a lack of alterna-
tives. The indifference curves and will adjust such that the offeredIC IC1 2

wage is exactly at the intersection of both curves, indicated by point
( ) in figure 1. The associated iso-profit curve for firms is . Noww̄, m IP¯
it is easy to see that no firm would individually offer wage at the “kink”w̄
of the dashed line. The “kink” induces a nonconvexity into the firm’s
problem, and an individual firm can obtain a higher level of utility by
choosing a different wage, say , and obtain the associated queuew 2

length given by the dashed line. This combination is on the higher iso-
profit curve , indicating a profitable deviation from the unique marketÎP
wage. Second, the figure highlights the inefficiencies that would be
associated with a unique wage (similar to lemma 2) since all pointsw̄
between the indifference curves and and the iso-profit curveIP IP IP1 2

would be strictly preferred by both workers and firms. The presence of
these inefficiencies at a unique wage is exactly what induces firms to
deviate and reduce these inefficiencies. Third, when there are two wages,

and , the associated iso-profit curve can be tangent to thêw w IP1 2

indifference curves, which sustains an equilibrium and yields efficiency
(similar to lemma 1).22

C. Equilibrium Analysis

The formal analysis proceeds in three steps. First, the workers’ search
behavior for a given distribution of wages and a given number of ap-
plications is analyzed. Then the firms’ wage-setting decisions are con-
sidered. Finally, entry of firms and the equilibrium number of appli-
cations are determined.

The workers’ search decisions.—For the moment, fix the fraction ofg1

workers who send one application, the fraction who send two appli-g2

cations, and the number v of firms. All agents take as given the effective
queue lengths and associated trading probabilities andm(w) p(w) h(w)
that arise in equilibrium and maximize their payoffs according to equi-
librium condition 2a. Workers who send only one application solve the
problem

max p(w)w. (17)
w

Let be the value of program (17). It is the highest expected net utilityu 1

that a worker can generate with one application (net of application

22 In general, the workers’ indifference curves and , consistent with worker op-IC IC1 2

timization (equilibrium condition 2a), change when the wage distribution changes from
one to two wage offers because utilities will change. Under special conditions on(u , u )1 2

the choice of the pooling wage and the number of firms (i.e., the entry cost), the utility
levels remain constant, and such a special case is used for easier graphical representation.
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cost). If the worker sends two applications, he solves

max p(w )w � [1 � p(w )]p(w )w , (18)2 2 2 1 1
(w ,w )1 2

where again the costs of sending the applications are omitted since they
are fixed for a worker who is determined to send two applications.
Clearly, is necessary to solve (18). Since the terms related tow ≤ w1 2

wage enter the optimization problem only multiplicatively and ad-w 2

ditively, it is clear that the optimal choice of also solves programw1

(17). Workers with two applications behave with their low application
as workers with only one application. Therefore, program (18) reduces
to

max {p(w )w � [1 � p(w )]u }. (19)2 2 2 1
w2

Let be the value of program (19), that is, the highest expected netu 2

utility that workers with two applications can obtain. Since the combi-
nation of any wage that solves (19) and any that solves (17)w w2 1

together solve (18) but solving (18) requires , there must existw ≤ w1 2

a wage such that any solution to (19) is weakly below and any¯ ¯w w
solution to (17) is weakly above .w̄

So far we considered only the optimization by individual workers.
Now we use the fact that every worker optimizes according to the steps
outlined above. Therefore, in the subgame after the wage announce-
ments, workers will apply in a way that endogenously generates a cutoff
wage such that below this wage workers send their low applicationw̄
and above this wage they send their high application. By the market
utility condition they do this for wages that are offered by many firms
as well as for those that are offered only by an individual deviant. We
therefore obtain the next proposition, which is formally proven in the
Appendix.

Proposition 1 (Workers’ application behavior). In any equilibrium
in which some workers send applications, that is, , the fol-g � g 1 01 2

lowing conditions for the job-finding probability hold, which byp(w)
(4′) also determine :m(w)

p(w) p 1 G w � [0, u ], (20)1

¯p(w)w p u G w � [u , min {w, 1}], (21)1 1

and

¯p(w)w � [1 � p(w)]u p u G w � [w, 1], (22)1 2
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for some tuple and . If no workers apply2¯(u , u ) w p u /(2u � u )1 2 1 1 2

twice, that is, , then .g p 0 u p u � c2 2 1 2

The definition of implies continuity of . It is worth pointingw̄ p(w)
out that even if workers send only one application in equilibrium, if a
firm would offer a very high wage, workers might be willing to send a
second application there. Workers are just willing to do this if the mar-
ginal utility of the second application is exactly equal to the additional
cost, that is, . This case will be relevant whenever ;¯u � u p c w ≤ 12 1 2

otherwise the interval is empty.¯[w, 1]
Firms’ wage-setting decisions.—The firms anticipate the response by

workers given in the previous proposition. It is relatively straightforward
to show that as long as some workers send some application, the firms
do not offer the extreme wages of zero or one, so .23 An individualw̄ ! 1
firm maximizes subject to (20), (21), and (22), which�m(w)[1 � e ](1 � w)
describe the effective queue length at each wage. Since the effective
queue length is strictly increasing in the wage, the constraints specify a
one-to-one relationship when the queue length is strictly positive. There-
fore, the firm can first choose the queue length it wants to obtain and
then post the associated wage that induces workers to apply as desired.
Using the constraints to substitute out the wage from the firm’s objective,
we can write the firm’s profits as a function of the desired effective
queue length, that is, withP(m(w)) :p p(w)

�mP(m) p 1 � e � mu G m � [0, m] (23)¯1

and

�mP(m) p (1 � e )(1 � u ) � m(u � u ) G m � [m, m(1)], (24)¯1 2 1

where . The profit is continuous.24 An individual firm¯m p m(w) P(m)¯
chooses the queue length m that maximizes its profits. Since is notP(m)
concave at , this cannot be an optimal choice. In equilibrium the queuem̄

length has to coincide with the ratio of effective applications to firms
by equilibrium condition 3, and since , this is possible only ifg 1 0 v2 1

and are strictly positive. Thus, if all firms choose the same queuev 2

length (and associated same wage), is the only choice that is in bothm̄

and , which reflects the fact that a unique wage attracts[0, m] [m, 1]¯ ¯
both high and low applications. Since is not optimal for firms, thism̄

23 If all firms offer wage , the hiring probability is less than one, but any slightlyw p 0
higher wage has a hiring probability of one because all workers apply there (formally, the
market utility condition implies an effective queue length of infinity), yielding a profitable
deviation. If all firms offer wage , still because workers are not hired for sure,w p 1 u ! 11

and by proposition 1 there are wages below one at which the queue length is positive,
yielding a profitable deviation.

24 This follows from the continuity of or directly since is characterized¯m(w) m p m(w)¯
by (21) and (22) as the solution to .�m 2[(1 � e )/m][u /(2u � u )] p u¯ 1 1 2 1¯
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formally proves the result on wage dispersion that was already discussed
in connection with figure 1.

Proposition 2 (Wage dispersion). In any equilibrium with ,g 1 02

the set of offered wages cannot be a singleton.F
Note that the driving force for wage dispersion is not a profit dis-

continuity as in related work, but rather a nondifferentiability of the
profits.25 Since there is wage dispersion, there have to be some wages
that are not at the extremes of zero and one. Therefore, and areu u1 2

in the interior of (0, 1). Then the optimal solution cannot be a boundary,
but is either in or in . Consider high-wage firms offering a(0, m) (m, 1)¯ ¯
wage that induces a queue in first. The first-order condition of(m, 1)¯
their profits in (24) is

�me (1 � u ) p u � u , (25)1 2 1

which uniquely defines the optimal queue length, call it . Therefore,m2

all firms in this region choose the same queue length and offer the
same associated wage, call it . Let denote the measure of high-w v2 2

wage firms. Since these high-wage firms receive the high application of
every worker, every application is effective. At this point there are g2

workers who apply, and so the effective and gross queue lengths are
, and is fully determined by (25) once and arem p l p g /v u v u2 2 2 2 2 2 1

known.
Consider now low-wage firms that offer a wage that induces a queue

in . The first-order condition to their profits in (23) is(0, m)¯
�me p u . (26)1

Again, all firms in this region have the same optimal queue length m1

and offer the same associated wage . Their effective applicants arew1

only those who are left after the high-wage firms have hired. When v1

firms offer wage , there are applications per firmw l p (g � g )/v1 1 1 2 1

but only effective applicants, wherem p (g � p g )/v p p (1 �1 1 2 2 1 2

is the probability of being hired at the high wage. Given and�m2e )/m v2 1

25 In most work on wage dispersion with homogeneous agents, a unique wage cannot
be sustained because of the following discontinuity: a firm’s offer at a slightly higher wage
is accepted for sure, whereas at the market wage there is a chance that a worker would
rather accept an equally good offer from a competing firm (see Burdett and Judd 1983;
Burdett and Mortensen 1998; Acemoğlu and Shimer 2000; Gautier and Moraga-González
2005; Galenianos and Kircher 2008). In this model, a worker anticipates that at a higher
wage other workers accept with a higher probability, which means that other applications
are effective with a higher probability. This is bad for the worker. Thus, he applies only
if the overall number of (gross) applications goes down. This reduction in applications
smooths out the discontinuity in acceptances. Dispersion arises nevertheless because work-
ers trade off the wage and the queue length differently for high and low applications,
leading to a discontinuity in the derivative (i.e., the “kink”), which suffices to induce
dispersion.
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, is uniquely determined, and so is by (26). Substituting (26)v m u2 2 1

and (25) into (23) and (24) yields the following proposition.

Proposition 3 (Profits and wages). In an equilibrium with ,g 1 02

profits and wages for low- and high-wage firms, respectively, are uniquely
determined by g1, g2, , and asv v1 2

�m �m1 1P p 1 � e � m e , (27)1 1

�m1m e1w p , (28)1 �m11 � e

�m �m �m2 2 1P p (1 � e � m e )(1 � e ), (29)2 2

and

�m �m2 1m e (1 � e )2 �m1w p � e . (30)2 �m21 � e

Profits and wages have a natural interpretation: The profit of a firm
reflects its marginal contribution to matching, as explained already in
the discussion of the search efficiency condition (8). Similarly, the for-
mulas for the wages can be understood by considering the incentives
that they provide for the workers. The low wage coincides with the
probability that an additional application for this wage reaches a�m1e
firm that has no other effective applicant, conditional on the event that
a worker actually gets hired at this wage, which happens with probability

. The conditioning is important because the decision�m1p p (1 � e )/m1 1

to send an application is influenced by the product of hiring probability
and wage, and so provides incentives that coincide with the socialp w1 1

benefit. At the high wage, the social benefit of sending another appli-
cation is the probability that it reaches a high-wage firm that does�m2e
not have another applicant, adjusted by the probability that the�m11 � e
low-wage firm to which the worker also applied has at least one other
applicant (otherwise no new match is created). The high wage reflects
this social benefit (again conditional on getting matched to provide the
right incentives) and adds a term reflecting the social benefit of the low
application. The reason for the added term is that conditional on getting
the high-wage job, the worker is precluded from reaping the benefits
from his application for the low-wage job and has to be compensated
for this.

If no worker sends two applications, then the arguments above easily
establish that only one wage is offered ( ). The determination ofv p 02

the wage is identical to the low wage in the previous proposition; that
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is, it is determined by (28) and induces profits given by (27). Given that
workers apply only once, any offer leads to a hire, and therefore

.m p l1 1

Equilibrium outcomes.—Before we turn to the full equilibrium, it is
instructive to consider the case with exogenous search intensity g. The
following lemma will cover the case with and without free entry.

Consider the case in which some workers apply twice. Firms offer two
wages but have to make equal profits. Equating profits and inP P1 2

(27) and (29), we obtain exactly the same allocation as in the planners’
optimum in (8). If the number of firms is not fixed, free entry implies

�m �m1 11 � e � m e p K (31)1

and

�m �m �m2 2 1(1 � e � m e )(1 � e ) p K, (32)2

which coincide with conditions (10) and (11) that uniquely determine
the optimal entry level.26 We get the following efficiency results when
taking the search intensity of workers as given, which include the well-
known results for one-application models as the special case of g p1

.1

Lemma 3. Given search intensity (g0, g1, g2), with , theg � g 1 01 2

following conditions hold:
1. Given entry , there exists unique tuple that fulfillsv 1 0 (F, G , G )1 2

the appropriate equilibrium conditions 1a, 2a, and 3, and it yields
the search efficient number of matches.

2. With free entry, there exists unique tuple that fulfills(v, F, G , G )1 2

the appropriate equilibrium conditions 1a, 1b, 2a, and 3, and it
yields optimal entry.

Now consider the equilibrium when the fraction of agents that send
zero, one, or two applications is endogenous. The free-entry conditions
(31) and (32) determine the effective queue lengths at the high- and
low-wage firms solely as a function of the exogenous entry cost K. Call
the solutions to these equations and . Then we can define numbersm* m*1 2

and in analogy to the first-order con-�m* �m*1 2u* p e u* � u* p e (1 � u*)1 2 1 1

ditions (26) and (25). The numbers and are, respectively,u* u* � u*1 2 1

the marginal utility gains for workers for the first and second applica-
tions. They are independent of the exact structure of search intensity
g, as the exact level of applications is offset through free entry. The

26 By construction, there are not profitable deviations from this profile: firms are willing
to offer these wages since the wages were determined by the appropriate first-order con-
ditions, and in each region the maximization problem is concave. Workers are willing to
apply in this fashion because we used their indifference conditions (21) and (22) to
construct firm profits.
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equilibrium is determined by comparing these marginal gains with the
marginal costs of sending the application.

Proposition 4 (Equilibrium outcomes). An equilibrium exists and
is constrained efficient. Furthermore, the following conditions hold:
1. For , in the unique equilibrium, no firm enters and no ap-c 1 u*1 1

plication is sent.
2. For and , in the unique equilibrium, all workersc ! u* c 1 u* � u*1 1 2 2 1

send one application and one wage is offered.
3. For and , in the unique equilibrium, all workersc ! u* c ! u* � u*1 1 2 2 1

send two applications, two wages are offered, and each worker ap-
plies to one firm offering each wage.

The key reason for uniqueness is that firms anticipate that workers
will send additional applications when they offer high wages (this is
captured by the market utility condition). Even if in (a candidate) equi-
librium only one wage is offered and workers send only one application,
a firm that deviates and offers a sufficiently high wage expects that
workers will send a second application for this very high wage. It is this
feature that leads to a high queue length for a deviant with a high wage
and makes such a deviation profitable whenever the marginal cost isc 2

below the marginal benefit .u* � u*2 1

Efficiency follows trivially because the marginal utilities andu*1
equal the planner’s thresholds and . This arises since theP Pu* � u* t t2 1 1 2

wages provide the socially efficient application incentives. For com-
pleteness, note that in the case in which , we have a continuumc p u*1 1

of equilibria: for any and , an equilibrium exists,g � [0, 1] g p 1 � g1 0 1

and workers are exactly indifferent between applying once and not
applying at all. If , an equilibrium exists in which workersc p u* � u*2 2 1

randomize between one and two applications, that is, andg � [0, 1]2

.g p 1 � g1 2

Connection to one-application models.—To round off the equilibrium sec-
tion, it may be instructive to briefly link the results to standard one-
application models. When workers apply only once ( , which arisesg p 02

when is large), the distinction between effective and gross queuec 2

length disappears, and wages (28) and profits (27) replicate the standard
result from one-application models such as that of Burdett et al. (2001).
The introduction of a second application changes the equilibrium and
essentially generates two markets. The profits in each are given by

�m �mi iP p (1 � e � m e )(1 � u ). (33)i i i�1

In the low-wage market ( ), is identical to the workers’ truei p 1 u 0

outside option of zero, but there is some connection to the high market
induced by the strictly positive probability that an offer is rejected. In
the high-wage market ( ), the rejection probability is zero, buti p 2 u 1
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is greater than zero since it reflects the workers’ endogenous outside
option induced by the low-wage market. Apart from these spillovers,
each market operates as a single one-application market.

This separation into semiseparate markets arises because of a close
resemblance of our setup to a sequential market with two periods:27 A
firm that pays K can choose one of the periods and post a wage. Workers
who pay can participate in both periods, and workers who payc(2)

participate in the second period. Workers who fail to get a job inc(1)
the first period try again in the second. In the second period workers
have nothing to wait for and maximize according to (17), whereas in
the first period they anticipate the benefit from waiting and maximizeu 1

according to (19). The main difference from our model is that in this
sequential setup a first-period firm can attract applicants at wages below

whereas in our setup such wages would attract only low applicationsw̄
(i.e., second-period applications). The reason is that workers from the
second period would drive up the queue length if they could apply to
such a firm.28 Nevertheless, a firm that wanted to offer such low wages
is better off waiting for the second period, and in equilibrium the out-
come of the two economies coincides. Our interaction therefore resem-
bles the nonstationary sequential search in Peters (1991), and efficiency
is driven by reasons similar to those in standard sequential one-appli-
cation interactions (even though I am not aware of a formal efficiency
proof for the nonstationary environment).29

V. Generalization to N 1 2 Applications

In this section the restriction that workers can send no more than two
applications will be dispensed with. This allows us to consider the limit
as search costs vanish and to examine whether the equilibrium converges
to the unconstrained efficient Walrasian outcome, as opposed to the
constrained efficient social planner’s outcome. This limit is of interest
because, typically, search models that approach Walrasian outcomes rely
on repeated interactions, whereas most static search models converge
to non-Walrasian outcomes even when costs vanish (e.g., Acemoğlu and
Shimer 2000; Albrecht et al. 2006). The main reasons why convergence
might not be immediate is that the miscoordination and tie-breaking
frictions may not vanish and that the total application costs may not
converge to zero. The latter could happen if the vanishing costs are

27 I thank the editor for suggesting this connection to me.
28 Since both applications can be sent to firms with low wages, our cutoff wage is w̄ p

(see proposition 1). In a sequential interaction, a first-period firm gets appli-2u /(2u � u )1 1 2

cations as long as the wage is larger than .ŵ p u2
29 In fact, because of the equivalence of the equilibrium outcomes, this proof can be

regarded as an efficiency proof for nonstationary sequential directed search environments.



efficiency of simultaneous search 891

offset by an increasing number of applications that workers send. In
the following it will be shown that convergence to the Walrasian bench-
mark does arise in this model.

Additionally, even away from the limit it might be interesting to have
a simple representation of the search intensity and resulting matches.
It has been argued that explicit forms of search intensity based on
simultaneous search can be useful to understand the response of workers
to varying labor market conditions (e.g., Shimer 2004), and we will see
that the formulation in a directed search framework like this one re-
mains particularly tractable. This framework is thus potentially useful
for the study of such wider questions.

For the analysis, recall that for some , which togetherc(i) 1 0 i � �

with increasing marginal costs implies a largest integer, denoted N, such
that . Clearly, it is neither individually nor socially optimal toc(N ) ≤ 1
send more than N applications because the application costs would
exceed the value created in a match. Thus, the number of applications
per individual remains bounded. Apart from the larger number of pos-
sible applications that each worker is allowed to send, the model remains
unchanged. The exact equilibrium definition for this extended setup
is presented in the Appendix.

The equilibrium characterization extends by analogy to the previous
section, as shown in the Appendix. The workers again partition the
wages into intervals related to each of their applications. The equilib-
rium interaction in each interval corresponds to that in the one-appli-
cation case, again with the adjustment that the workers’ “outside option”
incorporates the expected utility that can be obtained at lower wages,
whereas the queue length incorporates the fact that some applicants
are lost to higher-wage firms. Again, the free-entry condition defines
the effective queue length in the various wage segments that arises in
equilibrium. In particular,

�m* �m*i i(1 � e � m*e )(1 � u* ) p K (34)i i�1

and
�m*iu* p e (1 � u* ) � u* (35)i i�1 i�1

recursively define the effective queue length and marginal utilitym*i
at the ith-highest wage as a function of entry cost K, given initialu*i

condition . The wages are completely determined by these var-u* p 00

iables.30 Equation (34) equates the competitive profits to the entry cost
in analogy to equations (31) and (32), and equation (35) captures the

30 In an extension of proposition 3, one can show that the wages are now given by
. In equilibrium when all workers send appli-�m* �m*i iw p [m*e /(1 � e )](1 � u* ) � u* i*i i i�1 i�1

cations, the measure of firms that offer wage is given by ,i*v w m* p [� (1 � p )]/vi i i i ijpi�1

where .�m*ip p (1 � e )/m*i i
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outside option that lower wage segments induce for higher wage seg-
ments in analogy to equations (25) and (26). Note that isu* � u*i i�1

strictly decreasing in i and is weakly increasing. The following prop-ci

osition is proved in the Appendix.

Proposition 5 (Generalized equilibrium properties). An equilib-
rium exists and is constrained efficient. It is generically unique: if

and , every workers sends applica-c ! u* � u* c 1 u* � u* i*i* i* i*�1 i*�1 i*�1 i*

tions, wages are offered, and every worker applies to each wage.i*

The proof relies inductively on the arguments presented in Sections
III and IV, extended to higher numbers of applications. Efficiency ob-
tains again for similar reasons, the only difference being that now i*
wages are necessary to obtain the optimal allocation in the search
process.

Convergence to the competitive outcome.—Now consider the case in which
application costs become small. In the following it will be shown that
the equilibrium allocation converges to the unconstrained efficient al-
location of a competitive economy. A competitive Walrasian economy
achieves the following benchmark allocation: Since entry costs are below
the productivity of a match, firms enter until the measure of firms equals
the measure of workers, that is, all workers and all firms get matched.
Since free entry places firms on the long side of the market, firms are
just compensated for their entry cost K. The market wage is then 1 �

and coincides with the utility of each worker.K
Consider a sequence of cost functions such that the marginal cost of

the ith application converges pointwise to zero for all . Ratheri � �

than looking at these functions directly, it is convenient to simply con-
sider the associated equilibrium number of applications that eachi*
worker sends.31 Vanishing costs amount to . Let denote thei* r � v(i*)
equilibrium measure of active firms, and andh(i*) p h(w)dF j(i*) p∫

denote the average probability of being matched for both av(i*)h(i*)
firm and a worker in the economy, respectively. Let denote thew(i*)
average wage, conditional on being matched, and U *(i*) p u* �i*

the equilibrium utility when applications are sent, wherei*c (i*) i*
denotes the cost function that supports the equilibrium withi*c (7) i*

applications per worker. In the Appendix the following proposition is
proved.

Proposition 6 (Convergence). The equilibrium outcome con-
verges to the competitive outcome, that is,

31 For the (nongeneric) case of multiple equilibria, select for simplicity one in which
all workers send the same number of applications; and when multiple cost functions sustain
the same equilibrium number of applications, consider a subsequence of cost functions
that includes only one of these.
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lim v(i*) p 1,
∗i r�

lim h(i*) p lim j(i*) p 1,
∗ ∗i r� i r�

lim w(i*) p lim U *(i*) p 1 � K.
∗ ∗i r� i r�

The structure of the proof uses the intuition for the competitive
economy: For a given measure v of active firms, the competitive economy
implies that (only) the long side of the market gets rationed and the
short side appropriates all surplus. For small frictions ( large) this stilli*
holds approximately. Then it trivially follows that because oth-v(i*) r 1
erwise the firms generate either too much or too little profits to cover
entry. Since nearly all agents get matched, zero profits imply a wage of

. Despite the fact that workers send more applications, their ap-1 � K
plication costs vanish faster than the increase in the number of appli-
cations, and therefore their utility equals the wage of in the limit.1 � K

It may be instructive to point out how the equilibrium converges to
the competitive solution. The equilibrium wages are implicitly de-wi

termined by (34) and (35) without regard to the application costs.
Therefore, the wages and that were derived in Section IV are stillw w1 2

offered even as workers send more and more applications, and also
their effective queue lengths remain the same. But as workers apply
more often, higher wages are added. It becomes more and more likely
that a worker gets hired at high wages, which means that the same
effective queue length at a low wage requires only very few firms to offer
this wage because only very few workers will be effective at this wage.
The support of the wages does not converge, yet the mass of agents that
trade at wages away from converges to zero.1 � K

VI. Discussion

In the introduction it is mentioned that other simultaneous search en-
vironments do not obtain efficiency. This section highlights the driving
forces toward efficiency in the model and discusses how these differ
relative to the earlier literature.

Convergence to the Walrasian benchmark.—In most search models, adding
an additional worker to the economy makes it harder for other workers
to find a job and easier for the firms to hire a worker. The same is true
in this setup when a worker sends two applications instead of one. When
application costs vanish and many more applications are sent, the pro-
cess becomes so efficient that in the limit the short side of the market
gets matched for sure. This is a minimal requirement for convergence
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toward the efficient outcome. The right incentives for efficient entry of
firms then follow from the competitive nature of the wage setting.

In the models by Gautier and Moraga-González (2005), Albrecht et
al. (2006), and Galenianos and Kircher (2008), it may become harder
for firms to hire when workers send a second application. In their en-
vironments every firm makes only one offer, so if some worker sends
two applications, two firms might both offer a job to him and only one
can hire him even if both had other applicants. This introduces non-
negligible probabilities that firms cannot hire. Therefore, the short side
of the market does not get perfectly matched even in the limit, killing
the central driving force toward the Walrasian benchmark. In Acemoğlu
and Shimer (2000), workers can sample information about multiple
wages but can apply to only one firm, again precluding convergence to
the case in which the short side gets matched for sure.

Efficient “pricing” under nonnegligible costs.—Constrained efficiency in
this model arises because firms can “price” the good they are interested
in: the hiring probability, which is determined by the queue of effective
applications. They can “price” the effective applications despite the
problem that they cannot pay the workers directly for their applications
to other firms, which was mentioned as “contractual incompleteness”
in the introduction. This incompleteness is solved because workers in-
ternalize the actions of other workers: Workers care only about rival
applicants who are effective, that is, those who do not get jobs at higher
wages. Only such applicants make it difficult to get a job at any wage.
If some workers who apply to firm A also apply to a better firm B, other
workers anticipate this and apply more to firm A because they under-
stand that (because of the applications to B) there is now less compe-
tition for A’s job. In general, if a firm changes its wage, workers change
their application behavior such that the queue of effective applications
rises until they are indifferent between this wage and the other wages
offered in the market. This allows firms to price the effective applications
at the margin and to achieve efficiency.

It might be surprising that rent seeking does not cause inefficiencies
in this setup. Rent seeking arises when workers send more applications
just to get a better wage even when the productivity of the jobs does
not differ. It is pervasive in models with wage dispersion (see, e.g., Acem-
oğlu and Shimer 2000; Gautier, Moraga-González, and Wolthoff 2008).
It arises when search is not fully directed, that is, wages are not publicly
posted. The missing competition leads to wages that do not reflect the
marginal value of an application. In contrast, in the setting analyzed
here, wages are posted and do reflect the marginal value of an appli-
cation. As mentioned at the end of Section IV, one can interpret our
market interaction as a sequential process, where firms and workers at
high wages trade first, and those workers who did not get matched
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proceed to the next period, where matching occurs at the next-lower
wage. In each period the workers take into account their option of
matching later, and the wage setting “prices” their applications correctly,
taking into account the waiting option.32

In earlier directed search models by Albrecht et al. (2006) and Gal-
enianos and Kircher (2008), firms are not able to “price” their hiring
probability because of the lack of stability in the final matching. Recall
that a lack of stability means that a firm might not be able to hire any
worker even though one of its workers obtains only a lower-wage job or
remains unemployed. Firms still want to price effective applications, but
in these models the workers regard the wage as the price for gross
applications. Any gross application has an equal chance of getting an
offer, and even if the worker decides to work elsewhere, the job is
“blocked” because the firms can make only a single offer. So workers
view any gross application as competition. If a firm raises its wage, work-
ers raise their gross applications until they are indifferent to applying
elsewhere. Workers might also change their application behavior to other
firms. Since this second effect is not directly influenced by the offered
wage, the firms cannot price their hiring probability (the effective ap-
plications) and efficiency does not obtain. In terms of the sequential
interpretation, workers who get jobs already in early rounds at high-
wage firms still apply in later periods at low-wage firms, which disturbs
the pricing at these lower-wage firms.

This distinction between gross and effective applications has not been
considered in the literature because the two notions coincide in models
in which workers have only one application: With one application no
worker rejects an offer, and every application is effective.33 Our model
includes the one-application environment when the first application is
free but all others are prohibitively expensive. More important, even
with multiple applications, each wage segment is similar to the one-
application model. In particular, the Hosios (1990) condition, which
ties the division of the match surplus to the elasticity of the matching
function and ensures that private and social surplus in the market co-
incide, holds per wage segment once the appropriate notion of effective
applications is applied (see eq. [33]). Therefore, earlier results on ef-
ficient entry in one-application models naturally extend to our setup.

Two main assumptions: i. Perfect recall.—In the interpretation of the

32 Note that the real “price” is the product of the wage and the probability of being
hired. This product is lower at high wages. This reflects the fact that the social value of
sending two applications instead of one is lower than the social value of sending one
application instead of none.

33 This also holds for models that incorporate search intensity in a more reduced-form
way through a scalar that increases the matching probability but yields at most one job
at a time (see, e.g., Moen 1995).
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final matching stage as an extensive form process, one might ask how
many applicants a firm can possibly contact. The model requires that
a firm can potentially contact all of them. If a firm can contact only a
limited number M of applicants, it bears the risk that they all are hired
elsewhere. Again, firms care about effective applicants who would accept
the job, but workers anticipate that even noneffective applicants can
“block” a job if there are more than M of them. Since pricing works
through the workers’ reaction, firms are not able to price their hiring
probability efficiently, similar to the reason discussed above for the

case of Albrecht et al. (2006) and Galenianos and Kircher (2008).M p 1
For larger M, we expect the inefficiencies to be less severe, but full
efficiency is likely to arise only when all applicants can be contacted.

ii. Wage commitment.—Wage commitment is important because it de-
termines the terms of trade in a competitive manner before the market
splits into small groups in which market forces are absent. In the the-
oretical analysis, wage commitment has the additional advantage of al-
lowing for a particularly tractable notion of stability, enabling us to
analytically study the earlier stages of firm entry, wage setting, and ap-
plication behavior. The assumption of wage commitment might be par-
ticularly applicable in markets in which large firms adopt wage policies
uniformly for the entire organization rather than adjust them to each
individual bargaining situation. It seems also reasonable when the
“wage” offers are interpreted more broadly as investments into prestige
or amenities that are valued by the workers but cannot easily be adapted.
It also applies when working conditions, including wages, are specified
in advance of the application and matching process, as in the U.S.
market for medical residents.34

Since other environments might not feature full commitment, it
would be interesting to investigate forms of adjustments of the wage
announcement in response to the application conditions that each firm
and worker face. In particular, a low-wage firm that attracts several work-
ers might be happy that it offered a low wage because it is likely that
one of its workers gets no higher offer, whereas a low-wage firm that
attracts only a single worker might prefer to raise its offer to a higher
level to be sure that the worker accepts. Similarly, in an extensive form

34 Roth (1984, 995–96) points out that in this market hospitals specify the job require-
ments and wages; then residents have to apply to and interview with hospitals; finally, both
sides of the market submit rankings of those partners with whom they have interviewed to a
clearinghouse that produces a stable matching. While this paper is targeted to general
job markets and might not reflect the details of this specific market—in particular, it
neglects heterogeneities—it highlights the efficiency even with a decentralized application
procedure.

Bulow and Levin (2006) analyze price setting prior to matching in a world with one-
sided heterogeneity but abstract from decentralized applications by assuming that all
residents apply to all hospitals.
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in which firms contact their workers sequentially, a firm might want to
raise its wage offer once it approaches the last worker in order to increase
the odds that the worker accepts. Weakening commitment by intro-
ducing methods for adjusting the terms of trade after the applications
are sent might change the results regarding efficiency.35 Especially if the
probability that wages are adjusted upward is not balanced by propor-
tionally lower wage offers ex ante, then entry of firms will not be effi-
cient. Unfortunately, wage adjustments introduce strategic elements into
the final matching stage, and the feedback to earlier stages renders such
analysis beyond the scope of this paper.

Heterogeneity.—So far this paper abstracted from heterogeneities.
While perfect recall and commitment seem essential for efficiency, ho-
mogeneity is clearly not essential. Consider the easiest case in which
workers differ in their cost of sending applications. Equations (31) and
(32) still describe the queue lengths due to free entry, so the marginal
benefit for each worker still coincides with his social benefit; that is,
application behavior remains constrained efficient. While so far it was
assumed that firms produce unit of output, consider now thex p 1
case in which firms may choose to enter at different levels of productivity
x at some cost that is increasing and convex as in Acemoğlu andK(x)
Shimer (1999) or Shi (2001). Equations (31) and (32) for optimal entry
can be easily adjusted to this case, and efficiency is relatively straight-
forward to establish.36 Firms at the high wage invest in more capital
because they are more likely to utilize it. Also, if the workers are het-
erogeneous as in Shi (2001) or Shimer (2005) and wages can be con-
ditioned on productivity, it seems likely that efficiency still arises because
the interaction in each wage segment closely resembles a one-application
economy and is likely to inherit its efficiency properties even in broader
environments.

35 In Albrecht et al. (2006), firms’ wage announcements are not complete commitments,
but firms bid up the wage to the worker’s marginal product if two firms make an offer
to the same worker. This has the effect that workers are mainly interested in two offers
even if the announced wages are very low, which contributes to depressed wage offers
and excessive entry.

36 The workers’ problem is still unchanged, and given utility levels and , a low-wageu u1 2

firm solves subject to the workers’ response�mmax (1 � e )(x � w) � K(x) w(1 �w,m,x

. Follow the steps leading to (23) to substitute out the constraint, which yields�me )/m p u1

the problem . This has first-order conditions and�m �mmax (1 � e )x � mu � K(x) u p xem,x 1 1

under appropriate Inada conditions on . Substituting the first into�m ′1 � e p K (x) K(7)
the objective gives free-entry condition , which is similar to�m* �m*1 1x*(1 � e � m*e ) p K(x*)1 1 1

(31), which together with characterizes the queue length and pro-�m* ′11 � e p K (x*) m*1 1

ductivity in the low wage segment uniquely. Similar logic for the high wage segmentx*1
yields a queue length and productivity characterized by �m* �m*2 2m* x* (1 � e � m*e )(x* �2 2 2 2

similar to (32) together with . The problem of a planner�m* �m* ′1 2x*e ) p K(x*) 1 � e p K (x*)1 2 2

who has control over the type of entry has the same first-order conditions.
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VII. Conclusion

This paper incorporates a microfoundation for search intensity into the
directed search framework by allowing workers to apply to multiple firms
simultaneously. Application choices can be interpreted as the strategic
but frictional formation of links in a network between workers and
firms,37 and the number of links of each worker captures his search
intensity. We resolve the assignment of jobs as a stable matching on the
network, which allows the wages to internalize all the externalities that
are present in earlier stages even when application costs are nonnegli-
gible. The economy converges to the unconstrained efficient Walrasian
outcome as application costs vanish.

Appendix

Before proceeding to the main proofs, it will be convenient to prove an auxiliary
result for the social planner’s problem. Consider some tuple describ-{F, G , G }1 2

ing the assigned distribution of firms and applications on the set L of locations.
Now consider some other tuple on set that has exactly′ ′ ′ ′ ′{F , G , G } L p L ∪ {l }1 2

one additional location. Let l be adjacent to in the sense that has no elements′ ′l L
between l and .′l

We can say that is generated from by merging l and′ ′ ′ ′{F, G , G } {F , G , G } l1 2 1 2

if is identical to except that all firms that were assigned′ ′{F, G , G } {F, G , G }1 2 1 2

to under are assigned to l under F and all applications that were assigned′ ′l F
to under are assigned to l under .38 The following lemma′ ′ ′l (G , G ) (G , G )1 2 1 2

states that merging l and does not change the overall number of matches if′l
l and have identical queue length under .′ ′ ′l {F , G }

Lemma A1. For given v and g, if is generated from ′ ′ ′{F, G , G } {F , G , G }1 2 1 2

by merging l and and if both l and have the same effective queue length′ ′l l
under , then the effective queue length is identical to that′ ′ ′ ′ ′m p m {F , G , G }′l l 1 2

under (i.e., ) and the total number of matches in the′ ′{F, G , G } m p m p m ′1 2 l l l

economy is identical under and under .′ ′ ′{F, G , G } {F , G , G }1 2 1 2

Proof. By construction, all queue lengths at locations such that′′ ′′l � L l 1

are identical under and since the number of firms and′ ′ ′l {F, G , G } {F , G , G }1 2 1 2

the application behavior are unchanged (and the matching at higher locations

37 The large literature in network formation usually deploys solution concepts that elim-
inate any randomness on which a frictional nature of unemployment could be based
because they require that no (pair of) individuals would choose links differently ex post
after the network has been realized (see, e.g., Dutta and Jackson 2000; Jackson 2005).
Our equilibrium notion requires only ex ante optimality before applications are sent out
and uses miscoordination between workers in their link formation to retain frictions in
the spirit of the search literature on unemployment.

38 That is, the mass points f and g coincide at all (combination of) locations that do
not involve l or with and , i.e., , , and′ ′ ′ ′ ′ ′l f g f(l ) p f (l ) g (l ) p g (l ) g (l , l ) p g (l , l )a a 1 a 1 a 2 a b 2 a b

for all , . At l, the mass points are defined by ,′ ′ ′ ′ ′l l � L /{l, l } f(l) p f (l) � f (l ) g (l) pa b 1

, ,′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′g (l) � g (l ) g (l, l) p g (l, l) � g (l, l ) � g (l , l) � g (l , l ) g (l, l ) p g (l, l ) � g (l , l )1 1 2 2 2 2 2 2 b 2 b 2 b

when , and when .′ ′ ′ ′ ′l � {l, l } g (l , l) p g (l , l) � g (l , l ) l � {l, l }b 2 a 2 a 2 a a
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is not influenced by the application behavior at lower locations). Now consider
the matching at all locations in L that are weakly larger than either l or .′l
Assume that . That means that among the firms at these locations,′ ′m p m 1 m′l l l

under strictly more get matched than under m. On the other hand, it becomes′m

strictly harder for workers to get an offer, and strictly fewer workers get matched
at these locations. Since workers and firms are matched in pairs, we cannot
obtain more matches for firms than for workers. Similarly, can be′ ′m p m ! m′l l l

ruled out. Therefore, .′ ′m p m p m′l l l

That means that we have not changed the overall matching probabilities at
any of the locations, because firms at a location below face exactly the samel � 1
probabilities that their workers take other jobs as under the original assignment.
Since the matching probabilities are not changed, the number of matches is
identical. QED

Proof of Lemma 1

The result is proved via a variational argument. For fixed v and g, consider
some optimal set of locations L and distributions .1 1 2{F, G , G } � F # F # F1 2 L L L

Without loss of generality, let the set of locations be the even numbers L p
. It will be shown that we can use two locations {1, 2} and find{2, 4, … , 2FLF}

distributions with and1 1 2˜ ˜˜ ˜ ˜{F, G , G } � F # F # F g (1) p 1 g (1, 2) p 11 2 {1,2} {1,2} {1,2} 1 2

such that the number of matches in the economy is weakly improved.

Step 1: Decomposition into High- and Low-Application Locations

It will be shown that we can decompose the application process such that firms
at any location either receive only high applications or receive only low (in-
cluding single) applications, without changing the overall number of matches.
Consider some location .39 If firms at this location receive only high or onlyl � L
low applications, we are done, so we can focus on the case in which they receive
both.

Assume that the planner now introduces a new location , redirects somel � 1
firms from location l to , and redirects all low applications that were in-l � 1
tended for l to . This induces a new on with′ ′ ′ ′l � 1 {F , G , G } L p L ∪ {l � 1}1 2

associated and .40 Note that the number of firms or applications at any′ ′f g
location other than l has not changed, and therefore can be obtained{F, G , G }1 2

from by merging l and (see the discussion for lemma A1). We′ ′ ′{F , G , G } l � 11 2

have one degree of freedom left: we are free to choose the fraction r of firms
that remain at location l; that is, we choose and′ ′f (l � 1) p (1 � r)f(l) f (l) p

. Now it will be shown that for an appropriate choice of r the queue lengthsrf(l)

39 Let L be restricted to consist only of those locations l that have a positive measure of
firms and receive a positive measure of workers, i.e., that are in the support of F and of

or . All other locations do not contribute to the matching in the market. Therefore,G G1 2

at each remaining location , we have .l � L l � (0, �)l
40 Formally, and for all , for all′ ′ ′f (l ) p f(l ) g (l ) p g (l ) l � L/{l} g (l , l ) p g (l , l )a a 1 a 1 a a 2 a b 2 a b

, and , for ,2 ′ ′ ′(l , l ) � (L/{l}) g (l � 1) p g (l) g (l) p 0 g (l � 1, l ) p g (l, l ) l � L/{l}a b 1 1 1 2 b 2 b b

for , , and for all other′ ′ ′g (l , l) p g (l , l) l � L/{l} g (l � 1, l) p g (l, l) g (l , l ) p 0 (l ,2 a 2 a a 2 2 2 a b a

.2l ) � (L ∪ {l � 1})b
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at l and are identical, and therefore by lemma A1 we have not changedl � 1
the overall number of matches in the economy.

To see this, note first that for any r the effective queue lengths under′ ˜m(l)
the new strategies coincide with for all , since neither the application˜ ˜m(l) l 1 l
behavior nor the number of firms at higher locations changed. Therefore, the
average probability that a worker who sends his application to and to al � 1
location strictly above l gets the high location offer is unchanged. The result
that there exists r such that then follows by the intermediate value′ ′m p ml�1 l

theorem because the number of applications per firm goes to infinity at l when
the fraction r of firms is close to zero, whereas it goes to infinity at whenl � 1
r is close to one.41 Therefore, the separation of low and high applications leaves
the overall number of matches unchanged under appropriate r by lemma A1.

To finish step 1, repeat the previous argument successively for all locations.
This leaves us with a set of locations receiving low applications{1, 3, … , 2FLF � 1}
and a set of locations receiving high applications and an un-{2, 4, … , 2FLF}
changed number of matches in the economy. We can now relabel the locations
such that any location receiving low or single applications is below any location
receiving high applications without changing the number of matches. The rea-
son is that any pair of locations ( j, l) with j odd and l even with ′g ( j, l) 1 02

already has since we assumed without loss of generality thatl 1 j g (l , l ) 1 02 1 2

only if . Therefore, we can relabel the odd locationsl ≥ l {1, 3, … , 2FLF � 1}2 1

as and the even locations as{1, 2, … , FLF} {2, 4, … , 2FLF} {FLF � 1, FLF � 2,
without affecting the number of matches. Call the assignment to the… , 2FLF}

relabeled locations with associated , , .42˜ ˜ ˜˜ ˜ ˜{F, G , G } f g g1 2 1 2

Step 2: Merging the High and the Low Locations

First, it will be shown that optimality requires that all low application locations
have the same effective queue length. By lemma A1 this impliesl � {1, … , FLF}

that we can successively merge these locations into a single location without
reducing the optimal number of matches.

41 Formally, let be the measure of workers sending one application˜a (l) p g � g (l, l)˜H 2 2l(l

to l and one strictly below, let be the measure of workers˜a (l) p g g (l) � g � g (l, l)˜L 1 1 2 2l(l

sending one application to l and the other strictly higher, and let be thea (l) p g (l, l)B 2

measure of workers who send both applications to l. Denote by the average probabilityw̄l

that someone who applied both to l and to a strictly higher location obtains an offer at
the higher location under the original assignment . Then the new effective queue{F, G , G }1 2

length at l (given r) is simply ; i.e., it is the gross measure′m (r) p [a (l) � a (l)]/[rf(l)]l L B

of applications over the measure of firms because all high applications are effective. At
the new effective queue length isl � 1

′�m (r)l¯(1 � w )a (l) 1 � e a (l)l L B′m (r) p �l�1 ′(1 � r)f(l) m (r) (1 � r)f(l)l

since those workers who applied twice to l now apply to and l. For r close to zero,l � 1
; for r close to one, . By the intermediate value theorem, it is′ ′ ′ ′m (r) 1 m (r) m (r) ! m (r)l l�1 l l�1

possible to equalize both at some .r � (0, 1)
42 Formally, let k be a mapping such that if andk(l) p 2l � 1 l ! FLF k(l) p 2(l �

if , and adjust the assignment such that , , and′ ′˜ ˜FLF) l 1 FLF f(l) p f (k(l)) g (l) p g (k(l))1 1

.′g̃ (l, j) p g (k(l), k(j))2 2
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Consider two low locations l and in . Let be the′ ′˜ ˜l {1, … , FLF} n p f(l) � f(l )
measure of firms at these locations. Denote now by r the fraction of these firms
that are at location l. We will determine the optimality condition for r. At l
( ), let ( ) be the gross queue length and ( ) the probability that an′ ′ ′l l l w w

applicant is not available for hiring. The total number of matches is then the
matching probability of each firm multiplied by the number of firms at each
location:

′ ′�(1�w)l/(nr) �(1�w )l /[n(1�r)]n(r[1 � e ] � (1 � r){1 � e }).

When v, l, and are strictly positive,43 the optimal r is governed by the first-′l

order condition where′ ′�m �m �m ′ �mn[(1 � e ) � (1 � e ) � me � me ] p 0, m p (1 �
and . Since is strictly increasing′ ′ ′ �m �mw)l/[nr] m p (1 � w )l/[n(1 � r)] 1 � e � me

in m (and similarly for ), we have in the optimum. Therefore, these low′ ′m m p m

locations can be merged without loss of optimality.
Now consider the high locations . Every worker who applies{FLF � 1, … , 2FLF}

there also applies to the low location. Matching more workers already at the
high locations makes it easier for every remaining worker at the low location
to obtain a job. Therefore, maximizing the number of matches at {FLF � 1,

also maximizes the number of matches overall. At the high locations… , 2FLF}
the gross and the effective queue lengths coincide. By the strict concavity of

, the average matching probability at high-location firms is maximized if�l1 � e
the gross queue length is identical for all of them. This result is well known
(e.g., Shimer 2005) and follows by the same logic as in the previous paragraph
only that we do not have to worry about the probability that a worker is not
available. Therefore, by lemma A1, these locations can be merged into one
location without loss of optimality.

This leaves us with two locations, one that attracts only low (and single)
applications and one that attracts only high applications, and either we have
not changed the number of matches compared to those arising from {F, G ,1

or we have improved on them. QEDG }2

Proof of Lemma 2

Given and g with , consider the assignment with a single locationv 1 0 g 1 02

and let m be the effective queue length at this location. Now consider the case
of two locations and assign all high applications to 2 and all singleL p {1, 2}
or low applications to 1, that is, and . We can assign theg (1) p 1 g (1, 2) p 11 2

firms to both locations such that the effective queue lengths at both locations
are equalized: Let r be the fraction of firms at the high location. We have

andm p l p g /(vr)2 2 2

�l2g p g � g � g (1 � e )/l2 2 1 2 2 2
m p 1 � l p .1 1( )g � g v(1 � r)1 2

43 If , there are no firms; if or , there are no applications at a location,′v p 0 l p 0 l p 0
in which case there are no matches at that location and we can disregard this location
for our argument.
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Since for and for , there exists a such that the effectiveˆm 1 m r ≈ 0 m ! m r ≈ 1 r2 1 2 1

queue lengths at both locations are equalized. Therefore, by lemma A1 we have
, and the overall number of matches is unchanged. But the optimalm p m p m1 2

number of matches is characterized by (8), which requires , that is, am ! m1 2

strictly smaller fraction of firms at the high location compared with the assign-
ment that equalizes the effective queue lengths at both locations. QED

Optimal Entry—Derivation of Equations (10) and (11)

If , then arises and is clearly optimal. If , clearly is notg p 1 v p 0 g ! 1 v p 00 0

optimal given . The optimal entry v cannot be unbounded since the numberK ! 1
of matches is bounded by the measure of workers, but costs would grow un-
boundedly. The interior solution to the maximization problem is analyzed for
the general setup in equations (A10)–(A14) below. QED

Optimal Search Intensity—Solution to (12)

In Section III.C, we derived the optimal entry for given search intensity g. When
the number of matches is written as in (7), the maximization problem becomes

P P�m P PP �m P PP2 1max (1 � e )v (g)r (g) � (1 � e )v (g)[1 � r (g)]
g

P� v (g)K � g c(1) � g c(2),1 2

where the variables are defined as in Section III and . ByPP P Pr (g) :p r (v (g), g)
the envelope theorem, the direct effect of search intensity both on and onPv

is negligible. The derivative with respect to is thereforePPr g1

P�m1e � c(1).

The derivative with respect to , with held constant, isg g � g2 2 1

P P�m �m2 1e (1 � e ) � c(1) � c(2).

Together, these equations establish the result. QED

Proof of Proposition 1

No wage maximizes the workers’ problem (17) or (19). Therefore, atw ! u 1

such wages the market utility cannot be obtained, yielding by them(w) p 0
market utility condition. Also, , since would mean that solvesm(u ) p 0 m(w) 1 0 u1 1

neither (17) nor (19) and the market utility cannot be reached. Wages strictly
above have , since otherwise and workers would re-u m(w) 1 0 p(w)w p w 1 u1 1

ceive more than in (17) and thus more than the market utility when applying
there. Since is defined such that it optimal to send low applications (but notw̄
high applications) for wages below , (17) has to hold for all wages in¯ ¯w (u , w]1

in order to provide the market utility.
For , it is optimal to apply with the high application for wages aboveg 1 02

, and the effective queue length is therefore governed by (19). The effectivew̄
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queue length has to be continuous at ; otherwise the job-finding probabilityw̄
for workers would be discontinuous and some wage in the neighborhoodp(w)

of would offer a utility different from the market utility. Therefore, is¯ ¯w w
determined as the wage at which both (17) and (19) hold.

Even when , workers might prefer to send a second application if ag p 02

high wage were offered. Assume that the queue length would be governed by
(17) for all wages in . If , workers would(u , 1] p(w)w � [1 � p(w)]u � c ≥ u1 1 2 1

strictly like to send a second application, which contradicts equilibrium condition
2b. In this case, at higher wages the queue length is again governed by (19),
only now ensures that workers are indifferent between sending oneu p u � c2 1 2

or two applications in accordance with the market utility condition. QED

Proof of Proposition 4

It will first be shown that an equilibrium without entry exists if , whereasc 1 u*1 1

it does not exist if . Consider some (candidate) equilibrium without entry,c ! u*1 1

that is, , sustained by some function for the effective queue length.v p 0 m(7)
The function represents the firm’s conjecture about the applications it wouldm(7)
receive if it entered. By equilibrium conditions 2a and 2b, this conjecture cannot
be so high that all workers want to enter:

�m(w)1 � e
w ≤ c (A1)1

m(w)

for all , and (A1) has to hold with equality for all by thew � [0, 1] m(w) 1 0
market utility condition. Substitution into the firm’s profit function and taking
first-order conditions implies that the highest profit for an entering firm is at
wage such that , yielding profits .′ ′ ′′ �m(w ) ′ �m(w ) ′ �m(w )w e p c p(w ) p 1 � e � m(w )e1

Note that implies or , whereas conversely
′�m(w ) �m* ′1c ! u* e ! e m(w ) 1 m* c 1 u*1 1 1 1 1

implies .′m(w ) ! m*1
In case 1, we have and thereforec 1 u*1 1

′ ′′ �m(w ) ′ �m(w ) �m* �m*1 1p(w ) p 1 � e � m(w )e ! 1 � e � m*e p K,1

where the inequality follows since is increasing in m on . There-�m �m1 � e � me ��

fore, does not violate equilibrium condition 1b. Since positive entry wouldv p 0
result in marginal benefits that would not sustain any application be-u* ! c1 1

havior, there cannot be any equilibria with entry.
In cases 2 and 3 we have , and thusc ! u*1 1

′ ′′ �m ′ �m �m* �m*1 1p(w ) p 1 � e � me 1 1 � e � m*e p K.1

Therefore, cannot be an equilibrium, since a firm that would enter wouldv p 0
make strictly positive profits, violating equilibrium condition 1b. Therefore, as-
sume that an equilibrium with exists (as will be shown below). Since isv 1 0 u*1
the marginal utility at the low wage under free entry, all workers will apply at
least once since . The question is whether a high wage will also be offered.u* 1 c1 1

Let us assume that only one wage is offered and workers send only one appli-
cation. Workers do not want to deviate if it is not profitable to send another
application to the offered wage (because at other wages the queue length is
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determined by their indifference by the market utility condition). It can be
shown that a worker would deviate only if , which is�m* �m*1 1c ! e (m* � 1 � e )/m*2 1 1

stronger than . So in case 1, equilibrium conditions 2a and 2b willc ! u* � u*2 2 1

be fulfilled, and even for some parameters in case 2, workers would not start
sending additional applications even if all firms offered only one wage.

Firms might want to deviate from the only candidate for a single wage
(see [28]) despite the fact that this candidate wage is�m* �m*1 1w* p (m*e )/(1 � e )1 1

determined by their first-order condition. At high (not offered) wages the queue
length might increase fast because workers would send their high applications
if these high wages were offered, which happens in region according to¯[w, 1]
proposition 1. Since by construction the wage is optimal on , a firm¯w* [u , w]1 1

that is looking for a profitable deviation has to find the optimal wage in the
interior of . Since according to proposition 1, we have by¯[w, 1] u p c � u2 2 1

(24) the profit for a deviant that offers a wage�m �m*1P(m) p (1 � e )(1 � e ) � mc 2

in . If there is a profitable deviation, it must be profitable to deviate to¯(w, 1)
given by the first-order condition , which implies inˆ�m �m*1ˆ ˆm e (1 � e ) p c m ! m*2 2

case 2 and in case 3. Substitution leads to an optimal deviation profit ofm̂ 1 m*2

ˆ ˆ�m �m �m*1ˆ ˆP(m) p (1 � e � me )(1 � e ). (A2)

Comparing (A2) with (32) establishes that is strictly smaller than K in caseˆP(m)
2, making a deviation unprofitable, and strictly larger than K in case 3, yielding
a strictly profitable deviation (the wage associated with is indeed above inˆ ¯m w
case 3). Therefore, an equilibrium with one wage exists in case 2 (and entry is
such that ), and not in case 3.v p 1/m*1

Finally, it is immediate that in case 2 an equilibrium with two wages cannot
exist because, by , the marginal utility of the second application isu* � u* ! c2 1 2

too low, whereas an equilibrium with two wages exists in case 3 since u* �2

(with entry , and ).�m*2u* 1 c v p v � v v p 1/m* v p [1 � (1 � e )/m*]/m*1 2 1 2 2 2 1 2 1

Therefore, in case 2 every worker sends one application to the firm with the
unique wage, and in case 3 every worker sends two applications, one for each
of the two wages. Uniqueness is then ensured by lemma 3. QED

Extended Setup for Section V

This section generalizes the setting to the case in which workers can send any
number of applications, at a cost . We have , increasing mar-i � � c(i) c(0) p 00

ginal costs , and the largest integer N such that . Sincec p c(i) � c(i � 1) c(N ) ≤ 1i

many arguments are straightforward generalizations of that special case, I focus
mainly on the changes that are necessary to adapt the prior setup.

The extension requires mainly adaptations of the workers’ setup, whereas it
remains essentially unchanged for firms. The workers’ strategy is now a tuple
(g, G), where and , whereN ig p (g , g , … , g ) � D G p (G , G , … , G ) � # F0 1 N N 1 2 N ip1

is the N-dimensional unit simplex and the set of cumulative distributioniD FN

functions (CDFs) over . The term denotes the probability of sending ii[0, 1] gi

applications, and denotes the CDF over that describes the applicationiG [0, 1]i

behavior. Let satisfy and let denote the marginalj…(w , … , w ) w ≤ w ≤ ≤ w G1 i 1 2 i i

distribution of over . A worker who applies for attains in analogyG w (w , … , w )i j 1 i
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to (16) the utility

ii

U(w , … , w ) p [1 � p(w )] p(w )w � c(i). (16 ′)� �i 1 i k j j{ }
kpj�1jp1

A worker who applies nowhere attains . Instead of (1′) the relevant con-U p 00

dition is now

wN i

j ˜ ˜g G (w) p v l(w)dF(w). (1′′)� �i i �[ ]
ip1 jp1 0

To specify in the extended setup, consider a firm at wage w that receivesw(w)
an application and let denote the probability that the sender appliedˆ ˜G(wFw)
with his other applications for wages weakly below . If the sender sent˜N � 1 w
only other applications, then we code (only for this definition) thei ! N � 1
additional applications as going to wage �1. So ˜ ˜N � 1 � i w p (w , … ,1

. Let count the number of applications sent toN�1˜ ˜w ) � ([0, 1] ∪ {�1}) h(wFw)N�1

firms with wage w when the worker applies for and w. Replacing (5′), we noww̃
specify

˜h(wFw)1 � [1 � p(w)] ˆ˜ ˜w(w) p 1 � [1 � p(w )] dG(wFw). (5 ′′)�� j{ }˜ ˜ 1p(w)h(wFw) w wj

The product describes the probability that the applicant does˜� [1 � p(w )]j˜ 1w wj

not take a job at a strictly better wage. Its multiplier gives the probability that
a worker does not turn down a job offer because of a job at another firm with
the same wage, conditional on failing at higher wages (see, e.g., Burdett et al.
2001, eq. [6]). Then the integrand gives the probability that the worker takes
the job at a different firm.

The definitions for all other variables, that is, m, p, h, and p, remain unchanged.
With these adjustments the equilibrium definition extends to this section.

Proof of Proposition 5

Consider some (candidate) equilibrium with some g that we fix for the moment.
Denote by the highest integer for which . Straightforward generalizationî g 1 0i

of proposition 1 yields

¯p(w) p 1 G w � [0, w ] (A3)0

and

¯ ¯p(w)w � [1 � p(w)]u p u G w � [w , w ] G i � {1, … , N }, (A4)i�1 i i�1 i

where for all , , andˆu { max p(w)w � [1 � p(w)]u i � {1, 2, … i} u { 0i w�[0,1] i�1 0

. The market utility condition implies that workers cannot receive morew̄ p u0 1

than the market utility, which implies that for . Indifferenceˆu � u p c i 1 ii i�1 i

then yields . If this is in [0, 1], it gives the2w̄ p u � (u � u )/(u � u � c )i i�1 i i�1 i i�1 i�1

appropriate boundary; otherwise is empty.¯ ¯[w , w ]i i�1

Using (A4), we can rewrite the firms’ profits at wage with¯ ¯w � [w , w ]i�1 i

asw̄ ! 1i�1
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�mP(m) p (1 � e )(1 � u ) � m(u � u ), (A5)i�1 i i�1

where . The logic is similar to (24). If , the profit is trivially¯m p m(w) w p 1i�1

zero. Proposition 2, stating that there exists no equilibrium in which only one
wage is offered, can now easily be shown with similar techniques whenever

for some . By a similar argument, it is straightforward that at least ig 1 0 i 1 1i

wages have to be offered in equilibrium whenever . Given that (A5) isg 1 0i

strictly concave, it is also immediate that all firms within the same interval offer
the same wage, yielding exactly wages when some workers send applications.ˆ ˆi i

Call the group of firms that end up offering the ith-highest wage group i and
index all their variables accordingly. It is convenient to denote by î

G p � gi kkpi

the fraction of workers who apply to at least i firms. Then at wage i the probability
of retaining an applicant is

ˆ ji
gj1 � w p (1 � p )� �i k[ ]jpi G kpi�1i

since a fraction of applicants send j applications and do not get a betterg /Gj i

job with probability . The effective queue length at wage i is givenj� (1 � p )kkpi�1

by , where is the gross queue length. For , the uniqueˆm p (1 � w)l l p G/v i ! ii i i i i i

offered wage in is obtained by the first-order conditions of (A5):¯ ¯[w , w ]i�1 i

�miu � u p e (1 � u ). (A6)i i�1 i�1

Therefore, (A5) can be rewritten as

�m �mi iP p (1 � e � m e )(1 � u ). (A7)i i i�1

Free entry implies that , which together with (A6) implies thatP p K m p m*i i i

and as defined in (34) and (35). By an argument similar to that foru p u*i i

(31) and (32), the condition defines for a given search intensity g theP p Ki

unique measure of firms in each group. Existence and—except for the casevi

in which —uniqueness follow by similar arguments as in the casec p u* � u*i* i i�1

of at most two applications.
To show constrained efficiency, first consider search efficiency for given g and

v. Let still denote the highest index such that . First consider a plannerî g 1 1î

that uses only locations with firms at each location and assigns applicationsî rvi
such that a worker who applies to i firms applies once to each of the lowest i
locations and accepts an offer from a higher location over an offer from a lower
location. Call an allocation of firms across locations that leads to the maximum
number of matches -location-efficient. Compare two adjacent locations i andî

with a total measure of firms . It will be shown that the onlyi � 1 n p v � vi i�1

efficient way of dividing this measure up between the two locations is the equi-
librium division. The maximal total number of matches within these locations
is given by

�m �mi�1 imax M(r) p n(1 � r)(1 � e ) � nr(1 � e ). (A8)
r�[0,1]

It can be shown that a boundary solution cannot be optimal, since it means that
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one application is wasted. Noting that

g Gi�1 i1 � w p � (1 � w)(1 � p ) ,i�1 i i
G Gi�1 i�1

we can write andm p (1 � w)li i i

g Gi�1 i
m p � (1 � w)(1 � p ) l .i�1 i i i�1[ ]G Gi�1 i�1

The first derivative is then

dM(r) 1 dl i�1�m �m �mi�1 i i�1p �(1 � e ) � 1 � e � e (1 � r)(1 � w )i�1[dr n dr

G dp dli i i�mi� (1 � w) l � e r(1 � w) .i i�1 i]G dr dri�1

We can use substitutions similar to those for (8), with the adjustment that now
, to show that the last term equals , and2 �midm /dr p �m /r p �nm /[(1 � w)G] �m ei i i i i i

the last summand in the first line reduces to . There-�m �m �mi�1 i ie [m � (1 � e � m e )]i�1 i

fore, we obtain the first-order condition

dM(r)
�m �m �m �m �mi�1 i�1 i i i�1p �(1 � e � m e ) � (1 � e � m e )(1 � e ) p 0. (A9)i�1 i

ndr

For given v this uniquely characterizes the optimal interior r, since substitutions
similar to those above yield

2 2 �m �m �m �m �m 22 1 1 2 2d M m e (1 � e ) e (1 � e � m e � m )2 2 1p �n � ! 0.2 [ ]dr r 1 � r

A construction similar to that in the proof of proposition 1 shows that locationsî
are sufficient to achieve the constrained optimal outcome.

Next, we establish that the entry of firms and the measure of firms at each
wage under equilibrium conditions 1a, 1b, 2a, and 3 yield optimal entry and
optimal application decisions simultaneously, taking g as given. Let r(v) p

be the fraction of firms in each of the locations underˆ(r (v), r (v), … , r (v)) iˆ1 2 i

constrained optimal search given v and g (the planner superscript, P, that was
used in Sec. III is suppressed). Again let denote the constrainedPM (g, v, r(v))
efficient number of matches given v and g. Similar to (9), the objective function
is given by . When , then ensures that theP ˆmax M (g, v, r(v)) � vK i 1 0 K ! 1v≥0

optimal solution neither is zero nor is unbounded. In the following it is shown
that the first-order condition uniquely determines the solution and corresponds
to the free-entry condition.

By the envelope theorem, the impact of a change of the fraction of firmsr(v)i

at each location on the measure of matches can be neglected; that is,
at the -location-efficient . We get as first-order con-P ˆ(�M /�r)(dr /dv) p 0 i ri i i

dition
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PdM (g, v, r)
p K, (A10)

dv

where . Writingr p r(v)

ˆ ii

PM (g, v, r) p 1 � g (1 � p ) ,� �i j[ ]ip1 jp1

we have

î iPdM (g, v, r) dpjp g (1 � p )� � �i k{ [ ]}ip1dv dv k≤i,k(jjp1

î dpip G(1 � w) (1 � p ) , (A11)� �i i k[ ]ip1 !dv k i

where the equality line is obtained by rearranging the terms for each . Todp /dvi

simplify notation, define the partial sum

N dpi
y p G(1 � w) (1 � p ) . (A12)′ � �i i i k[ ]′ !dv k ii≥i

Since , we haveˆ�mip p (1 � e )/mˆ ˆi i

dp 1 dmˆ ˆi iˆ ˆ�m �mi ip � (1 � e � m e ) .î( ) ( )2dv m dvî

Since , we havem p g /(r v)ˆ ˆ ˆi i i

dm g r mˆ ˆ ˆ ˆi i i ip � p � .2dv r v gˆ ˆi i

So we get

ˆ ˆ�m �mi idp r (1 � e � m e )ˆ ˆ ˆi i ip � .
dv gî

Noting that , we have established thatG (1 � w) p gˆ ˆ ˆi i i

ˆ ˆ�m �mi iy p r (1 � e � m e ) (1 � p ) (A13)ˆ ˆ ˆ �i i i k
ˆ!k i

holds at the highest location . By induction we can establish the followingî
lemma, which can be proved subsequently because it would distract from the
argument at this point.

Lemma A2. For all i it holds that

N

�m �mi iy p r (1 � e � m e ) (1 � p ). (A14)� �( )i k i k
!j ikpi

This implies that . The first-order conditionm �m1 1y p 1 � e � m e y p K1 1 1

uniquely defines and corresponds to the free-entry condition of the lowest-m1
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wage firms. By (A9) it also determines uniquely for all , whichˆm i � {2, … , i}i

in turn determines uniquely for all . Thus equilibrium entry andˆv i � {1, … , i}i

search are constrained optimal given g.
Finally, when we endogenize g, again note that the number of applications

of other workers in equilibrium is not important for the marginal benefits of
each individual worker, which are always by free entry. Therefore, againu* � u*i i�1

the decision on the number of applications is constrained efficient, establishing
constrained efficiency overall. QED

Proof of lemma A2. It is left to show that the following holds for all i � {0,
:ˆ… , i � 1}

î

�m �mi�1 i�1( )y p r (1 � e � m e ) (1 � p ). (A15)� �i�1 k i�1 k
kpi�1 !k i�1

It clearly holds for by (A13). Now assume that (A15) holds for someˆi p i � 1
i. We know that

dpi
y p y � G(1 � w) (1 � p ). (A16)�i i�1 i i k

!dv k i

The second summand can be written as

�m �mi idp 1 � e � m e dmi i i(1 � p ) p � (1 � p ) . (A17)� �k k2 [ ]
! !dv k i m dv k ii

Since

ˆ ji
gj

m p l (1 � w) p l (1 � p ) ,� �i i i i k{ [ ]}jpi G kpi�1i

write the term in brackets in (A17) as

dm l y G(1 � w)i i i�1 i i(1 � p ) p � (1 � p )� �k k2
! !dv k i G(1 � p ) rv k ii i i

2l y r mi i�1 i ip � (1 � p ).� k
!G(1 � p ) G(1 � w) k ii i i i

Observing that , we can substitute the prior�m �m �mi i i(1/m )(1 � e � m e ) p p � ei i i

equation into (A17) and multiply by to getG(1 � w)i i

�midp p � ei i �m �mi iG(1 � w) (1 � p ) p y � r(1 � e � m e ) (1 � p ).� �i i k i�1 i i k
! !dv k i 1 � p k ii

Substitute this into (A16), and use induction hypothesis (A15) and the property
of -group-efficient search in (A9) to obtainî

N

�m �mi iy p r (1 � e � m e ) (1 � p ). (A18)� �( )i k i k
!k ikpi

QED
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Proof of Proposition 6

First the following is shown: For , the (weakly) shorter side of the marketi* r �
gets matched with probability approaching one. Since equilibrium search is
always more efficient than a process of random applications (as would happen
if all firms offered the same wage), it will suffice to show this for the latter. As

, it cannot happen that workers and firms both are matched with prob-i* r �
abilities bounded away from one. If that were the case, then some fraction

of firms would always remain unmatched. But then the chance that aa 1 0
worker applies to such a firm with any given application is a, so that the prob-
ability that he applies to such a firm with at least one of his applications converges
to one. This yields a contradiction, since he gets matched for sure when he
applies to a firm that lacks another applicant (maybe at another firm; if not,
then for sure by this firm by stability). With unequal measures of workers and
active firms, it is obviously the shorter side whose probability of being matched
converges to one; with equal measures the probability of being matched is the
same, and agents from both sides get matched with probability converging to
one.

For the next arguments, recall that the marginal utility gain (excluding the
marginal application cost) of the th application, given by , convergesi* u* � u*i* i*�1

to zero as . This will be used to establish the limit for the average wagei* r �
if firms are either on the long or on the short side of the market.

Case 1: The following will be proved: If firms are strictly on the short side of
the market, then it has to hold that . Firms being strictly on the shortw(i*) r 0
side means that there exists a subsequence of ’s such that for alli* v(i*) ! 1 � e

and some . That implies for some . If , then therei* e 1 0 j(i*) ! a a ! 1 w(i*) r� 0
exists a subsequence and some such that and (sinceq 1 0 w(i*) r q p(i*) r 1 � q

the first step proved that when firms are on the short side). Nowh(i*) r 1
consider a deviant firm that always offers wage . As workers send more′w p q/2
applications, the hiring probability for the deviant has to converge to one. The
reason is that for workers the marginal utility of sending the last application
converges to zero, which implies that the probability of getting the job at the
deviant firm has to become negligible; otherwise each worker would like to send
his last application there to ensure against the probability of not being1 � a

hired. With the hiring probability approaching one, the profit of the deviant
converges to ; that is, the deviation is profitable. Thus, it has to hold1 � q/2
that .w(i*) r 0

Case 2: The following will be proved: If firms are strictly on the long side of
the market, then . Assume that there exists a subsequence of ’s suchw(i*) r 1 i*
that for all and some . In this case for somev(i*) 1 1 � e i* e 1 0 h(i*) ! a a !

and all . If , then there exists a subsequence and some such1 i* w(i*) r� 1 q ! 1
that and . Consider a firm that always offers wagew(i*) r q p(i*) r p ≤ a(1 � q)

such that . Again, the hiring probability of the de-′ ′w � (q, 1) 1 � w 1 a(1 � q)
viant converges to one because if there were a nonnegligible chance of getting
the job at , workers would rather send their last application to this higher′w
than average wage. This means that the deviant’s profit converges to , so′1 � w
the deviation is profitable. Therefore, .w(i*) r 1

This immediately implies that . Otherwise a subsequence of ’s ac-v(i*) r 1 i*
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cording to either case 1 or case 2 has to exist; but in case 1 profits are above
entry costs and in case 2 they are below entry costs, violating the free-entry
condition. Finally, since and firms get matched with probability closev(i*) r 1
to one, the free-entry condition implies that the average paid wage has tow(i*)
converge to . This directly implies that .1 � K u* r 1 � Ki*

The final task is to show that each worker’s search costs converge to zero,
and therefore . Rewrite the workers’ utility asi*U *(i*) p u* � c (i*) r 1 � Ki*

i I i* *
i* i* i*U *(i*) p (u* � u* � c ) p (u* � u* � c ) � (u* � u* � c )� � �i i�1 i i i�1 i i i�1 i

ip1 ip1 ipI�1

for some , where again denotes the marginal cost ofi* i* i*I ≤ i* c p c (i) � c (i � 1)i

sending in the application and . For a given i the difference isu { 0 u* � u*0 i i�1

simply a number independent of (and the associated cost function). It con-i*
verges to zero for large i, which entails that . Because of in-u* � u* r 0i* i*�1 i*r�

creasing marginal costs and the optimality of sending applications, we havei*
for all , which together with only re-i* i*c ≤ c ≤ u* � u* i ≤ i* u* � u* r 0i i* i* i*�1 i* i*�1 i*r�

states that we consider changing cost functions with . Therefore, thei*c r 0i i*r�

partial sum

I I

i*(u* � u* � c ) r (u* � u* )� �i i�1 i i*r� i i�1
ip1 ip1

for any fixed . On the other hand, we haveI � �

i �*
i*0 ≤ (u* � u* � c ) ≤ (u* � u* ),� �i i�1 i i i�1

ipI�1 ipI�1

but since . Therefore,� �� (u* � u* ) r 0 � (u* � u* ) ≤ 1i i�1 Ir� i i�1ipI�1 ip1

I i*
i* i*lim U(i*) p lim lim (u* � u* � c ) � (u* � u* � c )� �i i�1 i i i�1 i[ ]∗ ∗ ip1 ipI�1i r� Ir� i r�

�

p (u* � u* ) p lim u* p 1 � K.� i i�1 i*
∗ip1 i r�

QED
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