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Abstract

We develop a model of decentralized monetary exchange that can be used to exam-

ine the distributional effects of inflation across heterogeneous agents who have private

information. The private information can be about the productivity, preferences, or

money holdings of the agents. Matching is multilateral and each seller is visited by a

stochastic number of buyers. The good is allocated according a second-price auction in

money. In equilibrium, homogeneous buyers hold different amounts of money leading

to price dispersion. We find the closed-form solution for the distribution of money hold-

ings. Entry of sellers is suboptimal except at the Friedman rule. When agents differ

in productivity, inflation acts as a regressive tax, at least for moderate rates of money

growth.

1 Introduction

We develop a model of decentralized monetary exchange that can be used to examine the

distributional effects of inflation across heterogeneous agents who have private information.

The private information can be about the productivity, preferences, or money holdings of

∗We thank Randy Wright for his support and encouragement. We benefitted from the comments of our
editor Steve Williamson, an anonymous referee as well as Ed Green, Guillaume Rocheteau, Gustavo Ventura,
Neil Wallace and Ruilin Zhou, and conference and seminar participants. Earlier versions of this paper were
circulated under the titles “Directed Multilateral Matching in a Monetary Economy” and “Dispersion of
Money Holdings and Efficiency.”

†Corresponding author. e-mail: manolis@psu.edu
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the agents. A version of the model with two productivity types predicts that inflation is a

regressive form of taxation.

To study the distributional effects of inflation, it is useful to have an environment with

private information about agents’ types. Under complete information the results may be

biased because an agent’s type generally affects his terms of trade and hence the incentives for

holding money. Most models in the monetary-search literature assume complete information

about all the payoff relevant variables, e.g. productivity, preferences, or money holdings, to

allow the terms of trade to be determined through bargaining (see Trejos and Wright (1995)

and Shi (1995)). Since bilateral matching is typically assumed (Kiyotaki and Wright (1993)),

bargaining is a natural allocation mechanism.

To deal with private information we model decentralized trade in a different way. In each

period every agent who wants to consume (a buyer) visits at random one of the agents who

can produce (a seller).1 This results in stochastic demand at a given seller’s location. We

fix the supply of each seller at a single indivisible good in order to use auctions to determine

the allocation. The number of sellers in the market is determined by a free entry condition.

Anonymity makes fiat money essential for trade in these meetings. We embed this framework

in the environment of Lagos and Wright (2005), henceforth LW.

We assume that the good is allocated according to a second-price auction.2 This mech-

anism lends itself to the natural interpretation of intra-buyer competition for the good: the

buyers who visit the same seller bid up the price, as in an ascending bid auction whose out-

come is identical to a second-price auction. The result is that the buyer with most money

purchases the good and the price he pays is equal to the second highest money holdings in

the match. Stochastic demand conditions at a given location lead to uncertainty for buyers

about the market-clearing price. As a result, buyers face a non-trivial choice of liquidity since

the good can occasionally be purchased with little money.3

Our first set of results concern the case where agents are homogeneous. We show that in

the unique equilibrium, despite homogeneity, buyers bring different amounts of money to the

search market and we derive the closed-form solution for the distribution of money holdings.

1A similar matching process is proposed in Goldberg (2007). Our framework does not suffer from the
criticism that models in which buyers do not know where to purchase their desired good are not conducive
to the study of monetary exchange (Howitt (2005)). The same criticism is dealt with in Corbae, Temzelides
and Wright (2003) where matching is explicitly directed.

2Julien, Kennes and King (in press) consider second-price auctions in a setting with indivisible money
and Green and Zhou (2002) use double auctions in bilateral matches. Camera and Selcuk (2005) develop a
non-monetary model where the trading price depends on the stochastic number of buyers that a seller faces.

3More generally, in order to clear the market, prices need to adjust to realized demand conditions at each
location. We propose the lowest price such that demand equals supply (for a similar interpretation of auctions
see Demange, Gale and Sotomayor (1986)). In the conclusions we discuss the possibility of using different
auctions for allocating the good. We conjecture that any standard auction yields the same qualitative results,
but we use the second-price auction because it is easier to analyze.
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Bringing more money increases the probability of consuming but it is costly because the value

of any unspent balances depreciates over time due to inflation and discounting. Dispersion

in money leads to dispersion in prices and we explicitly characterize the realized distribution

of prices in the market.4 The main efficiency result is that entry is suboptimal except when

the money supply contracts at the rate of time preference – the Friedman rule.

When agents are permanently heterogeneous in their productivity levels we show that

more productive buyers hold higher balances since they face lower utility costs of earning

money. Higher inflation leads to lower seller entry (increased scarcity) which reduces welfare

for all buyers. When inflation is below a threshold, low productivity buyers are hurt more

from an increase in the rate of money growth despite the fact that they hold less money. Low

productivity buyers are the first to be priced out of the market when scarcity increases: they

are always outbid by their high productivity competitors who they face more often when

scarcity is more acute. If the inflation rate is very high, the low productivity buyers hardly

trade at all and therefore any additional increase in money growth has little effect on them.

Erosa and Ventura (2002) and Albanesi (2007) examine, and present evidence for, the re-

gressive effect of inflation in models without explicit micro-foundations for fiat money. Private

information is a feature of Faig and Jerez (2006) and Ennis (in press) where buyers are subject

to idiosyncratic taste shocks and sellers screen customers by offering price-quantity menus.

Both papers consider buyers who are ex ante homogeneous and are primarily interested in

the distortions caused by inflation rather than its distributional effects on permanently het-

erogeneous agents. Satterthwaite and Shneyerov (2006) introduce multilateral matching and

auctions to deal with private information in a non-monetary environment of decentralized

trade. Our uniqueness and efficiency results are closely related to the competitive search

market structure of Rocheteau and Wright (2005). Our setting is related to the budget con-

strained auctions examined in Che and Gale (1998) because buyers will, in general, choose

to hold less money than their actual valuation for the good.

The rest of the paper is organized as follows. Section 2 describes the model and proves

some preliminary results. The following section solves for the equilibrium when all agents are

homogeneous and examines the efficiency properties of inflation. Section 4 introduces het-

erogeneity in productivity and examines the distributional effects of inflation on the different

types of agents. Section 5 touches on robustness issues and concludes.

4Dispersion of money holdings is typically a feature of models where an agent’s money holdings do depend
on his history of trades, e.g. Molico (2006), Green and Zhou (2002), or Camera and Corbae (1999). Price
dispersion is also an equilibrium outcome of the monetary model of Head and Kumar (2005) where it is due
to the informational asymmetries among buyers.
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2 The Model

Time is discrete and runs forever. Each period is divided in two subperiods, following LW:

a Walrasian market characterized by competitive trading and a search market characterized

by trading frictions that are modeled explicitly. There is a continuum of infinitely-lived

agents who differ across two dimensions. They have potentially different productivity in the

Walrasian market and they belong to one of two groups in the search market, called buyers

and sellers. In the Walrasian market all agents produce and consume but in the search

market a buyer can only consume and a seller can only produce. Meetings in the search

market occur between subsets of the population in a way described in detail below and they

are characterized by two main frictions. First, all meetings are assumed to be anonymous

which precludes credit. Hence all trades have to be quid pro quo. Second, there is no double

coincidence of wants, as is clear from the assumptions on agents’ types: some agents can only

produce while others can only consume. Therefore, the agents cannot use barter to trade.

These frictions mean that a medium of exchange is essential for trade (see Kocherlakota

(1998) and Wallace (2001)).

There is a single storable object, fiat money, which can be used as a medium of exchange

in the search market. The stock of money at time t is given by MS
t and it is perfectly divisible.

The money stock changes at gross rate γ, so that MS
t+1 = γ MS

t , and new money is introduced,

or withdrawn if γ < 1, via lump sump transfers to sellers in the Walrasian market.5 We focus

on policies with γ ≥ β δ, where β δ is the discount factor as discussed below, since it is easy

to check that there is no equilibrium otherwise. To examine what happens when the rate of

money growth is exactly equal to the discount factor (the Friedman rule) we take the limit

of equilibria as γ → β δ.

We denote the productivity distribution by Y (·) and the measure of buyers and sellers

by B and S, respectively. An agent’s type is given by yk ∈ suppY (·)× {b, s} where y is his

Walrasian market productivity and b and s denote a buyer and a seller, respectively. Let

W yk
t (m) be the value of an agent of type yk who enters the Walrasian market at time t

holding m units of money. His instantaneous utility depends on consumption, x, and hours

of work, h. We assume that preferences are quasi-linear and take the form U(x)− h, where

U ′(x) > 0 and U ′′(x) < 0 for all x and limx→0 U ′(x) = ∞, limx→∞ U ′(x) = 0. An hour

of work produces y units of the consumption good x. Let β be the discount rate between

the Walrasian and search markets and denote the value of carrying m′ dollars to the search

market of period t by V yk
t (m′). The agent’s value function in the Walrasian market at time

5In an earlier version of the paper we considered the case where both buyers and sellers receive transfers
(see Galenianos and Kircher (2006)). This turns out not to matter for the equilibrium characterization but
the analysis is somewhat simpler when buyers do not receive transfers.
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t is

W yk
t (m) = max

x,h,m′
[U(x)− h + β V yk

t (m′)] (1)

s.t. x ≤ y h + φt(T̂
k
t + m−m′),

where φt is the value of money in consumption terms and T̂ k
t is the nominal monetary transfers

to (or from) an agent, where T̂ s
t = (γ − 1) Mt−1/S and T̂ b

t = 0.6

It will prove useful to first solve some of the non-monetary decisions of the agents and

then concentrate on the more interesting choices relating to money holdings. Substituting

the constraint with equality into equation (1) gives

W yk
t (m) =

φt (T̂ k
t + m)

y
+ max

x,m′
[U(x)− x + φt m′

y
+ β V yk

t (m)].

The quasi-linearity of preferences eliminates wealth effects simplifying the problem of the

agent significantly: current balances, m, have no effect on the choices of consumption or

future money balances.7 Our assumptions on U(·) ensure that U ′(x∗y) = 1/y is a necessary

and sufficient condition for the optimal choice of x. We can rewrite the problem as

W yk
t (m) =

φt (T̂ k
t + m)

y
+ U∗

y + max
m′

[−φt m′

y
+ β V yk

t (m′)], (2)

where U∗
y = U(x∗y)− x∗y and U ′(x∗y) = 1/y.

The choice of future money balances is more involved and we first describe the search

market in order to see the relevant incentives.

The search market operates as follows. First, each seller decides whether to incur utility

cost K > 0 in order to enter the search market. We interpret K as a production cost that

has to be undertaken prior to matching with buyers and endows the seller with a single

indivisible unit of the good. The good is perishable, can be transferred at zero cost and the

utility to the seller of consuming his own good is zero while the utility that a buyer receives

is given by u > K. Indivisibility aside, the other assumptions about the good are tailored

so that the seller’s reservation price is zero. Having a strictly positive reservation price does

not significantly change our results but it complicates the analysis.

The sellers who enter the search market set up their shop at some physical location.

6We only examine equilibria with h > 0 and hence we ignore the non-negativity constraints on h. One
can impose conditions on the primitives to guarantee that this holds, as shown in LW.

7For the same reason, our assumption on how transfers are distributed is innocuous: it does not affect
any of the monetary choices that we are interested in, although it does affect the agents’ level of utility.
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There is a continuum of locations each accommodating at most one seller. We denote the

buyer-seller ratio at time t by λt. We assume that the measure of potential sellers, S, is large

enough so that λt is determined by an indifference condition for entry. We normalize the

measure of buyers to 1 so that 1/λt gives the measure of sellers who enter the search market.

This normalization is without loss of generality, as the next paragraph makes clear.

We begin by analyzing the buyer’s problem for a fixed λt and we then allow for the

free entry of sellers. When entering the search market, a buyer visits at random one of

the locations that are populated with sellers. This assumption can be formulated as an

equilibrium of a broader game where buyers strategically choose which seller to visit: if

every other buyer picks a seller at random, it is a best response to randomize as well.8 Our

matching process implies that the number of buyers that visit a particular seller is a random

variable, and hence demand is stochastic while supply is fixed at one unit. Therefore, the

good may get rationed and some of the buyers may end up not consuming. Before proceeding

to describe the allocation process, note that we have urn-ball matching and so the number

of buyers follows a Poisson distribution with parameter λt.
9 This matching function exhibits

constant returns to scale and therefore the buyer-seller ratio is the only relevant statistic for

the matching probabilities.

The way the good is allocated is the main innovation of this paper: we assume that a

second-price auction takes place. The seller accepts any non-negative bids since his reser-

vation price is zero. All buyers have the same valuation for the good, but they may hold

different amounts of money. In a second-price auction a buyer’s dominant strategy is to bid

his money holdings, except when the money’s value exceed his valuation of the good which

we will show can never occur since the sole purpose of holding fiat money is to buy the search

market good. We focus on equilibria where buyers follow dominant strategies. The outcome

of the auction is that the buyer with most money (or one of the buyers with the highest

money holdings in the case of a tie) buys the good and the price that he pays is equal to

the second highest money holdings in the match. If a single buyer appears at some location

then he gets the good at a price of zero. This mechanism balances demand and supply at

the lowest price that clears the market, i.e. the lowest price such that exactly one unit of

the good is demanded. The underlying idea is that a buyer makes price bids that can be

matched by the other buyers who have visited the same location, as in an ascending bid (or

second-price) auction. A difference with respect to bilateral matching is the seller receives a

8We want to abstract from the repeated game effects that may arise if a buyer meets with the same seller
at each period’s search market. One way to do this is to assume sellers populate a random location every time
they enter; alternatively, we can assume that it is not the same sellers who enter the market every period.

9Suppose k buyers are allocated randomly across l sellers. The number of buyers that visit a given seller
follows a binomial distribution with probability 1/l and sample size k. As k, l → ∞ keeping k/l = λ the
distribution converges to a Poisson distribution with parameter λ.
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positive share of the surplus due to the presence of many buyers at the same location even

though the winning buyer makes what amounts to a take-it-or-leave-it offer.

The incentives to hold money are now clear: holding more money increases the proba-

bility of consuming since it allows a buyer to outbid more of his potential competitors; on

the other hand it is costly because the value of any unspent money balances depreciates over

time due to discounting and inflation. It is also worth noting that the reason why an agent

may not spend his fiat money is very different than in most of the monetary search literature.

In this paper, the amount of money that a buyer ends up spending depends on how many

other buyers visit the same location and on how much money they hold. Hence, despite the

fact that a buyer is matched with some seller with probability one, he does not in general

spend all of his money. In most of the literature the cost of liquidity arises from the buyer’s

failure to meet someone whose good he wants to buy.

We now characterize the buyers’ value function. Whether a buyer transacts, and at what

price, depends on how many other buyers have visited the same location and on how much

money they hold. Hence we need to introduce some additional notation to describe the money

holdings of all buyers: aggregating the choices of m′ across buyers gives the distribution of

money holdings at the end of Walrasian trading (or, equivalently, at the beginning of the

search market) which we denote by F̂t(·).
Let V yb

t (m, n) denote the expected payoff of a productivity-y buyer who holds m dollars

and meets n other buyers at the location that he visits. The probability that he meets exactly

n competitors is P t
n = λn

t e−λt/n! due to Poisson matching. The value of entering the search

market with m dollars is thus given by

V yb
t (m) =

∞∑
n=0

P t
n V yb

t (m,n). (3)

To calculate V yb
t (m, n), let m(n) be the highest money holdings among the n competitors that

the current buyer faces. If m < m(n) the buyer with m dollars does not transact and he keeps

all his money for the next Walrasian market. If m > m(n) the buyer with m dollars buys

the good and pays m(n) to the seller. If m = m(n) there is a tie and the good is allocated

at random to one of the buyers with m(n) dollars who then transfers his full money holdings

to the seller. Therefore, m(n) is the only statistic we need in order to calculate the expected

payoff of a buyer who faces n competitors.

The money holdings of each competitor is a random draw from F̂t(·) since buyers are

allocated at random across sellers. The highest money holdings among the n other buyers

is the highest order statistic among n iid draws from F̂t(·) which is distributed according
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to F̂t(·)n.10 Observe that the probability that two randomly chosen buyers hold exactly the

same amount of money is zero unless F̂t(·) has a mass point at that level. To denote this

possibility we define µt(m) ≡ F̂t(m)− F̂t(m
−), where F̂t(m

−) = limm̃↗m F̂t(m̃). This implies

that µt(m) > 0 if and only if there is a mass point at m. Conditional on all n competitors

holding weakly less than m dollars, the number of buyers (out of n) who have exactly m

dollars follows a binomial distribution with sample size n and probability µt(m)/F̂t(m).11

Let qnl
t (m) denote the probability that l out of the other n buyers hold exactly m dollars

conditional on none of them having more than m dollars. If there is no mass point at m,

then qn0
t (m) = 1 and qnl

t (m) = 0 for l ≥ 1.

The value of meeting n competitors at time t when holding m dollars is given by

V yb
t (m, n) = [1− F̂t(m)n] δ W yb

t+1(m) +∫ m−

0

[u + δ W yb
t+1(m− m̃)] dF̂t(m̃)n +

F̂t(m)n

n∑
l=1

qnl
t (m) [

u + δ W yb
t+1(0)

l + 1
+

l δ W yb
t+1(m)

l + 1
], (4)

where δ is the discount factor between the search and Walrasian markets. The term in the

first square brackets gives the probability that at least one competitor holds strictly more

money than m dollars, which means that the current buyer does not purchase the good and he

keeps his money for next period’s Walrasian market. The second term denotes the expected

payoff when all other buyers hold strictly less money and hence the buyer with m dollars gets

the good and pays the second highest amount. The integral gives the instantaneous utility

from consuming the good, u, plus the continuation value after accounting for the payment.

Finally, if none of the competitors bring more than m dollars but l ≥ 1 of them hold exactly

m dollars, then with probability 1/(l + 1) the current buyer gets the good, consumes, and

continues to the next Walrasian market without any money; with probability l/(l + 1) he

does not purchase the good and he keeps all his money for the next period. It should be clear

from this discussion that the probability of a purchase is discontinuous at m if F̂t(·) has a

mass point at that level. Moreover, as mentioned above, the last term of equation (4) drops

out if there is no mass point at m. We have completed the description of the buyer’s problem.

We now turn to the sellers. Sellers can derive no benefit from holding money and therefore

10This is a standard result from statistics. For instance, see Hogg and Craig (1994).
11Conditional on all buyers holding weakly less than m dollars, the money holdings of an agent is a random

draw from F̂t(·) truncated at, and including, m. Hence, the probability that the result of any draw is exactly
equal to m is given by µt(m)/F̂t(m). The binomial distribution follows since there are n draws.
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they carry no money to the search market. We assume that y = 1 for all sellers since their

productivity does not affect their decisions in any interesting way. A seller can choose whether

to enter the search market or not. If he enters, he gives up K units of utility and may earn

some revenues to spend in the following Walrasian market. Let Π̂t be the seller’s expected

revenues if he enters the search market at time t. Π̂t is a sufficient statistic for the value

of entry because W 1s
t (·) is linear in money. If the seller does not enter, he continues to

the following Walrasian market without money. As a result, the seller’s value of the search

market is given by

V 1s
t = max{−K + δ W 1s

t+1(Π̂t), δ W 1s
t+1(0)}.

In equilibrium sellers are indifferent between the two options which means that, using equa-

tion (2), the following condition has to hold for all t:

δ φt+1 Π̂t = K. (5)

To determine Π̂t, note that the price a seller receives is equal to the second highest

money holdings among the buyers that show up in his location. When n buyers visit a par-

ticular seller, the second highest order statistic is distributed according to F̂
(n−1, n)
t (m) =

n F̂t(m)n−1 [1−F̂t(m)]+F̂t(m)n (Hogg and Craig (1994)). The probability that n buyers show

up is given by P t
n and we define the distribution of prices by Ĝt(m) ≡

∑∞
n=1 P t

n F̂
(n−1, n)
t (m).

Ĝt(m) denotes the probability that a seller receives no more than m dollars in the search

market at time t, after summing over all the possible number of buyers. The expected rev-

enues of a seller at t are given by Π̂t =
∫∞

0
m̃ dĜt(m̃).

Last, we need to define market clearing in the money market. Since sellers have zero

balances, the demand for money at time t is given by the amount that buyers hold, i.e.

MD
t =

∫∞
0

m̃ dF̂t(m̃). At time t, the money market clears if

MD
t = MS

t . (6)

Turning to the equilibrium definition, note that there is always an equilibrium where fiat

money is not valued, as is common in monetary models. Throughout this paper we focus

on monetary equilibria with the property φt > 0 ∀ t, and statements about non-existence

of an equilibrium refer to monetary equilibria. Furthermore, we only examine stationary

equilibria in the sense that real variables remain constant over time. In particular, we restrict

attention to equilibria where λt = λt+1 and the real demand for money does not change, i.e.

9



φt MD
t = φt+1 MD

t+1. Since the money supply grows at a constant rate γ and MD
t = MS

t

the latter condition implies that φt = γ φt+1. We define a stationary monetary equilibrium

(henceforth an equilibrium) as follows.

Definition 2.1 An equilibrium is a list {W yk
t , V yk

t , F̂t, φt, λt} where W yk
t and V yk

t are the

value functions, F̂t is the distribution of money holdings at the beginning of the search market

at t, φt is the price of money at t, and λt is the buyer-seller ratio at t such that the following

conditions are satisfied for all t.

1. Optimality: given φt, any m′ ∈ suppF̂t solves (2).

2. Market Clearing: equation (6) holds.

3. Free entry: equation (5) holds.

4. Monetary Equilibrium and Stationarity: φt = γ φt+1 > 0 and λt = λt+1.

We now summarize the important decisions that agents make in our environment: buyers

choose how much money to hold and sellers choose whether to enter the search market. More

specifically, a buyer chooses his money holdings taking as given λt, φt and the decisions of

other buyers. Aggregating across buyers yields F̂t(·) as a function of λt and φt. In equilibrium,

the price of money is such that money demand equals MS
t , which pins down φt as a function

of the buyer-seller ratio and the supply of money. Free entry of sellers gives λt as a function

of the cost of entry.

In the next section we solve the model for homogeneous buyers and we re-introduce

heterogeneity in section 4.

3 The Case of Homogeneous Buyers

We now consider the special case where y = 1 for all buyers. We omit the productivity

superscript for the rest of this section.

3.1 The Buyers’ Problem

At the beginning of every period the problem of a buyer is to choose the optimal money

holdings, taking as given the choices of all other agents and the price of money. It is immediate

that the utility of consumption puts an upper bound on the range of the optimal fiat money

decision. Let m∗
t be such that a buyer is indifferent between spending m∗

t to consume or

keeping the full amount for the next Walrasian market. This amount exists since u < ∞ and

10



it is defined by the following equation: u+δ W b
t+1(m−m∗

t ) = δ W b
t+1(m) ⇒ m∗

t = u/(δ φt+1),

where m is a large enough number. In equilibrium a buyer never spends more than m∗
t , hence

he never brings more than that amount to the search market. Letting mt and mt denote

the infimum and supremum, respectively, of the support of F̂t(·) the discussion above implies

that 0 ≤ mt ≤ mt ≤ m∗
t .

We can reformulate the buyer’s problem on a period-by-period basis as

max
m∈[0,m∗

t ]
−φt m + β V b

t (m), (7)

taking F̂t(·), φt, and λt as given (stationarity implies that knowing the price of money for

some t pins down the whole path of prices). The first proposition derives a set of properties

that the distribution F̂t(·) satisfies in equilibrium.

Proposition 3.1 In equilibrium F̂t(·) is non-atomic on [0, m∗
t ), the support of F̂t(·) is con-

nected, and the infimum of the support is 0.

Proof. Suppose that F̂t(·) has a mass point at some m̌ ∈ [0, m∗
t ). Buying the good for m̌

dollars gives positive net utility since m̌ < m∗
t . Equation (4) implies that the probability

of buying is discontinuous at m̌, hence V b
t (m̌) < V b

t (m̌+). Bringing m̌ + ε yields strictly

higher payoff than m̌ since the cost of bringing infinitesimally more money is negligible and

therefore in equilibrium a buyer never brings m̌ yielding a contradiction.

Suppose that there is no buyer whose money holdings belong to some interval (m1, m2),

with mt ≤ m1 < m2 ≤ mt. The m1-buyer trades in exactly the same events as the buyer

with m2 dollars since they both outbid exactly the same set of competitors (except when

there is a mass point at m2 which cannot occur unless m2 = m∗
t , as shown above; if m2 = m∗

t

the additional transactions that the m2-buyer can perform do not yield any utility gains

since he is indifferent between keeping his money or consuming). It is easy to verify that

V b
t (m2) = V b

t (m1) + δ φt+1 (m2−m1). Examining the initial decision of how much money to

hold, we have that −φt m1 + β V b
t (m1)− [−φt m2 + β V b

t (m2)] = (m2 −m1) [φt − β δ φt+1]

which is strictly positive since φt = γ φt+1 and γ > β δ. This means that carrying m1 dollars

gives strictly higher value than holding m2 which cannot happen in equilibrium.

Last, a buyer bringing mt dollars can only transact when he does not meet any competi-

tors, in which case the price he pays is equal to 0. Therefore Vt(mt) = Vt(0) + δ φt+1 mt,

which implies that mt > 0 cannot occur in equilibrium for the same reason as above.

The intuition why F̂t(·) is non-atomic in its interior is straightforward (the next propo-

sition proves that there is no mass point at the upper boundary either): If there is a mass

11



point in the distribution of money holdings, then it is very likely to meet some buyer holding

exactly that amount of money. In that case, a buyer who brings infinitesimally more money

faces a discretely higher probability of winning the auction for negligible additional cost.

Therefore, this buyer enjoys a higher expected payoff which cannot happen in equilibrium.12

One important implication of this result is that the optimal decision of buyers is correspondence-

valued.13 In equilibrium there is a range of values of m that yield the same expected payoff

and therefore buyers are willing to randomize over them. Equation (7) implies that Vt(m) is

linear in the domain of solutions and hence it is not strictly concave.

From now on we only consider F̂t(·) that are continuous on [0, m∗
t ) with F̂t(0) = 0 and

suppF̂t = [0, mt]. We can rewrite equations (3) and (4) as follows:

V b
t (m) = δ W b

t+1(m) +
∞∑

n=0

P t
n [u F̂t(m)n − δ φt+1

∫ m

0

m̃ dF̂t(m̃)n]. (8)

This expression is very intuitive: the first term is the value that the buyer can guarantee

himself without a purchase; inside the square brackets, the first term is the probability of

buying the good times the instantaneous utility of consumption while the second term is the

payment from a purchase. Note that we do not account for the event where the buyer has

m = m∗
t dollars and he meets another buyer holding exactly the same amount, which could

occur since we have not yet ruled out the possibility of a mass point at m∗
t . However, in that

event the price is m∗
t which means that the buyer is indifferent between buying the good or

continuing with all his money. Therefore, the value of holding m∗
t is still given by equation (8).

We now turn to the explicit characterization of the solution to the buyer’s problem. In

equilibrium, −φt m + β V b
t (m) is constant on [0, mt]. We construct F̂t(·) such that this

condition holds.

Proposition 3.2 In equilibrium the distribution of money holdings is uniquely defined by

F̂t(m) =
1

λt

log[1− eλt (γ/(β δ)− 1) log(1− δ φt m

γ u
)]. (9)

Furthermore, mt < m∗
t .

12The logic of this proof is similar to the no mass point proof of Burdett and Judd (1983) and Burdett and
Mortensen (1998) though the context is very different.

13In contrast, in LW there is always a symmetric equilibrium where all agents bring the same amount of
money. Equilibria with asymmetric money holdings are possible but they can be ruled out under relatively
mild assumptions.
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Proof. Equation (7) implies that V b′
t (m) = φt/β for m ∈ [0, mt]. For V b

t (·) to be differ-

entiable, any equilibrium F̂t(·) has to be differentiable on (0, mt). We start by assuming

differentiability and we then verify that our solution satisfies this property.

Taking the derivative of (8) with respect to m we get (using Leibniz’s rule and noting

that m does not enter the integrand)

V b′
t (m) = δ φt+1 +

∞∑
n=0

P t
n [u n F̂t(m)n−1 F̂ ′

t(m)− δ φt+1 m n F̂t(m)n−1 F̂ ′
t(m)]

= δ φt+1 + (u− δ φt+1 m) F̂ ′
t(m) λt e−λt (1−F̂t(m)), (10)

which follows from the fact that n ∼ Po(λt).

Equating (10) with φt/β and rearranging yields the following differential equation:

λt F̂ ′
t(m) eλt F̂t(m) = eλt

δ φt+1 it
u− δ φt+1 m

,

where it ≡ φt/(φt+1 β δ)− 1 is the nominal interest rate at t. Integrating both sides over m,

using the initial condition F̂t(0) = 0, and recalling that φt = φt+1 γ yields (9).

The maximum money balances, mt, can be calculated by using F̂t(mt) = 1:

mt =
u

δ φt+1

(1− e
− 1−e−λt

it ). (11)

Since m∗
t = u/(δ φt+1) it is clear that all buyers bring less money than m∗

t and hence there

is no mass point in the distribution of money holdings.

The next step is to close the buyers’ side of the model by finding the equilibrium price of

money, φt, which equates the demand of money with exogenous supply MS
t .

Proposition 3.3 There is a unique equilibrium price φ∗t such that MD
t = MS

t .

Proof. We first show that money demand at time t, MD
t , is decreasing in φt. We can use

equation (9) to define money demand at t as a function of φt, MD
t (φt). It is easy to check

that ∂F̂t(m)/∂φt > 0. As a result the money distribution that results from a low φt first order

stochastically dominates the one that results from high φt which proves that ∂MD
t /∂φt < 0.

To complete the proof we need to show that MD
t (∞) < MS

t < MD
t (0) for some arbitrary

MS
t . Note that limφt→∞mt = 0 ⇒ limφt→∞MD

t (φt) = 0. Also, limφt→0 mt = ∞ and

limφt→0 F̂t(m) = 0, ∀m < mt imply that limφt→0 MD
t (φt) = ∞.

Corollary 3.1 The price of money is determinate. The buyer-seller ratio, λt, uniquely de-

termines the distribution of money holdings of buyers.
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To simplify notation, we redefine all variables in real terms. We express a dollar in terms

of its consumption value in the search market. Equation (8) implies that m dollars are worth

zt = δ φt+1 m units of utility at time t, i.e. we convert the m dollars to utility terms at

the price of the following Walrasian market (when they can next be used) and then discount

that utility to the present search market terms. Together with the stationarity condition

φt = γ φt+1, this means that the real value of any unspent balances depreciates at rate γ: in

period t + 1 the m dollars are worth zt+1 = δ φt+2 m = zt/γ. We denote real transfers by

T k
t = δ φt+1 T̂ k

t and expected real revenues by Πt = δ φt+1 Π̂t. Last, we dispense with the

time subscript since we are in a stationary environment.

Making the relevant substitutions into our value functions we obtain

W b(z) = z γ/δ + U∗ + max
z′

{−z′ γ/δ + β V b(z′)} (12)

V b(z) = δ W b(z/γ) +
∞∑

n=0

Pn [u F (z)n −
∫ z

0

z̃ dF (z̃)n] (13)

W s(z) = (z + T s) γ/δ + U∗ + β V s (14)

V s = max{δ W s(Π/γ)−K, δ W s(0)}. (15)

We can also rewrite the distribution of real balances as

F (z) =
1

λ
ln[1− eλ i ln(1− z

u
)], (16)

where i = γ/(δ β) − 1 and define the distribution of real revenues G(·) accordingly. The

highest real money holdings are given by z = u (1− e−(1−e−λ)/i).
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Figure 1: Density of real money balances for different levels of the interest rate i and u = 1,
λ = 1.
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Figure 1 shows the density of real money holdings for different levels of the interest rate

and λ = 1. At very high interest rates the density is decreasing. In the intermediate range

it is U-shaped. For low interest rate it is increasing.

Note that the distribution of real balances collapses to a mass point at u as the rate of

money growth approaches the Friedman rule (γ → β δ or, equivalently, i → 0): F (z) → 0

for any z < z and z → u as i → 0. This means that at the Friedman rule the real balances

of every buyer is equal to his valuation for the good. Furthermore, it is easy to show that

the mean of the money distribution increases and its variance decreases as the inflation rate

falls.

3.2 The Sellers’ Problem

Section 3.1 established that the buyers’ distribution of real money holdings (and hence ex-

pected real revenues) is uniquely determined by the buyer-seller ratio. Therefore, from now

on we write Π(λ). In equilibrium, free entry requires that Π(λ) = K. We show that an

equilibrium exists if and only if the inflation rate is below a certain threshold. Furthermore,

we prove that if an equilibrium exists then there is a unique λ∗ satisfying the free entry

condition. The uniqueness of equilibrium is interesting because typically there are multiple

stationary equilibria in models with bilateral matching and bargaining. We elaborate on the

reasons that lead to this difference at the end of the section.

We begin by characterizing the distribution of real prices.

Proposition 3.4 The distribution of prices is given by

G(z) = (1 + λ− λ F (z)) e−λ (1−F (z)), (17)

where F (z) is defined in (16).

Proof. Recall that G(z) =
∑∞

n=0 Pn F (n−1,n)(z) and F (n−1)(z) = n F (z)n−1 [1 − F (z)] +

F (z)n. Equation (17) follows.

Proposition 3.5 If an equilibrium exists, then it is unique.

Proof. For uniqueness, it is sufficient to show that ∂Π(λ)/∂λ > 0. To prove that the

expected profits (prices) are strictly increasing in the number of buyers per seller we show that

∂G(z)/∂λ < 0 which means that the distribution of prices for high λ first order stochastically
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dominates the one for a low λ. Using equation (16), one can show that

∂F (z)

∂λ
= −F (z)

λ
+

−e−λ i ln(1− z/u)

λ [1− e−λ i ln(1− z/u)]

=
1

λ
[1− F (z)− e−λ F (z)]. (18)

The last step is to note that

∂G(z)

∂λ
= −λ (1− F (z)) [1− F (z)− λ

∂F (z)

∂λ
] e−λ (1−F (z))

= −λ (1− F (z)) e−λ < 0, (19)

where the second equality results from inserting equation (18). This completes the proof.

Proposition 3.6 Given K, an equilibrium exists if and only if γ < γ̄(K), where γ̄(K) is

defined by K = u (1− e−1/̄i) and ī = γ̄(K)/(β δ)− 1.

Proof. It easy to check that limλ→0 Π(λ) = 0. Therefore, if limλ→∞Π(λ) > K the (unique)

equilibrium exists. As λ →∞ a seller is visited by some buyer with probability 1. Further-

more, the seller’s revenues converge to the highest money holdings, z. Therefore,

lim
λ→∞

Π(λ) = lim
λ→∞

z = u (1− e−1/i).

Noting that the maximum profits are decreasing in the inflation rate (∂Π(∞)/∂γ < 0) and

that Π(∞) = K if and only if γ = γ̄(K) completes the proof.

Decreasing the inflation rate acts as a mean-preserving spread for the distribution of real

prices due to adjustment at the extensive margin. The mean of the distribution (expected

revenues) is constant regardless of inflation because of the response of seller entry. The

price is zero when a seller has zero or one buyer and this event occurs more frequently when

inflation decreases due to higher entry. When two or more buyers show up, the distribution

of prices converges to a mass point at u as the rate of money growth approaches the Friedman

rule. Thus, the variance of real prices increases as inflation approaches the Friedman rule.

The uniqueness of equilibrium is worth commenting on, especially since Rocheteau and

Wright (2005) find that in a model with bilateral matching there are generically multiple

equilibria. In both models, increased competition for the search market goods among buyers

(higher λ) may reduce the buyers’ incentives to bring money since their balances are less

likely to be used: in the bilateral matching framework every buyer brings less money in

response to an increase of the buyer-seller ratio; in our model, the same thing happens for
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Figure 2: Density of real balances and prices for different levels λ and u = 1, i = 0.05.

at least some of the buyers, as can be seen in the left graph of figure 2 where buyers at the

bottom end of the money distribution choose to hold less money as λ increases from 1 to

5. Nevertheless, in our model an increase in λ leads to higher expected revenues for sellers

since more buyers visit each seller on average.14 In a bilateral matching framework, however,

a seller is only matched with a single buyer at a time and an increase in λ leads to greater

probability of trade but for lower revenues. Whether expected profits (probability of trade

times revenues) increase or not depends on parameter values, leading to generic multiplicity

of equilibria. It is therefore the multilateral nature of matching that leads to the uniqueness

result. Indeed, when Rocheteau and Wright (2005) consider a search market structure based

on competitive search they find uniqueness of equilibrium.

3.3 Efficiency and Inflation

In this section we examine the effects of inflation on efficiency. Since every meeting between

a seller and some buyers results in the efficient outcome (a trade), the question of interest

is whether the efficient number of sellers enter into the market. We show that efficiency

is attained only when the inflation rate is at the Friedman rule, i.e. the stock of money

decreases at the rate of time preference. Again, this feature is shared with the competitive

search market structure of Rocheteau and Wright (2005).

Proposition 3.7 The level of entry is efficient at the Friedman rule. When γ > β δ entry

is suboptimal.

14More specifically, a high value of λ leads to a price distribution that first order stochastically dominates
the one that results from a low λ, as can be seen in figure 2. The figure omits the mass point at a zero price
which results when zero or one buyers show up.
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Proof. We start by solving for the level of entry that maximizes surplus in the search market.

A planner chooses λ to maximize the following objective function:

W =
(1− e−λ) u

λ
− K

λ
. (20)

The first term gives the surplus that is generated from a trade, u, times the number of trades

(number of sellers, 1/λ, times the probability a seller trades, 1−e−λ). The second term gives

the entry cost of 1/λ sellers. Setting the first order conditions with respect to λ to zero yields

(1− e−λP − λP e−λP

) u = K. (21)

It is easy to check that the second derivative is negative, hence equation (21) is both necessary

and sufficient for optimality.

We now compare λP with the equilibrium buyer-seller ratio. First note that an inefficiency

arises whenever the inflation rate is high enough to prevent any entry to the search market

because (21) means the market should operate (i.e. λP < ∞) whenever u > K. When

entry is positive, the number of sellers is still suboptimal, except at the Friedman rule.

The equilibrium buyer-seller ratio is determined by the free entry condition Π(λ) = K and

therefore efficiency obtains only if expected profits are given by Π(λ) = (1− e−λ − λ e−λ) u.

At the Friedman rule the real balances of all buyers are equal to their valuation of the good,

u, and the seller appropriates the full surplus of a match if two or more buyers show up and

he receives zero in the complementary case. The probability of the former event is given

by 1 − P0 − P1 = 1 − e−λ − λ e−λ and hence the expected revenues of the seller are equal

to the left hand side of (21) leading to efficient entry of sellers. When the inflation rate is

higher than the Friedman rule, the sellers appropriate a strictly lower share of the surplus

and therefore entry is suboptimal.

4 The Distributional Effects of Inflation

In this section we re-introduce buyer heterogeneity to examine how the inflation burden is

allocated across agents of different productivity. We consider the case of two types of buyers:

proportion αH of buyers produce yH units of output per hour of work in the Walrasian market

and the complementary proportion, αL, produce yL where yH > yL.15 We do not go over the

sellers’ part of the model because it is identical to the previous section.

We measure the cost of inflation in leisure-equivalent units.16 Since leisure enters linearly,

15It is not hard to generalize our characterization to a continuous Y (·). See Galenianos and Kircher (2006).
16A couple of caveats are in order. Our distributional results are clearly affected by who is the beneficiary
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to determine which type loses more from an increase in inflation we compare the change in

the value function of each type as γ varies. Our main result is that low productivity buyers

are hurt more from an increase in the rate of money growth if the inflation rate is below a

certain threshold. Any further increase of the inflation rate above that threshold hurts the

high productivity buyers more. We show that a buyer’s per-period utility only depends on

the buyer-seller ratio because buyers adjust their real money holdings in response to inflation.

Higher inflation leads to lower seller entry which reduces the utility of all buyers. Buyers

of higher productivity are better insulated against inflation-induced scarcity since they face

lower costs in utility terms of holding fiat money. Holding more money allows them to better

deal with increased competition for the search market goods which leads to lower utility

losses from inflation. If there are very few sellers in the market (e.g. because the inflation

rate is already very high) the low productivity buyers consume very infrequently and hence

any further increase in the rate of money growth hurts primarily the high productivity buyers.

From now on a buyer is distinguished by a superscript j ∈ {L, H} denoting his produc-

tivity. The value functions of a buyer are given by (corresponding to (12) and (13)):

W j(z) = z γ/(δ yj) + U∗
j + max

z′
[−z′ γ/(δ yj) + β V j(z′)], (22)

V j(z) = δ W j(z/γ) +
∞∑

n=0

Pn [u F (z)n −
∫ z

0

z̃/yj dF (z̃)n]. (23)

where δ W j(z/γ) = z/yj +δ W j(0), U∗
j = U(x∗j)−x∗j , and x∗j is the solution to U ′(x∗j) = 1/yj.

Notice that W j(z) is still linear in z but the slope now depends on yj.

We take advantage of the stationarity of our environment to express the value of an agent

in terms of his period-by-period decentralized market value. This allows us to do explicit

comparative static exercises with respect to the inflation rate. Letting P (z) be the probability

that a buyer holding z dollars purchases the search market good and Q(z) be the expected

price that he pays, we have V j(z) = u P (z) + δ W j[(z −Q(z))/γ] for j ∈ {L, H}. Entering

this expression into equation (22) gives

W j(z) = z γ/(δ yj) + U∗
j − z′ γ/δ + β {u P (z′) + δ W j[(z′ −Q(z′))/γ]}, (24)

where z′ is an optimal solution to the money holding problem. Recalling that δ W j(z/γ) =

of the seignorage revenues of inflation. Assuming that only sellers receive transfers avoids the question of
how that revenue is distributed across the different types of buyers. An alternative to our welfare measure
is to analyze consumption-equivalent units, though that would be more complicated. Our purpose in this
paper is to suggest one way in which this comparison can be done.
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z/yj + δ W j(0) and i = γ/(β δ)− 1, it is straightforward to re-arrange (24) as

(1− β δ) W j(0) = U∗
j + β Xj, (25)

where Xj ≡ u P (z)− 1

yj

(z i + Q(z)). (26)

Equation (25) describes the per-period utility of a type-j buyer. The first term reflects

the utility arising from Walrasian market consumption. Equation (26) gives the expected

utility of search market consumption net of cost (price as well as liquidity cost due to the

depreciation of the value of money).

In the next proposition we characterize the equilibrium distribution of money holdings

with heterogeneous buyers. Let Fj(·) denote the distribution of real balances and Zj ≡
suppFj(·) ⊂ [zj, zj] denote the support of that distribution for each type j. The aggregate

distribution of money balances is given by F (z) = αH FH(z)+αL FL(z) where suppF ⊂ [0, z].

Similarly, define the ratio of type-j buyers to sellers by λj ≡ αj λ.

Proposition 4.1 In equilibrium zL = zH , suppFL(·) = [0, zL] and suppFH(·) = [zL, zH ].

The equilibrium distributions of real money holdings are given by

FL(z) =
1

λL

log[1− eλL i ln(1− z

yL u
)], ∀ z ∈ ZL = [0, zL], (27)

FH(z) =
1

λH

log[1− eλH i ln(
yH u− z

yH u− zL

)] ∀ z ∈ ZH = [zL, zH ], (28)

where zL = yL u (1− e−e−λH (1−e−λL )/i) and zH = yH u (1− e−(1−e−λH )/i) + zL e−(1−e−λH )/i.

Proof. Define Ŵ j(z) ≡ yj W j(z) and V̂ j(z) ≡ yj V j(z) to obtain the system of equations

Ŵ j(z) = z γ/δ + yj U∗
j + max

z′
[−z′ γ/δ + β V̂ j(z′)]

V̂ j(z) = z + δ Ŵ j(0) +
∞∑

n=0

Pn [yj u F (z)n −
∫ z

0

z̃ dF (z̃)n].

This is identical to an economy where the valuations in the search market are given by

ûj = (yj u), except for Walrasian market consumption (yj U∗
j ) which, however, does not

affect any monetary decisions.

An argument similar to proposition 3.1 shows that suppF = [0, z] and F (·) is non-atomic

on [0, z∗L) ∪ (z∗L, z∗H). Buyer optimization implies that V̂ j′(z) = γ/(β δ) when z ∈ Zj and (as

in (10)) the derivative of V̂ j(·) on the interior of Zj is given by:

V̂ j′(z) = 1 + (ûj − z) λ F ′(z) e−λ (1−F (z)), for z ∈ int(Zj).
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It is immediate that V̂ H′(z) > V̂ L′(z) which implies that every low type buyer holds less

money that any high type buyer and hence ZL = [0, zL] and ZH = [zL, z].

The search market value functions for the two types of agents are given by

V̂ L(z) = δ ŴL(z) + e−λH

∞∑
n=0

PL
n [uL FL(z)n −

∫ z

0

z̃ dFL(z̃)n]

V̂ H(z) = δŴH(z) + e−λH

∞∑
n=0

PL
n [uH −

∫ zL

0

z̃dFL(z̃)n] +
∞∑

n=1

PH
n [uHFH(z)n −

∫ z

0

z̃dFH(z̃)n]

where P j
n is the probability that n buyers of type j visit the same seller. To get (27) and (28)

we replicate the steps of proposition 3.2 noting that the initial conditions and upper bounds

for the two distributions are given by FL(0) = 0, FL(zL) = 1, FH(zL) = 0 and FH(zH) = 1.

The following proposition states and proves our distributional results. Note that so long

as the entry cost K is not too high then the buyer-seller ratio at the Friedman rule is above

the threshold derived in the proposition.

Proposition 4.2 Per-period utility declines with inflation for all buyers. It decreases more

for high type buyers than for low type buyers if and only if the buyer-seller ratio is below a

threshold.

Proof. The fact that low productivity buyers are indifferent between holding 0 or zL dollars

implies XL = u P (0) = u P (zL)− [zL i + Q(zL)]/yL. Rearranging yields

zL i + Q(zL) = yL u [P (0)− P (zL)] (29)

Since both L- and H-buyers are willing to hold zL dollars we can insert (29) into (26) and

evaluate at z = zL for both types:

XL = u P (zL)− u [P (zL)− P (0)] (30)

XH = u P (zL)− u [P (zL)− P (0)]
yL

yH

(31)

Equations (30) and (31) are useful because they incorporate the equilibrium decisions of

money holdings in a succinct way.

Note that P (0) = e−λ and P (zL) = e−αHλ since a buyer with no money can only purchase

if no one else visits the same seller, while a buyer with zL dollars can outbid all L-buyers

but is outbid by all H-buyers. As a result, the buyers’ period utility is a function of the

buyer-seller ratio alone which means that a higher inflation rate entails no utility loss for
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buyers if the number of sellers is fixed. Since sellers have a participation decision, higher

inflation implies that there are fewer sellers in the market and hence a higher λ. In this case,

all buyers are worse off because the probability of consuming decreases regardless of type or

money holdings.

To compare which type is hurt more by inflation we take the derivative of per-period

utility with respect to λ:

dXL

dλ
= −u e−λ and

dXH

dλ
= −u [e−λ yL

yH

+ e−αHλ (1− yL

yH

) αH ].

The last step is to compare

dXL

dλ
<

dXH

dλ
⇔ 1 > αH e(1−αH) λ ≡ T (λ). (32)

Clearly, T (0) = αH < 1, T (∞) = ∞ > 1, T ′(λ) > 0 which means that there is a unique

λ(αH) such that the two derivatives are equal. When λ < λ(αH), the low-productivity

buyers are hurt more from inflation than high-productivity buyers and vice versa. Also,

limαH→0 λ(αH) = ∞ and condition (32) always holds when λ < 1 since αH e(1−αH) ≤ 1 for

all αh ∈ [0, 1].

5 Conclusions

We develop a monetary model that can be used to examine the effects of inflation across

heterogeneous agents by accommodating the presence of private information in a tractable

way. Applying our framework to an environment with two productivity types we show that

inflation is a regressive form of taxation, at least for moderate levels of money growth.

We model decentralized exchange in a different way from most of the literature. Agents

match multilaterally, allowing auctions to be used as a way of allocating goods leading to the

accommodation of private information. We use second-price auctions for convenience. We

conjecture that our qualitative results obtain when sellers use any standard auction. The

possibility of a mass point in the money distribution can be disproved in much the same

way as in this paper. The fact that there are no liquidity costs at the Friedman rule means

that revenue equivalence across auctions holds leading to efficient entry regardless of which

auction is used. In fact, if sellers can post any direct mechanism in order to compete for

buyers, at the Friedman rule they would (in equilibrium) all post a second price auction

without reserve (see McAfee (1993) or Peters (1997)). Regardless of the auction type, higher

inflation results in positive liquidity costs which leads agents to lower their money holdings
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giving rise to suboptimal entry. Our results on the distributional effects of inflation do not

substantially depend on the precise pricing mechanism, which leads us to believe that they

will not be affected by changing the auction format.

An important assumption of our model is the indivisibility of goods (multiple indivisible

goods per seller can be accommodated by multi-unit auctions as in Demange, Gale and

Sotomayor (1986), for which we expect qualitatively similar results). The underlying idea is

that for many products, especially large ticket items, the non-convexities that are present in

consumption lead to indivisibilities. One way to introduce an intensive margin is to make

the quality of the good an endogenous choice for the seller at the match and allow buyers

to offer price-quality bids, competing in terms of the surplus that they leave to the seller.

To the extent that the highest bidder is awarded the good (of now endogenous quality),

we believe that our principal results will not be substantially affected. An alternative is

suggested by Dutu, Julien and King (2007) who let sellers choose and advertise their quality

level in a directed search framework and then run a second price auction with the buyers

who visit them. A different route is to introduce lotteries. This would be a useful exercise

since the trade-offs are quite different than in the current model. However, lotteries are not

well-studied in the context of auctions and hence we leave this topic to future research.

References

[1] Albanesi, Stefania. “Inflation and Inequality.” Journal of Monetary Economics, 54

(2007), 1088-1114.

[2] Burdett, Kenneth, and Kenneth Judd. “Equilibrium Price Dispersion.” Econometrica,

51 (1983), 955-969.

[3] Burdett, Kenneth, and Dale T. Mortensen. “Wage Differentials, Employer Size, and

Unemployment.” International Economic Review, (1998), 257-273.

[4] Camera, Gabriele, and Dean Corbae. “Money and Price Dispersion.” International

Economic Review, 40 (1999), 985-1008.

[5] Camera, Gabriele, and Cemil Selcuk. “Price Dispersion with Directed Search.” Mimeo

(2005).

[6] Che, Yeon-Koo, and Ian Gale. “Standard Auctions with Financially Constrained Bid-

ders.” Review of Economic Studies, 65 (1998), 1-21.

23



[7] Corbae, Dean, Ted Temzelides, and Randall Wright. “Directed Matching and Mone-

tary Exchange.” Econometrica, 71 (2003), 731-756.

[8] Demange, Gabrielle, David Gale, and Marilda Sotomayor. “Multi-Item Auctios.” Jour-

nal of Political Economy, 94 (4) (1986), 863-872.

[9] Dutu, Richard, Benoit Julien and Ian King. “Liquidity Constrained Competing Auc-

tions.” mimeo, 2007.

[10] Ennis, Huberto. “Search, Money, and Inflation under Private Information.” Journal

of Economic Theory, forthcoming.

[11] Erosa, Andrés and Gustavo Ventura. “On Inflation as a Regressive Consumption Tax.”

Journal of Monetary Economics, 49 (2002), 761-795.

[12] Faig, Miguel and Belen Jerez. “Inflation, Prices, and Information in Competitive

Search.” Advances in Macroeconomics 6 (1) (2006).

[13] Galenianos, Manolis and Philipp Kircher. “A Model of Money with Multilateral

Matching.” PIER Working Paper No. 07-004 (2006).

[14] Goldberg, Dror. “Money with Partially Directed Search.” Journal of Monetary Eco-

nomics, 54 (2007), 979-993.

[15] Green, Edward J. and Ruilin Zhou. “Dynamic Monetary Equilibrium in a Random

Matching Economy.” Econometrica, 70 (2002), 929-969.

[16] Head, Allen, and Alok Kumar. “Price Dispersion, Inflation, and Welfare.” Interna-

tional Economic Review, 46 (2005), 533-572.

[17] Hogg, Robert V., and Allen Craig. Introduction to Mathematical Statistics, 5th edition

(1994). Prentice Hall.

[18] Howitt, Peter. “Beyond Search: Fiat Money in Organized Exchange.” International

Economic Review, 46 (2005), 405-429.

[19] Julien, Benoit, John Kennes and Ian King. “Bidding for Money”. Journal of Economic

Theory, forthcoming.

[20] Kiyotaki, Nobuhiro, and Randall Wright. “A Search-Theoretic Approach to Monetary

Economics.” American Economic Review, 83 (1993), 63-77.

24



[21] Kocherlakota, Narayana. “Money is Memory.” Journal of Economic Theory, 81 (1998),

232-251.

[22] Lagos, Ricardo, and Randall Wright. “A Unified Framework for Monetary Theory and

Policy Analysis.” Journal of Political Economy, 113 (2005), 463-484.

[23] McAfee, R. Preston. “Mechanism Design by Competing Sellers.” Econometrica, 61

(6) (1993), 1281-1312.

[24] Molico, Miguel. “The Distribution of Money and Prices in Search Equilibrium.” In-

ternational Economic Review, 47 (2006), 701-722.

[25] Peters, Michael. “A Competitive Distribution of Auctions.” Review of Economic Stud-

ies, 64 (1) (1997), 97-123.

[26] Rocheteau, Guillaume, and Randall Wright. “Money in Search Equilibrium, in Com-

petitive Equilibrium, and in Competitive Search Equilibrium.” Econometrica, 73

(2005), 175-202.

[27] Satterthwaite, Mark and Art Shneyerov. “Dynamic Matching, Two-Sided Incomplete

Information, and Participation Costs: Existence and Convergence to Perfect Compe-

tition.” Econometrica, 75 (1) (2007), 155 - 200.

[28] Shi, Shouyong. “Money and Prices: A Model of Search and Bargaining.” Journal of

Economic Theory, 67 (1995), 467-496.

[29] Trejos, Alberto, and Randall Wright. “Search, Bargaining, Money, and Prices.” Jour-

nal of Political Economy, 103 (1995), 118-141.

[30] Wallace, Neil. “Whither Monetary Economics?” International Economic Review, 42

(2001), 847-870.

25


	A model of money with multilateral matching (cover).doc
	A Model of Money with multilateral matching (author).pdf

