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Abstract

This paper studies the correlation and volatilities of the bond and stock markets in a regime-

switching bivariate GARCH model. We extend the univariate Markov-Switching GARCH of Haas,

Mittnik and Paolella (2004) into a bivariate Markov-switching GARCH model with Conditional

Constant Correlation (CCC) speci�cation within each regime, though the correlation may change

across regimes. Our model allows separate state variable governing each of the three processes:

bond volatility, stock volatility and bond-stock correlation. We �nd that a separate state variable

for the correlation is needed while the two volatility processes could largely share a common state

variable, especially for the 10-year bond paired with S&P500. The "low-to-high" switching in stock

volatility is more likely to be associated with the "high-to-low" switching in correlation while the

"low-to-high" switching in bond volatility is likely to be associated with the "low-to-high" switching

in correlation. The bond-stock correlation is signi�cantly lower when the stock market volatility is

in the high regime, but higher when the bond volatility is in its high regime.
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1 Introduction

The correlation between bond and stock markets plays an important role in asset allocation as well

as risk management. In tranquil time, investors would choose to invest more in equity markets

to seek higher returns while they might "�ee" to bond markets in turbulent market condition. So

accurate modeling of the bond-stock correlation can provide investors with better diversi�cation or

hedging bene�t. The most common econometric approaches in modeling correlations of multiple

assets are the multivariate versions of the general autoregressive conditional heteroskedasticity

(GARCH) type models of Engle (1982) and Bollerslev (1986)1. The GARCH type models have a

�xed persistence level for the covariance process throughout the whole sample. But there is evidence

that volatility is less auto-correlated and has larger response to a shock when the volatility is in a

higher level. For example, Hamilton and Susmel (1994) distinguish a low-, moderate-, and high-

volatility regime in weekly stock returns, with the high-volatility regime being associated with

economic recessions. But very few papers have studied regime-switching in correlation. Because of

the hedging relation between the bond and stock markets, bond-stock returns might have distinct

relation in tranquil and turbulent market conditions. So allowing regime-switching in both volatility

and correlation might provide better insight into the dynamic properties of the comovement of the

stock and bond markets. Another motivation for using regime-switching GARCH model is that

forecast errors are much more costly in high-correlation state than in low-correlation state for a

risk averse investor, which is shown by Engle and Collacito (2006). Regime-switching would be

better in capture extreme swings in correlation.

In this paper, we investigate the bond-stock correlation in a regime-switching bivariate GARCH

model that has separate state variable for each of the three latent processes: bond volatility,

stock volatility and bond-stock correlation. The model allows us to study the intertemporal and

contemporary relation among the three state variables, such as the correlations in di¤erent market

conditions characterized by the volatilities of the two markets. In the literature, even not limited

to the bond-stock context, there is no study on these kinds of e¤ects. In a study of international

stock markets, Haas and Mittnik (2007) estimate a diagonal regime-switching GARCH model2.

But in their speci�cation, all the individual variance and covariance processes share the same

1For a survey of multivariate GARCH, see Bauwens, Laurent and Rombouts (2006).
2The actually sepci�cation in their paper is BEKK model of Engle and Kroner (1995), which guarantees positive-

de�netiveness of the covariance matrix.
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latent Markov state variable. Even though it can nest a similar model to ours by increasing the

number of states in their model, it is very di¢ cult to recover the regime-switching parameters of

the correlation from their model. Regime-switching in covariance could be caused by switching

either in variance or in correlation. Our model is able to separate these two e¤ects by allowing a

separate latent state variable for each latent process.

Using the returns from a one-year bond, ten-year bond, and the S&P500 index, we study the

bond-stock correlations for bonds with di¤erent maturities. Our main �ndings include: First, the

contemporary state correlations indicate that a separate state variable for the bond-stock correlation

is needed while the two volatility processes could largely share a common state variable, especially

for the 10-year bond paired with S&P500. Second, the "low-to-high" switching in stock volatility

is more likely to be associated with the "high-to-low" switching in correlation while the "low-to-

high" switching in bond volatility is likely to be associated with the "low-to-high" switching in

correlation. As a result, the expected bond-stock correlation conditional on stock�s high volatility

state is signi�cant lower than that conditional on stock�s low volatility state. But results are

opposite for those conditional on bond�s volatility states. Since shocks to the bond price must be

mainly related shocks to the discount factor, which will move the bond and stock prices in the same

direction, the bond-stock correlation will increase as a result. However, when there are shocks to

the stock price, they should be mainly related to the cash �ow news, which a¤ect the bond and

stock prices largely in the opposite direction3. As a result, the bond-stock correlation will decrease.

Finally, we �nd that when the bond market is in its high volatility state and the stock market is

in its low volatility state, the estimates of bond-stock correlation in both high and low correlation-

states are non-negative. But when both the bond and stock markets are in high volatility state,

the bond-stock correlation has the highest correlation estimate at its high correlation-state and

almost lowest correlation estimate at its low correlation-state. This might be attributed to the

relative impacts of shocks to the cash �ow and shocks to the discount factor on the pricing of bonds

and stocks at di¤erent stages of the business cycle. According to the �ndings of Boyd, Hu and

Jagannathan (2005), stocks are dominated by the cash �ow e¤ect during recessions while respond

mainly to the discount rate news during expansions. As a result, the bond-stock correlation should

3Cash �ow news ultimately will also a¤ect discount factor indirectly. A positve cash �ow news will increase

both the growth expectation and the discount factor. The increasing growth expecation and discount factor work in

opposite way on the price of stock. When the former dominates the latter, the bond and stock move in opposite way.
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be positive during expansions and negative during recessions, which is also consistent with the

�ndings of Anderson, Bollerslev,Diebold, and Vega (2007). But we also �nd large swings in the

bond-stock correlation between positive and negative values after 2003, which can not be explained

by business cycles, and possibly can be driven by the time-varying equity premium.

The paper is laid out as follows: Section 2 presents a review of the recent literature on bond-stock

correlation and regime-switching GARCH, while section 3 covers the econometric methodology

employed in this paper. In section 4, the data and estimation method is explained while some

comparative quantities are also introduced. Section 5 presents the empirical results and section 6

concludes and discusses areas for further research.

2 Literature Review

The main econometric model in this paper is a multivariate extension of univariate Markov-

switching(MS) GARCH model of Haas, Mittnik and Paolella (2004). The basic idea of their

approach is to assume there are several parallel GARCH processes, and the volatility is switch-

ing among these processes. Haas and Mittnik (2007) also propose a multivariate extension of the

model. Their extension models the covariance matrix directly, which is governed by a single regime-

switching state variable. In our simple bivariate context, we are able to assume both volatilities and

correlation have their own state variables. This generalization allows us to answer more interesting

questions about the bond-stock correlation. Pelletier (2006) proposes a regime-switching constant

correlation model and claim to have better �t than Dynamic Conditional Correlation (DCC) model

of Engle (2002). But he does not apply the model to study the bond-stock correlations. We are

similar in the correlation part of the model but we further allow regime-switching in each volatility

series.

Regime-switching modeling of volatility is relatively new in literature. As mentioned above,

GARCH type models are the main approaches in modeling volatility of �nancial asset returns.

However, it has been argued that the close-to-unity of the persistence parameter estimate in many

GARCH models could be due to the regime-switching in volatility. For example, Diebold and

Inoue (2001) analytically show that non-persistent series with stochastic regime switching can

appear to have strong persistence, or long memory. In the volatility context, Mikosch and Starica

(2004) show that deterministic shifts in the unconditional variance do indeed drive the estimate of
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persistence parameter toward unity. A natural step forward is to combine a GARCH type model

with Markov-switching mechanism, which has been widely adopted in economics since Hamilton

(1989). Cai (1994) and Hamilton and Susmel (1994) are among the �rst to combine an ARCH

model with Markov-switching. The reason why they restrict their attention to ARCH structures

within each regime rather than a GARCH-type structure is due to the problem of path-dependence

of GARCH, which makes maximum likelihood estimation infeasible (to be detailed later). The �rst

attempt to combine the GARCH with Markov-switching is Gray (1996), which is essentially an

approximation. Haas, Mittnik and Paolella (2004) propose an approach where regime-switching

is both on parameters and the latent process, and so it is able to avoid the path-dependence

problem while keeping the GARCH structure. In this paper, We adopt their approach and make a

multivariate extension for our study of bond-stock correlations.

On bond-stock correlations, the past literature is mainly using the GARCH-type models. Cap-

piello, Engle and Sheppard (2006) propose an extension of the DCC model to allow for di¤erent

structure parameters for di¤erent correlation pairs. They estimate the model using weekly returns

on the FTSE All-World equity indices for 21 countries and government bond indices for 13 coun-

tries, and �nd a signi�cant asymmetric a¤ect in the conditional correlation between stock and

bond return, and that the correlations tend to decrease following an increase in stock volatility or

a negative stock return. De Goeij and Marquering (2004) employ a similar approach to Cappiello,

et al: (2006). They estimate a diagonal VECH extension of Glosten, Jagannathan and Runkle

(1993) model using daily returns on a short-term bond, a long-term bond , and the returns on

the S&P 500 and NASDAQ indexes. They �nd strong evidence of time-varying conditional co-

variance between stock and bond market returns. Their results indicate that not only variances,

but also covariances respond asymmetrically to return shocks. But they do not study the implied

correlation dynamics from the VECH framework. Gulko (2002) studies the change in correlation

between stock and bond market around period of market crashes. He �nds that stock and bond

correlations change from weakly positive in normal time to strongly negative during stock market

crashes, which means treasure bonds could act as a hedging vehicle against stock market crashes.

Li (2002) studies the impacts of various macroeconomic factors on stock and bond correlations. He

�rst uses daily data to construct a non-parametric estimate of the correlation for a given month,

the so-called "realized correlation", then regresses the realized correlation on various macro factors.

He �nds that long-term expected in�ation and real interest rate has the largest (positive) impact
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on the stock-bond correlation. Baur and Lucey (2006) study the daily stock-bond correlations of

seven European countries. They �rst estimate the DCC model of Engle (2002) to obtain a time

series of estimated conditional correlations between each stock and bond return series, and then

regress these estimated conditional correlations on some factors to study the sources of variation in

correlations. Although su¤ering from econometric problems by using estimated correlations in the

second-stage regression, they �nd that the correlation for US markets are about 0.5 at the normal

time and -0.4 at the 1997 crisis. Finally, the recent work of Anderson, Bollerslev,Diebold, and Vega

(2007) �nd that during the expansion the stock-bond correlations are positive albeit small, whereas

during the contraction they are negative and large4, which is largely consistent with our results.

3 Econometric Methodology

3.1 Univariate Markov-switching GARCH (MS-GARCH)

To model the regime-switching behavior in the univariate volatility process, we start with the

standard two-state Markov-switching GARCH(1,1) model:

Rt = �t + �t

�t � N(0; Vt)

Vt = !s(t) + �s(t)Vt�1 + �s(t)�
2
t�1

P (s(t) = ijs(t� 1) = j) = Pij with i = 0; 1 and j = 0; 1 (1)

This model allows the volatility process to have di¤erent dynamics with di¤erent persistence

and level parameters in di¤erent regimes. And the latent Markov state variable s(t) determines

which regime prevails at each point in time. Model (1) look apparently simple and intuitively

straightforward. But because the recursive structure of GARCH, current conditional variance is

decided by the complete history of the state variable. So the (conditional) likelihood of observa-

tion at time t, ft(Rtj�;R[t�1;0]; s(0)), needs to be computed from ft(Rt; s(t):::; s(1)j�;R[t�1;0]; s(0))
4They calculated the unconditional correlations separately for the expansion period from July 1998 through

February 2001 and the contraction period from March 2001 through December 2002. And determination of contraction

and expansion could be found in their paper.
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through integration on s(1) up to s(t). So as the number of observations increases, the integra-

tion dimension increases, which makes Maximum likelihood estimation of this Markov-switching

GARCH is essentially infeasible in practice. To avoid the path-dependence problem while main-

taining the GARCH feature of modeling, we adopt an approach proposed by Haas Mittnik and

Paolella (2004). The idea, for a two-state model, is to model two parallel volatility processes, each

of which has the GARCH dynamics. The latent Markov state variable determines which process is

selected for each time. Its trick is switching on both parameters and processes while the standard

MS model only switches on parameters. Formally, it is as follows:

Rt = �t + �t

�t � N(0; Vs(t);t)

Vi;t = !i + �iVi;t�1 + �i�
2
t�1 i = 0; 1

P (s(t) = ijs(t� 1) = j) = Pij with i = 0; 1 and j = 0; 1 (2)

The bene�t of this approach is to be able to avoid the path-dependence problem so we are

able to compute the likelihood function without integration over the whole path of the volatility

process. As suggested in Haas, Mittnik and Paolella (2004), the interpretation of �i and �i are still

the persistence parameters in each regime. But the unconditional level in each regime is not only

characterized by the three parameters of the GARCH formula. The transition probability Pij , which

determines how often the process is in a regime, also determines the expected volatility level of a

regime. The formula for computing the unconditional level of volatility is in the Appendix. Another

property of this model is that one of the regimes could be non-stationary, i.e. �i + �i >= 1; but

the whole system could still be stationary if the transition matrix together with all the persistence

parameters satis�es a certain condition, which is also detailed in the Appendix.

3.2 The main model: Markov-switching CCC-GARCH(MSCCC)

A direct multivariate generalization of model (2) is illustrated in Haas and Mittnik (2007). They

base the regime-switching on the BEKK model of Engle and Kroner (1995) model. But their

setup is not well-suited for our research purpose. Since volatility may have di¤erent dynamics to

correlation, we would like to have an explicit process for the correlation, as well as a corresponding
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state variable. So we adopt the Constant Conditional Correlation (CCC) model of Bollerslev

(1990) as the base model, and allow both the individual volatility processes and correlation process

to switch among di¤erent states. While using the DCC Model as the base model would be more

general, we will explain later why we use CCC as base model.

To be speci�c, we model the covariance of the bond and stock markets as three components:

stock market volatility, V st , bond market volatility, V
b
t , and the correlation between two markets,

Ct. Let Sst be a two-state variable governing the regime-switching of V
s
t , and a two-state variable

Sbt governing that of V
b
t . Then for each of the four combinations of S

s
t and S

b
t ( hereinafter called

"combined states"), we further split it into two "sub-states" which correspond to high and low

correlation regimes within each combined state. Finally, to represent the regime-switching of the

whole covariance matrix, we de�ne a general state variable St with eight states to govern the regime-

switching of the covariance matrix5. Table 1 provides detailed de�nition on St. This speci�cation

allows us to investigate how the regime-switching of two volatility processes responds to each other,

and between what levels the correlations would switch within each of the four combined sates.

With the de�nition of St, we formally de�ne our general bivariate Markov-Switching Constant

Conditional Correlation model (MSCCC). Let Rt �
h
Rst Rbt

iT
denote the returns of stock index

and bond, either 1-year bond or 10-year bond, and �t �
h
�st �bt

iT
be conditional mean vector,

�t �
h
�st �bt

iT
be the residual vector. Then the main model is as follows:

Rt = �t + �t

�t s N(0;Vs(t);t)

with 0 =

24 0
0

35 and Vs(t);t =

264 V ss(t);t Cs(t);t

q
V ss(t);tV

b
s(t);t

Cs(t);t

q
V ss(t);tV

b
s(t);t V bs(t);t

375
V ki;t = !

k
i + �

k
i V

k
i;t�1 + �

k
i �
k2
t�1 i = 1; 2:::8 and k = s(stock); b(bond)

Ci;t = Ci i = 1; ; 2:::8 (3)

P (s(t) = ijs(t� 1) = j) = Pij with i and j = 1; 2 � � � 8

5The GARCH parameters of stock volatility are the same in states f1; 2; 3; 4g or f5; 6; 7; 8g ; the bond volatility has

the same set of GARCH parameters in f1; 2; 5; 6g or in f3; 4; 7; 8g :And we do not restrict the low and high correlation

level in those four combined states to be equal. So there are eight possible values for correlation.
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Model (3) is di¤erent from Haas and Mittnik (2007) mainly in two ways. First, our base

model is Constant Conditional Correlation model (CCC), which means that we explicitly model

the correlation. This provides us direct observation of how correlation interacts with the volatilities

in both markets. As mentioned earlier, Haas and Mittnik (2007) use BEKK as their base model.

Although their approach is very �exible in that it allows any interaction of the squared terms and

cross product, it is very di¢ cult to recover the regime-switching parameters of the correlation from

their model. Their model could only tell how the covariance switches among di¤erent regimes,

instead of the correlation. The covariance could appear to have a jump because of either one or

both of the volatility processes have a jump even when the correlation remains constant. Our setup

enables us to disentangle these two e¤ects neatly. Secondly, our setup allows us to do two-stage

maximum likelihood estimation, which is useful in higher dimension problem or robustness for

complex model estimation. The justi�cations for the two-stage estimation of the model are similar

to those of CCC or DCC6.

3.3 Discussion on model speci�cation

A common concern about regime-switching models regards the number of regimes. By allowing

each latent process to be governed by its own state variable, our joint state variable St needs to

have eight states to characterize the joint model. Of course, as mentioned before, our model is much

more restricted than the general 8-state model without restrictions since the GARCH parameters

in our model are only switching between two sets of values. But it is still natural to consider smaller

models by shrinking the general one, which is a way of assessing the importance of having di¤erent

state variable for di¤erent process. We could restrict St in various ways, which would result in

di¤erent restricted models. For example, the simplest restriction is to let the volatility processes of

both markets and the correlation share the same two-regime state variable. Alternatively, we could

allow two volatility processes share the same state variable, but the correlation has a separate state

variable. The full set of speci�cations we considered in this paper are detailed in Table 2.

6We have not formally derived the stationarity conditions for the joint model. But since the correlation part of

the model does not a¤ect stationarity, the stationarity conditions for the joint model are similar to the conditions for

the univariate model in Haas, Mittnik and Paolella (2004). Basically if both of the non-stationary states of the two

volatility processes are transient and have high probability to switch to the stationary states, then the joint model is

stationary.
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On the choice of the "base model", a more general framework would be building the regime-

switching upon the DCC, which allows for time-varying correlation within each correlation regime.

But because DCC has a volatility-standardized term in its recursive formula, combining DCC with

the regime-switching GARCH would hugely complicate the already complicated model structure.

And as we will see in the result section below, three out of the four combined states are only

visited in very low frequency. Adding 16 extra DCC parameters would not likely produce a great

improvement. And we believe eight correlation states should capture well the variation in the

bond-stock correlation. As results from Pelletier (2006) suggest, switching constant correlation is

adequate to capture the dependence in the correlation.

4 Estimation and Comparative Statistics

4.1 Data and estimation

We use daily returns from both the stock and bond markets to estimate the model. Stock market

returns are computed as daily returns on S&P500 index from WRDS. For the bond market, two

series of daily returns are computed from bond yields on 10-year and 1-year US government bond,

which are available from federal reserve bank in Chicago. The sample period is from January 5,

1986 to December 29, 2006. Table 3 presents the statistics summary of the two return series.

Before estimation of the volatility models, we �lter each return series by an ARMA(p,q) model,

with p and q chosen to have the best �t according to Bayesian Information Criterion (BIC). The

optimal �ltering orders are also presented in Table 3. Because bond returns are computed from

bond yield, which itself is computed by some interpolations of "rolling bond" returns, there are

some autocorrelations in the bond returns, which does not necessarily mean there are any arbitrage

opportunities in the market.

After we estimate the conditional mean by an ARMA model, we can estimate the main Markov-

Switching volatility model (3). The estimation are done in a two-step procedure. First, for each

of the two time series, a univariate two-regime MS-GARCH model (2) is estimated. Then with

$ik; �
i
k and �

i
k �xed at the estimates from the previous stage, the rest of the parameters of model

(3) are estimated.

With 6 GARCH parameters for each volatility process, 8 correlations and 7 � 8 = 56 transition

probabilities, the general model has 76 free parameters. The two-step procedure could separate the
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problem in a lower dimension sub-problem, which could provide robustness in estimation. However

there are still 64 free parameters in the second stage estimation, and the numerical standard errors

of the estimates are di¢ cult to compute. To get a more robust standard error estimate of the general

transition matrix, we further �x those transition probabilities with second-stage estimate less than

0.0001 to be zero. This results in a estimation problem with only half of the parameters. The speci�c

maximum likelihood estimation algorithm is standard. It combines a Markov-switching estimation

algorithm with GARCH likelihood calculation. The details can be found in the Appendix.

4.2 Comparative statistics

Once we �nish the estimation of the joint model, we analyze the intertemporal and contemporary

relationships among the three state variables and three latent processes by the following comparative

statistics. All of them are mainly derived from the general transition matrix of the main model,

and their calculations are detailed in Appendix.

Conditional transition probabilities

As ways of analyzing the information contained in the transition matrix, we compute two types

of "conditional transition probability". The �rst one is t � conditional transition probability;

which is conditional on time t information. It is the probability of one state variable�s regime-

switching from t to t+1 given the state of another state variable at time t. For example, Pr(Sbt+1 =

highjSbt = low;Sst = high) is the transition probability of bond volatility switching from low to

high regimes conditional on the current stock volatility state being in high regime. So this kind

of conditional transition probabilities can reveal the forecasting bene�t of joint modeling. If this

transition probabilities are signi�cant di¤erent from the marginal transition probabilities implied

by the transition matrix, then by joint modelling, we have better forecasting power for the future

state of the considered variable. Due to the focus of the paper, we only compute the t�conditional

transition probabilities of the bond-stock correlation conditional on volatility states in the bond

and stock markets.

The second one is t+1�conditional transition probability; which is conditional on information

of up to time t + 1. It is the probability of one state variable�s regime-switching from t to t + 1

given that there is a regime-switching from t to t + 1 in another state variable. For example,

Pr(Sbt+1 = highjSst+1 = high; fSst = low ; Sbt = lowg) is the transition probability of bond volatility
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switching from low to high regime conditional on stock volatility�s switching from low to high

regimes. These conditional transition probabilities are ways of measuring how two considered state

variables jump together in their own directions. While the t � conditionals are on intertemporal

relationships, t+ 1� conditionals are evaluating the contemporary relationships among the state

variables.

Conditional expected correlations

Another type of statistics we are interested in is the expected correlation conditional on the

contemporary volatility state in either market. For example, E(CtjSst = low) is the expected

correlation given a low volatility state in stock market. In the result section, we further com-

pute the expected correlations conditional on regimes of both volatility state variables, such as

E(CtjSst = low;Sbt = low). So these quantities can tell us the bond-stock correlation given all

four "combined states", and such have important implications for portfolio diversi�cation. Similar

relation between correlation and volatility can not be measured in the traditional GARCH-type

models.

As we can see, all above "conditional quantities" can be derived only when we allow separate

state variable for each of the three latent processes. So we can not derive similar quantities from the

model of Haas and Mittnik (2007). And the empirical results of the paper will be mainly focusing

on these aspects of the model.

5 Empirical Results

In this section, we �rst present the estimation results on the univariate model. Second, the results

on the joint model are demonstrated, mainly around the "conditional quantities" introduced pre-

viously. Third, we compare the �ltered bond-stock correlation from our model with that estimated

from the DCC model. Finally, we discuss the results on goodness of �t for various restricted model.

5.1 Results on univariate model estimations

The estimation results of the univariate MS-GARCH model (2) using S&P500 daily returns are

presented in Table 4, while Table 5 and 6 show the results for 1-year bond and 10-year bond

returns. The parameter estimates of the conditional mean are not shown, which will also applies to
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other tables of the results. The same model has been estimated by Mittnik and Paolella (2004) on

foreign exchange returns. We �nd similar results on equity return data. First, there is a signi�cant

di¤erence in the persistence levels of the GARCH processes of the two regimes. When the volatility

process is in the low-volatility regime, the GARCH coe¢ cient � is larger, but far away from unity,

which is usually the case when one �ts a simple GARCH model to daily stock return data. The

ARCH coe¢ cient � is much smaller than that of the high-volatility regime, less than one-tenth of

the latter7. So in tranquil periods, the volatility remains very stable, and the shock has very small

e¤ect on the conditional variance of the next day. But in volatile periods, the impact of today�s

shock has much larger e¤ect on next day�s conditional variance. The total persistence level of each

process are measured by the sum of � and �. We could see in the table that in the low-volatility

regime, the GARCH process has persistence level smaller than unit, which means it is stationary.

But as found in Mittnik and Paolella (2004), the volatile regime has larger-than-unity persistence

level, so the GARCH process of the high-volatility regime itself is not stationary. The stationarity

of the whole system is determined jointly by the transition matrix and the two sets of persistence

parameters in both regimes, which is summarized by the largest eigenvalue of the matrix M , which

is explained in Appendix. We can see that all three univariate models are stationary with eig(M)

less than one. The stationary probability of low-volatility regime is higher than those found in

exchange return, which is mostly less than 0.8. The expected level of volatility in high-volatility

regime is about 4 times the expected level of low-volatility regime.

Table 5 and 6 report the estimation results of univariate MS-GARCH on the two bond return

series. The di¤erence between the two regimes is similar to that found in stock index return. Higher

level of persistence, smaller � estimate and larger � estimate are associated with high-volatility

regime The persistence levels in the high-volatility regime of both bond series are larger than unity

as well. For 10-year bond returns the di¤erence in � estimates is not signi�cant. The di¤erence

in � estimates for one-year bond is small as well, compared to that found in stock market. So for

bond market, the volatility dynamics of the two regimes mainly distinguish from each other in their

response to shocks. For one-year bond returns, the ratio of expected volatility in the high regime

7More precisely, the comparable quantity should be the standardized impact coe¢ cient, which is the ARCH

coe¢ cient devided by the t-1 conditional variance of the regime. Considering the ratio of unconditional level of the

high-volatility regime to that of low-volatility regime is much smaller than the ratio of their ARCH coe¢ cients, the

standardized impact of shock in high-volatility regime is still much higher.
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to the low regime is much higher than that of the stock index return or ten-year bond return. Thus

the one-year bond would experience much larger jump upon regime-switching than stock return,

while 10-year bond behaves more similar to stock return.

5.2 Results on estimations of the joint model

We have studied the di¤erence of the bond and stock markets in the univariate MS-GARCH model

in last section. Now we discuss their relation in the joint model. The joint model allows us to

see how the two state variables correspond to each other, and how the bond-stock correlation

behaves within the 4 "combined states". First, we present the main estimation results of model (3)

using two pairs of stock-bond returns in Table 7 and Table 8. The �rst two blocks in the tables

are the regime-switching GARCH parameter estimates for the stock and bond series in the joint

estimation. The third block reports the constant correlation levels in each of the eight regimes.

The last block is the transition matrix estimate, together with the stationary probabilities of each

regime. In both tables, the estimates of GARCH parameters are similar to those from the univariate

estimations, but with smaller standard deviations due to e¢ ciency increase by using more data.

And here we focus on the results on the joint part of the model. Then in Table 9 to Table 12,

some derived statistics are presented to better understand the intertemporal and contemporary

relationships among the three latent processes. Finally, we have some discussions on the results of

the bond-stock correlations in a simple discounted cash-�ow model for the bond and stock prices.

5.2.1 Stationary probabilities and correlations within the combined states

First, we can indirectly see how likely the two volatility processes switch together by comparing the

stationary probabilities of the four "combined states". These can be obtained simply by summing

up the stationary probabilities of St states two by two. For the one-year bond pair, in about 76% of

time both the stock and bond return are in low-volatility regime, and in about 3.6% of time both of

them are in high-volatility regime. So there is about 20% of time that they are in di¤erent volatility

regimes. For the 10-year bond pair, the proportions of time that bond and stock volatilities are in

the same regime is similar to the one-year bond case. The main di¤erence is that there is a much

larger percentage, about 8%, of time when both bond and stock are in high-volatility regimes. This

feature of ten-year bonds is a disadvantage for diversi�cation. Large stationary probability of two

volatilities in the same regime for both pairs indicates that two volatility state variables correspond
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to each other to a certain extent, which will be re-con�rmed by the following results. We can also

see the smoothed probabilities of each state across time in Figure 1 and 28.

Next, we compare the levels of correlation within the four "combined states". The two cor-

relation levels in the two "sub-states" of all four "combined states" are all signi�cantly di¤erent.

These results indirectly suggest a separate state variable is needed for both stock-bond correla-

tion processes. Taking into account of estimation errors, only in the "low-stock-high-bond" state

are both of the two correlation estimates non-negative. And in the "high-stock-high-bond" state,

the high and low correlation estimates are the highest and lowest respectively among the eight

correlation estimates for the one-year bond paired with stock. Similar results are found for the

10-year paired with the stock. We will further discuss these �ndings in more details later. Finally,

for the one-year bond pair, taking into account of standard errors, we could see there are mainly

four correlation regimes: one extremely high at about 0.8, one negative at -0.4, and the other two

in between are around 0.35 and 0.05. A similar state reduction for correlation could be done for

ten-year bond pair, and we examine this formally in section 5.5.

5.2.2 Conditional transition probabilities

Results on the t�conditional transition probabilities We study the intertemporal relations

between correlation state variable and the volatility state variables in two market through the

t � conditional transition probabilities reported in Table 9. Comparing these numbers with the

"unconditional transition probabilities" in Table 10 can reveal the forecasting bene�t of allowing

correlation to have separate state variable. First, we look at the transition probabilities of Ct < 0 to

Ct+1 > 0 given di¤erent volatility states in di¤erent markets. The correlation transition probability

is higher when conditional on high volatility state in either bond or stock than conditional on low

volatility state. And the di¤erence is more signi�cant for the one-year bond case. Comparing the

information contained in di¤erent markets, the correlation transition probabilities conditional on

low volatility states in two markets are not signi�cant di¤erent for both pairs. However, correlation

transition probability conditional on high volatility states in one-year bond is larger than that

conditional on high volatility state in stock market. And for 10-year bond paired with stock

market, conditioning on either market produces similar correlation transition probabilities. So it

8The "smoothed" state probabilities of each state across time in the whole sample is computed as in Kim (1994),

which is recited in Appendix.
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seems that only correlation between the 1-year bond and stock has very di¤erent conditional "low to

high" transition probabilities for conditioning on di¤erent markets or di¤erent volatility states, and

the high volatility state of 1-year bond is mostly likely to be followed by a jump up in correlation.

Next, we turn to the transition probabilities of Ct > 0 to Ct+1 < 0 given various volatility

states. The correlation transition probability conditional on bond�s high volatility state is signi�cant

higher than that conditional on bond�s low volatility state for both pairs. But the two volatility

states in stock market has similar information on the correlation transition probability, which is

di¤erent from above "high-to-low" case. Similar to the "high-to-low" case, there is no signi�cant

di¤erence in conditioning on the low volatility state of either stock or bond market for both pairs,

and conditioning on high volatility states in both bond markets has higher correlation transition

probabilities than conditioning on high volatility state in stock market.

To summarize, high volatility states of bond markets, especially 1-year bond, imply higher

t-conditional transition probabilities of bond-stock correlation for both "low-to-high" and "high-

to-low" cases. And the di¤erences between these numbers and those "unconditional transition

probabilities" in Table 10 are statistically signi�cant. But there is no signi�cant di¤erence in

conditioning on today�s high and low volatility states in stock market in terms of predicting regime-

switching of the bond-stock correlation.

Results on the t + 1�conditional transition probabilities The contemporary relations

among the three state variables can be measured through the estimates of t + 1 � conditional

transition probabilities reported in Table 11. The �rst row of both panel is on how correlation

switches conditional on a regime-switching in bond or stock volatility, which can again be com-

pared with the unconditional ones in Table 10. For both bond pairs, when stock market volatility

jumps from low to high, the transition probabilities of correlation switching from high to low is

signi�cantly higher than the unconditional ones while "high-to-low" correlation (conditional) tran-

sition probabilities are lower than the unconditional ones. However, conditioning on a "low-to-high"

jump in bond volatility has the opposite results: the correlation (conditional) transition probability

is higher, than the unconditional one for the "low-to-high" switching in correlation, and lower for

"high-to-low" case. So the "low-to-high" switching in stock volatility is more likely to be associated

with "high-to-low" switching in correlation while the "low-to-high" switching in bond volatility is

likely to be associated with "low-to-high" switching in correlation. The second row of both panels
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evaluate how both of the volatility state variables switches conditioning on a regime-switching in

bond-stock correlation, which can be compared with the "unconditional (or marginal) transition

probabilities" in Table 4-6. The results are similar to those of �rst row since they inherit the main

properties of the quantities in �rst row by de�nition.

The last row of both panels describes how likely the two volatility processes would jump in the

same direction together. For ten-year bond, it tends to jump with stock in either direction with

high probability. But for one-year bond, it has high probability to jump down with stock, but very

low probability to jump up together. So the one-year bond does not always react the information

from stock market. But if it does react, probably to extreme shock, it resolves the uncertainty

together with stock market. Comparing these numbers to those in Table 4-6 also indicates that

only the case of "low-to-high" conditioning in the 1-year bond pair does not provide signi�cant

more information than the marginal ones. So the two volatility state variables correspond to each

other quite well, especially for the 10-year bond pair.

The contemporary relationship revealed in above results indicate that the correlation state

variable has very di¤erent switching behavior from the volatility state variables while two volatility

processes can largely share the same state variable, especially for the 10-year bond paired with

S&P500.

5.2.3 Conditional expected correlations

An important feature of the general model is that it is able to capture the contemporary relations

among the correlation and volatilities in two markets. We quantify these relations through the

conditional expected correlations which are reported in Table 12.

First, we compare the expected correlations conditional on a single volatility state variable,

which are presented in the last row and column of both panels. For both pairs, the expected

correlation conditional on stock�s high volatility state is signi�cant lower than that conditional

on stock�s low volatility state, although the di¤erence is signi�cant only for the 1-year bond pair.

But the results are opposite for those conditional on bond volatility states. Judging from the

di¤erences in conditioning on high and low volatility-states, it seems that stock market has larger

contemporary impact on the bond-stock correlation than bond market. A related observation is

that only the expected correlation between 1-year bond and stock conditional on the high volatility

state in stock market has a negative point estimate. This re�ects that during "�ight to safety"
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period, investors transfer money from stock market more to bonds with shorter maturities than

to bonds with longer maturities. This is again due to the fact that long-term bond is more like a

stock.

Table 12 also presents results on the "joint-conditional" expected correlations. These results

reveal the expected correlations in four "combined states", which is basically to aggregate the eight

correlation estimates from Table 7 and Table 8 into four correlation levels. For both pairs, the

"high-stock-low-bond" state has the lowest expected correlation while the "high-bond-low-stock"

state has the highest one. And in the most volatile market condition characterized as the "high-

stock-high-bond" state, the expected correlation is surprisingly low, even lower than the peaceful

"low-stock-low-bond" state. In the high stock volatility state, the di¤erence in expected correlations

is not signi�cant between conditioning on the high and low volatility states of the bond market.

But the di¤erence is signi�cant when the stock market is in low volatility state. In contrast, the

di¤erence in the expected correlation is more signi�cant between conditioning on stock�s high and

low volatility states when the bond market is in the high volatility state, especially for the 1-

year bond case. So when the stock market is very volatile, the bond-stock correlation is mainly

dominated by the stock market, usually with low correlation level. And the e¤ect of the stock

volatility on the bond-stock correlation becomes more prominent when the bond market is also in

volatile condition.

5.2.4 Discussions on the bond-stock correlations

Above empirical �ndings can be explained in a simple discounted cash-�ow model for both the

bond and stock prices. The bond price is the expected value of the discounted factor while the

stock price is co-driven by the future cash �ow and discount factor9. So the high bond-volatility

state is when the expected discount rate has high volatility. But for the stock volatility, it comes

from either one or both of the two shocks, cash-�ow news and discount factor news. The recent

�ndings of Boyd, Hu and Jagannathan (2005) show that the stock price is dominated by the cash

�ow e¤ect during recessions while it mainly responds to discount rate news during expansions. Our

results are consistent with their �ndings. In the "high-bond-low-stock" state, the shock must come

form discount factor which will make the bond and stock prices move in same direction irrespective

9Di¤erent from discount factor for bond, the discount factor for stock is sum of equity premium and the risk-free

rate. But for ease of illustration, we assume they are the same.
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of business cycle. This is con�rmed by the result in Table 7. Only in the "high-bond-low-stock"

state can we have positive point estimates for both the high and low correlation states10. So

when we average them across the whole sample, we have highest unconditional correlation in the

"high-bond-low-stock" state as in Table 12.

However, for the "high-stock-high-bond" state, we have two di¤erent situations since the source

of the stock volatility is dependent on the business cycle. During expanssions, both the bond and

stock prices are mainly driven by discount rate news. So we will have highest correlation during

expansions; But during recessions, the stock price is mainly dominated by the cash �ow e¤ect,

which works in the opposite direction for bond price as rising future cash �ow will increase the

discount rate and lower the bond price. As a result, we have lowest bond-stock correlation during

recessions. This is con�rmed by the regime correlation estimates in Table 7. And when we average

the correlations across the whole sample, the correlation is close to zero in the "high-bond-high-

stock" state as in Table 12. Results in the other two "combined states" can be explained similarly

by the relative e¤ect of shocks to discount factor and cash �ow in the discounted cash-�ow model.

If we further di¤erentiate the discount factors for the bond and stock prices, then the time-varying

equity premium will also help to explain the time-varying bond-stock correlations. This is especially

relevant for explaining the bond-stock correlation in sample after 2003 when it frequently swings

between large positive values and large negative values, which can not be explained by the business

cycle. A structural model is needed to measure the e¤ect of time-varying equity premium on the

bond-stock correlation, which is out of the scope of this paper.

5.3 Estimated correlations from the MSCCC model

Although we assume constant correlation within each regime, the correlation estimated from our

model has quite rich dynamics. Figure 3 and 4 provides the view of the correlation dynamic for

both pair over the past 20 years. Both correlations appear to jump to a negative level when there

is a crisis in equity market. As mentioned previously, since after 2003 negative correlations happen

very frequently, irrespective of having a stock market crisis or not. We believe it might be because

that the time-varying equity premium is becoming more important for the bond-stock correlation

after 2003. As a comparison, we plot the MSCCC correlations together with correlations estimated

10Since 10-year bond have stock-like characteristics, we mainly focus on 1-year bond in expaining our �ndings in

the discounted cash �ow model.
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from DCC. As shown in Figure 5.1 and 6.1, the main di¤erence between DCC�s correlations and

the MSCCC correlations is that the MSCCC correlations reveal more extreme, both positive and

negative, correlation level than the DCC. And forecast error in such situation are most costly

as pointed out by Engle and Collacito (2006). As another view for comparison, we �t the DCC

correlations by an 4-order polynomials of MSCCC correlations in Figure 5.2 and 6.2. We could see

DCC correlation usually has downward bias for day with high smoothed correlation, and upward

bias for day with low smoothed correlation. Although our model is not developed for forecasting, it

does point out potential way of improvement for the traditional GARCH type dynamic correlation

models, especially for modeling bond-stock correlation.

5.4 Results on restricted models

Although all above analysis is based on the general model, we also estimate some restricted models

speci�ed in Table 4 to compare their goodness of �t11. Table 13 reports the goodness-of-�t results

on all considered models. We rank all the model according to AIC and BIC. For one-year bond

pair, the most general model MSCCC(2,2,8), is the best model according to AIC. But according

to BIC, which penalize heavily extra parameters, MSCCC(2,2,4) is the best model, in which two

volatility process share the same Markov state variable but the correlation has a separate one. The

same best models are identi�ed under the two criterion for ten-year bond paired with S&P500. So

generally according AIC, we do need three separate state variables for volatilities and correlation,

which justi�es our main model. According to BIC the most general model still rank second for

the ten-year bond case, but very poorly for the one-year bond case. The MSCCC(2,2,4) is always

the best under BIC and the second under AIC. So while a separate state variable for correlation

is very important, stock and bond volatilities could share the same state variable without too

much loss in goodness of �t. This seems to re�ect the information could be transmitted across

two markets e¢ ciently within a day. The good performance of MSCCC(2,2,4) could also make it

a good candidate as a multivariate regime-switching GARCH model in forecasting exercise since it

is quite parsimonious, having only 28 parameters.

11We do not conduct formal tests for the number of regimes. As indicated in Hansen(1992) and McLachlam and

Peel (2002), the standard likelihood ratio test is not valid for testing the number of regimes. And test on regime

number still remains very di¢ cult even in much simpler setups. A more recent study on regime number test is Cho

and White(2007).
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6 Concluding Remarks

To study the bond-stock correlation and its relation with volatilities in the two markets, we extend

the univariate Markov-Switching GARCH of Haas Mittnik and Paolella (2004) into a bivariate

MS-GARCH model with Conditional Constant Correlation (CCC) speci�cation. Our speci�cation

allows a separate state variable governing each of the three processes: bond volatility, stock volatility

and bond-stock correlation, which is di¤erent from other multivariate generalizations of their model.

We estimate our model using two pairs of daily returns: S&P500 with one-year bond and S&P500

with ten-year bond, to study the di¤erence in bond-stock correlation for di¤erent bond maturities.

From the univariate model estimation, we �nd both volatility processes switch between a sta-

tionary and a non-stationary state while the whole system is till stationary, similar to the �ndings

in Haas Mittnik and Paolella (2004). By allowing di¤erent latent process to have separate Markov

state variable, the results from the joint model estimation has the following main �ndings: First, we

�nd that a separate state variable for the bond-stock correlation is needed while the two volatility

processes could largely share a common state variable, especially for the 10-year bond paired with

S&P500. Second, the "low-to-high" switching in stock volatility is more likely to be associated with

the "high-to-low" switching in correlation while the "low-to-high" switching in bond volatility is

likely to be associated with the "low-to-high" switching in correlation. As a result, we show that the

expected bond-stock correlation conditional on stock�s high volatility state is signi�cant lower than

that conditional on stock�s low volatility state. But the results are opposite for those conditional

on bond�s volatility state. Finally, we �nd that when the bond market is in its high volatility state

and the stock market is in its low volatility state, the estimates of bond-stock correlation in both

high and low correlations states are non-negative. But when both bond and stock markets are

in high volatility state, the bond-stock correlation has the highest correlation estimate at its high

correlation-state and almost lowest correlation estimate at its low correlation-state. This might be

attributed to the relative impacts of shocks to the cash �ow and shocks to the discount factor on

the pricing of bonds and stocks at di¤erent stages of business cycles. But we also �nd large swings

in the bond-stock correlation between positive and negative values after 2003, which can not be

explained by the business cycle, and possibly can be driven by the time-varying equity premium.

The proposed model assumes constant correlation within each state. The estimate correlations

suggest that smaller number of correlation states is needed if we allow time-varying correlation
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within each state. So modeling the correlation as two-state regime-switching DCC may be adequate

to capture both the structural break in the level of the correlation and the variation within each

regime. Future work will consider how to e¤ectively incorporate DCC in this regime-switching

GARCH framework in a way that is parsimonious and numerically tractable. A better covariance

forecasting model could also be developed in a similar approach. Another interesting research topic

will be comparing the �ltered states with the macro news announcement. For example, the state-7

should be related to the discount rate news in expansion while state-8 should be related to cash

�ow news in recession. Finally, our model might also be applied to study the contagion e¤ect in

international markets.
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Appendix: Details

A1: details of maximum likelihood estimation

The general model could be estimated by maximum likelihood method. The algebra is standard, as

in Hamilton (1994). Let � = f!ki ; �ki ; �ki ; Pij;Cig with i = 1; 2:::8 and k = s or b; be the parameter

space of model (3). And R[t;0] is the whole history of return from 0 to t. Then the likelihood of the

observed return pairs
h
Rst Rbt

iT
at time t can be written as:
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where �t(i) = ft(R
s
t ; R

b
t j�;St = i;Rs[t�1;0]; R

b
[t�1;0]), Pi;j = Pr(St = ij�;St�1 = j); and

�t�1jt�1(j) = Pr(St�1 = jj�;Rs[t�1;0]; R
b
[t�1;0]):

Then �t(i) could be calculated as the usual GARCH likelihood function for the subset of the

parameters � where St = i., given the whole history of past returns. And Pi;j is just the entries of

the transition matrix, which is part of �. To compute the remaining �t�1jt�1(j), let

�tjt�1(j) = Pr(St = jj�;Rs[t�1;0]; R
b
[t�1;0])

Then �tjt(j) is computed as:

26



�tjt(j) = Pr(St = jj�;Rs[t;0]; R
b
[t;0])

=
Pr(St = j;R

s
t ; R

b
t j�;Rs[t�1;0]; R

b
[t�1;0])

Pr(Rst ; R
b
t j�;Rs[t�1;0]; R

b
[t�1;0])

=
Pr(Rst ; R

b
t j�;St = j;Rs[t�1;0]; R

b
[t�1;0]) � Pr(St = jj�;R

s
[t�1;0]; R

b
[t�1;0])

NP
j=1
ft(Rst ; R

b
t j�;St = j;Rs[t�1;0]; R

b
[t�1;0]) � Pr(St = jj�;R

s
[t�1;0]; R

b
[t�1;0])

=
�t(j) � �tjt�1(j)
NP
i=1
�t(j) � �tjt�1(j)

So given �t(j) and �tjt�1(j), we could compute �tjt(j). Finally, the Markov property of the state

variable results in the following relation between �tjt�1 and �t�1jt�1 :

�tjt�1(j) = P � �t�1jt�1

So the likelihood function could be computed by iterating �tjt�1 and �t�1jt�1 from t=1 to T. And

the maximum likelihood estimator of b� is simply as:
b� = argmax

�

TX
t=1

logfft(Rst ; Rbt j�;Rs[t�1;0]; R
b
[t�1;0])g

In this paper, we numerically maximize this log-likelihood function. And standard error of para-

meter estimates are also obtained numerically.

With the estimate of the transition matrix, the "smoothed probability" �tjT , of the states at t

are computed as in Kim (1993):

�tjT = �tjt � f bP T � [�t+1jT (�)�t+1jt]g (4)

where sign � denotes element-by-element multiplication, and (�) denotes element-by-element

division. The smoothed probabilities could be computed by iterating on [4] backward from t=T to

1.

A2: Stationarity condition and unconditional volatility

This part of appendix is reproduced from Haas Mittnik and Paolella (2004) Let Pij be the ith row

and jth column element of the transition matrix, and � and � are 2 by1 vectors of the ARCH and
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GARCH parameters for two states. Then de�ne

M =

� M1;1 M1;2

M2;1 M2;2

�
Mi;j = Pij(� + � � e(i)T ); i; j = 1; 2

where e(i) is a vector with ith element equal to one and the rest being zero

Then model (2) is stationary if largest eigenvalue of matrix M, denoted as eig(M) is less than

one. If this stationarity condition holds, then the unconditional expectation of two volatility

processes is given by

E(V ) = [I2;I2](I4 �M)�1(P 
 !)

where Ik is k by k identity matrix, P is the unconditional state probability vector to be computed

in A3, ! is de�ned as in model (2). and 
 is the Kronecker product operator. The proof for above

result could be found in Haas Mittnik and Paolella (2004).

A3: Algebra for comparative analysis:

Expected correlation conditional on volatility regime

To compute the expected correlation level conditional on volatility regime, we �rst need to compute

the unconditional probability implied by the transition matrix. Let N = 8 be the number of state,

P be the N by N transition matrix, and C is N by 1 vector of correlation. The unconditional state

probability P can be computed as:

P = (ATA)�1AT eN+1

where A
(N+1)�N

=

�
IN � P
1T

�
with IN being the N by N identity matrix, eN+1 being the (N + 1)th column of IN+1; and 1 being

N by 1 vector of 1s.

With the unconditional state probability vector,and the transition matrix, we can calculate the

expected correlation conditional volatility regime as follows, for the case of low volatility regime:
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E(CtjSk = low) =
X

fijSt=i;Skt =lowg
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=
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Ci � Pr(S
c
t = i; S
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Ci � Pr(Sct = i; S
k
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Pr(Sct = i; S

k
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where Pr(Sct = i; S
k
t = low) is one entry in the N by 1 unconditional state probability P , and k = s

for conditioning on stock volatility regime and k = b for conditioning on bonding volatility regime.

Similar calculations can be done for expected correlation conditioned on both of Sst and S
b
t ,

such as E(CtjSs = low;Sb = low):

t� Conditional and t+ 1� conditional transition probabilities

There are two types of conditional transition probabilities we consider. One is the usual transition

probability conditional on observing today�s realization on other state variable, such as Pr(Sct+1 =

lowjSct = high;Sst = low):We call this t � conditional transition probability: The second one is

conditional on t + 1 information. It is the transition probabilities of one process conditioning on

there is an regime-switching in another process, such as Pr(Sbt+1 = lowjSst+1 = high; fSst = low ;

Sbt = highg):We call this t + 1 � conditional transition probability: Both of these quantities can

be derived from the general transition matrix.

First, we calculate the t� conditional transition probability as follows:

Pr(Sct+1 = lowjSct = high;Sst = low)

= Pr(St+1 = J j St = I)

with {!jSt+1(!) = Jg = f! j Sct+1(!) = low};

{!jSt(!) = Ig = f! j Sct (!) = high;Sst (!) = low }

We can derive the t+1� conditional transition probability in a similar way. For example, the

probability of t+1�s correlation would be in low regime conditioned on the stock volatility switching

from low regime (at t) to high regime (at t+1), and t�s correlation is in high regime:
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Pr(Sct+1 = lowjSst+1 = high; fSst = low ; Sct = highg)

=
Pr(Sct+1 = low ;S

s
t+1 = high j Sst = low ; Sct = high)

Pr(Sst+1 = high j Sst = low ; Sct = high)

=
Pr(St+1 = J j St = I)
Pr(St+1 = V j St = I)

with {!jSt+1(!) = Jg = f! j Sct+1(!) = low ;Sst+1(!) = high };

{! j St(!) = Ig = f! j Sst (!) = low ; Sct (!) = high }

{! j St+1(!) = V g = f! j Sst+1(!) = high }

Finally, for both the t� and t+1�conditional transition probability, we can use the stationary

probabilities Pr(St = i) to compute:

Pr(St+1 = J jSt = I)

= [Pr(St+1 = J jSt = I1) � Pr(St = I1) + ::::Pr(St+1 = J jSt = II) � Pr(St = II)]=Pr(St = I)

=

P
i2I

(P
[

j2J
Pr(St+1 = jjSt = i)] � Pr(St = i)

)
P
i2I
Pr(St = i)

where Pr(St+1 = j j St = i) is the j th row and i th column of the transition matrix P: And

I; J; V are numbers from 1 to 8 So we could compute all the relevant quantities from the transition

matrix in a similar way.

Note that by Sct+1 = low, we mean those states with signi�cantly negative correlation. So for

both bond-stock pairs, this includes St = 2; 6 and 8; as could be seen in Table 9-10. Even thougheC4<0 for ten-year bond, it is not signi�cant less than zero. So we still treat St = 4 to be the low
state for ten-year bond. This would make easier the comparison of bonds with di¤erent maturities.
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7 Tables and Figures:

Table 1: State variable de�nitions for the general model

For volatility state variables, 0 indicates low level regime, and 1 indicate regime with high level. For

correlation state, the actual level of high or low state in di¤erent "general state" are di¤erent. So correlation

state variable Sc is the same as the general state variable S, both of which have eight states.

S (General State) Ss (stock vol) Sb(bond vol) Sc(Correlation)

1 0 0 high1

2 0 0 low1

3 0 1 high2

4 0 1 low2

5 1 0 high3

6 1 0 low3

7 1 1 high4

8 1 1 low4

Table 2: State speci�cations of all models

This table speci�es di¤erent model�s restrictions on each of the three individual state variables among

various states of the general state variable S. The general model is in the �rst row. The remaining rows

present the more restricted models. The numbers in the same curly bracket represent in which states of S

individual state variable has the same value. So the collection of curl bracketed-subsets represents the �nest

��algebra of each state variable in di¤erent model speci�cation.

Model Num. of Regimes Restriction on Ss Restriction on Sb Restriction on Sc

MSCCC(2,2,8) 8 {1,2,34}{5,6,7,8} {1,2,5,6}{3,4,7,8} {1}{2}{3}{4}{5}{6}{7}{8}

MSCCC(2,2,4) 4 {1,2,3,4}{5,6,7,8} {1,2,5,6}{3,4,7,8} {1,2}{3,4}{5,6}{7,8}

MSCCC(2,2,2) 4 {1,2,3,4}{5,6,7,8} {1,2,5,6}{3,4,7,8} {1,2,3,4}{5,6,7,8}

MSCCC(2,2,2) 4 {1,2,3,4}{5,6,7,8} {1,2,5,6}{3,4,7,8} {1,2,5,6}{3,4,7,8}

MSCCC(2,2,4) 4 {1,2}{7,8} {1,2}{7,8} {1}{2}{7}{8}

MSCCC(2,2,2) 2 {1,2}{7,8} {1,2}{7,8} {1,2}{7,8}
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Table 3: Descriptive Statistics and Optimal Filtering Orders

This table gives descriptive statistics as well as the optimal ARMA �ltering orders (p� and q�)

for the returns on the S&P 500 index and 1-year Treasury bond and the 10-year Treasury bond, for

the period of January 2, 1986 to December 31 2006. All returns are daily returns in percentages.

1-year bond 10-year bond S&P 500

Mean 0.021021 0.032231 0.042042

Std. dev. 0.054204 0.45427 1.0665

Minimum -0.31801 -2.6762 -20.467

Maximum 0.80969 4.8227 9.0994

Skewness 1.1069 -0.042843 -1.4327

Kurtosis 18.573 7.3358 33.622

Jarque-Bera 54052 4107 2.0667e+005

p� 1 0 0

q� 2 1 0
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Table 4: Parameters estimates for the MS-GARCH model: S&P500

This table reports the parameter estimates of the MS-GARCH model for S&P500 daily return

series. The sample period is from January 5, 1986 to December 29, 2006. Standard deviation

of the estimate is in parenthesis. eig(M) is the stationarity statistics estimate. The estimated

model is stationary if eig(M) < 1 The unconditional expectation of the each state�s probability

and volatility level in each regime are also reported.

�st � N
�
0; V sSst;t

�
; Sst = 0 or 1

8>>>>>>>>><>>>>>>>>>:

V s0;t = 0.0026

(0.0015)

+ 0.9528

(0.0083)

� V s0;t�1 + 0.0321

(0.0071)

� �st�1

V s1;t = 0.2522

(0.1523)

+ 0.7146

(0.0811)

� V s1;t�1 + 0.6216

(0.2249)

� �st�1

P=

26666666664

low high

low
0.8745

(0.0603)
0.9217

high 0.1255
0.0783

(0.0501)

37777777775

loglikelihood=-6806.98; eig(M) =0.9913

P10 =0.8803; E(V0) =0.7781

P11 =0.1197; E(V1) =3.1949
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Table 5: Parameters estimates for the MS-GARCH model: one-year bond

This table reports the parameter estimates of the MS-GARCH model for 1-year bond daily

return series. The sample period is from January 5,1986 to December 29,2006. Standard deviation

of the estimate is in parenthesis. eig(M) is the stationarity statistics estimate. The estimated

model is stationary if eig(M) < 1 The unconditional expectation of the each state�s probability

and volatility level in each regime are also reported.

�bt � N
�
0; V b

Sbt;t

�
; Sbt = 0 or 1

8>>>>>>>>><>>>>>>>>>:

V b0;t = 0.1359y

(0.0397)y

+ 0.9546

(0.0081)

� V b0;t�1 + 0.0219

(0.0043)

� �bt�1

V b1;t = 0.4251y

(0.2127)y

+ 0.9095

(0.0167)

� V b1;t�1 + 0.3480

(0.0936)

� �bt�1

P=

26666666664

low high

low
0.8671

(0.0232)
0.8377

high 0.1329
0.1627

(0.0602)

37777777775

loglikelihood=8693.43; eig(M) = 0.9967.

P10 =0.8630; E(V0) =0.0033

P11 =0.1370; E(V1) =0.0241

y: these numbers are multiplied by 104:
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Table 6: Parameters estimates for the MS-GARCH model: 10-year bond

This table reports the parameter estimates of the MS-GARCH model for10-year bond daily

return series. the sample period is from January 5,1986 to December 29,2006. Standard deviation

of the estimate is in parenthesis. eig(M) is the stationarity statistics estimate. The estimated

model is stationary if eig(M) < 1 The unconditional expectation of the each state�s probability

and volatility level in each regime are also reported.

�bt � N
�
0; V b

Sbt;t

�
; Sbt = 0 or 1

8>>>>>>>>><>>>>>>>>>:

V b0;t = 0.0018

(0.0007)

+ 0.9437

(0.0104)

� V b0;t�1 + 0.0242

(0.0045)

� �bt�1

V b1;t = 0.0123

(0.0077)

+ 0.9202

(0.0315)

� V b1;t�1 + 0.1314

(0.0490)

� �bt�1

P=

26666666664

low high

low
0.7268

(0.0539)
0.8851

high 0.2732
0.1149

(0.0531)

37777777775

loglikelihood=-2958.43; eig(M) =0.9810

P10 = 0:7641; E(V0) = 0.1216

P11 = 0:2359; E(V1) =0.4990
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Table 7: Parameters estimates for the MSCCC(8) model: S&P500 and 1-year bond

This table reports the parameter estimates of the MSCCC(2,2,8) model for S&P500 and 1-year bond

returns. The sample period is from January 5,1986 to December 29,2006. Standard deviation of the estimate

is in parenthesis. The unconditional expectation of the each state�s probability is also reported.

8>>>>>><>>>>>>:

V s0;t = 0:0033

(0.0011)

+ 0:9548

(0.0065)

� V s0;t�1 + 0:0302

(0.0045)

� �s0;t�1

V s1;t = 0:4179

(0.1405)

+ 0:6629

(0.0775)

� V s1;t�1 + 0:5349

(0.1395)

� �s1;t�1

8>>>>>><>>>>>>:

V b0;t = 0:1406y

(0.0375)y

+ 0:9524

(0.0073)

� V b0;t�1 + 0:0233

(0.0038)

� �b0;t�1

V b1;t = 0:3177y

(0.1579)y

+ 0:9306

(0.0129)

� V b1;t�1 + 0:2551

(0.0629)

� �b1;t�1

26666666664

(Ss = 0; Sb = 0) (Ss = 0; Sb = 1) (Ss = 1; Sb = 0) (Ss = 1; Sb = 1)

high corr
0:2839

(0.0271)

0:4323

(0.0539)

0:0569

(0.1005)

0:8264

(0.0831)

low corr
�0:3530

(0.0637)

0:0795

(0.1401)

�0:2444

(0.1307)

�0:4856

(0.1392)

37777777775
(low,low,1) (low,low,2) (low,high,3) (low,high,4) (high,low,5) (high,low,6) (high,high,7) (high,high,8)

(low,low,1) 0.8222 0.0093 0.6161 0.6366 0.8285
 (0.0215) (0.0028) (0.0858) (0.1006) (0.0035)

(low,low,2) 0.7918 0.7058 0.7493 0.8175
(0.0507) (0.2130) (0.0752) (0.0477)

(low,high,3) 0.1338 0.3100
(0.0147) (0.1329)

(low,high,4) 0.0243 0.0113 0.0836 0.1269 0.1825
(0.0255) (0.1135) (0.0974) (0.0667) (0.0477)

(high,low,5) 0.0440 0.2247 0.1174 0.0534
(0.0173) (0.0844) (0.1071) (0.0478)

(high,low,6) 0.1180 0.1655
(0.0373) (0.1847)

(high,high,7) 0.1592
(0.0215)

(high,high,8) 0.0566 0.1671 0.0446
(0.0225) (0.0831) (0.0485)

unconditional 0.53044 0.24959 0.084875 0.015237 0.044823 0.038193 0.013515 0.023326

Log Likelihood: 2132.1 AIC:-4112.2 BIC:-3613.2
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Table 8: Parameters estimates for the MSCCC(8) model: S&P and 10-year bond

This table reports the parameter estimates of the MSCCC(2,2,8) model for S&P500 and 10-year bond

returns. The sample period is from January 5,1986 to December 29,2006. Standard deviation of the estimate

is in parenthesis. The unconditional expectation of the each state�s probability is also reported.

8>>>>>><>>>>>>:

V s1;t = 0.0028

(0.0010)

+ 0.9597

(0.0061)

� V s1;t�1 + 0.0263

(0.0041)

� �s1;t�1

V s2;t = 0.2151

(0.0958)

+ 0.7423

(0.0619)

� V s2;t�1 + 0.5420

(0.1183)

� �s2;t�1

8>>>>>><>>>>>>:

V b1;t = 0.0020

(0.0007)

+ 0.9441

(0.0101)

� V b1;t�1 + 0.0228

(0.0040)

� �b1;t�1

V b2;t = 0.0125

(0.0071)

+ 0.9259

(0.0271)

� V b2;t�1 + 0.1140

(0.0370)

� �b2;t�1

26666666664

(Ss = 0; Sb = 0) (Ss = 0; Sb = 1) (Ss = 1; Sb = 0) (Ss = 1; Sb = 1)

high corr
0.4334

(0.0326)

0.5501

(0.0554)

0.2978

(0.1484)

0.6931

(0.0691)

low corr
-0.2810

(0.0399)

-0.0641

(0.1188)

-0.5121

(0.1247)

-0.5062

(0.0965)

37777777775
(low,low,1) (low,low,2) (low,high,3) (low,high,4) (high,low,5) (high,low,6) (high,high,7) (high,high,8)

(low,low,1) 0.7206 0.7117 0.5618 0.9779
(0.0208) (0.0660) (0.2162) (0.0231)

(low,low,2) 0.0014 0.7547 0.0052 0.6249 0.7829
(0.0033) (0.0365) (0.0134) (0.1780) (0.2015)

(low,high,3) 0.1948 0.0151 0.0286 0.3842
(0.0208) (0.0048) (0.0380) (0.2158)

(low,high,4) 0.0976 0.1351 0.3673 0.2171
(0.0397) (0.2499) (0.1508) (0.2015)

(high,low,5) 0.2400
(0.0590)

(high,low,6) 0.0027 0.0431 0.6327 0.0221
(0.0029) (0.0499) (0.1508) (0.0231)

(high,high,7) 0.0805 0.0146 0.0540
(0.0151) (0.0380) (0.0760)

(high,high,8) 0.1326 0.1969
(0.0335) (0.1638)

unconditional 0.49021 0.23586 0.11267 0.041214 0.027035 0.011066 0.042557 0.039381

Log Likelihood: -9329.29 AIC:18811 BIC:19310
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Table 9: t�Conditional Transition Probabilities for Correlation

This table reports the transition probabilities of correlation state variable conditioned on ob-

serving the volatility state variable. We denote stock-vol, bond-vol and their correlation by S, B and

C respectively. So P (C+;�jS0) � P (Ct+1 < 0jCt > 0;Sst = 0), and similar meaning for other notations.

Note that by C < 0, we means those states with signi�cantly negative correlation. So for both

bond-stock pairs, this includes St = 2; 6 and 8: Standard deviations of the estimation are in parenthesis.

All these are derived from the general transition matrix in Table 9-10.

1-year bond and S&P500

C� ) C+ P(C�;+jS0) P(C�;+jS1) P(C�;+jB0) P(C�;+jB1)

0.0336 0.1211 0.0403 0.1825

(0.0219) (0.0547) (0.0201) (0.0477)

C+ ) C� P(C+;�jS0) P(C+;�jS1) P(C+;�jB0) P(C+;�jB1)

0.0242 0.0103 0 0.1394

(0.0366) (0.0108) (-y) (0.0798)

10-year bond and S&P500

C� ) C+ P(C�;+jS0) P(C�;+jS1) P(C�;+jB0) P(C�;+jB1)

0.1128 0.2500 0.1242 0.2171

(0.0391) (0.1346) (0.0400) (0.1784)

C+ ) C� P(C+;�jS0) P(C+;�jS1) P(C+;�jB0) P(C+;�jB1)

0.0594 0.0135 0.0039 0.1892

(0.0474) (0.0124) (0.0032) (0.0937)

yNo standard deviations due to the zero constraints on the transition matrix, same as reported in Table

9-10.
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Table 10: Correlation transition matrix

This table reports the correlation transition matrix estimates. All these are derived from the

general transition matrix in Table 9-10. Note that by C < 0, we means those states with signi�cantly

negative correlation. So for both bond-stock pairs, this includes St = 2; 6 and 8: Even though eC4<0
for ten-year bond, it is not signi�cant less than zero. So we still treat St = 4 to be one of state

in {C > 0} for ten-year bond. This would make easier the comparison of bonds with di¤erent

maturities.

1-year bond and S&P500

C > 0 C < 0

C > 0
0:9770

(0.0359)
0:0509

C < 0 0:0230
0:9491

(0.0174)

10-year bond and S&P500

C > 0 C < 0

C > 0
0:9451

(0.0447)
0:1370

C < 0 0:0549
0:8630

(0.0407)
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Table 11: t+ 1�Conditional Transition Probabilities

This table reports the transition probabilities of one state variable conditioned on there is a switching in

other state variables. We denote stock-vol, bond-vol and their correlation by S, B and C respectively.

So P (C+;�jS0;1) � P (Ct+1 < 0jCt > 0;Sst = 0;Sst+1 = 1), and similar meaning for other notations.

Note that by C < 0, we means those states with signi�cantly negative correlation. So for both bond-stock

pairs, this includes St = 2; 6 and 8: Standard deviations of the estimation are in parenthesis.

1-year bond and S&P500

S=B ) C P(C+;�jS0;1) P(C+;�jB0;1) P(C�;+jS0;1) P(C�;+jB0;1)

0.1632 0 0 0.3110

(0.0987 ) (-)y (-) (0.1996 )

C ) S=B P(S0;1jC+;�) P(B0;1jC+;�) P(S0;1jC�;+) P(B0;1jC�;+)

0.7163 NAz 0 0.7999

(0.2194) (NA) (-) (0.1639)

S , B P(B0;1jS0;1) P(B1;0jS1;0) P(S0;1jB0;1) P(S1;0jB1;0)

0.2112 0.8352 0.1551 1

(0.0929) (0.0481) (0.0779) (-)

10-year bond and S&P500

S=B ) C P(C+;�jS0;1) P(C+;�jB0;1) P(C�;+jS0;1) P(C�;+jB0;1)

0.1416 0 0 0.4951

(0.0996) (-)y (-) (0.1284)

C ) S=B P(S0;1jC+;�) P(B0;1jC+;�) P(S0;1jC�;+) P(B0;1jC�;+)

0.2936 0 0 1

(0.1395 ) (-) (-) (-)

S , B P(B0;1jS0;1) P(B1;0jS1;0) P(S0;1jB0;1) P(S1;0jB1;0)

0.9813 0.8945 0.3668 0.9872

(0.0156) (0.0974) (0.0516) (0.0096)

y No standard deviations due to the zero constraints on the transition matrix as in Table 9-10.

zThe conditioning event is an empty set. So there is no estimate for such conditional probability

40



Table 12: Expected correlation conditioned on volatility regime

This table reports the expected bond-stock correlation conditioned on contemporary volatility

states in bond and stock markets. The upper panel is for 1-year bond and the lower panel for 10-

year bond. For both panels, the last row and last column are the expected correlation conditioned

on only one volatility state variable. Standard deviations of the estimation are in parenthesis.

1-year bond and S&P

Ss = 0 Ss = 1 E(CtjSb)

Sb = 0
0.0801

(0.0642)

-0.0817

(0.1580)

0.0645

(0.0582)

Sb = 1
0.3786

(0.0524)

-0.0043

(0.1464)

0.2756

(0.0711)

E(CtjSs)
0.1140

(0.0596)

-0.0579

(0.1191)

10-year bond and S&P

Ss = 0 Ss = 1 E(CtjSb)

Sb = 0
0.2013

(0.0694)

0.0626

(0.1602)

0.1944

(0.0703)

Sb = 1
0.3856

(0.0904)

0.1167

(0.1427)

0.2922

(0.0934)

E(CtjSs)
0.2336

(0.0673)

0.0995

(0.1229)
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Table 13: Likelihood-based Goodness-of-�t

This table shows the likelihood-based goodness-of-�t for models �tted to two pairs of stock and

bond return series. The speci�cations for each model notation in the �rst column are detailed

in Table 2. "Likelihood" is the value of the maximum log-likelihood value, AIC is the Akaike

information criterion (1973). And BIC is the Bayesian Information criterion of Schwarz. For both

criteria, the ranking of each model is show in parenthesis. Boldface entries indicate the best model

for each criterion.

S&P500 and 1-year bond

Model Num. of Regimes Parameter number Likelihood AIC(rank) BIC(rank)

MSCCC(2,2,8) 8 76 2132.1 -4112.2(1) -3613.2(6)

MSCCC(2,2,4) 4 28 1972 -3888(3) -3704.1(4)

MSCCC(2,2,2) 4 28 1964.55 -3877.1(5) -3706.4(3)

MSCCC(2,2,2) 4 26 1952.82 -3853.6(6) -3682.9(5)

MSCCC(2,2,4) 4 28 2083.6 -4111.3(2) -3927.4(1)

MSCCC(2,2,2) 2 16 1956.4 -3880.7(4) -3775.7(2)

S&P 500 and 10-year bond

Model Num. of Regimes Parameter number Likelihood AIC(rank) BIC(rank)

MSCCC(2,2,8) 8 76 -9329.29 18811(1) 19310(2)

MSCCC(2,2,4) 4 28 -9579.99 19216(3) 19400(4)

MSCCC(2,2,2) 4 26 -9645.61 19343(6) 19514(6)

MSCCC(2,2,2) 4 26 -9627.6 19307(5) 19478(5)

MSCCC(2,2,4) 4 28 -9402.46 18861(2) 19045(1)

MSCCC(2,2,2) 2 16 -9610.36 19253(4) 19358(3)
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Figure 1: state probabilities of correlation: 1-year bond and S&P500
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Figure 2: state probabilities of correlation: 10-year bond and S&P500
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Figure 3: smoothed correlation: 1-year bond and S&P500
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Figure 4: smoothed correlation: 10-year bond and S&P
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Figure 5.1: MSCCC VS DCC� 1-year bond and S&P(1)
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Figure 5.2: MSCCC VS DCC� 1-year bond and S&P(2)
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Figure 6.1: MSCCC VS DCC� 10-year bond and S&P(1)
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Figure 6.2: MSCCC VS DCC� 10-year bond and S&P(2)
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