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Abstract

We examine how liquidity and asset prices are affected by the following market imper-

fections: asymmetric information, participation costs, transaction costs, leverage constraints,

non-competitive behavior and search. Our model has three periods: agents are identical in the

first, become heterogeneous and trade in the second, and consume asset payoffs in the third.

We examine how imperfections in the second period affect different measures of illiquidity, as

well as asset prices in the first period. Besides nesting multiple imperfections in a single model,

we derive new results on the effects of each imperfection. Our results imply, in particular,

that imperfections do not always raise expected returns, and can influence common measures

of illiquidity in opposite directions.
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1 Introduction

Financial markets deviate, to varying degrees, from the perfect-market ideal in which there are no

impediments to trade. A large and growing body of work has identified a variety of market im-

perfections, ranging from information asymmetries, to different forms of trading costs, to financial

constraints. Most papers focus on a specific imperfection, relying on simplifications that are conve-

nient in the context of that imperfection but vary substantially across imperfections. For example,

models of trading costs typically assume life-cycle or risk-sharing motives to trade, while models of

asymmetric information often rely on noise traders. Some asymmetric-information models further

assume risk-neutral market makers who can take unlimited positions, while papers on other imper-

fections typically assume risk aversion or position limits. Missing from the literature is a systematic

analysis of different imperfections within a single, unified framework. Beyond the obvious pedagog-

ical advantages, such a framework could yield a better and more comprehensive understanding of

how imperfections affect market behavior. Indeed, effects could be compared across imperfections,

holding constant other assumptions such as trading motives and risk attitudes.

An additional limitation of the literature on market imperfections concerns the link with asset

pricing. While the effects of imperfections on market liquidity have received much attention, the

analysis of how imperfections affect expected asset returns has been more incomplete. This is partly

because simplifications that are convenient for studying liquidity are not always suitable for pricing

analysis. For example, in models with risk-neutral market-makers, expected returns are equal to

the riskless rate regardless of the imperfection’s severity. Likewise, models with exogenous noise

traders cannot address how imperfections affect noise traders’ willingness to invest. Links between

imperfections and expected returns have been drawn in some cases. Yet, this has not been done

systematically across imperfections, and not in a way that their effects can be compared.

In this paper, we develop a unified model to analyze how different imperfections affect market

behavior. We consider the following imperfections: (1) asymmetric information, (2) participation

costs, (3) transaction costs, (4) leverage constraints, (5) non-competitive behavior, and (6) search.

We determine the effect of each imperfection on liquidity, price dynamics, and expected asset

returns. We also compare effects across imperfections and derive unique empirical properties of

each imperfection. Since the imperfections that we consider have been studied in the literature,

some of our results are related to existing results. At the same time, because the effects of each

imperfection on liquidity, price dynamics, and especially expected returns have not been fully

addressed before (and not at all in some cases) many of our results are new.

Our model has three periods, t = 0, 1, 2. In Periods 0 and 1, risk-averse agents can trade a
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riskless and a risky asset that pay off in Period 2. In Period 0, agents are identical so no trade

occurs. In Period 1, agents can be one of two types. Liquidity demanders receive an endowment

correlated with the risky asset’s payoff. They can hedge their endowment by trading with liquidity

suppliers, who receive no endowment. Imperfections concern trade in Period 1. In the case of

asymmetric information, liquidity demanders observe a private signal about the payoff of the risky

asset. In the case of participation costs, agents must pay a cost to participate in the market. In

the case of transaction costs, agents must pay a cost to trade (and the difference with participation

costs is that the decision can be made conditional on trade size). In the case of leverage constraints,

agents cannot fully commit to cover losses on their loans, and this limits leverage as a function

of capital. In the case of non-competitive behavior, liquidity demanders take price impact into

account, and can possibly also observe a private signal about asset payoff. In the case of search,

agents are matched randomly with counterparties and bargain bilaterally over the price.

We consider two measures of illiquidity, both commonly used in empirical studies. The first is

Kyle’s lambda, defined in our model as the regression coefficient of the price change between Periods

0 and 1 on liquidity demanders’ signed volume in Period 1. The second is price reversal, defined as

minus the autocovariance of price changes. Price reversal provides a useful characterization of price

dynamics: it measures the importance of the transitory component in price arising from liquidity

shocks, relative to the random-walk component arising from fundamentals. Both measures of

illiquidity are positive even in the absence of imperfections. Indeed, because agents are risk-averse,

liquidity demanders’ trades move the price in Period 1 (implying that lambda is positive), and the

movement is away from fundamental value (implying that price reversal is positive). We examine

how each imperfection impacts the two measures of illiquidity and the expected return of the risky

asset. To determine the effect on expected return, we examine how the price in Period 0 is influenced

by the anticipation of imperfections in Period 1.

Table 1 summarizes the effects of each imperfection on market behavior. Results in dark (black)

color are new, in the sense that either the question has not been asked in the literature, or the

result is different than in previous papers. References to relevant papers are at the beginning of

the section covering each imperfection.

A first observation from Table 1 is that imperfections do not always raise expected return.

Consistent with previous papers, we find that expected return increases under participation costs

and transaction costs. We further show that it increases under asymmetric information, comparing

both to the case where the signal is public and the case where no agent observes the signal.

Expected return also increases under leverage constraints. The intuition for these results is that

agents are concerned that an endowment they receive in Period 1 increases the risk exposure they
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Impact of Imperfection

Type of Imperfection Lambda Price Reversal Expected Return

Asymmetric information + +/− +

Participation costs + + +

Transaction costs + + +

Leverage constraints + + +

Non-comp. behavior/Sym. info. 0 − −
Non-comp. behavior/Asym. info. + − +/−
Search +/− +/− +/−

Table 1: Impact of imperfections on illiquidity and expected returns. “Lambda” is the regression
coefficient of the price change between Periods 0 and 1 on the signed volume of liquidity demanders in Period
1; “Price Reversal” is minus the autocovariance of price changes; and “Expected Return” is the expected
return of the risky asset between Periods 0 and 2. Results in dark (black) color are new; results in light
(green) color are related to existing results.

carry from Period 0. Because imperfections hamper agents’ ability to modify their risk exposure,

they reduce their willingness to hold the risky asset in Period 0, resulting in a low price and a

high expected return. The effect can, however, reverse under non-competitive behavior because

liquidity demanders can extract better terms of trade in Period 1, and are therefore less averse to

holding the asset in Period 0. The same is true under search if liquidity demanders hold most of

the bargaining power in their bilateral meetings with suppliers.

A second observation from Table 1 is that imperfections can affect the two illiquidity measures

in opposite directions. The effect on lambda is positive, except possibly under search. At the same

time, the effect on price reversal is unambiguously positive only under participation costs, trans-

action costs and leverage constraints. The intuition for the discrepancy is that lambda measures

the price impact per unit trade, while price reversal concerns the impact of the entire trade. Im-

perfections generally raise the price impact per unit trade, but because they also reduce trade size,

the price impact of the entire trade can decrease. The second effect dominates under asymmetric

information and non-competitive behavior.

The above results have a number of empirical implications. For example, many empirical studies

seek to establish a link between illiquidity and expected asset returns. We show that the nature

of this link depends crucially on the underlying cause of illiquidity: illiquidity caused by different

imperfections can have opposite effects on expected returns. Furthermore, common measures of

illiquidity do not always reflect the underlying imperfection: our results suggest that while lambda
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is generally a valid proxy, price reversal is valid only for certain imperfections.

Further implications follow by examining how changes in exogenous parameters, other than the

imperfections themselves, affect the illiquidity measures and the expected return. We show that

when the variance of liquidity demanders’ hedging shock increases, price reversal and expected

return increase, but lambda can increase or decrease depending on the imperfection. Our results

suggest that the cross-sectional relationship between illiquidity and expected returns depends not

only on the underlying imperfection but also on other sources of cross-sectional variation. Suppose,

for example, that asymmetric information is the only imperfection. If it is also the main source of

cross-sectional variation, then expected returns should be positively related to lambda. If, however,

assets differ because of liquidity demanders’ hedging needs and not because of asymmetric infor-

mation, then expected returns should be negatively related to lambda because lambda decreases in

the variance of the hedging shock. It is therefore important to control for sources of cross-sectional

variation other than the imperfections themselves when linking illiquidity to expected returns.

Given the scope of this paper, the related literature is vast. Since our purpose here is not to

survey the literature, but present a unified model and derive new results, we reference only the

papers closest to our analysis. A more extensive and thorough review of the literature is left to a

companion survey (Vayanos and Wang (2009)). Interested readers can also refer to existing surveys

on liquidity, e.g., Amihud, Mendelson and Pedersen (2005), Biais, Glosten and Spatt (2005), and

Cochrane (2005).

The rest of this paper is organized as follows. Section 2 presents the model and describes

each imperfection. Section 3 treats the perfect-market benchmark, and Sections 4, 5, 6, 7, 8 and

9 treat asymmetric information, participation costs, transaction costs, leverage constraints, non-

competitive behavior and search, respectively. Section 10 discusses empirical implications and Sec-

tion 11 concludes. All proofs are in an online Appendix, available at http://personal.lse.ac.uk/

vayanos/WPapers/Liquidity Vayanos Wang App.pdf.

2 Model

There are three periods, t = 0, 1, 2. The financial market consists of a riskless and a risky asset

that pay off in terms of a consumption good in Period 2. The riskless asset is in supply of B shares

and pays off one unit with certainty. The risky asset is in supply of θ̄ shares and pays off D units,

where D is normal with mean D̄ and variance σ2. Using the riskless asset as the numeraire, we

denote by St the risky asset’s price in Period t, where S2 = D.
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There is a measure one of agents, who derive utility from consumption in Period 2. Utility is

exponential,

− exp(−αC2), (2.1)

where C2 is consumption in Period 2, and α > 0 is the coefficient of absolute risk aversion. Agents

are identical in Period 0, and are endowed with the per capita supply of the riskless and the risky

asset. They become heterogeneous in Period 1, and this generates trade. Because all agents have the

same exponential utility, there is no preference heterogeneity. We instead introduce heterogeneity

through agents’ endowments and information.

A fraction π of agents receive an endowment z(D − D̄) of the consumption good in Period 2,

and the remaining fraction 1− π receive no endowment.1 The variable z is normal with mean zero

and variance σ2
z , and is independent of D. While the endowment is received in Period 2, agents

learn whether or not they will receive it before trade in Period 1, in an interim period t = 1/2.

Only those agents who receive the endowment observe z, and they do so in Period 1. Since the

endowment is correlated with D, it generates a hedging demand. When, for example, z > 0, the

correlation is positive, and agents can hedge their endowment by reducing their holdings of the

risky asset. Because D and z are normal, the endowment z(D− D̄) can take large negative values,

which can generate an infinitely negative expected utility. To guarantee that utility is finite, we

assume that the variances of D and z satisfy the condition

α2σ2σ2
z < 1. (2.2)

We assume normality of (D, z) for tractability, and relax or modify this assumption only in Sections

6 and 7. We denote by Wt the wealth of an agent in Period t. Wealth in Period 2 is equal to

consumption, i.e., W2 = C2.

In equilibrium, agents receiving an endowment initiate trades with others to share risk. Because

the agents initiating trades can be thought of as consuming market liquidity, we refer to them as

liquidity demanders and denote them by the subscript d. Moreover, we refer to z as the liquidity

shock. The agents who receive no endowment accommodate the trades of liquidity demanders, thus

supplying liquidity. We refer to them as liquidity suppliers and denote them by the subscript s.

Because liquidity suppliers require compensation to absorb risk, the trades of liquidity deman-

ders affect prices. Therefore, the price in Period 1 is influenced not only by the asset payoff, but

1We assume that the endowment is perfectly correlated with D for simplicity; what matters for our analysis is
that the correlation is non-zero.
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also by the liquidity demanders’ trades. Our measures of liquidity, defined in Section 3, are based

on the price impact of these trades.

Liquidity is influenced by market imperfections. We define imperfections in reference to a

perfect-market benchmark in which information is symmetric, participation and trade are costless,

agents are competitive, and the market is centralized.2 We consider six types of imperfections,

all pertaining to trade in Period 1. We maintain the perfect-market assumption in Period 0 when

determining the ex-ante effect of the imperfections, i.e., how the anticipation of imperfections in

Period 1 impacts the Period 0 price.3

Asymmetric Information

In the perfect-market benchmark, all agents have the same information about the payoff of

the risky asset. In practice, however, agents have access to different information sources, and can

differ in their ability to process information. Such differences give rise to asymmetric information

(Section 4). We assume that asymmetric information takes a simple form, where some agents

observe a private signal s about the asset payoff D in Period 1. The signal is

s = D + ε (2.3)

where ε is normal with mean zero and variance σ2
ε , and is independent of (D, z). We assume that

only those agents who receive an endowment observe the signal, i.e., the set of informed agents

coincides with that of liquidity demanders. Assuming that all liquidity demanders are informed

is without loss of generality: even if they do not observe the signal, they can infer it perfectly

from the price because they observe the liquidity shock. Assuming that all liquidity suppliers are

uninformed simplifies the analysis while preserving the key effects.

Participation Costs

In the perfect-market benchmark, all agents are present in the market in all periods. Thus,

a seller, for example, can have immediate access to the entire population of buyers. In practice,

however, agents face costs of market participation. Such costs include buying trading infrastructure

or membership of a financial exchange, having capital available on short notice, monitoring market

movements, etc. To model costly participation (Section 5), we assume that agents must incur a

cost c to trade in Period 1. Consistent with the notion that participation is an ex-ante decision,

2Our perfect-market benchmark has one market imperfection built in: agents cannot write contracts in Period
0 contingent on whether they are a liquidity demander or supplier in Period 1. Thus, the market in Period 0 is
incomplete in the Arrow-Debreu sense. If agents could write complete contracts in Period 0, they would not need to
trade in Period 1, in which case liquidity would not matter. In our model, complete contracts are infeasible because
whether an agent is a liquidity demander or supplier is private information.

3Imperfections in Period 0 are not relevant in our model because agents are identical in that period and there is
no trade.
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we assume that agents must decide whether or not to incur c in Period 1/2, after learning whether

or not they will receive an endowment but before observing the price in Period 1. If the decision

can be made contingent on the price in Period 1, then c is a fixed transaction cost rather than a

participation cost. We consider transaction costs as a separate market imperfection.4

Transaction Costs

In addition to costs of market participation, agents typically pay costs when executing transac-

tions. Transaction costs drive a wedge between the buying and selling price of an asset. They come

in many types, e.g., brokerage commissions, exchange fees, transaction taxes, bid-ask spreads, price

impact. Some types of transaction costs can be viewed as a consequence of other market imperfec-

tions: for example, Section 5 shows that costly participation can generate price-impact costs. Other

types of costs, such as transaction taxes, can be viewed as more primitive. We assume (Section

6) that transaction costs concern trade in Period 1, and can be proportional of fixed. Propor-

tional costs are proportional to transaction size, and for simplicity we assume that proportionality

concerns the number of shares rather than the dollar value. Denoting by κ the cost per unit of

shares traded and by θt the number of shares that an agent holds in Period t = 0, 1, proportional

costs take the form κ |θ1 − θ0|. Fixed costs are independent of transaction size and take the form

κ1{θ1 6=θ0}, i.e., the agent pays κ > 0 when trading in Period 1.

Leverage Constraints

Agents’ portfolios often involve leverage, i.e., borrow cash to establish a long position in a risky

asset, or borrow a risky asset to sell it short. In the perfect-market benchmark, agents can borrow

freely provided that they have enough resources to repay the loan. But as the Corporate Finance

literature emphasizes, various frictions can limit agents’ ability to borrow.

Since in our model consumption is allowed to be negative and unbounded from below, agents

can repay a loan of any size by reducing consumption. Negative consumption can be interpreted as

a costly activity that agents undertake in Period 2 to repay a loan. We derive a leverage constraint

by assuming that agents cannot commit to reduce their consumption below a level −A ≤ 0. This

nests the case of full commitment assumed in the rest of this paper (A = ∞), and the case where

agents can walk away from a loan rather than engaging in negative consumption (A = 0). Note that

the same leverage constraint would arise if consumption below −A is not feasible. Under the latter

interpretation, however, the constraint would not constitute an imperfection: it would amount to

4Our analysis can be extended to the case where participation is costly not only in Period 1 but also in Period
0. The cost to participate in Period 0 can be interpreted as an entry cost, e.g., learning about an asset. Entry costs
reduce the measure of agents buying the asset in Period 0, and therefore lower the price. See, for example, Huang
and Wang (2008a,b).
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redefining the utility function (2.1) as −∞ when consumption is below −A. The two interpretations

yield the same constraint and pricing implications, but differ in their welfare implications.5

Non-Competitive Behavior

In the perfect-market benchmark, all agents are competitive and have no effect on prices.

In many markets, however, some agents are large relative to others and can influence prices. To

model non-competitive behavior (Section 8), we assume that liquidity demanders behave as a single

monopolist in Period 1. We consider both the case where liquidity demanders have no private

information on asset payoffs, and the case where they observe the private signal (2.3).

Search

Both in the perfect-market benchmark and under the imperfections described so far, the market

is organized as a centralized exchange. Many markets, however, have a more decentralized form

of organization. For example, in over-the-counter markets, investors negotiate prices bilaterally

with dealers. Locating suitable counter-parties in these markets can take time and involve search.

To model decentralized markets (Section 9), we assume that agents do not meet in a centralized

exchange in Period 1, but instead must search for counterparties. With some probability they meet

a counterparty and bargain bilaterally over the price.

3 Perfect-Market Benchmark

In this section we solve the basic model described in Section 2, assuming no market imperfections.

We first compute the equilibrium, going backwards from Period 1 to Period 0. We next construct

measures of market liquidity in Period 1, and study how liquidity impacts the price dynamics and

the price level in Period 0.

3.1 Equilibrium

In Period 1, a liquidity demander chooses holdings θd
1 of the risky asset to maximize the expected

utility (2.1). Consumption in Period 2 is

Cd
2 = W1 + θd

1(D − S1) + z(D − D̄),

5While the leverage constraint in our model is linked to negative consumption, this is not the case in other
settings. For example, in Gromb and Vayanos (2002) a leverage constraint arises because liquidity suppliers exploit
price discrepancies between two correlated assets and cannot commit to use gains in one position to cover losses in
the other.
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i.e., wealth in Period 1, plus capital gains from the risky asset, plus the endowment. Therefore,

expected utility is

−Eexp
{−α

[
W1 + θs

1(D − S1) + z(D − D̄)
]}

, (3.4)

where the expectation is over D. Because D is normal, the expectation is equal to

− exp
{
−α

[
W1 + θd

1(D̄ − S1)− 1
2ασ2(θd

1 + z)2
]}

. (3.5)

A liquidity supplier chooses holdings θs
1 of the risky asset to maximize the expected utility

− exp
{−α

[
W1 + θs

1(D̄ − S1)− 1
2ασ2(θs

1)
2
]}

, (3.6)

which can be derived from (3.5) by setting z = 0. The solution to the optimization problems is

straightforward and summarized in Proposition 3.1.

Proposition 3.1 Agents’ demand functions for the risky asset in Period 1 are

θs
1 =

D̄ − S1

ασ2
, (3.7a)

θd
1 =

D̄ − S1

ασ2
− z. (3.7b)

Liquidity suppliers are willing to buy the risky asset as long as it trades below its expected

payoff D̄, and are willing to sell otherwise. Liquidity demanders have a similar price-elastic demand

function, but are influenced by the liquidity shock z. When, for example, z is positive, liquidity

demanders are willing to sell because their endowment is positively correlated with the asset.

Market clearing requires that the aggregate demand equals the asset supply θ̄:

(1− π)θs
1 + πθd

1 = θ̄. (3.8)

Substituting (3.7a) and (3.7b) into (3.8), we find

S1 = D̄ − ασ2
(
θ̄ + πz

)
. (3.9)

The price S1 decreases in the liquidity shock z. When, for example, z is positive, liquidity demanders

are willing to sell, and the price must drop so that the risk-averse liquidity suppliers are willing to

buy.
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In Period 0, all agents are identical. An agent choosing holdings θ0 of the risky asset has wealth

W1 = W0 + θ0(S1 − S0) (3.10)

in Period 1. The agent can be a liquidity supplier in Period 1 with probability 1− π, or liquidity

demander with probability π. Substituting θs
1 from (3.7a), S1 from (3.9), and W1 from (3.10), we

can write the expected utility (3.6) of a liquidity supplier in Period 1 as

− exp
{−α

[
W0 + θ0(D̄ − S0)− ασ2θ0(θ̄ + πz) + 1

2ασ2(θ̄ + πz)2
]}

. (3.11)

The expected utility depends on the liquidity shock z since z affects the price S1. We denote by

U s the expectation of (3.11) over z, and by Ud the analogous expectation for a liquidity demander.

These expectations are agents’ interim utilities in Period 1/2. An agent’s expected utility in Period

0 is

U ≡ (1− π)U s + πUd. (3.12)

Agents choose θ0 to maximize U . The solution to this maximization problem coincides with the

aggregate demand in Period 0, since all agents are identical in that period and are in measure one.

In equilibrium, aggregate demand has to equal the asset supply θ̄, and this determines the price S0

in Period 0.

Proposition 3.2 The price in Period 0 is

S0 = D̄ − ασ2θ̄ − πM

1− π + πM
∆1θ̄, (3.13)

where

M = exp
(

1
2α∆2θ̄

2
)
√

1 + ∆0π2

1 + ∆0(1− π)2 − α2σ2σ2
z

, (3.14)

∆0 = α2σ2σ2
z , (3.15a)

∆1 =
ασ2∆0π

1 + ∆0(1− π)2 − α2σ2σ2
z

, (3.15b)

∆2 =
ασ2∆0

1 + ∆0(1− π)2 − α2σ2σ2
z

. (3.15c)

The first term in (3.13) is the asset’s expected payoff in Period 2, the second term is a discount

arising because the payoff is risky, and the third term is a discount due to illiquidity (i.e., low

liquidity). In the next section we explain why illiquidity in Period 1 lowers the price in Period 0.
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3.2 Illiquidity and its Effect on Price

We construct two measures of illiquidity, both based on the price impact of the liquidity demanders’

trades in Period 1. The first measure is the coefficient of a regression of the price change between

Periods 0 and 1 on the signed volume of liquidity demanders in Period 1:

λ ≡ Cov
[
S1 − S0, π(θd

1 − θ̄)
]

Var
[
π(θd

1 − θ̄)
] . (3.16)

Intuitively, when λ is large, trades have large price impact and the market is illiquid.6 Eq. (3.9)

implies that the price change between Periods 0 and 1 is

S1 − S0 = D̄ − ασ2
(
θ̄ + πz

)− S0. (3.17)

Eqs. (3.7b) and (3.9) imply that the signed volume of liquidity demanders is

π(θd
1 − θ̄) = −π(1− π)z. (3.18)

Eqs. (3.16)-(3.18) imply that

λ =
ασ2

1− π
. (3.19)

Illiquidity λ is higher when agents are more risk-averse (α large), the asset is riskier (σ2 large), or

liquidity suppliers are less numerous (1− π small).

The second measure is based on the autocovariance of price changes. The liquidity demanders’

trades in Period 1 cause the price to deviate from fundamental value, while the two coincide in

Period 2. Therefore, price changes exhibit negative autocovariance, and more so when trades have

large price impact. We use minus autocovariance

γ ≡ −Cov (S2 − S1, S1 − S0) , (3.20)

as a measure of illiquidity. Besides measuring illiquidity, γ provides a useful characterization of

price dynamics: it is the variance of the transitory component in price arising from temporary

6A drawback of λ as a measure of illiquidity is that it might not reflect a causal effect of volume on prices. Suppose,
for example, that public information causes both prices and volume, but volume per se does not affect prices. “True”
illiquidity would then be zero, but λ would be large if public information has a large effect on prices and a small effect
on volume. While this issue is relevant for empirical work, it does not arise in the context of our model. Indeed,
volume is generated by shocks observable only to liquidity demanders, such as the liquidity shock z and the signal
s. Since these shocks can affect prices only through the liquidity demanders’ trades, λ measures correctly the price
impact of these trades.
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liquidity shocks. We refer to γ as price reversal and reserve the term illiquidity for λ. Eqs. (3.9),

(3.17), (3.20) and S2 = D imply that

γ = −Cov
[
D − D̄ + ασ2

(
θ̄ + πz

)
, D̄ − ασ2

(
θ̄ + πz

)− S0

]
= α2σ4σ2

zπ
2. (3.21)

Price reversal γ is higher when agents are more risk-averse, the asset is riskier, liquidity demanders

are more numerous (π large), and liquidity shocks are larger (σ2
z large).7

Measures closely related to λ or γ are commonly used in empirical studies.8 Besides confirming

the usefulness of these measures, our model shows that the measures have different properties under

different market imperfections.

Illiquidity in Period 1 lowers the price in Period 0 through the illiquidity discount, which is the

third term in (3.13). To explain why the discount arises, consider the extreme case where trade

in Period 1 is not allowed. In Period 0, agents know that with probability π they will receive an

endowment in Period 2. The endowment amounts to a risky position in Period 1, the size of which

is uncertain because it depends on z. Uncertainty about position size is costly (in utility terms) to

risk-averse agents. Moreover, the effect is stronger when agents carry a large position from Period

0 because the cost of holding a position in Period 1 is convex in the overall size of the position.

(The cost is the quadratic term in (3.5) and (3.6).) Therefore, uncertainty about z reduces agents’

willingness to buy the asset in Period 0.

The intuition is similar when agents can trade in Period 1. Indeed, in the extreme case where

trade is not allowed, the shadow price faced by liquidity demanders moves in response to z to the

point where these agents are not willing to trade. When trade is allowed, the price movement

is smaller, but non-zero. Therefore, uncertainty about z still reduces agents’ willingness to buy

the asset in Period 0. Moreover, the effect is weaker when trade is allowed in Period 1 than

when it is not, and therefore corresponds to a discount driven by illiquidity.9 Because the market

imperfections studied in the following sections hinder trade in Period 1, they tend to raise the

illiquidity discount in Period 0.

The illiquidity discount is the product of two terms. The first term, πM
1−π+πM , can be interpreted

as the risk-neutral probability of being a liquidity demander: π is the true probability, and M is

7The comparative statics of autocorrelation are similar to those of autocovariance. We use autocovariance rather
than autocorrelation because normalizing by variance adds unnecessary complexity.

8Measures related to λ are, for example, the regression-based measure of Glosten and Harris (1988) and Sadka
(2006), and the ratio of average absolute returns to trading volume of Amihud (2002). Measures related to γ are, for
example, the bid-ask spread measure of Roll (1984), the Gibbs estimate of Hasbrouck (2006) and the price reversal
measure of Bao, Pan and Wang (2008). See also Campbell, Grossman and Wang (1993) and Pastor and Stambaugh
(2003) for measures based on the idea that price reversal should be higher following large trading volume.

9The comparison of illiquidity discounts under trade and no trade follows from Proposition 4.6. See Footnote 12.
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the ratio of marginal utilities of demanders and suppliers. The second term, ∆1θ̄, is the discount

that an agent would require in Period 0 if he were certain to be a demander.

The illiquidity discount is higher when liquidity shocks are larger (σ2
z large) and occur with

higher probability (π large). It is also higher when agents are more risk averse (α large), the asset

is riskier (σ2 large), and in larger supply (θ̄ large). Same comparative statics hold for the ratio

of the illiquidity discount to the discount ασ2θ̄ driven by payoff risk. Thus, while risk aversion α,

payoff risk σ2, or asset supply θ̄ raise the risk discount, they have an even stronger impact on the

illiquidity discount. For example, an increase in α raises not only the aversion of agents to the risk

of receiving a liquidity shock, but also the shock’s impact on price.

The parameter σ2
z , which measures the magnitude of liquidity shocks, has different effects on

the illiquidity measures and the illiquidity discount: it has no effect on λ, while it raises γ and the

discount. The intuition is that λ measures the price impact per unit trade, while γ and S0 concern

the impact of the entire liquidity shock.

Proposition 3.3 An increase in the variance σ2
z of liquidity shocks leaves illiquidity λ unchanged,

raises price reversal γ, and lowers the price in Period 0.

4 Asymmetric Information

In this section we assume that liquidity demanders observe the private signal (2.3) before trading

in Period 1. Our analysis of equilibrium in Period 1 is closely related to Grossman and Stiglitz

(1980) because we assume continua of informed and uninformed agents, and endow all informed

agents with the same signal.10 Our analysis of equilibrium in Period 0 is new, and so are the results

on how asymmetric information affects the illiquidity discount and the price reversal γ.11

10Grossman and Stiglitz model non-informational trading through exogenous shocks to the asset supply, while
we model it through an endowment received by the informed. Modeling non-informational trading through random
endowments dates back to Diamond and Verrecchia (1981), who solve a one-period model with a different information
structure than Grossman and Stiglitz. (Agents receive conditionally independent signals with the same precision.)
Wang (1994) solves an infinite-horizon model with continua of informed and uninformed agents, and models non-
informational trading through a risky production opportunity available only to the informed.

11O’Hara (2003) and Easley and O’Hara (2004) study the effect of asymmetric information on expected returns in
a multi-asset extension of Grossman and Stiglitz. They show that prices are lower and expected returns are higher
when agents receive private signals than when signals are public. This comparison concerns prices in our Period 1.
Moreover, it is driven not by asymmetric information per se but by the total amount of information agents have.
Indeed, while prices in Period 1 are lower under asymmetric information than when signals are public (maximum
total information), they are higher than under the alternative symmetric-information benchmark where no signals
are observed (minimum total information). We instead compare prices in Period 0, to determine the ex-ante effect
of the imperfection. This comparison is driven only by asymmetric information because prices are lower under
asymmetric information than under either symmetric-information benchmark. Garleanu and Pedersen (2004) study
the effect of asymmetric information on expected returns in a multi-period model with risk-neutral agents and unit
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4.1 Equilibrium

The price in Period 1 incorporates the signal of liquidity demanders, and therefore reveals in-

formation to liquidity suppliers. To solve for equilibrium, we conjecture a price function (i.e., a

relationship between the price and the signal), then determine how agents use their knowledge of

the price function to learn about the signal and formulate demand functions, and finally confirm

that the conjectured price function clears the market.

We conjecture a price function that is affine in the signal s and the liquidity shock z, i.e.,

S1 = a + b(s− D̄ − cz) (4.1)

for three constants (a, b, c). For expositional convenience, we set ξ ≡ s− D̄ − cz. We also refer to

the price function as simply the price.

Agents use the price and their private information to form a posterior distribution about the

asset payoff D. For a liquidity demander, the price conveys no additional information relative

to observing the signal s. Given the joint normality of (D, ε), D remains normal conditional on

s = D + ε, with mean and variance

E[D|s] = D̄ + βs(s− D̄), (4.2a)

σ2[D|s] = βsσ
2
ε , (4.2b)

where βs ≡ σ2/(σ2 + σ2
ε ). For a liquidity supplier, the only information is the price S1, which is

equivalent to observing ξ. Conditional on ξ (or S1), D is normal with mean and variance

E[D|S1] = D̄ + βξξ = D̄ +
βξ

b
(S1 − a), (4.3a)

σ2[D|S1] = βξ(σ2
ε + c2σ2

z), (4.3b)

where βξ ≡ σ2/σ2
ξ and σ2

ξ ≡ σ2 +σ2
ε +c2σ2

z . Agents’ optimization problems are as in Section 3, with

the conditional distributions of D replacing the unconditional one. Proposition 4.1 summarizes the

solution to these problems.

demands. When probability distributions are symmetric (as they are in our model), they find no effect of asymmetric
information on expected returns. Ellul and Pagano (2006) show that asymmetric information in the post-IPO stage
can reduce the IPO price. The post-IPO stage, however, involves exogenous noise traders and an insider who is
precluded from bidding for the IPO.
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Proposition 4.1 Agents’ demand functions for the risky asset in Period 1 are

θs
1 =

E[D|S1]− S1

ασ2[D|S1]
, (4.4a)

θd
1 =

E[D|s]− S1

ασ2[D|s] − z. (4.4b)

Substituting (4.4a) and (4.4b) into the market-clearing equation (3.8), we find

(1− π)
E[D|S1]− S1

ασ2[D|S1]
+ π

(
E[D|s]− S1

ασ2[D|s] − z

)
= θ̄. (4.5)

The price (4.1) clears the market if (4.5) is satisfied for all values of (s, z). Substituting S1,

E[D|s], and E[D|S1] from (4.1), (4.2a) and (4.3a), we can write (4.5) as an affine equation in (s, z).

Therefore, (4.5) is satisfied for all values of (s, z) if the coefficients of (s, z) and of the constant term

are equal to zero. This yields a system of three equations in (a, b, c), solved in Proposition 4.2.

Proposition 4.2 The price in Period 1 is given by (4.1), where

a = D̄ − α(1− b)σ2θ̄, (4.6a)

b =
πβsσ

2[D|S1] + (1− π)βξσ
2[D|s]

πσ2[D|S1] + (1− π)σ2[D|s] , (4.6b)

c = ασ2
ε . (4.6c)

To determine the price in Period 0, we follow the same steps as in Section 3. The calculations

are more complicated because expected utilities in Period 1 are influenced by two random variables

(s, z) rather than only z. The price in Period 0, however, takes the same general form as in the

perfect-market benchmark.

Proposition 4.3 The price in Period 0 is given by (3.13), where M is given by (3.14),

∆0 =
(b− βξ)2(σ2 + σ2

ε + c2σ2
z)

σ2[D|S1]π2
, (4.7a)

∆1 =
α3bσ2(σ2 + σ2

ε )σ
2
z

1 + ∆0(1− π)2 − α2σ2σ2
z

, (4.7b)

∆2 =
α3σ4σ2

z

[
1 + (βs−b)2(σ2+σ2

ε )
σ2[D|s]

]

1 + ∆0(1− π)2 − α2σ2σ2
z

. (4.7c)
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4.2 Asymmetric Information and Illiquidity

We next examine how asymmetric information impacts the illiquidity measures and the illiquidity

discount. We consider two symmetric-information benchmarks: the no-information case, where

information is symmetric because no agent observes s, and the full-information case, where all

agents observe s. The analysis in Section 3 concerns the no-information case, but can easily be

extended to the full-information case (Appendix, Proposition A.1). Illiquidity λ and price reversal γ

under full information are given by (3.19) and (3.21), respectively, where σ2 is replaced by σ2[D|s].

Proposition 4.4 Illiquidity λ under asymmetric information is

λ =
ασ2[D|S1]

(1− π)
(
1− βξ

b

) . (4.8)

Illiquidity is highest under asymmetric information and lowest under full information. Moreover,

illiquidity under asymmetric information increases when the private signal (2.3) becomes more

precise, i.e., when σ2
ε decreases.

Under both symmetric and asymmetric information, illiquidity increases in the uncertainty

faced by liquidity suppliers, measured by their conditional variance of the asset payoff. In addition

to this uncertainty effect, a learning effect appears under asymmetric information: Because, for

example, liquidity suppliers attribute selling pressure partly to a low signal, they require a larger

price drop to buy. The learning effect corresponds to the term βξ/b in (4.8), which lowers the

denominator and raises λ.

Because of the uncertainty effect, illiquidity under full information is lower than under no infor-

mation, and illiquidity under asymmetric information tends to lie in-between. The learning effect

raises illiquidity under asymmetric information, and works in the same direction as the uncertainty

effect when comparing asymmetric to full information. The two effects work in opposite directions

when comparing asymmetric to no information, but the learning effect dominates. Illiquidity is

thus highest under asymmetric information.

Price reversal is not unambiguously highest under asymmetric information. Indeed, consider

two extreme cases. If π ≈ 1, i.e., almost all agents are liquidity demanders (informed), then the

price processes under asymmetric and full information approximately coincide, and so do the price

reversals. Since, in addition, liquidity suppliers face more uncertainty under no information than

under full information, price reversal is highest under no information.
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If instead π ≈ 0, i.e., almost all agents are liquidity suppliers (uninformed), then illiquidity

λ converges to infinity (order 1/π) under asymmetric information. This is because the trading

volume of liquidity demanders converges to zero, but the volume’s informational content remains

unchanged. Because of the high illiquidity, price reversal is highest under asymmetric information.

Proposition 4.5 Price reversal γ under asymmetric information is

γ = b(b− βξ)(σ2 + σ2
ε + c2σ2

z). (4.9)

Price reversal is lowest under full information. It is highest under asymmetric information if π ≈ 0,

and under no information if π ≈ 1.

While illiquidity and price reversal are lower under full information than under no information,

the comparison reverses for the illiquidity discount. This is because information reduces the scope

for risk sharing, an effect originally shown in Hirshleifer (1971). Since risk sharing is better under

no information, trade achieves larger gains, and the illiquidity discount is smaller.

Because of the Hirshleifer effect, the illiquidity discount under asymmetric information tends to

lie between the full- and no-information discounts. At the same time, asymmetric information raises

illiquidity in Period 1 because of the learning effect. The learning effect raises the discount and

works in the same direction as the Hirshleifer effect when comparing asymmetric to no information.

The two effects work in opposite directions when comparing asymmetric to full information, but the

learning effect dominates. The illiquidity discount is thus highest under asymmetric information.12

Proposition 4.6 The price in Period 0 is lowest under asymmetric information and highest under

no information.

The comparative statics with respect to the variance σ2
z of liquidity shocks are the same as in

the perfect-market benchmark case, except for the illiquidity λ. Under asymmetric information, an

increase in σ2
z lowers λ because liquidity shocks make prices less informative and attenuate learning.

Proposition 4.7 An increase in the variance σ2
z of liquidity shocks lowers illiquidity λ, raises price

reversal γ, and lowers the price in Period 0.

12Proposition 4.6 implies that the illiquidity discount under no trade is larger than in the perfect-market benchmark.
Indeed, the perfect-market benchmark corresponds to the no-information case. On the other hand, no trade occurs
in the full-information case if the signal (2.3) is perfect (σ2

ε = 0) because there is no scope for risk sharing.
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5 Participation Costs

In this section we assume that agents must incur a cost c to participate in the market in Period 1.

Our analysis of participation decisions and equilibrium in Period 1 is closely related to Grossman

and Miller (1988), and of equilibrium in Period 0 to Huang and Wang (2008a,b).13 Our result on

how participation costs affect the illiquidity λ is new.

5.1 Equilibrium

The price in Period 1 is determined by the participating agents. We look for an equilibrium where

all liquidity demanders participate, but only a fraction µ > 0 of liquidity suppliers do. Market

clearing requires that the aggregate demand of participating agents equals the asset supply held by

these agents. Since in equilibrium agents enter Period 1 holding θ̄ shares of the risky asset, market

clearing takes the form

(1− π)µθs
1 + πθd

1 = [(1− π)µ + π] θ̄. (5.1)

Agents’ demand functions are as in Section 3. Substituting (3.7a) and (3.7b) into (5.1), we find

that the price in Period 1 is

S1 = D̄ − ασ2

[
θ̄ +

π

(1− π)µ + π
z

]
. (5.2)

We next determine the measure µ of participating liquidity suppliers, assuming that all liquidity

demanders participate. If a supplier participates, he submits the demand function (3.7a) in Period

1. Since participation entails a cost c, wealth in Period 1 is

W1 = W0 + θ0(S1 − S0)− c. (5.3)

Using (3.7a), (5.2) and (5.3), we can compute the interim utility U s of a participating supplier in

Period 1/2. If the supplier does not participate, holdings in Period 1 are the same as in Period 0

(θs
1 = θ0), and wealth in Period 1 is given by (3.10). We denote by U sn the interim utility of a

non-participating supplier in Period 1/2.

13Grossman and Miller assume participation costs for liquidity suppliers only, while we assume such costs for all
agents. Huang and Wang’s analysis is more general than ours in two respects. First, they assume no aggregate
liquidity shocks and derive aggregate order imbalances as a consequence of participation costs. We assume instead
an aggregate liquidity shock, in a spirit similar to Pagano (1989) and Allen and Gale (1994). Second, they consider
general parameter values, while we limit attention to values under which liquidity demanders always participate.
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The participation decision is derived by comparing U s to U sn for the equilibrium choice of

θ0, which is θ̄. If the participation cost c is below a threshold c, then all suppliers participate

(µ = 1). If c is above c and below a larger threshold c̄, then suppliers are indifferent between

participating or not (U s = U sn), and only some participate (0 < µ < 1). Increasing c within

that region reduces the fraction µ of participating suppliers, while maintaining the indifference

condition. This is because with fewer participating suppliers, competition becomes less intense,

enabling the remaining suppliers to cover their increased participation cost. Finally, if c is above

c̄, then no suppliers participate (µ = 0).

Proposition 5.1 Suppose that all liquidity demanders participate. Then, the fraction of partici-

pating liquidity suppliers is

µ = 1, if c ≤ c ≡ log
(
1 + α2σ2σ2

zπ
2
)

2α
, (5.4a)

µ =
π

1− π

(
ασσz√
e2αc − 1

− 1
)

, if c < c < c̄ ≡ log
(
1 + α2σ2σ2

z

)

2α
, (5.4b)

µ = 0, if c ≥ c̄. (5.4c)

We next determine the participation decisions of liquidity demanders, taking those of liquidity

suppliers as given.

Proposition 5.2 Suppose that a fraction µ > 0 of liquidity suppliers participate. Then, a sufficient

condition for all liquidity demanders to participate is

(1− π)µ ≥ π. (5.5)

Eq. (5.5) requires that the measure π of liquidity demanders does not exceed the measure

(1 − π)µ of participating suppliers. Intuitively, when demanders are the short side of the market,

they stand to gain more from participation, and can therefore cover the participation cost (since

suppliers do). Combining Propositions 5.1 and 5.2, we find:

Corollary 5.1 An equilibrium where all liquidity demanders and a fraction µ > 0 of liquidity

suppliers participate exists under the sufficient conditions π ≤ 1/2 and c ≤ ĉ ≡ log
(
1+1

4α2σ2σ2
z

)

2α .

For π ≤ 1/2 and c ≤ ĉ, only two equilibria exist: the one in the corollary and the one where

no agent participates. The same is true for π larger but close to 1/2, and for c larger but close to
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ĉ.14 When, however, c exceeds a threshold in (ĉ, c̄), the equilibrium in the corollary ceases to exist,

and no-participation becomes the unique equilibrium.

To determine the price in Period 0, we follow the same steps as in Section 3. The price takes

a form similar to that in the perfect-market benchmark.

Proposition 5.3 The price in Period 0 is given by (3.13), where

M = exp
(

1
2α∆2θ̄

2
)
√√√√√

1 + ∆0
π2

[(1−π)µ+π]2

1 + ∆0
(1−π)2µ2

[(1−π)µ+π]2
− α2σ2σ2

z

, (5.6)

∆1 =
ασ2∆0

π
(1−π)µ+π

1 + ∆0
(1−π)2µ2

[(1−π)µ+π]2
− α2σ2σ2

z

, (5.7a)

∆2 =
ασ2∆0

1 + ∆0
(1−π)2µ2

[(1−π)µ+π]2
− α2σ2σ2

z

, (5.7b)

and ∆0 is given by (3.15a).

5.2 Participation Costs and Illiquidity

We next examine how participation costs impact the illiquidity measures and the illiquidity dis-

count. Proceeding as in Section 3, we can compute the illiquidity λ and price reversal γ:

λ =
ασ2

(1− π)µ
, (5.8)

γ =
α2σ4σ2

zπ
2

[(1− π)µ + π]2
. (5.9)

Both measures are inversely related to the fraction µ of participating liquidity suppliers. Proposition

5.3 implies that the illiquidity discount is also inversely related to µ.

We derive comparative statics for the equilibrium in Corollary 5.1, and consider only the

region c > c, where the measure µ of participating suppliers is less than one. This is without

14Other equilibria are ruled out by the following argument. Prices and trading profits in Period 1 depend only the
relative measures of participating suppliers and demanders. Therefore, if participation occurs, the fraction of either
suppliers or demanders must (generically) equal one. If the fraction of demanders is less than one, then the fraction
of suppliers must equal one. This is a contradiction for π ≤ 1/2 because of (5.5). It is also a contradiction for π
larger but close to 1/2 because (5.5) is a sufficient condition: because liquidity demanders face the risk of liquidity
shocks, they can benefit from participation more than suppliers even when they are the long side of the market. See
Huang and Wang for a more detailed discussion of the nature of equilibrium under costly participation.
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loss of generality: in the region c ≤ c, where all suppliers participate, prices are not affected by

the participation cost and are as in the perfect-market benchmark. When c > c, an increase in

the participation cost lowers µ, and therefore raises illiquidity, price reversal and the illiquidity

discount.

Proposition 5.4 Consider the equilibrium in Corollary 5.1, and assume c > c. An increase in the

participation cost c raises illiquidity λ and price reversal γ, and lowers the price in Period 0.

Consider next an increase in the variance σ2
z of liquidity shocks. Since liquidity supply becomes

more profitable, there is more participation by suppliers and illiquidity λ decreases. Price reversal

remains unchanged, however, because of two offsetting effects. Holding the measure of participating

suppliers constant, an increase in σ2
z raises price reversal for the same reasons as in the perfect-

market benchmark. At the same time, increased participation lowers price reversal. The effects

exactly offset because the profits of participating suppliers depend on σ2
z only through the price

reversal. Since profits in equilibrium must equal the participation cost, price reversal is independent

of σ2
z .

Proposition 5.5 Consider the equilibrium in Corollary 5.1, and assume c > c. An increase in the

variance σ2
z of liquidity shocks lowers illiquidity λ, leaves price reversal γ unchanged, and lowers

the price in Period 0.

6 Transaction Costs

In this section we assume that agents incur a transaction cost when trading in Period 1. The

difference with the participation cost of the previous section is that the decision whether or not to

incur the transaction cost is contingent on the price in Period 1. We mainly focus on the case where

the transaction cost is proportional to transaction size, as measured by the number of shares, and

consider the more complicated case of fixed costs at the end of this section. We assume that the

liquidity shock z is drawn from a general distribution that is symmetric around zero with density

f(z); specializing to a normal distribution does not simplify the analysis. Our analysis is closest

to Lo, Mamaysky and Wang (2004) because we examine how transaction costs affect prices in a

setting where agents trade to share risk. Lo, Mamaysky and Wang assume fixed costs, while we

focus on proportional costs.15 Our results on how transaction costs affect the illiquidity λ and price

15Equilibrium with proportional costs has mainly been studied in settings where agents trade because of life-cycle
or consumption-smoothing motives, rather than risk sharing. See, for example, Amihud and Mendelson (1986),
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reversal γ are new.

6.1 Equilibrium

Transaction costs generate a bid-ask spread in Period 1. An agent buying one share pays the price

S1 plus the transaction cost κ, and so faces an effective ask price S1 + κ. Conversely, an agent

selling one share receives S1 but pays κ, and so faces an effective bid price S1 − κ. The bid-ask

spread is independent of transaction size because transaction costs are proportional. Because of the

spread, trade occurs only if the liquidity shock z is sufficiently large. Suppose, for example, that

z > 0, in which case liquidity demanders value the asset less than liquidity suppliers. If liquidity

suppliers buy, their demand function is as in Section 3 (Eq. (3.7a)), but with S1 + κ taking the

place of S1, i.e.,

θs
1 =

D̄ − S1 − κ

ασ2
. (6.1)

Conversely, if liquidity demanders sell, their demand function is as in Section 3 (Eq. (3.7b)), but

with S1 − κ taking the place of S1, i.e.,

θd
1 =

D̄ − S1 + κ

ασ2
− z. (6.2)

Since in equilibrium agents enter Period 1 holding θ̄ shares of the risky asset, trade occurs if there

exists a price S1 such that θs
1 > θ̄ and θd

1 < θ̄. Using (6.1) and (6.2), we can write these conditions
as

κ < D̄ − S1 − ασ2θ̄ < ασ2z − κ.

Therefore, trade occurs if z > 2κ
ασ2 ≡ κ̂, i.e., the liquidity shock z is large relative to the transaction

cost κ. The price can be determined by substituting (6.1) and (6.2) into the market-clearing

equation (3.8). Repeating the analysis for z < 0, we can derive the following proposition.

Proposition 6.1 The equilibrium in Period 1 is as follows:

• |z| ≤ κ̂: Agents do not trade;

Vayanos (1998, 2004), Vayanos and Vila (1999), Huang (2002), and Acharya and Pedersen (2005) for life-cycle
motives, and Aiyagari and Gertler (1991) and Heaton and Lucas (1996) for consumption-smoothing motives. See also
Constantinides (1986) who derives general-equilibrium implications of transaction costs from a partial-equilibrium
setting where an agent engages in dynamic portfolio rebalancing. The trading frequencies implied by the various
motives differ: they are low for life cycle and consumption smoothing and higher for portfolio rebalancing and risk
sharing.
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• |z| > κ̂: All agents trade and the price is

S1 = D̄ − ασ2
[
θ̄ + πz + κ̂

(
1
2 − π

)
sign(z)

]
. (6.3)

The effect of transaction costs on the price depends on the relative measures of liquidity suppli-

ers and demanders. Suppose, for example, that z > 0. In the absence of transaction costs, liquidity

demanders sell and the price drops. Because transaction costs deter liquidity suppliers from buying,

they tend to depress the price, amplifying the effect of z. At the same time, transaction costs deter

liquidity demanders from selling, and this tends to raise the price, dampening the effect of z. The

overall effect depends on agents’ relative measures. If π < 1/2 (more suppliers than demanders),

the impact on suppliers dominates, and transaction costs amplify the effect of z. The converse holds

if π > 1/2. The price in Period 0 takes a form similar to that in the perfect-market benchmark.16

Proposition 6.2 The price in Period 0 is given by (3.13), where

M =

∫ κ̂
0 exp

(
1
2α

2σ2z2
)
ch(α2σ2θ̄z)f(z)dz +

∫∞
κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz∫ κ̂

0 f(z)dz +
∫∞
κ̂ exp

[− 1
2α

2σ2π2(z − κ̂)2
]
f(z)dz

, (6.4)

∆1 =
ασ2

[∫ κ̂
0 exp

(
1
2α

2σ2z2
)
sh

(
α2σ2θ̄z

)
zf(z)dz +

∫∞
κ̂ Γ(z)sh(α2σ2θ̄z)[πz + (1− π)κ̂]f(z)dz

]

θ̄
[∫ κ̂

0 exp
(

1
2α

2σ2z2
)
ch(α2σ2θ̄z)f(z)dz +

∫∞
κ̂ Γ(z)ch(α2σ2θ̄z)f(z)dz

] ,

(6.5)

Γ(z) = exp
[

1
2α

2σ2z2 − 1
2α

2σ2(1− π)2(z − κ̂)2
]
. (6.6)

6.2 Transaction Costs and Illiquidity

We next examine how transaction costs impact the illiquidity measures and prices. Because trans-

action costs deter liquidity suppliers from trading, they raise illiquidity λ. Note that λ rises even

16Extending our analysis to fixed costs is more complicated because agents’ optimization problems become non-
convex. Non-convexity can give rise to multiple solutions, meaning that agents of the same type (suppliers or
demanders) can fail to take the same action. Suppose, for example, that all agents start with the same position
θ0 = θ̄ in Period 0. As with proportional costs, all agents trade in Period 1 if the liquidity shock z is large, while
no agent trades if z is small. For intermediate values of z, however, some agents pay the fixed cost and trade, while
others of the same type do not trade.

A further complication arising from non-convexity is that θ0 = θ̄ is not an equilibrium. Indeed, consider a deviation
from θ0 = θ̄ in either direction. The trades that become profitable in the margin are those whose surplus equals the
fixed cost. But while the net surplus of these trades is zero, the marginal surplus (i.e., the derivative with respect to
θ0) is non-zero. Thus, expected utility at θ0 = θ̄ has a local minimum and a kink, implying that identical agents in
Period 0 choose different positions in equilibrium.
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when transaction costs dampen the effect of the liquidity shock z on the price. Indeed, dampening

occurs not because of enhanced liquidity supply, but because liquidity demanders scale back their

trades.

Proposition 6.3 Illiquidity λ is

λ =
ασ2

1− π

[
1 +

κ̂

2π

∫∞
κ̂ (z − κ̂) f(z)dz∫∞
κ̂ (z − κ̂)2 f(z)dz

]
, (6.7)

and is higher than without transaction costs (κ = 0).

Defining price reversal γ involves a slight complication because for small values of z there is

no trade in Period 1, and therefore the price S1 is not uniquely defined. We define price reversal

conditional on trade in Period 1. The empirical counterpart of our definition is that no-trade

observations are dropped from the sample. Transaction costs affect price reversal both because

they limit trade to large values of z, and because they impact the price conditional on trade

occuring. The first effect raises price reversal. The second effect works in the same direction when

transaction costs amplify the effect of z on the price, i.e., when π < 1/2.

Proposition 6.4 Price reversal γ is

γ = α2σ4

∫∞
κ̂

[
πz +

(
1
2 − π

)
κ̂
]2

f(z)dz∫∞
κ̂ f(z)dz

. (6.8)

It is increasing in the transaction cost coefficient κ if π ≤ 1/2.

Because transaction costs hinder trade in Period 1, a natural conjecture is that they raise the

illiquidity discount. When, however, π ≈ 1, transaction costs can lower the discount. The intuition

is that for π ≈ 1 liquidity suppliers are the short side of the market and stand to gain the most

from trade. Therefore, transaction costs hurt them the most, and reduce the utility differential

between suppliers and demanders. This lowers the risk-neutral probability of being a demander,

and can lower the discount. Transaction costs always raise the discount when π ≤ 1/2.

Proposition 6.5 The price in Period 0 is decreasing in the transaction cost coefficient κ if π ≤ 1/2.

We can sharpen the results of Propositions 6.4 and 6.5 by assuming specific distributions for

the liquidity shock z. When z is drawn from a two-point distribution, transaction costs raise price
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reversal γ for all values of π, but lower the illiquidity discount for π ≈ 1. When z is normal,

transaction costs raise γ for all values of π, and numerical calculations suggest that they also raise

the discount for all values of π.

To derive comparative statics with respect to the variance σ2
z of z, we assume again specific

distributions. When z is drawn from a two-point distribution, an increase in σ2
z lowers λ, while the

effects on γ and the discount are as in the perfect-market benchmark. Same comparative statics

on (λ, γ) hold when z is normal, and numerical solutions suggest same comparative statics on the

discount. The intuition why λ decreases in σ2
z is that when liquidity shocks are large, the main

determinant of λ is not the bid-ask spread, which is affected by transaction costs, but the suppliers’

risk aversion. Since the relative importance of the bid-ask spread decreases when σ2
z increases, λ

decreases. Proposition 6.6 summarizes the results in the case of a two-point distribution.

Proposition 6.6 Suppose that z is drawn from a two-point distribution, and trade occurs in Period

1 (σz > κ̂). Illiquidity λ and price reversal γ are increasing in the transaction cost coefficient κ.

An increase in the variance σ2
z of liquidity shocks lowers illiquidity λ, raises price reversal γ, and

lowers the price in Period 0.

7 Leverage Constraints

In this section we assume that agents’ leverage is limited as a function of their capital. We derive

a leverage constraint from agents’ inability to commit to cover losses on levered positions solely by

reducing consumption. For simplicity, we assume that agents must be able to cover losses in full.

To ensure that such commitment is possible despite the lower bound on consumption, we replace

normal distributions by distributions with bounded support.17 We denote the support of the asset

payoff D by [D̄− bD, D̄ + bD] and that of the liquidity shock z by [−bz, bz]. We assume that D and

z are distributed symmetrically around their respective means, D is positive (i.e., D̄−bD ≥ 0), and

agents receive a positive endowment B of the riskless asset in Period 0. Because our focus is on

how the leverage constraint influences the supply of liquidity, we impose it on liquidity suppliers

only. Our analysis is closest to Gromb and Vayanos (2002), who study the supply of liquidity by

17The assumption that losses must be covered in full is also implicit in the perfect-market benchmark. Dropping
this assumption and allowing for default would expand the set of payoffs beyond those achieved by the traded assets.
Suppose, for example, that an agent borrows cash to buy the risky asset. If the agent can default, his payoff is that
of a call option on the risky asset. See Geanakoplos (2003) for a general analysis of margin contracts and an example
where allowing for default entails no loss of generality.
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leverage-constrained agents.18 In Gromb and Vayanos, liquidity is supplied by arbitrageurs who

trade two correlated zero-supply assets across segmented markets. We assume instead one risky

asset in positive supply, and add an ex-ante stage (Period 0) where all agents are identical. Our

analysis of how leverage constraints affect the illiquidity discount (computed in the ex-ante stage

before liquidity shocks occur) is new.

7.1 Equilibrium

In Period 1, a liquidity demander chooses holdings θd
1 of the risky asset to maximize the expected

utility (3.4). The expectation over D is

− exp
{
−α

[
W1 + θd

1(D̄ − S1)− f(θd
1 + z)

]}
, (7.1)

where

f(θ) ≡ log E exp
[−αθ(D − D̄)

]

α
. (7.2)

Eq. (7.1) generalizes (3.5), derived under normality, to any symmetric distribution. The func-

tion f(θ), equal to 1
2αθ2 under normality, is positive, symmetric around the y-axis, and convex.19

Maximizing (7.1) over θd
1 yields the demand function

θd
1 =

(
f ′

)−1 (D̄ − S1)− z. (7.3)

Since f(θ) is convex, the demand θd
1 is a decreasing function of the price S1.

A liquidity supplier chooses holdings θs
1 of the risky asset to maximize the expected utility

− exp
{−α

[
W1 + θs

1(D̄ − S1)− f(θs
1)

]}
, (7.4)

which can be derived from (7.1) by setting z = 0. The optimization is subject to a leverage

constraint. Indeed, losses from investing in the risky asset can be covered by wealth W1 or negative

18See also Geanakoplos (2003) and Geanakoplos and Zame (2009) for a general formulation of equilibrium with
collateral and margin contracts. Kyle and Xiong (2001) and Xiong (2001) consider settings where liquidity suppliers
face no leverage constraints but have logarithmic preferences. Logarithmic preferences require that consumption is
non-negative. At the same time, because the marginal utility at zero consumption is infinite, the leverage constraint
implied by non-negative consumption never binds.

19The function αf(θ) is the cumulant-generating function of −α(D−D̄). Cumulant-generating functions are convex.
Symmetry follows because D is distributed symmetrically around D̄. Positivity follows from f(0) = 0, symmetry and
convexity.
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consumption. Since suppliers must be able to cover losses in full, and cannot commit to consume

less than −A, losses cannot exceed W1 + A, i.e.,

θs
1(S1 −D) ≤ W1 + A for all D.

This yields the constraint

m|θs
1| ≤ W1 + A, (7.5)

where

m ≡ S1 −min
D

D if θs
1 > 0, (7.6a)

m ≡ max
D

D − S1 if θs
1 < 0. (7.6b)

The constraint (7.5) requires that a position of θs
1 shares is backed by capital m|θs

1|. This limits the

size of the position as a function of the capital W1 +A available to suppliers in Period 1. Suppliers’

capital is the sum of the capital W1 that they physically own in Period 1, and the capital A that

they can access through their commitment to consume −A in Period 2. The parameter m is the

required capital per share of levered position, and can be interpreted as a margin or haircut. The

margin is equal to the maximum possible loss per share. For example, the margin for a long position

does not exceed the asset price S1, and is strictly smaller if the asset payoff D has a positive lower

bound (i.e., minD D = D̄ − bD > 0).

Intuitively, the constraint (7.5) can bind when there is a large discrepancy between the price

S1 and the expected payoff D̄, since this is when liquidity suppliers want to hold large positions.

There is, however, a countervailing effect because of a decrease in the margin. When, for example,

S1 is low, suppliers want to hold large long positions, but the margin is small because the maximum

possible loss is small. The required capital (position size times margin) increases in the discrepancy

between S1 and D̄ under the sufficient condition

2απbDbz < 1, (7.7)

which for simplicity we assume from now on.

Proposition 7.1 The equilibrium in Period 1 has the following properties:

• The leverage constraint (7.5) never binds if

B + A + θ̄(D̄ − bD)− πbz

[
bD − f ′(θ̄ + πbz)

] ≥ 0. (7.8)

Otherwise, (7.5) binds for z ∈ [−bz,−z) ∪ (z, bz], where 0 < z < z ≤ bz.
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• An increase in z lowers the price S1 and raises the liquidity suppliers’ position θs
1. When

(7.5) does not bind, θs
1 = θ̄ + πz and

S1 = D̄ − f ′(θ̄ + πz). (7.9)

The leverage constraint never binds if agents receive a large endowment B of the riskless asset

in Period 0, or if they can commit to a large negative consumption −A in Period 2. In both cases,

the capital that they can access in Period 1 is large. If instead B and A are small, the constraint

binds for large positive and possibly large negative values of the liquidity shock z. For example,

when z is large and positive, the price S1 is low and liquidity suppliers are constrained because

they want to hold large long positions. Setting

K∗ ≡ πbz

[
bD − f ′(θ̄ + πbz)

]− θ̄(D̄ − bD),

we refer to the region B +A > K∗, where liquidity suppliers are well-capitalized and the constraint

never binds, as the abundant-capital region, and to the region B + A < K∗, where the constraint

binds for some values of z, as the scarce-capital region. Note that in both regions, the constraint

does not bind for z = 0. Indeed, the unconstrained outcome for z = 0 is that liquidity suppliers

maintain their endowments θ̄ of the risky asset and B of the riskless asset. Since this yields positive

consumption, the constraint is met.

An increase in the liquidity shock z lowers the price S1 and raises the liquidity suppliers’

position θs
1. These results are the same as in the perfect-market benchmark of Section 3, but the

intuition is more complicated when the leverage constraint binds. Suppose that capital is scarce

(i.e., B + A < K∗), and z is large and positive, in which case suppliers hold long positions and

are constrained. The intuition why they can buy more, despite the constraint, when z increases

is as follows. Since the price S1 decreases, suppliers realize a capital loss on the θ̄ shares of the

risky asset that they carry from Period 0. This reduces their wealth in Period 1 and tightens the

constraint. At the same time, a decrease in S1 triggers an equal decrease in the margin (7.6a)

for long positions, and loosens the constraint. This effect is equivalent to a capital gain on the θs
1

shares that suppliers hold in Period 1. Because suppliers are net buyers for z > 0 (i.e., θs
1 > θ̄), the

latter effect dominates, and suppliers can buy more in response to an increase in z.

To determine the price in Period 0, we make the simplifying assumption that the risk-aversion

coefficient α is small. We denote by (σ2, σ2
z) the variances of (D, z), by k ≡ E[D−D̄]4

σ4 −3 the curtosis

of D, by F (z) the cumulative distribution function of z, and by o(αn) terms smaller than αn.

28



Proposition 7.2 Suppose that α is small. The price in Period 0 is

S0 = D̄ − ασ2θ̄ − α3σ4
[(

1 + 1
2k

)
σ2

zπ
2 + 1

6kθ̄2
]
θ̄ + o(α3) (7.10)

when capital is abundant, and

S0 = D̄ − ασ2θ̄ − ασ2(1− π)
[∫ z

z
(z − z)dF (z) +

∫ bz

z
(z − z)dF (z)

]
+ o(α) (7.11)

when capital is scarce.

7.2 Leverage Constraints and Illiquidity

We next examine how the leverage constraint impacts the illiquidity measures and the illiquidity

discount. We compute these variables in the abundant-capital region (liquidity suppliers are well-

capitalized and unconstrained by leverage for all values of the liquidity shock z), and compare with

the scarce-capital region.

Proposition 7.3 Suppose that α is small or z is drawn from a two-point distribution. Illiquidity

λ is higher when capital is scarce than when it is abundant.

Proposition 7.4 Price reversal γ is higher when capital is scarce than when it is abundant.

The intuition is as follows. When the liquidity shock z is close to zero, the constraint does not

bind in both the abundant- and scarce-capital regions, and therefore price and volume are identical

in the two regions. For larger values of z, the constraint binds when capital is scarce, impairing

suppliers’ ability to accommodate an increase in z. As a result, an increase in z has a larger effect

on price and a smaller effect on volume when capital is scarce. Since the effect on price is larger, so

is the price reversal γ. Illiquidity λ is also larger because it measures the price impact per unit of

volume. Note that λ measures an average price impact, i.e., the average slope of the relationship

between price change and signed volume. This relationship exhibits an important non-linearity

when capital is scarce: the slope increases for large values of z, which is when the constraint binds.

This property distinguishes leverage constraints from other imperfections.

The illiquidity discount is higher when capital is scarce. This is because the leverage constraint

binds asymmetrically: it is more likely to bind when liquidity demanders sell (z > 0) than when

they buy (z < 0). Indeed, the constraint binds when the suppliers’ position is large in absolute
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value—and a large position is more likely when suppliers buy in Period 1 because this adds to the

long position θ̄ that they carry from Period 0. Since price movements in Period 1 are exacerbated

when the constraint binds, and the constraint is more likely to bind when demanders sell, the

average price in Period 1 is lower when capital is scarce. This yields a lower price in Period 0.

Proposition 7.5 Suppose that α is small. The price in Period 0 is lower when capital is scarce

than when it is abundant.

We next consider an increase in the magnitude of liquidity shocks. We scale up all shocks

uniformly, replacing z by ωz for a scalar ω > 1.20

Proposition 7.6 Suppose that α is small, and all liquidity shocks are multiplied by ω > 1.

• If under the new distribution capital is abundant, then illiquidity λ remains the same (to the

highest order in α), price reversal γ increases, and the price in Period 0 decreases.

• If under the new distribution capital is scarce, then illiquidity λ increases, price reversal γ

increases, and the price in Period 0 decreases.

The comparative statics when capital is abundant are the same as for the perfect-market

benchmark of Section 3. When instead capital is scarce, an increase in the shocks’ magnitude

increases illiquidity. This result is different than for other imperfections, and is due to the non-

linearity of the relationship between price change and signed volume: the relationship becomes

stronger when the constraint binds, and the constraint is more likely to bind when shocks are

larger.

Our analysis can be extended to the case where the leverage constraint (7.5) holds with a

margin m that is constant, rather than a function of price as in (7.6a)-(7.6b). A constant margin

yields different implications for how liquidity suppliers respond to an increase in the liquidity shock

z: while their position θs
1 increases under the margin (7.6a)-(7.6b), it can decrease under a constant

margin. Indeed, suppose that suppliers hold long positions and are constrained. An increase in z

lowers S1, triggering a capital loss and a tightening of the constraint. Under the margin (7.6a)-

(7.6b), there is the countervailing and dominant effect that the margin decreases. This effect does

not exist under a constant margin, and therefore suppliers are forced to sell. Liquidity suppliers

thus consume liquidity: in response to selling pressure by demanders, they sell (to demanders).

20Other sections consider an increase in the variance σ2
z of liquidity shocks, assuming a normal or a two-point

distribution. This is equivalent to scaling up all shocks uniformly.
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This yields amplification: following an increase in the liquidity shock z, the price drops, triggering

sales by suppliers, amplifying the price drop, triggering more sales, etc. In particular, the price

drop is larger than in the suppliers’ absence.21

8 Non-Competitive Behavior

In this section we assume that liquidity demanders behave as a single monopolist in Period 1. We

consider both the case where liquidity demanders have no private information on asset payoffs,

and so information is symmetric, and the case where they observe the private signal (2.3), and so

information is asymmetric. (The second case nests the first by setting the variance σ2
ε of the signal

noise to infinity.) We show that strategic behavior by liquidity demanders influences the supply of

liquidity, even though liquidity suppliers are competitive. The trading mechanism in Period 1 is

that liquidity suppliers submit a demand function and liquidity demanders submit a market order,

i.e., a price-inelastic demand function. Restricting liquidity demanders to trade by market order

is without loss of generality: since they know all available information in Period 1, they know the

demand function of liquidity suppliers. Our analysis of equilibrium in Period 1 is closely related to

Bhattacharya and Spiegel (1991) because we assume that an informed monopolist with a hedging

motive trades with competitive risk-averse agents.22 Our analysis of equilibrium in Period 0 is new,

and so are the results on how non-competitive behavior affects the illiquidity discount and the price

reversal γ.

8.1 Equilibrium

We conjecture that the price in Period 1 has the same affine form (4.1) as in the competitive case,

with possibly different constants (a, b, c). Given (4.1), the demand function of liquidity suppliers is

(4.4a) as in the competitive case. Substituting (4.4a) into the market-clearing equation (3.8), and

21Amplification can arise even in the presence of countervailing variation in margins, and for constraints derived
endogenously in the spirit of (7.5). See, for example, Gromb and Vayanos (2002) and Geanakoplos (2003).

22Strategic behavior under asymmetric information has mainly been studied in a setting introduced by Kyle (1985),
where strategic informed traders trade with competitive risk-neutral market makers and noise traders. Risk neutrality
simplifies the derivations, but also eliminates any effect of illiquidity on expected returns. Indeed, expected returns
are equal to the riskless rate because market makers are competitive and risk-neutral. See also Glosten and Milgrom
(1985), Easley and O’Hara (1987) and Admati and Pfleiderer (1988) for other settings with competitive risk-neutral
market makers and noise traders.
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using (4.3a), yields the price in Period 1 as a function of the liquidity demanders’ market order θd
1 :

S1(θd
1) =

D̄ − βξ

b a + ασ2[D|S1]
1−π (πθd

1 − θ̄)

1− βξ

b

. (8.1)

Liquidity demanders choose θd
1 to maximize the expected utility

−Eexp
{
−α

[
W1 + θd

1

(
D − S1(θd

1)
)

+ z(D − D̄)
]}

. (8.2)

The difference with the competitive case is that liquidity demanders behave as a single monopolist

and take into account the impact of their order θd
1 on the price S1. Proposition 8.1 characterizes

the solution to the liquidity demanders’ optimization problem.

Proposition 8.1 The liquidity demanders’ market order in Period 1 satisfies

θd
1 =

E[D|s]− S1(θd
1)− ασ2[D|s]z + λ̂θ̄

ασ2[D|s] + λ̂
, (8.3)

where λ̂ ≡ dS1(θd
1)

dθd
1

= απσ2[D|S1]

(1−π)
(
1−βξ

b

) .

Eq. (8.3) determines θd
1 implicitly because it includes θd

1 in both the left- and the right-hand side.

We write θd
1 in the form (8.3) to facilitate the comparison with the competitive case. Indeed, the

competitive counterpart of (8.3) is (4.4b), and can be derived by setting λ̂ to zero. The parameter λ̂

measures the price impact of liquidity demanders, and is closely related to the illiquidity λ. Because

in equilibrium λ̂ > 0, the denominator of (8.3) is larger than that of (4.4b), and therefore θd
1 is less

sensitive to changes in E[D|s]−S1 and z than in the competitive case. Intuitively, because liquidity

demanders take price impact into account, they trade less aggressively in response to their signal

and their liquidity shock.

Substituting (4.4a) and (8.3) into the market-clearing equation (3.8), and proceeding as in

Section 4, we find a system of three equations in (a, b, c). Proposition 8.2 solves this system.

Proposition 8.2 The price in Period 1 is given by (4.1), where

b =
πβsσ

2[D|S1] + (1− π)βξσ
2[D|s]

2πσ2[D|S1] + (1− π)σ2[D|s] , (8.4)
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and (a, c) are given by (4.6a) and (4.6c), respectively. The linear equilibrium exists if σ2
ε > σ̂2

ε ,

where σ̂2
ε is the positive solution of

α2σ̂4
ε σ

2
z = σ2 + σ̂2

ε . (8.5)

The price in the competitive market in Period 0 can be determined through similar steps as in

previous sections.

Proposition 8.3 The price in Period 0 is given by (3.13), where

M = exp
(

1
2α∆2θ̄

2
)
√√√√ 1 + ∆0π2

1 + ∆0

(
1 + 2λ̂

ασ2[D|s]
)

(1− π)2 − α2σ2σ2
z

, (8.6)

∆1 =
α3bσ2(σ2 + σ2

ε )σ
2
z

1 + ∆0

(
1 + 2λ̂

ασ2[D|s]
)

(1− π)2 − α2σ2σ2
z

, (8.7a)

∆2 =
α3σ4σ2

z

[
1 +

α(βs−b)2(σ2+σ2
ε )(ασ2[D|s]+2λ̂)

(ασ2[D|s]+λ̂)2

]

1 + ∆0

(
1 + 2λ̂

ασ2[D|s]
)

(1− π)2 − α2σ2σ2
z

, (8.7b)

and ∆0 is given by (4.7a).

8.2 Non-Competitive Behavior and Illiquidity

We next examine how non-competitive behavior impacts the illiquidity measures and the illiquidity

discount.

Proposition 8.4 Illiquidity λ is given by (4.8). It is the same as under competitive behavior when

information is symmetric, and higher when information is asymmetric.

Although illiquidity is given by the same equation as under competitive behavior, it is higher

when behavior is non-competitive because the coefficient b is smaller. Intuitively, when liquidity

demanders take price impact into account, they trade less aggressively in response to their signal

and their liquidity shock. This reduces the size of both information- and liquidity-generated trades.

The relative size of the two types of trades remains the same, and so does price informativeness,

measured by the signal-to-noise ratio. Monopoly trades thus have the same informational content
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as competitive trades, but are smaller in size. As a result, the signal per trade size is higher, and

so is the price impact of trades and the illiquidity λ. Non-competitive behavior has no effect on

illiquidity when information is symmetric because trades have no informational content.

An increase in information asymmetry, through a reduction in the variance σ2
ε of the signal

noise, generates an illiquidity spiral. Because illiquidity increases, liquidity demanders scale back

their trades. This raises the signal per trade size, further increasing illiquidity. When information

asymmetry becomes severe, illiquidity becomes infinite and trade ceases, leading to a market break-

down. This occurs when σ2
ε ≤ σ̂2

ε , i.e., for values of σ2
ε such that the equilibrium of Proposition 8.2

does not exist. Non-competitive behavior is essential for the non-existence of an equilibrium with

trade because such an equilibrium always exists under competitive behavior.23

Proposition 8.5 Price reversal γ is given by (4.9), and is lower than under competitive behavior.

Although price reversal is given by the same equation as under competitive behavior, it is

lower when behavior is non-competitive because the coefficient b is smaller. Intuitively, price re-

versal arises because the liquidity demanders’ trades in Period 1 cause the price to deviate from

fundamental value. Under non-competitive behavior, these trades are smaller and so is price re-

versal. Note that non-competitive behavior has opposite effects on the two illiquidity measures:

illiquidity λ increases but price reversal γ decreases.

While illiquidity λ is higher under non-competitive behavior, the illiquidity discount can be

lower. This is because liquidity demanders scale back their trades, rendering the price less responsive

to their liquidity shock and obtaining better insurance against the shock. This effect drives the

illiquidity discount below the competitive value when information is symmetric. When information

is asymmetric, the comparison can reverse. This is because the scaling back of trades generates the

spiral of increasing illiquidity, and this reduces the insurance received by liquidity demanders.

Proposition 8.6 The price in Period 0 is higher than under competitive behavior when information

is symmetric, but can be lower when information is asymmetric.

The comparative statics with respect to the variance σ2
z of liquidity shocks are the same as

under competitive behavior.

23There exist settings, however, where asymmetric information leads to market breakdowns even with competitive
agents. See Akerlof (1970) for a setting where agents trade heterogeneous goods of different qualities, and Glosten
and Milgrom (1985) for an asset-market setting.
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Proposition 8.7 An increase in the variance σ2
z of liquidity shocks leaves illiquidity λ unchanged

under symmetric information but lowers it under asymmetric information. It raises price reversal

and lowers the price in Period 0.

9 Search

In this section we assume that agents do not meet in a centralized exchange in Period 1, but

instead must search for counterparties. When a liquidity demander meets a supplier, they bargain

bilaterally over the terms of trade, i.e., the number of shares traded and the share price. We assume

that bargaining leads to an efficient outcome, and denote by φ ∈ [0, 1] the fraction of transaction

surplus appropriated by suppliers. We denote by N the measure of bilateral meetings between

demanders and suppliers. This parameter characterizes the efficiency of the search process, and

is bounded by min{π, 1 − π} since there cannot be more meetings than demanders or suppliers.

Assuming that all meetings are equally likely, the probability of a demander meeting a supplier is

πd ≡ N/π, and of a supplier meeting a demander is πs ≡ N/(1 − π). Our analysis is closest to

Duffie, Garleanu and Pedersen (2008), who study asset-market search in a continuous-time model

where agents’ positions can take one of two values and there are aggregate liquidity shocks.24 In

our model search occurs only within one period, but positions can be arbitrary.25 Furthermore, we

are able to compute the illiquidity λ and price reversal γ, and examine how they depend on the

search friction.26

9.1 Equilibrium

Prices in Period 1 are determined through pairwise bargaining between liquidity demanders and

suppliers. Agents’ outside option is not to trade and retain their positions from Period 0, which in

equilibrium are equal to θ̄. The consumption in Period 2 of a liquidity supplier who does not trade

in Period 1 is Csn
2 = W0 + θ̄(D − S0). This generates a certainty equivalent

CEQsn = W0 + θ̄(D̄ − S0)− 1
2ασ2θ̄2, (9.1)

24Duffie, Garleanu and Pedersen (2005) employ a similar model but restrict attention to deterministic steady states.

25Garleanu (2009) allows for arbitrary positions in a deterministic steady-state model.

26Duffie, Garleanu and Pedersen (2008) show in the context of numerical examples that prices recover more slowly
from shocks in a search market than in a centralized market. Besides computing price reversal in closed form, we
show that it is not always higher in a search market.
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where the first two terms are the expected consumption, and the third a risk adjustment quadratic

in position size. If the supplier buys x shares at price S1, the certainty equivalent becomes

CEQs = W0 + θ̄(D̄ − S0) + x(D̄ − S1)− 1
2ασ2(θ̄ + x)2 (9.2)

because the position becomes θ̄ +x. Likewise, the certainty equivalent of a liquidity demander who

does not trade in Period 1 is

CEQdn = W0 + θ̄(D̄ − S0)− 1
2ασ2(θ̄ + z)2, (9.3)

and if the demander sells x shares at price S1, the certainty equivalent becomes

CEQd = W0 + θ̄(D̄ − S0)− x(D̄ − S1)− 1
2ασ2(θ̄ + z − x)2. (9.4)

Under efficient bargaining, x maximizes the sum of certainty equivalents CEQs + CEQd. The

maximization yields x = z/2, i.e., the liquidity shock is shared equally between the two agents.

The price S1 is such that the supplier receives a fraction φ of the transaction surplus, i.e.,

CEQs − CEQsn = φ
(
CEQs + CEQd − CEQsn − CEQdn

)
. (9.5)

Proposition 9.1 When a supplier and a demander meet in Period 1, the supplier buys z/2 shares

at the price

S1 = D̄ − ασ2
[
θ̄ + 1

4z(1 + 2φ)
]
. (9.6)

Eq. (9.6) implies that the impact of the liquidity shock z on the price in Period 1 increases in

the liquidity suppliers’ bargaining power φ. When, for example, z > 0, liquidity demanders need

to sell, and greater bargaining power by suppliers results in a lower price. Comparing (9.6) to its

centralized-market counterpart (3.9) reveals an important difference: price impact in the search

market depends on the distribution of bargaining power within a meeting, characterized by the

parameter φ, while price impact in the centralized market depends on aggregate demand-supply

conditions, characterized by the measures (π, 1−π) of demanders and suppliers.27 The price in the

centralized market in Period 0 can be determined through similar steps as in previous sections.

27That φ is the sole determinant of price impact in the search market is a special feature of our model, where search
occurs only within one period. When instead agents’ outside option is to search again (as in, e.g., Duffie, Garleanu
and Pedersen (2005, 2008)), price impact is influenced not only by φ, but also by the measures of liquidity demanders
and suppliers and the efficiency of the search process.
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Proposition 9.2 The price in Period 0 is

S0 = D̄−ασ2θ̄−
N(1+φ)

2G
3
2
2

exp
(

α4σ4σ2
z θ̄2

2G2

)
+ π−N

G
3
2
3

exp
(

α4σ4σ2
z θ̄2

2G3

)

N√
G1

+ 1− π −N + N√
G2

exp
(

α4σ4σ2
z θ̄2

2G2

)
+ π−N√

G3
exp

(
α4σ4σ2

z θ̄2

2G3

)α3σ4σ2
z θ̄, (9.7)

where

G1 = 1 + 1
2φα2σ2σ2

z ,

G2 = 1− 1
2(1 + φ)α2σ2σ2

z ,

G3 = 1− α2σ2σ2
z .

9.2 Search and Illiquidity

We next examine how the search friction impacts the illiquidity measures and the illiquidity dis-

count. We perform two related but distinct exercises: compare the search market with the central-

ized market of Section 3, and vary the measure N of meetings between liquidity demanders and

suppliers.

When N decreases, the search process becomes less efficient and trading volume decreases.

At the same time, the price in each meeting remains the same because it depends only on the

distribution of bargaining power within the meeting. Since illiquidity λ measures the price impact of

volume, it increases. One would expect that λ in the search market is higher than in the centralized

market because only a fraction of suppliers are involved in bilateral meetings and provide liquidity

(N ≤ 1− π). Proposition 9.3 confirms this result when bargaining power is symmetric (φ = 1/2).

The result is also true when suppliers have more bargaining power than demanders (φ > 1/2)

because the liquidity shock has then larger price impact. Moreover, the result extends to all values

of φ when less than half of suppliers are involved in meetings (N ≤ (1− π)/2).

Proposition 9.3 Illiquidity λ is

λ =
ασ2(1 + 2φ)

2N
, (9.8)

and increases when the measure N of meetings decreases. It is higher than in the centralized market

if φ + 1/2 ≥ N/(1− π).

Because the price in the search market is independent of N , so is the price reversal γ. Moreover,

γ in the search market is higher than in the centralized market if φ is large relative to π.
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Proposition 9.4 Price reversal γ is

γ =
α2σ4σ2

z(1 + 2φ)2

16
, (9.9)

and is independent of the measure N of meetings. It is higher than in the centralized market if

φ + 1/2 ≥ 2π.

When the measure N of meetings decreases, agents are less likely to trade in Period 1, and a

natural conjecture is that the illiquidity discount increases. Proposition 9.5 confirms this conjecture

under the sufficient condition φ ≤ 1/2. Intuitively, if φ ≈ 1, a decrease in the measure of meetings

does not affect liquidity demanders because they extract no surplus from a meeting. Since, however,

liquidity suppliers become worse off, the risk-neutral probability of being a demander decreases,

and the price can increase.28

Proposition 9.5 A decrease in the measure N of meetings lowers the price in Period 0 if φ ≤ 1/2.

The comparative statics with respect to the variance σ2
z of liquidity shocks are as in the case

of a centralized market.

Proposition 9.6 An increase in the variance σ2
z of liquidity shocks leaves illiquidity λ unchanged,

raises price reversal γ, and lowers the price in Period 0.

10 Empirical Implications

In this section we explore implications of our model for empirical studies of liquidity.

10.1 Liquidity and Expected Returns

The concept of liquidity is central to certain areas of Finance such as market microstructure or

optimal trade execution. Yet, its importance for asset valuation remains unclear. Many empirical

studies seek to establish a link between liquidity and expected asset returns.29 The basic premise

in these studies is that illiquidity is positively related to expected returns. Our analysis shows that

28The illiquidity discount in the search market is higher than in the centralized market if φ is large relative to π.
This property is the same as for λ and γ, but the calculations are more complicated.

29The survey by Amihud, Mendelson and Pedersen (2006) includes detailed references.
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the nature of this relationship depends crucially on the underlying cause of illiquidity. Indeed, while

imperfections such as asymmetric information, participation costs, transaction costs, and leverage

constraints raise expected returns, other imperfections such as non-competitive behavior and search

can have the opposite effect. Since many imperfections can exist simultaneously in the market, the

relationship between illiquidity and expected returns can become ambiguous. Identifying the main

imperfection in specific contexts could help better estimate this relationship.

Even when the theoretical relationship between illiquidity and expected returns is unambiguous,

confirming this relationship empirically in a cross-section of assets can be challenging. This is

because cross-sectional variation can be driven by factors other than the imperfections themselves.

For example, Table 2 summarizes how the variance σ2
z of liquidity shocks influences illiquidity

and expected returns. Under all six imperfections, larger σ2
z leads to higher expected returns.

The impact on lambda, however, is negative under asymmetric information, participation costs,

transaction costs and non-competitive behavior. To explain why this might complicate cross-

sectional tests, suppose, for example, that asymmetric information is the only imperfection. If it is

also the main source of cross-sectional variation, then Table 1 implies a positive relationship between

lambda and expected returns. If, however, asymmetric information is the same across assets and

differences arise because of σ2
z , then Table 2 implies a negative relationship. The same is true

under participation costs, transaction costs, and non-competitive behavior. Therefore, our results

on how factors other than the imperfections affect illiquidity and expected returns are relevant for

cross-sectional tests. Knowing the effects of these factors, and finding suitable empirical controls,

could help identify more precisely the effects of illiquidity.

10.2 Measures of Liquidity

A key question when studying liquidity is how to measure it empirically. Many measures have

been proposed, some derived in the context of a specific model (e.g., Kyle’s lambda) and some

more heuristically. Within our unified model, we can evaluate the validity of these measures across

a variety of imperfections. We show that lambda is a good measure of imperfections because it

generally increases in the imperfections’ presence. On the other hand, price reversal can decrease

under asymmetric information, non-competitive behavior and search. The benefits of lambda rela-

tive to price reversal must be set against some drawbacks. First, lambda might not reflect a causal

effect of volume on prices (see Footnote 6). Second, estimating lambda requires information on

signed trades which might not be available, while estimating price reversal requires information

only on transaction prices. Putting these issues aside, a broad implication of our analysis is that

the validity of a measure of illiquidity can depend of the underlying imperfection.
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Impact of Variance of Liquidity Shocks

Type of Imperfection Lambda Price Reversal Expected Return

Perfect-market benchmark 0 + +

Asymmetric information − + +

Participation costs − 0 +

Transaction costs − + +

Leverage constraints + + +

Non-comp. behavior/Sym. info. 0 + +

Non-comp. behavior/Asym. info. − + +

Search 0 + +

Table 2: Impact of the variance of liquidity shocks on illiquidity and expected returns. “Lambda”
is the regression coefficient of the price change between Periods 0 and 1 on the signed volume of liquidity
demanders in Period 1; “Price Reversal” is minus the autocovariance of price changes; and “Expected
Return” is the expected return of the risky asset between Periods 0 and 2.

Both lambda and price reversal are unconditional measures: lambda measures the average

slope of the relationship between price change and signed volume, and price reversal measures

the unconditional autocovariance. Our analysis has further implications for conditional measures.

Consider, for example, the conditional lambda, defined as the sensitivity of price to signed volume

conditional on signed volume. Under asymmetric information, participation costs, non-competitive

behavior and search, the relationship between price and signed volume is linear, and therefore

conditional and unconditional lambdas coincide. Under leverage constraints, however, the price is

more sensitive to signed volume for large values of volume because this is when constraints bind.

The opposite is true under transaction costs. Indeed, taking the price for zero volume to be the mid-

point of the bid-ask spread, the price jumps discontinuously to the ask following arbitrarily small

buy volume, and then increases continuously (thus becoming less sensitive to volume). Therefore,

lambda conditional on large volume is larger than unconditional lambda under leverage constraints

and smaller under transaction costs. These properties could help test for the presence of specific

imperfections, or could themselves be tested in contexts where the imperfections can be identified.

11 Conclusion

We develop a unified model to examine how market imperfections affect liquidity and expected asset

returns. Our model encompasses the following imperfections: asymmetric information, participa-

40



tion costs, transaction costs, leverage constraints, non-competitive behavior and search. Besides

nesting these imperfections in a single model, we derive new results on the effects of each imper-

fection. Our results imply, in particular, that imperfections do not always raise expected returns,

and can influence common measures of illiquidity in opposite directions.

One extension of our analysis is to consider interactions between imperfections. A natural

interaction, studied in this paper, is between non-competitive behavior and asymmetric information.

Other interactions, e.g., between asymmetric information and participation costs, could be studied

as well. A related and more fundamental extension is to explore the economic links between

imperfections. For example, if participation costs are costs to monitor market information, can

costly participation be derived as a consequence of asymmetric information? Such an extension

could provide more guidance on the nature of different imperfections and their relative significance.

At a more technical level, our analysis could be extended to more general assumptions concerning

each imperfection (e.g., multiple signals in the case of asymmetric information), and to a dynamic

setting where imperfections manifest themselves over several periods. Finally, the comparison of

effects across imperfections could be performed not only at the qualitative level, as in this paper,

but also quantitatively for plausible parameter values.
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