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Measuring dependence between non-stationary time series

using the locally stationary wavelet model

Jean Sanderson, Piotr Fryzlewicz and Matthew Jones

November 28, 2008

Abstract

Large volumes of neuroscience data comprise multiple, non-stationary electrophys-

iological or neuroimaging time series recorded from different brain regions. Estimating

the dependence between such neural time series accurately is critical, since changes

in the dependence structure are presumed to reflect functional interactions between

neuronal populations. We propose a new method of wavelet coherence, derived from

the new bivariate locally stationary wavelet (LSW) time series model. Since wavelets

are localised in both time and scale, this approach leads to a natural, local and mul-

tiscale estimate of nonstationary dependence. Our methodology is illustrated by ap-

plication to a simulated example, and to electrophysiological data relating to inter-

actions between the rat hippocampus and prefrontal cortex during working memory

and decision-making. We thereby demonstrate that this novel LSW model can be of

use in systems neuroscience applications.

1 Introduction

It is often of interest to study the interdependence between two simultaneously recorded

time series. However, in the majority of applications we cannot assume that the underlying

data are stationary. For example, we later consider a problem from neuroscience in which

population local field potential (LFP) recordings were made from two areas of a rat’s

brain as it performed a maze-based task designed to invoke spatial working memory and

decision-making. Estimating the time-varying dependence structure between these signals

can provide direct insight into the timing and fundamental nature of interactions between

brain regions (Varela et al., 2001); in our example, the dynamic modulation of hippocampal

and cortical activities is likely to reflect behaviour-dependent interactions between the

two structures (Jones and Wilson, 2005). However, since the rat’s behaviour, sensory

environment and the excitability and rhythmicity of its neuronal networks can vary over

sub-second timescales, it is likely that the resulting time series and the dependence between

them will also be non-stationary. Dynamic methods are therefore necessary to capture

the subtleties of neuronal network coordination.

We begin by introducing some relevant concepts from stationary time series analysis.

Given two stationary time series, {X
(1)
t } and {X

(2)
t }, their cross-covariance function has
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a Fourier representation in terms of the cross-spectral density function, f (1,2)(ω):

c
(1,2)
X (τ) =

∫ π

−π
f (1,2)(ω)exp(iωτ)d(ω)

The cross-covariance function provides a natural estimate of the relationship between

the two series in the time domain, while the cross-spectral density function can be used

similarly in the spectral domain (Brillinger, 1975). The coherence function is derived by

normalising the cross-spectrum by the individual spectra and, roughly speaking, measures

the correlation between the signals as a function of frequency.

Although the coherence function provides a good option for stationary series, other

methods are necessary when the data is non-stationary. An extension to Fourier analysis,

to allow for non-stationarity, is the windowed, or short time Fourier transform (Gabor,

1946) which estimates the spectrum over time as well as frequency by applying the Fourier

transform to a localised time window that slides along the time axis; the data within each

time window is presumed stationary. One drawback to this approach is that the window

width is constant over all frequencies. It is desirable for the time window to change so that

we use a larger window to observe more information for lower frequencies, and a smaller

window for more precise time resolution at high frequencies. Complex demodulation was

introduced by Tukey (1961) and allows the frequency components of a time series to be

described as a function of time. This method can also be used for bivariate situations, but

unlike conventional spectral analysis which estimates components at multiple frequencies

simultaneously, complex demodulation estimates the contribution of one specific reference

frequency. Bivariate ARMA models with time dependent parameters have been used to

estimate coherence (Schack and Krause, 1995). Complications with this procedure arise

as it is necessary to select the order of the ARMA model which may change over time.

Dahlhaus (2000) introduces a method for modelling multivariate processes based on the

locally stationary process model (Dahlhaus, 1997). Other methods for the analysis of

non-stationary bivariate time series include the Auto-SLEX method (Ombao et al., 2001).

Using this method, the data is automatically segmented into approximately stationary

dyadic blocks. SLEX basis waveforms are used instead of the Fourier exponentials of the

classical representation, allowing estimation of the time-varying spectra and coherence.

Due to the natural localisation in both time and scale, wavelets are a popular tool

for modelling the dependence between two non-stationary series; a thorough introduction

to wavelets can be found in Vidakovic (1999). Unlike time resolved Fourier coherence,

the wavelet transform uses shorter windows for higher frequencies, which leads to more

‘natural’ localisation. The concept of the wavelet cross spectrum, in terms of the con-

tinuous wavelet transform (CWT), was introduced by Hudgins et al. (1993). Wavelet

cross spectral analysis using the CWT has been applied to applications such as clima-

tology (Maraun and Kurths (2004), Grinsted et al. (2004)) and neuroscience (Lachaux

et al., 2002). Wavelet cross-covariance and correlation has also been defined based on the

maximal overlap discrete wavelet transform (MODWT) (see Whitcher et al. (2000) and

Serroukh and Walden (2000)). Their formulation assumes that the d’th order backwards

2



differences of the series can be modelled as a stationary process. A similar concept to that

of cross-wavelet analysis is that of Hilbert wavelet pairs (Whitcher et al., 2005). Using

this approach, the coherence and phase between the signals can be estimated with less

redundancy than with the CWT.

In this paper we propose a novel measure of wavelet coherence termed ‘locally sta-

tionary wavelet coherence’. This is derived from the locally stationary wavelet time series

model of Nason et al. (2000). Following the work of Dahlhaus (1997), the model adopts

the rescaled time principle, replacing the exponentials in the Fourier representation by a

system of non-decimated wavelets. An important difference between the LSW model and

previous wavelet coherence measures lies in the particular bias correction implied by the

LSW model. The LSW coherence provides a measure of the dependence between the inno-

vations of each process, and is therefore uncontaminated by within-process dependence of

each series. Furthermore, our formulation provides a model that is theoretically tractable

and which can be estimated efficiently by means of the non decimated wavelet transform.

In section 2 we introduce the joint LSW process model and introduce several related

quantities, such as the evolutionary wavelet cross spectrum and the local cross-covariance,

and also recall briefly the univariate equivalents to these quantities. Section 3 details

the estimation procedure based on the LSW periodograms and cross-periodogram. In

Section 4 we then illustrate the methodology with a simulated example and application

to experimental neurophysiological data.

2 Wavelet coherence using the LSW model

2.1 Definition of the LSW model for a bivariate time series

We begin by defining the joint LSW process model. Assuming that both series can be

modelled as LSW processes, the model is defined as follows.

Definition 2.1. The joint LSW process (X
(1)
t,T , X

(2)
t,T )t=0,...,T−1, for T = 2j ≥ 1 is a trian-

gular stochastic array with representation

X
(1)
t,T =

−1∑

j=−∞

∞∑

k=−∞

W
(1)
j (k/T )ψj,t−kξ

(1)
j,k

X
(2)
t,T =

−1∑

j=−∞

∞∑

k=−∞

W
(2)
j (k/T )ψj,t−kξ

(2)
j,k

where {ψk,t} are discrete, real valued, compactly supported, non-decimated wavelet vec-

tors with scale and location parameters j ∈ {−1,−2, ...} and k ∈ Z, respectively. For

each j < −1, the functions W
(i)
j (k/T ) are assumed to be Lipschitz continuous with Lip-

schitz constants, Lj , fulfilling
∑

−1
j=−∞

2−jLj < ∞. Similarly, ρj(k/T ) are assumed to
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be Lipschitz continuous with Lipschitz constants, Rj , fulfilling
∑

−1
j=−∞

2−jRj < ∞. The

functions are defined on rescaled time z = k/T ∈ [0, 1] which enables asymptotic estima-

tion. Also, ξ
(i)
j,k are zero mean orthonormal identically distributed random variables with

the following properties

• cov(ξ
(i)
j,k, ξ

(i)
j′,k′) = δj,j′δk,k′

• cov(ξ
(1)
j,k , ξ

(2)
j′,k′) = δj,j′δk,k′ρj(k/T )

where δi,j is the Kronecker delta function, giving δi,j = 1 for i = j and 0 otherwise.

In Definition 2.1, the parameters W
(i)
j (k/T ) can be thought of as time and scale depen-

dent transfer functions and the non-decimated wavelet vectors, ψj , can be thought of as

building blocks analogous to Fourier exponentials in the spectral domain representation.

Each process is composed of the sum of components over wavelet scale, j, and thus pro-

vides a multiscale representation of the process. The quantity ρj(k/T ) is a direct measure

of the dependence between the innovation sequences of each process at scale j. There-

fore, unlike other measures of dependence such as the cross-correlation function, ρj(k/T )

does not depend on the parameters of the model. This dependence measure is our main

quantity of interest within the model.

Haar wavelets are perhaps the simplest example of a wavelet system that can be used

in this formulation and they are defined by:

ψj,k = 2j/2I0,...,2−j−1−1(k) − 2j/2I2−j−1,...,2−j−1(k)

Here the notation j = −1 denotes the finest scale wavelet, j = −2 the next finest scale

and so forth. Other real-valued Daubechies’ compactly supported wavelets (Daubechies,

1992) can also be used. Throughout the paper we assume that the errors are normally

distributed. In principle other distributions could be used, however this assumption is

made to ensure theoretical tractability.

We do not generally deal with the parameters W
(i)
j (k/T ) directly, instead they are

described by a quantity termed the evolutionary wavelet spectrum. The evolutionary

wavelet spectrum of the process X
(i)
t,T is defined by S

(i)
j (z) = |W

(i)
j (z)|2 . Analogous to

the spectrum, f(ω), in the classical stationary representation, the evolutionary wavelet

spectrum quantifies the contribution to variance within a LSW process over scale, j, and

rescaled time, z = k/T . The EWS is the main quantity of interest within the univariate

LSW framework, however in the bivariate setting we are interested not only in these quan-

tities, but also in the dependence between the series as quantified by the LSW coherence,

ρj(k/T ). The LSW coherence is analogous to the classical coherence, K(ω), in spectral

domain setting and quantifies the dependence between the series over scale and time. To

demonstrate how these quantities provide a description of the joint process, we provide a

brief example.
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Figure 1: Example of the construction of an LSW process. a) EWS of X(1), b) EWS of

X(2), c) LSW coherence between series, d) simulation of X(1) and X(2).

We start by specifying the EWS of two processes, and the dependence between them

as measured by ρj(k/T ). Suppose that for both series the spectrum is zero at all scales

apart from j = −2. At this scale, both spectra are constant at S
(1)
−2(z) = S

(2)
−2(z) = 5. The

processes are assumed to have zero coherence at all scales apart from j = −2, and at this

scale the LSW coherence is 0 for the first half of the series, then increases to 1 for the

latter half of the series. The EWS and coherence are plotted in Figure 2, along with one

simulation of time series with these properties. The resulting series are independent until

time T/2, and then exactly the same for the latter half of the series since the coherence is

specified to be 1 at the only non-zero scale.

2.2 The evolutionary wavelet cross-spectrum and coherence

The evolutionary wavelet cross-spectrum provides a measure of the dependence between

two time series. It provides a natural stage in estimating the LSW coherence and is defined

as follows.
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Definition 2.2. The evolutionary wavelet cross-spectrum of the LSW processes X
(1)
t,T and

X
(2)
t,T , is given by

Cj(z) = W
(1)
j (z)W

(2)
j (z)ρj(z)

A measure of local cross-covariance may be associated with the evolutionary wavelet

cross-spectrum. As shown by Proposition 2.4, the LSW process cross-covariance given by

c
(1,2)
T (z, τ) = cov(X

(1)
t,T , X

(2)
t+τ,T ), asymptotically tends to the local cross-covariance.

Definition 2.3. The local cross-covariance of the LSW processes X
(1)
t,T and X

(2)
t,T , is given

by

c(1,2)(z, τ) =

−1∑

j=−∞

Cj(z)Ψj(τ) (1)

where Ψj(τ) =
∑

k ψjk(0)ψjk(τ) is the autocorrelation wavelet.

Proposition 2.4. Assuming there exists a constant, C, such that for all j, |W
(i)
j (z)| ≤

C2j/2. As T → ∞, then for τ ∈ Z and z ∈ (0, 1), |c
(1,2)
T (z, τ) − c(1,2)(z, τ)| = O(T−1).

The assumption of Proposition 2.4 is satisfied if, for example, Xt,T is a white noise

process with spectrum given by Sj(z) = |Wj(z)|
2 = 2j . The evolutionary wavelet cross-

spectrum describes the contribution to the cross-covariance at a particular time, z, and

scale, j. This interpretation becomes clear when considering the cross-covariance at zero

lag. Since Ψj(0) = 1, substituting into equation (1) we have c(1,2)(z, 0) =
∑

−1
j=−∞

Cj(z).

The relationship between the cross-spectrum and the local cross-covariance is invertible,

with the inverse relationship given by

Cj(z) =
∑

l

A−1
j,l

∑

τ

c(1,2)(z, τ)Ψl(τ) (2)

where Ai,j is the autocorrelation wavelet inner product matrix Ai,j =
∑

τ Ψi(τ)Ψj(τ).

The evolutionary wavelet cross-spectrum, Cj(z), provides a measure of the dependence

between the two series. However it is clear that deviations in Cj(z) can be caused by

fluctuations in the EWS of each of the processes as well as by changes in the dependence,

and hence the cross-spectrum cannot be used alone as a measure of dependence between

the series.

The locally stationary wavelet coherence, ρj(z), can be represented in terms of the

evolutionary wavelet cross-spectrum and the individual EWS of each process as shown in

equation (3), providing a normalised measure of the relationship between two series.

ρj(z) =
Cj(z)√

S
(1)
j (z)S

(2)
j (z)

(3)

The locally stationary wavelet coherence ranges from −1, indicating complete negative

correlation, to +1 indicating complete correlation. A value of close to zero indicates a lack

of correlation between the two series at the given scale and location.
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2.3 Relationship between LSW and Fourier coherence

In order to understand the relationship between the Fourier and LSW coherence, we

express both quantities in terms of the covariance function. Using the definition of the

LSW cross spectra from equation (3), and the corresponding representation of the auto

spectra, we obtain the following expression for the LSW coherence:

ρj(z) =

∑
τ c

(1,2)(z, τ)
∑

lA
−1
jl Ψl(τ)√∑

τ c
(1)(z, τ)

∑
lA

−1
jl Ψl(τ)

∑
τ c

(2)(z, τ)
∑

lA
−1
jl Ψl(τ)

(4)

The equivalent representation for the Fourier coherence is:

K(ω) =
|
∑

τ c
(1,2)
X (τ)e−iωτ |√∑

τ c
(1)
X (τ)cos(ωτ)

√∑
τ c

(2)
X (τ)cos(ωτ)

(5)

Since in the LSW setting we have a measure of the localised covariance, the LSW co-

herence is defined over rescaled time, z = k/T , giving a localised measure of the coherence.

In the case where the series is stationary, there is no dependence on z in equation (4) and

the two representations become more comparable.

Comparing equations (4) and (5) in the stationary setting, we see that the functions
∑

lA
−1
jl Ψl(τ) in the LSW representation perform the same task as the Fourier exponentials

in (4). These functions are a modified version of the autocorrelation wavelets, Ψj(τ) and

unlike the Fourier exponentials which have a constant amplitude over the the entire length

of T , the amplitude of these functions decay as |τ | → ∞. The rate of decay depends on

the scale, j, with the functions decaying at a much faster rate for fine scales. Putting more

weight on small lags of τ makes sense in the locally-stationary setting as our estimators

of the spectra of each process are defined locally, and so in this setting the associated

dependencies are are only significant locally.

3 Estimation

The basic pre-estimator of the evolutionary wavelet spectrum is a quantity known as the

wavelet periodogram. Similarly, the wavelet cross-spectrum is estimated from the wavelet

cross-periodogram. Following (Nason et al., 2000), the empirical non decimated wavelet

coefficients for the LSW process X
(i)
t,T , constructed using the wavelet system ψ, are given

by d
(i)
j,t,T =

∑
sX

(i)
s,Tψj,s−t. The non decimated wavelet coefficients are used to construct

the wavelet periodogram and cross periodogram:

Definition 3.1. The wavelet periodograms for the LSW processes X
(i)
t,T , for i = 1, 2, are

given by I
(i)
j,t,T = |d

(i)
j,t,T |

2. The wavelet cross-periodogram is given by I
(1,2)
j,t,T = d

(1)
j,t,Td

(2)
j,t,T .
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Proposition 3.2. Assume there exists a constant, C, such that for all j, |W
(i)
j (z)| ≤

C2j/2. The expectation of the cross-periodogram, I
(1,2)
j,t,T , is given by

E(I
(1,2)
j,t,T ) =

−1∑

i=−∞

W
(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Aij +O(T−12−j)

Also, the variance is given by

var(I
(1,2)
j,t,T ) =

−1∑

i=−∞

S
(1)
i (t/T )Ai,j

−1∑

i=−∞

S
(2)
i (t/T )Ai,j

+
( −1∑

i=−∞

W
(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Ai,j

)2
+O(2−jT−1)

We can see from Proposition 3.2 that the expectation of the wavelet cross-periodogram

is composed of the sum of wavelet cross-spectra, Cj(z). The cross-periodogram is therefore

a natural estimator of the wavelet cross-spectrum, but we first need to correct for the bias

incurred by the matrix Ai,j . Also, since the cross-periodogram has non-vanishing variance,

it needs to be smoothed to obtain consistency. For this we use simple moving average

smoothing. Other more advanced smoothing techniques such as DWT shrinkage are also

potentially viable.

The estimator of the cross-spectrum is therefore constructed by firstly correcting the

periodogram to give Ĩl(t/T ) =
∑

−1
j=−J∗ I

(1,2)
j,t,T A

−1
l,j for some J∗ < log2(T ), chosen to ensure

the consistency of Ĩl(z), then smoothing over time to give Ĉl(t/T ) = 1
2M+1

∑M
m=−M Ĩ

(1,2)
l,t+m,T

Proposition 3.3. Suppose that the assumptions from Proposition 1 and 2 hold, and

let J∗ = α log2(T ) where α ∈ (0, 1). The estimator Ĉl(t/T ) converges in probability to

W
(1)
l (t/T )W

(2)
l (t/T )ρl(t/T ) for each fixed scale l, provided that MTα−1 → 0 as T → ∞

and M → ∞.

The wavelet periodograms, I
(i)
j,t,T for i = 1, 2 are smoothed and corrected similarly to

give Ŝ1
l (t/T ) and Ŝ2

l (t/T ).

Proposition 3.4. Suppose that the assumptions from Proposition 1 and 2 hold, and let

J∗ = α log2(T ) where α ∈ (0, 1). Then Ŝ
(i)
l (t/T ) converges in probability to S

(i)
l (t/T )

provided that MTα−1 → 0 as T → ∞ and M → ∞ for each fixed scale l.

From Propositions 3.3 and 3.4, we see that as the length of the series increases, our

estimators of the cross and auto spectra converge in probability to the expected quanti-

ties. Given a sufficiently large length of series, this is valid for any choice of smoothing

parameter, M .

Given estimates of the cross-spectrum, Ĉl(t/T ), and individual spectra, Ŝ
(i)
l (t/T ), of

each process and provided that S
(1)
l (t/T ) > 0 and S

(2)
l (t/T ) > 0, the estimator of the
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locally stationary wavelet coherence given by

ρ̂l(t/T ) =
Ĉl(t/T )√

Ŝ
(1)
l (t/T )Ŝ

(2)
l (t/T )

converges in probability to ρl(t/T ) by Slutsky’s theorem (Slutsky, 1925).

3.1 Practical considerations

The corrected and time-smoothed periodograms provide a consistent estimator of the

LSW cross-spectrum. In practice, however, the estimator can become unstable. This is

largely because after the correction step in the estimation procedure it is possible that the

estimator may take values close to or below zero. There are several options to overcoming

this problem. For example we could bound the denominator to be above zero, or correct the

spectra using a non-negative constraint such as with non-negative least squares (Lawson

and Hanson, 1974).

We recommend overcoming the problems with stability of the estimator by smoothing

the cross-periodogram over scale as well as time. Though this introduces extra bias into

the estimator, we can minimise this bias by suitable choice of the smoothing parameters.

Smoothing over scale reduces the variance of the estimator further and enables us to form

an estimator of the cross-spectrum that is stable upon normalisation.

We smooth over scale allowing a different vector of weights for each scale. This pro-

duces a J × J matrix of weights, denoted D, where the element Dl,j is the contribution of

scale j, to the smoothed estimate of scale l, and the columns thus sum to 1. Correcting

for bias using the bias correction matrix A−1 has the effect of applying a scale factor of

about 2j to scale j, so that fine scales are scaled up in comparison to coarse scales. Since

we choose to smooth over scale after correcting, we smooth using the following scheme:

a) Firstly the estimates are re-scaled by 2−j , b) the estimates are smoothed over scale,

c) the scaling factor of 2−j is re-introduced. The corrected, scale smoothed parameter is

therefore given by:

˜̃I
(1,2)
l,t,T =

( −1∑

j=−∞

2−jDl,j Ĩ
(1,2)
j,t,T

)
2l

In practice, we generally smooth over the neighbouring 3 or 5 scales. Different choices of

smoothing weights are allowed for the estimates of each scale. For fine scales it is often

not necessary to smooth over scale at all so that at fine scales of l we may have Dl,l = 1.

Details of our choice of smoothing parameters are provided in the examples.

There are also other issues that can affect the quality of the estimate, namely the

choice of wavelet and the choice of time-smoothing parameters, Mj . The wavelet can be

chosen according to the properties of the time series that it is representing. For example

if the series contains sharp jumps then the Haar wavelet might be preferable, whereas

for series with smoother features other wavelets, such as Daubechies’ least asymmetric

(Daubechies, 1992), might be preferable. For smoothing over time we choose to increase
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the width of the smoothing window as the scale becomes coarser. This is natural since

the wavelet coefficients at coarse scales display a stronger degree of auto-correlation.

4 Applications

4.1 Simulated example

As an example, we apply our method to data simulated from a bivariate LSW process with

a known, non-stationary coherence structure that varies between scales. For even scales we

take ρj(k/T ) = 0.2, and for odd scales we assume a non-stationary structure that forms an

‘inverted v’ between 0.2 and 0.8. The autospectra of each process are taken to be S
(1)
j (z) =

S
(2)
j (z) = 2j (i.e. that of white noise). In this case we take T = 213, giving a decomposition

of 13 scales. The results from one such simulation, using Daubechies least asymmetric

wavelet with support N = 5, are shown in Figure 2 below. The estimates are smoothed

over scale using weights on the leading scales of Dl,l = (0.95, 0.95, 0.95, 0.9, 0.9, 0.9) for l =

1 to 6. For each estimate we smooth over the neighboring 5 scales, using larger weightings

for scales immediately next to the scale of interest. So for scale −4, for example, we take

the off-diagonal weights to be D,4 = (0,
1−D4,4

6 ,
1−D4,4

3 , D4,4,
1−D4,4

3 ,
1−D4,4

6 , 0, ..., 0). For

smoothing over time, we use a bandwidth of Mj/T = (0.025, 0.05, 0.075, 0.1, 0.125, 0.15).

The estimated coherence structure from one realisation of the process is shown in Figure

??. The estimated coherence follows the true coherence closely.

4.2 Application to neuroscience data

We now illustrate our method with application to experimental neuroscience data, previ-

ously described by Jones and Wilson (2005). We consider the coherence between local field

potentials (LFP) in two functionally and anatomically connected areas of a rat’s brain: the

hippocampus and the prefrontal cortex. The LFP provide a measure of averaged activity

over local neuronal populations, and the estimated LSW coherence presents an indication

of the extent to which activities in the two areas are coordinated, decomposed over scale

and over time. The data consist of 13 trials, with each trial comprising a ‘forced turn’

epoch and a ‘choice’ epoch. Each of these epochs are 6s in duration, corresponding to the

section of the task when the rat is moving along the central arm of the maze, immediately

prior to reaching a T-junction decision point. During forced turn runs the direction at

the T-junction is pre-determined by a movable barrier, whereas in choice epochs the rat

is free to choose either direction and so presumably employs cognitive processes including

spatial working memory and decision-making. It is expected that hippocampal-prefrontal

interactions are thereby selectively recruited during forced-turn runs. Trials in which the

rat made the incorrect decision at the turning point were not included in the analysis.

The LFP data are sampled at 625Hz, however in Jones and Wilson (2005), significant

coherence was found in the theta frequency range (4−12Hz) so we choose to downsample

10



the data by taking every third measurement. Using the approximation that a wavelet

scale j, corresponds to Fourier frequencies in the interval (2j−1

∆t ,
2j

∆t) (Percival and Walden,

2000, Chapter 4.), this downsampling ensures that the theta frequency band is contained

within scales −4 and −5. We smooth over all 3 subsamples to ensure that information is

not lost. Other amounts of downsampling were also investigated to ensure that features

were not missed, but this extra analysis offered no additional insight.

Since choice runs invoke spatial working memory, we would expect to see a change in

correlation structure when the rat reaches the decision point. For forced runs we would

not expect to observe this change. The LSW coherence averaged over all 13 trials is

shown in Figure 3. These estimates have been produced using Daubechies extremal phase

wavelet (N=8), scale-smoothing with a weighting of Dl,l = (0.95, 0.9, 0.9, 0.9, 0.85, 0.75) on

the leading terms and off diagonal elements as with the previous example. For smoothing

over scale we used a bandwidth of Mj/T = (0.05, 0.1, 0.15, 0.2, 0.25, 1) so that we are

smoothing over an increased number of observations as the scale becomes coarser. Figure

3 shows an area of increased coherence towards the end of the series at scale −4 for the

choice run data. This feature is not observed in the forced run data.

Since we are interested in whether the dependence structure changes over the course

of the experiment (when the rat is forced to make a decision), we judge the significance

of our results by looking at the mean coherence before and after the decision point. Con-

fidence intervals are constructed by simulation: given the estimated coherence structure

{ρ̂j(z)}
−1
j=−∞

and autospectra {Ŝ
(1)
j (z)}−1

j=−∞
, {Ŝ

(2)
j (z)}−1

j=−∞
, we simulate n new series.

For each series we take the same estimator, the mean before and after the decision point,

and then take the nα and n(1− α) ordered values to give the lower and upper confidence

limits. The estimate and resulting 90% confidence intervals for scale −4 of the choice

data is shown in Figure 4. The mean coherence is significantly different between the two

sections of the data, suggesting that there is a significant change in interaction between

the hippocampus and prefrontal cortex before and after the decision point. This effect

was only observed at scale −4 on the choice run data sets.

11
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Figure 2: Results showing the true coherence (dashed) and estimated coherence (solid)

from the simulation example. Subplots a) to f) correspond to scales -1 to -6 respectively.
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Figure 3: Trial averages for the choice runs (a) and forced runs (b), scales −1 to −6 using

Daubechies extremal phase wavelet, N=8.
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Figure 4: LSW coherence for scale −4. The decision point is marked with a vertical

line, means before and after this point are plotted in bold and the associated confidence

intervals are plotted with dashed lines.

5 Discussion

We have shown that the LSW theory can be usefully extended to the bivariate setting,

providing a measure of dependence between non-stationary time series. In the described

neuroscience application the method is applied to trials of 6s in duration and the findings

are in agreement with the previous results from Jones and Wilson (2005) using the short

time Fourier transform. With the short time Fourier transform it is necessary to take

a narrow window width in order to assume stationarity. This means that the frequency

resolution will be poor in comparison to results from wavelet analysis where the width

of the analysing wavelet is naturally adjusted to scale. Our method of LSW coherence

can also be easily applied to much longer series without the problem of choosing a fixed

window length that is hard to tune over a broad range of frequencies. Also of note,

our LSW model demonstrates significant variation in hippocampal-prefrontal coherence

averaged over a limited dataset of only 13 trials; this is a valuable facet when analyses are

applied to experimental data.

LSW coherence provides a representation of the dependence structure with less redun-

dancy than similar methods using the CWT. Methods using complex continuous wavelets

do however have the advantage that this allows for an estimation of the phase between

the signals. Estimates of phase offsets can be useful in neuroscience, since they allow
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us to make inferences regarding the connectivity of neuronal networks (for example, the

synaptic time delay between connected structures). The sign of our estimate of ρj(z) can

provide some information; in particular changes in the sign of the estimated coherence

would imply a shift of phase relationships. The extension of our method to allow for

phase estimation would be very interesting and provide a more complete estimate of the

relationship between the signals. This is possible in the model, perhaps through the use

of complex wavelets.

Another important consideration is the application to multivariate data. Existing

methods of assessing multivariate dependence include those of Dahlhaus (2000), who ex-

tended univariate locally stationary processes to a multivariate setting, Ombao et al.

(2005) which is an extension to the SLEX framework and Guo and Dai (2006) who use a

Cholesky decomposition approach. The application of our method to multivariate cases is

possible using the current methodology, by taking pairwise combinations of multivariate

series. Generalisation to a fully multivariate model is also possible and will be a consider-

ation in future work that allows application to multi-site recordings of neuronal activity

from disparate brain structures.

A Appendix

For use in the following proofs, we first justify the Lipschitz property of the product

W
(1)
i (k/T )W

(2)
i (k/T )ρi(k/T ).

Lemma A.1. Due to the Lipschitz property of W
(i)
j (k/T ), we have |W

(i)
j (k/T )−W

(i)
j (t/T )| ≤

T−1(Lj |k − t|) for some Lipschitz constant Li, and similarly |ρj(k/T ) − ρj(k/T )| ≤

T−1(Rj |k − t|). Furthermore, we assume that there exists a positive constant, c, such

that for all j, |Wj(z)| ≤ C2j/2. By definition we have |ρj(z)| ≤ 1. Then by the property

of products of Lipschitz continuous variables, denoting Bi = max(Li, Ri), we have

|W
(1)
i (k/T )W

(2)
i (k/T )ρi(k/T ) −W

(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )| ≤ T−1CBi|k − t|

Proof of Proposition 2.4

c
(1,2)
T (z, τ) = cov(X

(1)
t,T , X

(2)
t+τ,T )

= E
( −1∑

j=−∞

∞∑

k=−∞

W
(1)
j (k/T )ψj,t−kξ

(1)
j,k

−1∑

j=−∞

∞∑

k=−∞

W
(2)
j (k/T )ψj,t+τ−kξ

(2)
j,k

)

=
−1∑

j=−∞

∞∑

k=−∞

Cj(k/T )ψj,t−kψj,t+τ−k

=
−1∑

j=−∞

Cj(t/T )Ψj(τ) +
−1∑

j=−∞

∞∑

k=−∞

T−1CBj |k − t|Ψj(τ)
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using Lemma A.1. The support of Ψj(τ) is bounded by K2−j , and so the distance |k− t|

is bounded by this amount also. Since
∑

j Bj2
−j <∞ and Ψj(τ) = O(1), this gives

|c
(1,2)
T (z, τ) − c(1,2)(z, τ)| = |T−1CK

−1∑

j=−∞

Bj2
−jΨj(τ)| = O(T−1)

Proof of Proposition 3.2 The process cross-covariance is given by

E(I
(1,2)
j,t,T ) = E

[ ∑

s

−1∑

i=−∞

∞∑

k=∞

W
(1)
i (k/T )ψi,s−kξ

(1)
i,k ψj,s−t

∑

s

−1∑

i=−∞

∞∑

k=−∞

W
(2)
i (k/T )ψi,s−kξ

(2)
i,k ψj,s−t

]

= E
[ −1∑

i=−∞

∞∑

k=∞

W
(1)
i (k/T )Ψi,j(k − t)ξ

(1)
i,k

−1∑

i=−∞

∞∑

k=−∞

W
(2)
i (k/T )Ψi,j(k − t)ξ

(2)
i,k

]

=
−1∑

i=−∞

∞∑

k=∞

W
(1)
i (k/T )W

(2)
i (k/T )ρi(k/T )Ψ2

i,j(k − t)

=
−1∑

i=−∞

(
W

(1)
i (t/T )W

(2)
i (t/T )ρi(t/T ) +O(T−1Bi(2

−i + 2−j))
) ∞∑

k=−∞

Ψ2
i,j(k − t)

=
−1∑

i=−∞

W
(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Aij +RestT

since the length of support of Ψ2
i,j(k− t) is bounded by K(2−i +2−j) and cov(ξ

(1)
j,k , ξ

(2)
j′,k′) =

δj,j′δk,k′ρj(k/T ). The remainder is given by

RestT ≤
−1∑

i=−∞

T−1CKbi(2
−i + 2−j)Aij

≤ T−12−jCK
−1∑

i=−∞

Bi2
−i

−1∑

k=−∞

2kAik + T−12−jCK
−1∑

i=−∞

Bi2
−i

−1∑

k=−∞

2kAkj

= O(T−12−j)

as
∑

−1
k=−∞

2kAik = 1 and
∑

−1
i=−∞

Bi2
−i ≤ ∞. For the variance, we decompose the product

using Isserlis’ Theorem for zero mean Gaussian random variables (Isserlis, 1918) to give

var(I
(1,2)
j,k,T ) = E(I

(1)
j,t,T )E(I

(2)
j,t,T ) + E(I

(1,2)
j,t,T )2

=
−1∑

i=−∞

S
(1)
i (t/T )Ai,j

−1∑

i=−∞

S
(2)
i (t/T )Ai,j +

( −1∑

i=−∞

Ci(t/T )Aij

)2
+O(2−jT−1)

In order to find the expectation and MSE of the estimator Ĉl(z), we first provide the

intermediate result for the smoothed cross-periodogram.

16



Lemma A.2. The expectation of the smoothed cross-periodogram is given by

E(Ĩ
(1,2)
j,t,T ) =

−1∑

i=−∞

W
(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Aij +O(T−12−jM)

Also, the variance is given by

var(Ĩ
(1,2)
j,t,T ) =

1

(2M + 1)2

M∑

m=−M

∑

τ

[ −1∑

i=−∞

S
(1)
i (t/T )

)
Aτ

i,j

−1∑

i=−∞

S
(2)
i (t/T )

)
Aτ

i,j

+
( −1∑

i=−∞

W
(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Aτ

i,j

)2
+O(T−12−j |m|)

]

and the MSE by

MSE(Ĩ
(1,2)
j,t,T ) = O(T−12−2jM2)

Proof of Lemma A.2 The expectation can be proved using very similar techniques to

that of the expectation in Proposition 1. The variance is given by

var(Ĩ
(j)
t,T ) =

1

(2M + 1)2

M∑

m=−M

∑

τ

Cov
(
I

(1,2)
j,t+m,T , I

(1,2)
j,t+m+τ,T

)
(6)

where τ = m′ −m. The covariance can be decomposed using Isserlis’ Theorem, to give

cov
(
I

(1,2)
j,t+m,T , I

(1,2)
j,t+m+τ,T

)
= E

(
d

(1)
j,t+m,T , d

(1)
j,t+m+τ,T

)
E

(
d

(2)
j,t+m,T , d

(2)
j,t+m+τ,T

)

+ E
(
d

(1)
j,t+m,T , d

(2)
j,t+m+τ,T

)
E

(
d

(2)
j,t,T , d

(1)
j,t+m+τ,T

)

Here the first product is of the autocovariances of the wavelet periodogram ordinates and

the last product consists of the cross-covariances (for a fixed scale, j). These expectations

can be shown using similar techniques as with the cross periodogram to take the values:

cov(dj,t+m,T , dj,t+M+τ,T ) =
−1∑

i=−∞

Si(t/T )Aτ
i,j +O(T−12−j |m|)

cov(d
(1)
j,t+m,T , d

(2)
j,t+τ+m,T ) =

−1∑

i=−∞

W
(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Aτ

i,j +O(T−12−j |m|)

where Aτ
i,j is defined as

∑
n Ψi,j(n)Ψi,j(n+ τ), and has the property |

∑
j A

τ
i,j2

j | ≤ 1.

Substituting the relevant terms into equation (6) and summing over m, the variance is

given by

var(Ĩ
(1,2)
j,t,T ) =

1

(2M + 1)2

M∑

m=−M

∑

τ

[ −1∑

i=−∞

S
(1)
i

( t
T

)
Aτ

i,j

−1∑

i=−∞

S
(2)
i

( t
T

)
Aτ

i,j

+
( −1∑

i=−∞

Ci

( t
T

)( t
T

)
Aτ

i,j

)2
+O(T−12−j |m|)

]
=

1

(2M + 1)2

M∑

m=−M

[
I + II +O(T−12−j |m|)

]
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To find a bound for the variance we look at these terms separately. The first term can

be bounded by

I ≤
∑

τ

|
−1∑

i=−∞

S1
i

( t
T

)
Aτ

i,j |.
∑

τ

|
−1∑

i=−∞

S2
i

( t
T

)
Aτ

i,j |

=
∑

τ

|

−1∑

i=−∞

S
(1)
i (t/T )

∑

n

Ψi(n)Ψj(n+ τ)|.
∑

τ

|

−1∑

i=−∞

S
(2)
i (t/T )

∑

n

Ψi(n)Ψj(n+ τ)|

≤
∑

n

|c(1)(t, n)|
∑

τ

|Ψj(n+ τ)|.
∑

n

|c(2)(t, n)|
∑

τ

|Ψj(n+ τ)|

≤ K12
−j

∑

n

c(1)(t, n).K22
−j

∑

n

c(2)(t, n) = O(2−j)O(2−j) = O(2−2j)

assuming supz∈[0,1]

∑
τ |c(t, τ)| < ∞, and using that

∑
τ |Ψj(τ)| = O(2−j). The second

term can be bounded similarly to II ≤ O(2−2j). Hence substituting the relevant terms,

the variance is of order

var(Ĩ
(j)
t,T ) =

1

(2M + 1)2

M∑

m=−M

[
O(2−2j) +O(2−2j) +

∑

τ

O(T−12−j |m|)
]

= O(T−12−2jM)

and the mean squared error is given by

MSE(Ĩ
(j)
t,T ) = O(T−12−2jM) + (O(T−12−jM))2 = O(T−12−2jM2)

Using these results, we are now in a position to prove the consistency of our estimator

Ĉl(z)

Proof of Proposition 3.3 The expectation of the smoothed and corrected cross-periodogram

is given by

E(Ĉl(t/T )) =
−1∑

j=−J∗

E(Ĩ
(1,2)
j,t,T )A−1

l,j

=
−1∑

j=−J∗

(
−1∑

i=−∞

W
(1)
i (t/T )W

(2)
i (t/T )ρi(t/T )Aij +O(T−12−jM))A−1

l,j

= W
(1)
l (t/T )W

(2)
l (t/T )ρl(t/T ) +O(T−1M)

The MSE is given by

MSE(Ĉl(t/T )) = E(Ĉl(t/T ) −W
(1)
l (t/T )W

(2)
l (t/T )ρl(t/T ))2

= E(
−1∑

j=−J∗

Ĩ
(1,2)
j,t,T A

−1
l,j −

−1∑

j=−∞

βj(t/T )A−1
l,j )2
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where βj(z) =
∑

−1
i=−∞

W
(1)
i (z)W

(2)
i (z)ρi(z)Ai,j . This can be split into two terms:

MSE(Ĉl(t/T )) ≤ 2E
( −1∑

j=−J∗

(Ĩ
(1,2)
j,t,T − βj(t/T ))A−1

l,j

)2
+ 2

(−J∗
−1∑

j=−∞

βj(t/T )A−1
l,j

)2
= I + II

The first term is given by

I ≤ 2
−1∑

j=J∗

E(Ĩ
(1,2)
j,t,T − βj(t/T ))2(A−1

l,j )2 ≤ 2
−1∑

j=−J∗

C2l2jO(2−2jT−1M2)

= O(2lT−1M2)
∑

j=−J∗

2−j = O(2lT−1M2).O(Tα) = O(2lTα−1M2)

as E(Ĩ
(1,2)
j,t,T − βj(t/T ))2 is the MSE of Ĩ

(1,2)
j,t,T , found previously, and we know that A−1

l,j ≤

C2l/22j/2. For the second term we further assume βj(t/T ) < C1 (as in Fryzlewicz and

Nason (2006)), to give

II ≤ 2
(−J∗

−1∑

j=−∞

C12
l/22j/2

)2
≤ 2.2l

(−J∗
−1∑

j=−∞

C12
j/2

)2
= O(2l)

Combining these results givesMSE(Ĉl(t/T )) = O(2lTα−1M2). The estimator Ĉl(t/T ),

then converges in probability toW
(1)
l (t/T )W

(2)
l (t/T )ρl(t/T ) for each fixed scale l, provided

that MTα−1 → 0 as T → ∞ and M → ∞.
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