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Monty Hall drives a wedge between Judy Benjamin and the Sleeping Beauty:  a 

reply to Bovens  

 

Luc Bovens and José Luis Ferreira (draft – October 12, 2009) 

L.Bovens@LSE.ac.uk and jlferr@eco.uc3m.es 

(forthcoming in Analysis)  

 

Bovens (2010) points out that there is a structural analogy between the Judy Benjamin 

problem (JB) and the Sleeping Beauty problem (SB).  On grounds of this structural 

analogy, he argues that both should receive the same solution, viz. the posterior 

probability of the eastern region of the matrix in Table 1 should equal 1/3.  Hence, 

P*(Red) = 1/3 in the JB and P*(Heads) = 1/3 in the SB. 
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                                                                Table 1 

 

Bovens’ argument rests on a standard error in implementing Bayesian updating, 

which is spelled out in Shafer (1985).  When we are informed of some proposition, 

we do not only learn the proposition in question, but also that we have learned the 

proposition as one of the many propositions that we might have learned.  The 

information is generated by a protocol, which determines the various propositions that 

we might learn.  We should then update not on the proposition in question, but rather 
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on the fact that we learned this proposition as one of the many propositions that we 

might have learned.    

 

A well-known application of this insight is the Monty Hall problem (MH) as Speed 

(1985: 276) points out in a discussion of Shafer (1985).  As an illustration, let us 

apply Shafer’s insight to the MH.  In the MH, the contestant in a game show learns 

that there is a goat behind two of three doors X, Y and Z and a car behind one door.  

She is asked to pick one of the three doors.  The contestant picks door X.  Monty will 

then open one of the remaining doors, which he knows to have a goat behind it.  

Suppose Monty opens door Y.  The contestant is then asked whether she wants to stick 

to the door she originally chose, i.e. door X, or whether she wants to switch to the 

other unopened door, i.e. door Z.  Should the contestant switch doors, assuming that 

she wants to win the car rather than a goat? 

 

If we naively update only on the content of the information, viz. that there is a goat 

behind door Y, then we reach the following conclusion:  
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Hence P(CarZ│GoatY) = 1/2 as well and so,  on this reasoning, it does not make any 

difference whether she does or does not switch doors.  But, as is well-known, this 

reasoning is incorrect.  We do not only learn that there is a goat behind door Y, we 

also learn that we learn this information as one of a range of possible items of 

information that Monty might have provided.  If the protocol specifies that Monty will  

open one of the remaining doors with a goat behind it, then there are two items of 
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information that the contestant might receive, viz. “A goat is behind door Y” and the 

“A goat is behind door Z”.  Let us also specify that, as far as the contestant knows, 

Monty will randomise between doors Y and Z if both have goats behind them.  We 

can now construct a table with conditional probabilities.  Let “INF” be the variable 

that specifies the information provided by Monty and let “@” be the variable that 

specifies the actual location of the car.  We construct the conditional probability table 

in Table 2.        

 

@ = P(INF│@) 

CarX CarY CarZ 

GoatY 1/2 0 1 INF = 

GoatZ 1/2 1 0 

 

         Table 2 

 

In addition, the contestant has no reason to think one door more likely than another 

prior to Monty’s information, i.e. P(@ = CarX) = P(@ = CarY) = P(@ = CarZ) = 

1/3.  We can now calculate:  
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So P(@=CarZ │ INF =GoatY) = 2/3 and hence the contestant should switch doors.  

 

Are there protocols on which the contestant has no reason to switch?  Well, suppose 

that Monty just opens one of the remaining doors at random—it may or may not have 

the car behind it.  On this protocol, the contestant may expect four possible items of 

information.  We construct the conditional probability table in Table 3: 

 

@ = P(INF│@) 

CarX CarY CarZ 

CarY 0 1/2 0 

GoatY 1/2 0 1/2 

CarZ 0 0 1/2 

INF = 

GoatZ 1/2 1/2 0 

 

       Table 3 

 

We calculate:  
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Hence, on this protocol, it does not pay to switch doors.  So, the moral of the MH is 

that the protocol is all important.  Let us now investigate whether we can gain some 

mileage from this insight for the SB and the JB.     

 

We structure the SB so that we can invoke the mechanism of protocols.  Let the 

structure of the game be the proposition that awakenings can occur in all four world-

time quadrants (Ta-Mo, …), except for He-Tu.  In the original SB, Beauty learns this 

information on Su and retains it throughout.  In Bovens’ SB` (2010), Beauty learns on 

Su that all world-time quadrants are possible and is then told the complete structure of 

the game upon awakening, i.e. she is told that He-Tu is actually ruled out.  Beauty 

also knows that amnesia of this additional information is induced when she is put 

back to sleep.  This variation, he argues, cannot make for a difference to the solution 

of the SB.  

 

To bring in protocols, let us parse the structure of the game as follows.  Suppose that 

on Su, Beauty is informed that one and only one world-time quadrant is impossible, 

but she is not told which one, and that she will be told upon awakening which world-

time quadrant is impossible.  Subsequently, when she awakens, she is informed that it 

is He-Tu that is impossible.  She retains the information that she received on Su, but 

amnesia of the information provided upon awakening is induced.  Let us call this the 

SB``.  This variation cannot make a difference to the solution either.  The information 

that Beauty has at her disposal is simply parsed up differently in the SB, in the SB` 

and in the SB``.  After being informed upon awakenings in both the SB` and the SB``, 

she knows exactly the same in the SB.   
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Just like in the MH, we can now construct a conditional probability table representing 

Beauty’s credences upon awakening in Table 4. @ is the variable that takes as its 

values the particular world-time quadrant that Beauty is in upon awakening:      

 

@ = P(INF│@) 

Ta-Mo Ta-Tu He-Mo He-Tu 

¬Ta-Mo 0 1/3 1/3 1/3 

¬Ta-Tu 1/3 0 1/3 1/3 

¬He-Mu 1/3 1/3 0 1/3 

INF = 

¬He-Tu 1/3 1/3 1/3 0 

 

       Table 4  

 

We calculate: 

 

(4)  P*(He) = P(@=He-Mo │ INF =¬He-Tu) = 
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So when Beauty is informed of the full structure of the game in the SB``, she will 

update her credence for He to 1/3.  How the information is parsed does not make any 
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difference to Beauty’s credence.  Hence, 1/3 should also be Beauty’s posterior 

credence for Heads in the SB.       

 

Let us now turn to the JB.  What protocol might yield the information R →¬S?  

Consider the following protocol.  The informer assesses the region R and only the 

region R in order to exclude one area—i.e. to indicate an area where Judy cannot 

possibly be.  E.g. she may have access to technology that permits her to provide 

exactly one quadrant that yields a true negative for the presence of Judy.  If this is the 

case, then the protocol may yield two items of information, viz. INF = R →¬S or INF 

=  R →¬Q.  Let @ be the variable which takes the actual location of SB as its values, 

so @ = BQ, BS, RQ, or RS.  We spell out the conditional probabilities in Table 5 

 

@=    P(INF│@) 

BQ BS RQ RS 

INF = R →¬S 1/2 1/2 1 0 

 R →¬Q 1/2 1/2 0 1 

 

Table 5 

 

 We calculate: 

 

(5)  P*(R) = P(@ = RQ │ INF =  R →¬S) = 
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So if we take into account the protocol, we see that, although the SB and the JB have 

structural similarities, careful attention to the protocol teaches us that P*(He) = 1/3 

whereas P*(R) = 1/2.   

 

One might ask, Is it possible to spell out alternative protocols so that P*(He) = 1/2 

and P*(R) = 1/3?  We can do so and, indeed, it will be instructive to evaluate such 

protocols.  

 

Let us start with the SB. Consider the following protocol.  Suppose that Beauty is put 

to sleep on Sunday and suppose she is told that a fair coin has been flipped, that there 

will be awakenings on both Monday and Tuesday independently of the coin flip, and 

that amnesia will be induced after an awakening.  Furthermore, when she awakens 

someone will inform her of one time quadrant in a Heads world in which she is not 

located.  Further, suppose that she is being informed that she is not in He-Tu.  Then 

the protocol precisely mirrors the JB protocol in Table 5.     

 

 

@= P(INF│@) 

Ta-Mo Ta-Tu He-Mo He-tu 

¬He-Mo 1/2 1/2 1 0 INF = 

¬He-Tu 1/2 1/2 0 1 

 

Table 6  
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We can calculate that P*(He) = 1/2.  But this is far away from the original SB.  This 

protocol captures a game that has a radically different structure than the original SB. 

 

The situation is less univocal in the JB.  Let us first consider two protocols on which 

P*(R) = 1/3.  Suppose that the informer examines all quadrants and will provide JB 

with one true negative, i.e. one quadrant in which Judy is not.  We spelled out the 

conditional probability table for this protocol in Table 7.  Or suppose that the informer 

examines RS and is able to provide her with either a true positive or a true negative.  

We spelled out the conditional probability table for this protocol in Table 8.  In each 

case, Judy does receive the information that ¬RS.    

   

@ = P(INF│@) 

BQ BS RQ RS 

¬BQ 0 1/3 1/3 1/3 

¬BS 1/3 0 1/3 1/3 

¬RQ 1/3 1/3 0 1/3 

INF = 

¬RS 1/3 1/3 1/3 0 

 

Table 7  
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@= P(INF│@) 

BQ BS RQ RS 

RS 0 0 0 1 INF = 

¬RS 1 1 1 0 

 

Table 8 

 

Table 7 is structurally analogous to Table 4 and so P*(R) = 1/3.  For Table 8, we 

calculate 

 

(6)  P*(R) = P(@ = RQ │ INF =  ¬RS) = 
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So there do exist protocols on which P*(R) = 1/3.  But how plausible are these 

protocols, given the original formulation of the JB?  In the original JB puzzle, Judy 

receives information of the form ‘If you are in R, then the probability that that you are 

in Q is p’. (vanFraassen, 1982: 366-7)  A limiting case of this information is ‘If you 

are in R, then the probability that you are in Q is 1,’ or, in other words, ‘If you are in 

R, then you are not in S.’  Now, the choice of the conditional as a mode of expressing 

the information carries a conversational implicature that one has checked R, rather 

than the whole area (as in the protocol underlying Table 7) or rather than RS (as in the 
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protocol underlying Table 8).  For this reason, the protocol underlying Table 5 is more 

in line with the choice of the conditional in the informer’s message.  

 

Is there no protocol that would warrant the use of the conditional and that would yield 

P*(R) = 1/3?  Imagine the following scenario.  Suppose that the informer is intent on 

checking the area R.  However, due to heavy cloud cover, he can get no information 

about RQ.  He is able to report a false positive or a false negative about RS.  If this is 

the protocol then we are back to Table 8 and indeed P*(R) = 1/3. Now, arguably, it 

might not be unnatural for the informer to say ‘If you are in R, then you are not in S’ 

in such a case, since he was indeed intent on checking R and this comes through in the 

choice of the conditional in his message.   

 

But, as we know from everyday life, much misunderstanding is due to misreading 

conversational implicatures.  So what is Judy supposed to do?  In the absence of a 

clear protocol, the problem is simply underdetermined.  Judy may have a subjective 

probability distribution over alternative protocols – some yielding P*(R) = 1/3 and 

some yielding P*(R) = 1/2.  If this is so, then, given her credences, she will need to 

calculate a weighted average and P*(R) will take on a determinate value in the range 

[1/3, 1/2].  Or she may face radical uncertainty with respect to the protocols.  In this 

case, there is no more to be said than that the problem is underdetermined and that 

P*(R) has upper bound 1/2 and lower bound 1/3.  And in the face of limited 

uncertainty with respect to protocols, Judy can determine a more narrow range of 

values within [1/3, 1/2].       
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What makes an appeal to protocols so inviting is that it provides us not only with a 

correct treatment of the SB and the JB, but also with an error theory of all the 

confusion in this area.  Simply recall the early confusion around the MH.  The MH is 

a case in which the relevance of the protocol is straightforward and still, the erroneous 

solution of P*(CarX) = 1/2 in the actual MH was much argued for due to the 

complete disregard for protocols.  What underlies all the confusion about the SB and 

the JB is the same disregard for protocols.   

 

Bovens (2010) has the virtue of recognising a certain similarity between the SB and 

the JB.  But it fails to recognise the dissimilarity between underlying protocols.  

Protocols are expressed in conditional probability tables that spell out the probability 

of coming to learn various propositions conditional on the actual state of the world.  

The principle of total evidence requires that we not update on the content of the 

proposition learned but rather on the fact that we learn the proposition in question.     

Now attention to protocols drives a wedge between the SB and the JB.  We have 

shown that the solution to a close variant of the SB which involves a clear protocol is 

P*(He) = 1/3 and since Beauty’s has precisely the same information at her disposal in 

the original SB at the time that she is asked to state her credence for Heads, the same 

solution should hold.   The solution to the JB, on the other hand, is dependent on 

Judy’s probability distribution over protocols.  One reasonable protocol yields P(R) = 

1/2,  but Judy could also defend alternative values or a range of values in the interval 

[1/3, 1/2] depending on her probability distribution over protocols.           
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