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The explicit solution to a sequential switching problem
with non-smooth data*

TiMoTHY C.JOHNSON! AND MIHAIL ZERVOS!

February 23, 2009

Abstract

We consider the problem faced by a decision maker who can switch between two
random payoff flows. Each of these payoff flows is an additive functional of a general
one-dimensional It6 diffusion. There are no bounds on the number or on the frequency of
the times at which the decision maker can switch, but each switching incurs a cost, which
may depend on the underlying diffusion. The objective of the decision maker is to select
a sequence of switching times that maximises the associated expected discounted payoff
flow. In this context, we develop and study a model in the presence of assumptions that
involve minimal smoothness requirements from the running payoff and switching cost
functions, but which guarantee that the optimal strategies have relatively simple forms.
In particular, we derive a complete and explicit characterisation of the decision maker’s
optimal tactics, which can take qualitatively different forms, depending on the problem
data.

Keywords: optimal switching, sequential entry and exit decisions, stochastic impulse
control, system of variational inequalities

2000 Mathematics Subject Classifications: 93E20, (49K45,60G40,91B28,91B70)

1 Introduction

The origins of the problem that we study are located in economics. Indeed, consider a manager
who lives in an economy that is driven by a one-dimensional 1t6 diffusion. This manager can
switch, at a cost, between two investment modes that are associated with different payoff flows
and are dependent on the state of the economy. One of these investment modes is preferable

*Research supported by EPSRC grant nos. GR/S22998/01, EP/C508882/1

TMaxwell Institute for Mathematical Sciences and Department of Actuarial Mathematics and Statistics,
Heriot-Watt University, Edinburgh EH14 4AS, UK, t.c. johnson@hw.ac.uk

iDepartment of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, UK,
m.zervos@lse.ac.uk



when the economic environment is poor, while the other one is preferable when the economic
environment is positive. The manager has an infinite time horizon and wishes to maximise
their expected discounted payoff flow by switching between the two investment modes. For
instance, the manager may be switching between an asset with stochastic price dynamics and
a bank account, or may be the operator of a production facility that can be shut down when
it is not sufficiently profitable.

To fix ideas, we assume that the economy is driven by the one-dimensional It6 diffusion

where W is a standard one-dimensional Brownian motion, and Z = |, 3] is a given interval.
In particular, we consider a stochastic system that can be operated in two modes, say “open”
and “closed”. We use the controlled finite variation process Z that takes values in {0, 1} to
keep track of the system’s operating mode over time. In particular, if Z; = 1 (resp., Z; = 0),
then the system is in its open (resp., closed) operating mode at time ¢, while, the jumps of Z
occur at the sequence of times (7)) when the decision maker switches the system between its
two operating modes. Assuming that the system is initially in operating mode z € {0,1}, the
decision maker’s objective is to select a switching strategy Z, , that maximises the performance
criterion

Tn Tn
J(Z.,) = limianEm[ / e MZ dAle + / e (1 — Z,) dAle

n—00 0 0
n—1

e [go X7, )1{AZT —1} + 9¢(X1;) LAz, 7—1}] 1, <oo}} (2)

Jj=1

The additive functionals A" and A" model the running payoff flows that the system yields
while it is operated in its open and in its closed operating modes, respectively, the functions
Jo and g, provide the costs of switching the system from its closed to its open operating mode
and vice versa, while the state-dependent discounting factor A is defined by

A = /0 ML) ds. (3)

for some function r > 0. The precise definition of the additive functionals A" and A”<, which
are parametrised by the measures h, and h,, is given by (14) below.

It is worth noting at this point that our assumptions on the problem data imply that, given
any admissible switching strategy, the “liminf” in (2) can be replaced by “lim” (see (35) in
Remark 1 and (41) in Section 3). Also, there exist functions Ry and Ry, such that

j(Zz,m) = Rhc(l’) —+ ZRh( ) + hm E |:Z€ AT Rh — go)(XT )1{AZT =1}

n—00
7j=1

— (R + gc)(XTj)l{Asz}u} 1{7; <00} (4)



(see (35) in Remark 1 and (42) in Section 3). In this expression, the function Rj can be
interpreted as a measure for the accrual payoff differential resulting from having the system
in its open rather than its closed operating mode. Furthermore, if the measures h, and h. are
absolutely continuous with Radon-Nikodym derivatives with respect to the Lebesgue measure
denoted by h, and hc, respectively, then the performance index J defined by (2) admits the
expression

T, ‘ T, '
j(Zz7$) = hm El‘ [/ G_AtZtho(Xt) dt + / G_At(l — Zt)hC(Xt) dt
0 0

n—o00
n—1

e |:go (X1,)1iazr, =1y + 9e(X1)) Liazy, —71}} 1y, <oo}:| (5)
=1

<.

which is more familiar in the stochastic control literature (see Remark 1).

Problems involving sequential entry and exit decisions have attracted considerable interest
in the literature, particularly, in relation to the management of commodity production facili-
ties. Following Brennan and Schwartz [BS85], Dixit and Pindyck [DP94], and Trigeorgis [T96],
who were the first to address this type of a decision problem in the economics literature, Brekke
and Oksendal [BO94|, Bronstein and Zervos [BZ06], Carmona and Ludkovski [CL05], Coste-
niuc, Schnetzer and Taschini [CST08], Djehiche and Hamadene [DHO8], Djehiche, Hamadéne
and Popier [DHP08], Duckworth and Zervos [DZ01], Guo and Pham [GP05], Guo and Tome-
cek [GT08], Hamadeéne and Jeanblanc [HJ07], Lumley and Zervos [LZ01], Ly Vath and Pham
[LVPO01], Pham [P04], Porchet, Warin and Touzi [PTWO06], and Zervos [Z03], provide an in-
complete, alphabetically ordered, list of authors who have studied a number of related models
by means of rigorous mathematics. The contributions of these authors range from explicit
solutions to characterisations of the associated value functions in terms of classical as well as
viscosity solutions of the corresponding Hamilton-Jacobi-Bellman (HJB) equations, as well as
in terms of backward stochastic differential equation characterisations of the optimal strate-
gies.

The paper is organised as follows. Section 2, which is composed by four parts, is mostly
concerned with the problem formulation. In Section 2.1, we discuss some of the notation
that we use throughout the paper, in Section 2.2, we develop our assumptions on the data
of the underlying It6 diffusion defined by (1), in Section 2.3, we review a number of results
regarding the solvability of a second order linear ODE on which our analysis relies, while, in
Section 2.4, we complete the formulation of the control problem that we solve. Section 3 is
concerned with the well-posedness of our optimisation problem as well as with establishing
claims made above such as expression (4). In Section 4, we study a number of implications
stemming from our Assumption 5 in Section 2.4. Indeed, Assumption 5 plays a central role in
our analysis in the sense that it is this assumption that implies a relatively simple structure
of the optimal strategies. In Section 5, we prove a verification theorem, which does not rely
on Assumption 5, and, in Section 6, we develop the explicit solution of our control problem.
Finally, in Section 7, we consider a couple of examples that provide some illustration of our
results.



2 Problem formulation, assumptions and preliminary
results

2.1 Notation

We denote by Z a given open interval with left endpoint a@ > —oo and right endpoint 5 < oo,
and by B(Z) the Borel g-algebra on Z. Given a point ¢ € Z, we adopt the convention
le,e[ = Je,c] = [e,¢[ = 0. Also, when we consider sets A C Z, we adopt the conventions
inf A= and supA=aif A=10.

Throughout the paper, we consider signed measures of o-finite total variation, and we refer
to them as just “measures”. Given a measure p on (Z,B(Z)) we denote by pt and p~ the
unique positive measures on (Z, B(Z)) resulting from the Radon decomposition of p, so that
p=p" —p" and |u| = p" + p~, where |u| is the total variation measure of . We denote
by supp p the support of . Also, we say that a measure p on a measurable space (Z,B(Z)),
where Z C 7 and B(Z) is the Borel o-algebra on Z, has full-support if supp u = Z, and that it
is non-atomic if u({c}) = 0, for all ¢ € T.

Recalling that a function f : Z — R is the difference of two convex functions if and only
if its second distributional derivative is a measure, we denote by f’ and by f} the left-hand
side and the right-hand side first derivatives of f, respectively, which both are functions of
finite variation, and by f” the measure on (Z, B(Z)) corresponding to the second distributional
derivative of f.

2.2 The underlying It6 diffusion

We assume that the data of the one-dimensional It6 diffusion given by (1) in the introduction
satisfy the following assumption.

Assumption 1 The functions b, : Z — R are B(Z)-measurable,

o*(z) >0, forallxcZ,

and

814 _
/ 7+| ($)|ds<oo and sup o’(s) <oo, foralla<a<f<g.
o 0%(s) s€la,B)

0

With reference to Karatzas and Shreve [KS91, Section 5.5.C], the conditions appearing in this
assumption are sufficient for the SDE (1) to have a weak solution S, = (Q, F, F;, P, W, X)
that is unique in the sense of probability law up to a possible explosion time, for all initial
conditions x € Z. In particular, given ¢ € Z, the scale function p. and the speed measure m,



given by

pe(z) = / exp (—2 / :52“2) du) ds, forzeT,

2
m(dzx) = 2 @) dx,

which characterise one-dimensional diffusions, are well-defined. We also assume that the
solution of (1) in non-explosive, i.e., the hitting time of the boundary {«, 5} of the interval Z
is infinite with probability 1 (see Karatzas and Shreve [KS91, Theorem 5.5.29] for appropriate
necessary and sufficient analytic conditions).

Assumption 2 The solution of (1) is non-explosive. O
Relative to the discounting factor A defined by (3), we make the following assumption.

Assumption 3 The function r : Z — |0, oo[ is B(Z)-measurable and locally bounded. Also,
there exists 7o > 0 such that r(z) > rg, for all z € Z. O

2.3 The solution of an associated ODE

In the presence of Assumptions 1, 2 and 3, the general solution of the second-order linear
homogeneous ODE

1
50 (@) f"(@) + (@) f () = r(@)f(z) =0, z €T,
exists in the classical sense and is given by

f(x) = Ap(z) + Bi(x),

for some constants A, B € R. The functions ¢ and v are C!, their first derivatives are
absolutely continuous functions,

0<¢(x) and ¢'(z) <0, forallzeZ, (6)
0<¢(z) and ¢'(x) >0, forallzel, (7)

and
lim 0() = lim (x) = oo (®)

In this context, ¢ and ¢ are unique, modulo multiplicative constants, and the scale function
p. admits the expression

= q;fx)w/(x) —Slee) = Wea) for all z,c € Z, (9)

(@)1’ (c) = ¢'(e)p(c)  W(e)
5

p.(z)



where W > 0 is the Wronskian of the functions ¢ and . Also, given any points z; < x5 in Z
and weak solutions S,,, S,, of the SDE (1), the functions ¢ and 1 satisfy

P(r2) = ¢(21)E, [e_AT’”l] and  Y(z1) = Y(2)Es, [Q_AT’”Q] . (10)

Here, as well as in the rest of the paper, we denote by 7., where « is any point in Z, the first
hitting time of {7}, which is defined by

,={t>0| Xy =n~}.

All of these claims are standard, and can be found in various forms in several references,
including Feller [F52], Breiman [B6§|, It6 and McKean [IM74], Karlin and Taylor [KT81],
Rogers and Williams [RW00], and Borodin and Salminen [BS02].

To proceed further, we consider the solvability of the non-homogeneous ODE

LR, + =0, (11)

where 1 is a measure on (Z,B(Z)) and the measure-valued operator L is defined by
1
Lf(dw) = 50°(2)["(dw) + b(2) [Z (2) dw = r(2) f(x) d (12)

on the space of all functions f : Z — R that are differences of two convex functions (see also
Section 2.1 above). Also, we recall Definition 2.5 from Johnson and Zervos [JZ07].

Definition 1 The space Z,,, is defined to be the set of all measures p on (Z, B(Z)) such that

/ U(s)|p|(ds) +/ O(s) |ul(ds) < o0, forall y €T,
Jan| [v.81

where the functions ® and ¥ are defined by

(=) _ ¥()
O(x) = V() and V(z)= )W) (13)
T4 is called the space of (¢, 1)-integrable measures. O

For the rest of this section, we fix a weak solution S, = (Q, F, F;, P, W, X) of (1), and we
consider the linear functional pu — A* mapping the family of all o-finite measures y into the
set of finite variation, continuous processes A* defined by

B Yy
A= [ st (14)

where LY is the local-time process of X at y € Z. It is straightforward to see that the total
variation process |A*| of A" is given by |A#| = A" and that

if 1 is a positive measure, then A" is an increasing process, (15)

6



because LY is an increasing process, for all y € Z. Also,

/ 1r(t) dAM = 0, for all countable sets I' C Z, (16)
0

because A" has continuous sample paths.
The following results, which we will need, have been established by Johnson and Zer-
vos [JZ07]. A measure p belongs to Z, , if and only if

E. [/ e M dAL“'] < oo, forallzel. (17)
0
Given any p € Zy y, the function R, defined by

R,(z) =E, { /0 sy dA;‘] (18)

admits the analytic representations

Ry (x) = 6(x) /] () () + ) / B(s) u(ds)

.8
() [ W)(ds)+ i) [ B(s)n(as) (19)
o,z Jz.8(
and satisfies the ODE (11) as well as
tim B @y Bal] (20)

zla ¢(x) @18 ()

Noting that —LR,, = p, we can see that, if R_.p, is defined as in (18)-(19) with —LR,, in
place of u, then
R_rr, = R, (21)

Given any (JF;)-stopping time p,
E. [e*AP|RH(Xp)|1{p<OO}} < 00, (22)

and R, satisfies Dynkin’s formula, i.e., given any (F;)-stopping times p; < pa,
p2
B, [eiAPQ Rﬂ<XP2)1{PQ<OO}} =K, [eiApl Rﬂ(Xp1>1{p1<oo}} + E,; {/ eiAt dAtﬂ:|
p1

p2
— E:L‘ |:6_Ap1 RM(Xpl)l{p1<OO}j| - Ex |:/ e_At dAill:| 5 (23)
p1
as well as the strong transversality condition, i.e., given any sequence of (F;)-stopping times

(pn) such that lim,, ., p, = o0,

lim E, [e " |Ru(X,,)| Lipn<oo}] =0, (24)

n—~o0

7



Furthermore,

O()(R,), () — & (2) Ru(x) = —W(z) / B(s) LR, (ds), (25)
Jz,8]

S(0) (R, (z) — &) Rylx) = —W(a) / D(s) LR,(ds), (26)
[z,0(

B(@) (R, () — ¥ (2) Ru(2) = W(a) /] () LR () (27)

b(@)(R) (x) — /() Ry(x) = W(a) /] V() LR (d) (28)

At this point, we should note that, if u is absolutely continuous with Radon-Nikodym
derivative with respect to the Lebesgue measure denoted by g, then, given any (F;)-stopping

times p; < po,
P2 P2
E, [/ oA dAf] — K, [/ e*Atﬂ(Xt) dt} , (29)
p1 P1

which is essentially a consequence of the so-called occupation times formula. Furthermore, if
a (resp., () is a natural boundary point, i.e., if

lim(z) =0 <resp., h%l o(z) = O) ,

T|la

then

. () : (@)
lim Ry, (x) = lim resp., lim Ry(z) = lim . 30

zla w(@) zlo r(x) ( P 218 n(@) =18 r(z) (30)
These limits are not necessarily true if, e.g., a is an entrance boundary point (an example
illustrating this is given by the function Rj, in Section 7.2).

2.4 The objective of the optimisation problem

We adopt a weak formulation of the optimal control problem that we solve.

Definition 2 Given an initial condition (z,x) € {0,1} x Z, an admissible switching strategy,
is any collection Z, , = (S,, Z,T,,) such that

(1) S, = (Q, F, F, P, X, W) is a weak solution of the SDE (1),

(II) Z is an (F;)-adapted, finite variation, caglad process with values in {0, 1}, and such that
Zy = z, and

(III) (T},) is the strictly increasing sequence of (F;)-stopping times at which the jumps of Z
occur, which can be defined recursively by

T\ =inf{t >0| Z, # 2} and Tj., =inf{t >T;| Z, # Zr,}, forj=1,2,..., (31)
with the usual convention that inf () = oo.
We denote by A, , the set of all admissible strategies. 0

8



With each admissible switching strategy, we associate the performance criterion

J(Z,,)=E, { / e Mg, dA?}
0
= D B [ [90(Xr)Liazs, -y + 9e(Xr ) Liazp, ——] Lmcor] - (32)
n=1

The objective of the control problem is to maximise J(Z, ,) over all admissible Z, ,. Accord-
ingly, we define the value function v by

v(z, ) = i 81612 J(Z,,), forze{0,1} and z € 7.

To ensure that our optimisation problem is well-posed, we make the following assumption.
It is worth observing that among the other conditions, (33) has a simple economic inter-
pretation because it excludes the possibility of generating arbitrarily high profits by rapidly
switching between the system’s two operating modes.

Assumption 4 Each of the functions g., g, : Z — R is the difference of two convex functions,
and
ge(x) + go(z) >0, forall z €. (33)

The measures Lg., Lg, and h are (¢, 1)-integrable,
gec = RfllgC and Go = R*L:Ho? (34)
where R_., and R_., are defined as in (18)—(19). O

Remark 1 The structure of the performance criterion defined by (32) involves a running
payoff flow only when the system is in its open operating mode. We have chosen this setting
instead of the apparently more general one involving the performance index J defined by (2)
in the introduction, only with a view to simplifying the presentation of our results. Indeed,
assuming that both of h, and h. are (¢, v)-integrable, the linearity of the mapping p — A*
and (18) implies that

J(Z.,) =E, { / e M dA?C} +J(Z.,) = Rp.(2) + J(Z.,), forallZ,, € A.,, (35)
0

if we let h = h, — he, which reveals that the two optimisation problems are equivalent.
Furthermore, it is worth noting at this point that the expression (5) of J that arises when h,
and h. absolutely continuous with respect to the Lebesgue measure follows immediately from

(29). O

The next assumption, which involves the functions —(Ry, + ¢g.) and R, — g, appearing in
the expression of the performance criterion given by (4) in the introduction, ensures that the
optimal strategies of the optimisation problem that we study admit an explicit characterisa-
tion.



Assumption 5 The measure L(R;, + g.) satisfies one of the following mutually exclusive
conditions:

Al. |L(Ry+g0)|(T) =

|
A2. |L(Ry + g.)]
|

( (Z)
( (Z) > 0, and —L(Rp, + g.) is a positive measure;
(

Z) >0, and L(R), + g.) is a positive measure;

Ad4. |L(Ry + go)|[(T) > 0, supp[L(Ry + go)]™ # 0, supp[L(Ry, + gc)]~ # 0, and there exists a
point a € Z such that

Supp[‘C(Rh + gc)]Jr - ]057 C~I,[ and Supp[‘C(Rh + gc)]i - [&7 ﬁ[ (36)

Similarly, the measure L(Ry, — g,) satisfies one of the mutually exclusive conditions:

Bl. |L(Ry — g0)|[(Z) = 0;
B2. }E(Rh — go)}(Z) > 0, and L(R), — g,) is a positive measure;
B3. }E(Rh — go)}(Z) > 0, and —L(Ry, — go) is a positive measure;

B4. |L(Ry — go)[(Z) > 0, supp[L(Ry — go)]™ # 0, supp[L(R), — go)]~ # 0, and there exists a
point b € 7 such that

Supp[‘C(Rh - go)]+ - ]Oé, b] and Supp[‘C(Rh - go)]i - ]57 B[ (37)

Furthermore, if the conditions A4 and B4 hold simultaneously, then

a<b, (38)
/] ]\Il(s) L(ge + go)(ds) <0, for all u €|, al, (39)

and
/[ ﬁ[(I)(s) L(ge + go)(ds) < 0, for all u € [b, ]. (40)

0

The previous assumptions are sufficient for the existence of an optimal strategy, which is
not in general unique. To address uniqueness issues, we have to make additional assumptions,
which are captured by the following conditions.

10



Assumption 6 Cases Al and B1 cannot occur. If case A3 (resp., case B3) occurs, then
L(Ry, + go)(Jz,B[) > 0 (resp., L(Ry — go)(Ja, z[) < 0), for all z € Z. Also, in case A4 of
Assumption 5, the point a can be chosen so that the restriction of the measure L(Ry + g.)
in (Ja,af, B(Ja,af)) has full support, while, in case B4 of Assumption 5, the point b can be
chosen so that the restriction of the measure L(Ry, — g,) in (]5, B[, B(b, 3 ) has full support.
U

Assumption 7 In cases A4 and B4 of Assumption 5, the restriction of the measure L(R),+g.)
in (Jov, al, B(Jor, a[)) and the restriction of the measure L£(Ry, — go) in (]b, B[, B(]b, 3[)) both are
O

non-atomic.

3 Well-posedness of the optimisation problem

The following result is mainly concerned with establishing that the optimisation problem that
we study is non-trivial in the sense that there are no switching strategies with infinite payoff.

Lemma 1 Consider the stochastic control problem formulated in Section 2, and suppose that
Assumptions 1-4 hold true. Given any initial condition (z,x) € {0,1} X I and any admissible
switching strateqy Z, , € A, », J(Z, ) € [—00, 0],

Tn
J(Z,,) = lim Exl / e MZ,dAN
0

n—1
_ Z e My [gO(XTj>1{AZTj:1} + QC(XTj)l{AZTj:A}] 1{Tj<00}} “
7=1
and

n

J(Z:z) = zRu(z) + nlglgo E, {Z oA [(Rh - go)(XTj)l{AZszl}
j=1

— (R + gc)(XTj)]-{AZTj:fl}] ]-{Tj<oo}:| : (42)

Proof. We fix any initial condition (z,z) € {0,1} x Z and any admissible switching strategy
Lyy = (Sm,Z, Tn) € A, ., and we note that lim,,_,.,7,, = oo, P;-a.s., because Z is a finite
variation process whose jumps all have size 1. Recalling that the total variation process |A"|
of A" is equal to A"l we note that

Tn Tn Tn o0
/ eMZ, dAl| < / eMZ,d|Al = / eMZ dA) < / e M7, dA}".
0 0 0 0

The last term in these inequalities has finite expectation thanks to the assumption that the
measure h is (¢,1)-integrable and (17). This observation and the dominated convergence
theorem imply that

[e’s) Tn
E, { / e M7, dA,’}} = lim E, { / e M7, dA?} € R. (43)
0 0

n—oo

11



Similarly, we can see that the assumption that the measure Lg. is (¢, )-integrable implies
that .
E, { / e M7, dAtﬁv%] = lim E, [ / e M7, dAt‘:“‘“} cR. (44)
0 e 0
To proceed further, we assume that z = 1. Using Dynkin’s formula (23), we can calculate

2n—1

Z E, {6 |:go (X1, )1{AZT —1} + 9e( X7 )1{AZT 71}} Liz, <00}}

—

n—1

Em |:€7AT2jgo<XT2j>]—{T2j<oo}:| + ZE:B [eiATQj_Hgc<XT2j+1)1{T2j+1<oo}]
=0

3

3 <.
Il
—_

E, [eiATQj [gO(XTQj) + gC(XT%ﬂ 1{T2J'<°°}]
1

TQn
-+ gc(l') + EJ; |:/ G_AtZt dAtl:gC:| .
0

In view of (44) and (33) in Assumption 4, the right-hand side of this expression converges in
| — 00, 0]. Combining this observation with the limit

lim E, [e 20 g (X1, )1{13, <00}] = 0,

n—0o0

<.
I

which follows from the strong transversality condition (24) and the fact that lim,,_.., T,, = oo,
we can see that

lim E,

Ze [go (X1,)1iazr =1y + 9e(X1;) 118z, 71}] iy <oo}] €] —00,00].

This limit and (43) imply that J(Z, ) € [—00, 00| as well as (41).
To see (42), we note that (21) with p = h, Dynkin’s formula (23) and (43) imply that

T2n71 T1 n—1 T2j+1
E, { / e Mz, dAf;] = E, [ / e~ dAf;] +) E, / e M dAD
0 0 =1 Ta;
n—1

= Ry(r) + ZE;L« [efATQf Rh(XT2j)1{T2j<oo}}

_ E, |:67AT2J'+1 Rh(XT2j+1)1{T2j+1<OO}i| .

7=0
= Rh(x) + E, [eiAT%flRh(XTznfl)l{Tzn—1<OO}]

2n—2
Z e M [1{AZTJ.=1} — 1{AZTJ.=71}} Rh<XTj)1{Tj<oo}] :
j=1
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as well as

T2n
E, [ / e M7, dAQ] = Ry(z) + E,
0

2n—1
Z e A |:1{AZT].:1} - 1{AZT].:—1}} Rh(XTj)l{Tj<°°}] ’

j=1
These calculations, the limit

lim Ex [eiATQ"ARh(XTmfl)1{T2n—1<00}} - 0’

n—oo

which follows from the strong transversality condition, and (41) imply (42).
Finally, the analysis when z = 0 follows similar steps. O

4 Ramifications of our assumptions

We now consider the functions —(Ry, + g.)/¢ and (R, — g,) /1, which appear in expression (4)
of our performance criterion and will play a fundamental role in the solution of our problem,
and we make the following observations. First, we note that (20) and Assumption 4 imply
that

(Brg)@) (R )@
M e 0™ BT

Also, using (25)—(28), we can calculate

Rh +gc I . W(SL’)
) ( z )+ = ) /]m,mq)(s)c(R” o "

— 0. (45)

and

" ~ ()

Combining (45) and (46) with Assumption 5, we can see that we can have one of the following
cases:

(Rh — go)l+ () Wiz) /]a,x} U(s) L(Rn — go)(ds). (47)

e In Case A1 of Assumption 5,

—(Rp +gc)(x) =0, forallzel. (48)

e In Case A2 of Assumption 5,

/ O(s) L(Ry + gc)(ds) <0, forallx €Z, (49)
]1'76[
—(Rn+9.)(x) <0, forallz € Z, and — % is decreasing. (50)

13



e In Case A3 of Assumption 5,

/ O(s) L(R, + gc)(ds) >0, forall z €Z, (51)
J=,8(
—(Rp +gc)(x) >0, forall z € Z, and — Rh;_ Je i increasing. (52)
e In Case A4 of Assumption 5, we can have one of the following possibilities:
A41.
<0, forallzeZ
O(s)L(R, +go)(ds){ — ’ 53
/}x,g[ (8) £(Bn + ge)( ){> 0, forall z €]a,al, (53)
Rh + e . .
—(Rp+¢gc)(z) <0, forallz € Z, and — ” is decreasing; (54)
A42. there exists a point a* € o, a[ such that
=0, ifz€la,a’
®(s) L(Ry, + g.)(ds 55
0 R 0 ){so, it € [o", 6l (55)
=0, forz €]a,a’], Ry +ge . .
—(Rp + gc)(x and — ———— is decreasing; 56
(B, g><>{<0’ R 5 (56)
A43. there exists a point a* € |a, a[ such that
JRRCL- R IUEE S 57
s )(ds _
o, nrg <0, ifze€la", ]
Ry, + g. . | positive and increasing in |a, a*[,
— e o (58)
o) decreasing in |a*, (],

— (R4 9gc)(a*) >0 and — (Ry+gc)(x) < —(Rp + gc)(a”), for all x €la”, . (59)

Similarly, we can see that (45), (47) and Assumption 5 imply that we can have one of the
following cases:

e In Case B1 of Assumption 5,
(Rp — go)(x) =0, forallxel. (60)

e In Case B2 of Assumption 5,
/ U(s) L(Ry, — go)(ds) >0, forallz €T, (61)
Ja,z]

Rh_go

(Rn, — go)(x) <0, forallz € Z, and is increasing,. (62)
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e In Case B3 of Assumption 5,

/ U(s) L(Ry — g0)(ds) <0 for all z € T, (63)
Jo,z]

Rh_go

(Rp — go)(x) >0, for all z € Z, and is decreasing. (64)

e In Case B4 of Assumption 5, we can have one of the following possibilities:

B41.
>0, forallzec?
U(s) L(R, — g,)(d -7 J 65
/}a,m] () LB = 901 S){>O, for all x € [b, 3], (65)
Rh_go

(Rp — go)(z) <0, for all z € Z, and

is increasing; (66)

B42. there exists a point b* € ]5, B[ such that

>0, ifz€]a, b,
U(s) L(Ry, — go)(ds) { — 67
/]a,x} PV EL = ) ){zo, if 2 € [0, o7

fi b* —
(Rp — go)(x) {: 8: fZi i 2][(;’:,5[[’, and B = 9o is increasing;  (68)
B43. there exists a point b* € b, 3 such that

>0, ifz€]a,b’|
U(s)L(Ry — go)(ds){ — Y 69
[ v et =g >{§07 e (69)
Ry — g, is incr‘eésing in Ja, b*[, o (70)

(0 positive and decreasing in [b*, 5],

(Rp — go)(0") >0 and (Rp — go)(x) < (R, — go)(b"), for all z € o, b"[. (71)

To proceed further, we consider the cases A42, A43, B41, B42 and B43, and the in-
equality
R c * — Yo
(Bt g)(@) _ o (R = 90)(@) -
¢(a*) 218 ¢(x)
as well as the cases A41, A42, A43, B42 and B43, and the inequality

o (Bt g)(@) _ (Ra = g0)(b")
de ) oy

(73)
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A comparison of (54), (56) and (59) with (66), (68) and (71) reveals that

is true in cases A43-B42 and A43-B43,
(72) < is false in cases A42-B41 and A42-B42, (74)
may be true or false in cases A43-B41 or A42-B43,

and

is true in cases A42-B43 and A43-B43,
(73) < is false in cases A41-B42 and A42-B42, (75)
may be true or false in cases A41-B43 or A43-B42.

We consider an example that illustrates some of these possibilities in Section 7.2. Also, we
note that (33) in Assumption 4 is equivalent to

—(Rp+ ge)(x) < —(Rp — go)(z), forallx €7,

which implies that there exists no x € Z such that —(R; + ¢.)(x) and (R, — g,)(x) both are
non-negative. This observation implies that

none of the pairs A1-B1, A1-B3, A1-B42, A1-B43, A3-B1, A42-B1,

A43-B1, A3-B3, A3-B42, A3-B43, A42-B3 or A43-B3 can occur. (76)

We can summarise this discussion by observing that our assumptions can all be satisfied
only if the problem data is such that a pair in Table 1 occurs. We have organised the various
pairs appearing in this table in six groups that correspond to the six possible forms that an
optimal switching strategy can take. We have also used various brackets to identify pairs that
appear in more than one groups, as well as the notation

axs =inf {z € T | L(Ry + gc)(Jz, B]) =0} (77)
and

bps =sup{z € T | L(R; — go)(Ja,z[) =0} . (78)
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‘ Table 1
[A1-B2] [A1-B41] A2-B41 )A2-B42( )A41-B42(

Group NA (A2-B1) (A41-Bl) A41-B2 ]A42-B2| |A42 B4l]
A2-B2  A41-B4l [A42 B42|
Group O (A2-B1) {A2-B3} (A41-Bl) {A41-B3}
Group C [A1-B2] (A3-B2) [A1-B41] (A3-B41)
(A2 Bl) )A2 B42( A2 B43 )A4l B42( (A4l Bl) [A42 B42|
Group WO {A2-B3} or {A41-B3} if bz > «

A43-B42 or A41-B43 with (73) being false
A1 B2] ]A42B2[ A43-B2 |A42 B4l[ [Al B4l] |A42 DB42|

Group WC (A3-B2) or (A3-B41) if as3 < 8
A42-B43 or A43-B41 with (72) being false
A43-B43
Group S A43-B42 or A41-B43 with (73) being true

A42-B43 or A43-B41 with (72) being true

It is straightforward to check that Assumption 6 excludes all of the cases A1, B1, A42
and B42, as well as the cases appearing in the middle lines of Groups WO and WC of Table 1.
In this context, we can see that our assumptions result in a classification of the problem data
in the six mutually exclusive groups of Table 2.

‘ Table 2 ‘
Group NA | A2-B2 A2-B41 A41-B2 A41-B41
Group O A2-B3 A41-B3
Group C A3-B2 A3-B41
A2-B43
Group WO A41 B43 if (73) is false
A43-B2
Group WC A43-BA1 if (72) is false
A43-B43
Group S A41-B43 if (73) is true
A43-B41 if (72) is true

We conclude this section with the following list of properties that we will need.

Lemma 2 In cases A42 and A43,

/} * B[(D(S) L(Ry+ gc)(ds) <0 < / ®(s) L(Ry, + ge) (ds), (79)

[a*’ﬁ[
(Bh + ge)(a”)

- /}; o] \II(S) ‘C(Rh + gc)<d8) < ¢(CL*)
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with equalities if L(Ry + g.)({a*}) =0, while, in cases B42 and B43,

[, voc-a)a <0< [ o o)), 1)
o (B )
[ @) £ =gt < T (52
with equalities if L(Ry — go)({b*}) = 0. Also, in cases A4l and A42,
CBt)@) [ g o
i (ST = [ 00 LR+ ge)ds) € 0,00 (53)
while, in cases B41 and B42,
R S S
g SN = [ W) £ — ) €] 0] (59

Proof. First, we note that (79) and (81) are simple consequences of (55), (57) and (67), (69),
respectively. Next, we observe that (55) and (57) imply that

/ B(s) L(Rn + g)(ds) < 0,
Ja*,8(

with equality if and only if L(Ry + g.)({a*}) = 0. In view of this inequality, (19), (21) and
(34), we can see that

(Bn+9c)(a”) _ R rmyvg0 (@)
¢(a*) ¢(a*)

_ /] YO LR+ g0)(ds) =

P(a”)
¢(a*)

/] g O(s) L(Rn + g0)(ds)
> _ /mﬂ W(s) L(Ry + g.)(ds),

which establishes (80). The proof of (82) follows symmetric arguments.
To see (83), we note that (36) in Assumption 5 and (53) or (55) imply that

lim D(s) L(Ry + gc)(ds) €] — 00, 0], (85)
ol Jiz,60

and

0< / O(s) L(Ry, + ge)(ds) < oo, for all z €], al.
Jasa|

Combining these inequalities, with the identity ® = ¢W /1 that follows from (13), and the fact
that the function ¢/v is decreasing, we can see that

os) o(a)
o0 > /]a,x[m(s)m £+ g () > 2 /}w[\l’(s) L(Ry+ g.)(ds) > 0,
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for all = € ]a,al. It follows that

i M s 5) =
lgﬁllrg w@j) /};J[‘I[( )£<Rh+gc><d ) 0.

This limit, the expression

(Bt (@) ola) i Y .
el _ ol /]a,x[llf()[,(Rh+gc)(d) /M[¢<>C<Rh+gc><d )

and (85) establish (83). The proof of (84) follows similar reasoning. O

5 A verification theorem

In view of the existing theory on similar stochastic control problems, we expect that, when
the problem data are smooth functions, the value function v identifies with a classical solution
w of the HJB equation that takes the form of the coupled quasi-variational inequalities

max{%aQ(az)wm(z, z) + b(x)wy(z, x) — r(x)w(z, z) + zh(z),
w(l —z,2) —w(z,x) — zg.(x) — (1 — z)go(:p)} =0, (86)

which are parametrised by z = 0,1. In the case that we consider in this paper, we do not
assume that the problem data are smooth, so, we have to consider generalised solutions of

(86).

Definition 3 A function w : {0,1} x Z — R is a solution of the HJB equation (86) if w(z, -)
is the difference of two convex functions,

—Lw(z,-) — zh is a positive measure on (Z, B(Z)), (87)
w(l—z,z) —w(z,2) — 2g.(x) — (1 — 2)go(x) <0, forall x €T, (88)

for z = 0 as well as for z = 1, and
Lw(0,-)(C.) = Lw(1,-)(Co) + h(Cy) =0, (89)

where the operator £ is defined by (1