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Abstract Following the framework of Çetin, Jarrow and Protter [4] we study the

problem of super-replication in presence of liquidity costs under additional restrictions

on the gamma of the hedging strategies in a generalized Black-Scholes economy. We

find that the minimal super-replication price is different from the one suggested by the

Black-Scholes formula and is the unique viscosity solution of the associated dynamic

programming equation. This is in contrast with the results of [4] who find that the

arbitrage free price of a contingent claim coincides with the Black-Scholes price. How-

ever, in [4] a larger class of admissible portfolio processes is used and the replication is

achieved in the L2 approximating sense.
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1 Introduction

Black-Scholes methodology for the pricing and hedging of options requires the market

to be frictionless and competitive. In other words, traders can trade any quantity of
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the asset without changing its price and the trade is subject to no transaction costs

and restrictions. There has been numerous works to relax these assumptions as it is

now well known that the markets do not operate frictionless and are not perfectly

competitive (see, e.g., [2], [3], [11], [12], [13], [14] [17] and [20]).

Relaxation of both the frictionless and competitive market hypotheses introduces

the notion of liquidity risk. Roughly speaking the liquidity risk is the additional risk

due to the timing and size of a trade. Recently, several authors have proposed a number

of methods to incorporate the liquidity risk into asset pricing theory (see [1], [4], [5], [6]

and [27]). The common characteristic of all these works is that the liquidity risk appears

as some nonlinear transaction cost which appears due to the imbalance between the

supply and demand in the financial market which is relevant if an agent is attempting

to trade large volumes in a short time.

In the literature dealing with the modeling of ‘liquidity risk’ one can clearly identify

two different approaches. In the first approach, the modeler concentrates on the effects

of the large trader’s portfolio on the price of the stock (see, e.g., [17], [26], [29], [28],

[18]). The authors postulate a feedback function that governs the dependence of the

equilibrium stock price on the portfolio actions of the large trader. We call this class

of models ‘models of feedback effects.’ The second class of models, e.g. [4], [5], [6], [27],

ignores the feedback effects of the trades and concentrates on the equalization of the

supply and demand locally in time so that trade volume does not have a lasting impact

on the asset price. Consequently the wealth process of a trader in an illiquid market

can be decomposed into two components such that one comes from the gains/losses

due to the changes in the fundamental value of the stock, which does not depend on

the history of the trades, and the other is the liquidity costs incurred over time due to

the changes in the position. In other words this class of models studies the behavior

of price-taking traders in markets where the change of one’s position has additional

liquidity costs.

In this work we stay within the framework of second class of models. In particu-

lar, we follow the model suggested by Çetin, Jarrow and Protter [4] who introduced

the so-called “supply curve” to model the asset price as a function of size and time.

Starting with the given supply curve for, say, the stock, the authors show in [4] that

the existence of the liquidity costs makes the trading strategies with infinite quadratic

variation infeasible since they incur infinite liquidity costs. One important consequence

of their modeling is that the continuous trading strategies of finite variation incur no

liquidity costs; thus, the market is approximately complete (in an L2-sense) if there

exists a unique equivalent martingale measure for the ‘marginal price process’ (see [4]

for details). In particular, they show that in a Black-Scholes type economy with liq-

uidity costs the price of an option is given by the standard Black-Scholes formula and

the approximate hedging strategy can be obtained by some appropriate averaging of

the Black-Scholes hedge (see [5] for some further results and numerical and empirical

studies).

On the other hand, the liquidity model of [4] produces a nonzero liquidity premium

for options when considered in discrete time (see [6] and results therein). If one looks at

the self-financing condition in [4] in continuous time, which we recall in Section 2, one

notices that the self-financing condition is defined to be the limit of the self-financing

conditions in discrete time when the time step tends to zero. The discrete-time version

of the self-financing condition of [4] is very natural since the only assumption on the

liquidity cost, other than measurability, is that the bigger the position to liquidate

the larger is the liquidity cost. Therefore, one naturally wonders what happens to the
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liquidity premium when one passes to the continuous-time limit as it is shown by [4]

that the pricing formulas for the contingent claims in their model coincide with those

in the frictionless markets.

We see this situation as a paradox of the liquidity model of [4] and argue in this

paper that the absence of the liquidity premium is linked to the choice of the set

of admissible strategies and show that one can find a nonzero liquidity premium in

continuous time for a set of admissible strategies appropriately defined.

The correct choice of an admissible set of strategies is crucial even in frictionless

markets. Indeed, in models of markets with no friction in discrete time, no conditions,

other than adaptability, is needed to impose on the trading strategies in order to

solve the problems of pricing, hedging and utility maximization. However, as soon as

we consider the continuous-time limit of these models, the price of any contingent

claim becomes unbounded from below (i.e., −∞) and the value function of the utility

maximization problem will typically be unbounded (i.e.,∞) as one can create arbitrage

opportunities due to the existence of doubling strategies. It is now well-known that

this paradox can be solved by imposing certain restrictions on the trading strategies,

such as certain integrability or lower bound assumptions on the strategies. The notion

of admissibility in frictionless markets is now well-understood as an integral part of

financial modeling. We believe that the apparent paradox in the model of [4] can be

solved in a similar way by an appropriate choice of admissibility condition in illiquid

markets. The main purpose of this paper is to define a convenient set of admissible

strategies so that the liquidity cost does not vanish in the continuous-time limit. This

is achieved by placing constraints on the dynamics of the trading strategies and their

corresponding gamma processes as in [7]. In a recent paper, Gökay and Soner [19]

showed that the continuous time limit of the corresponding Binomial model yields

exactly the same pricing equation as in this paper. Since the trading strategies in the

Binomial model are not restricted, the convergence result of [19] supports our choice

of admissible strategies.

The restrictions that we place on the trading strategies in this paper can be seen

as a relaxation of the restrictions in [22]. First of all, we allow a trading strategy to

have infinite variation. More precisely, the admissible trading strategies form a larger

subset of semimartingales (see (2.3)). As seen, the finite variation part of a trading

strategy consists of a pure-jump component and an absolutely continuous component.

The remaining infinite variation part is an integral with respect to the marginal price

process of the stock, which is a martingale since we work under the unique risk-neutral

measure for the marginal price process. The integrand in the absolutely continuous

part of the trading strategy can be viewed as the rate of change of the trading strategy

with respect to time while the integrand in the infinite variation part can be seen as

the rate of change with respect to the changes in the stock price. As in [22] we assume

these ‘derivatives’ are bounded (see Section 2 for the exact definitions). However, we

do not impose uniform bounds over all admissible strategies. The price to pay for this

relaxation is that we are no longer happy with the mere L2-convergence but price

contingent claims using super-replication arguments. We show that a trading strategy

that attains the minimal super-replication cost is a perfect replicating strategy and its

cost of construction contains a liquidity premium, in contrast with the results of [4].

A related work on such trading restrictions can be found in Longstaff [22] who

suggests a uniform bound on the time derivative of trading strategies to study the

optimal portfolios in an illiquid market. More recently, Rogers and Singh [27] studied
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the Merton problem under liquidity costs where they placed similar restrictions on the

trading strategies.

Under our admissibility condition, we show in Proposition 1 that those strategies

with jumps are not optimal so that the super-hedging problem can be restricted to

continuous hedging strategies. This feature of our admissibility set is thus in agreement

with the conventional wisdom according to which it is better to place consecutive small

trades rather than a large one at once in illiquid markets. Our main result, Theorem 1,

proves that the super-replication price V is the unique viscosity solution of the dynamic

programming equation

−Vt −
s2σ2

4`

[
−`2 +

(
(Vss + `)+

)2
]

= 0 . (1.1)

where the function ` > 0 is the liquidity index of the market defined in (2.5), below. In

fact, for more liquid markets ` is larger, with ` = ∞ referring to the complete Black-

Scholes model. Using this equation, it is easy to show that, unless the pay-off is affine,

the solution to this equation is strictly larger than the Black-Scholes price. Hence there

is a liquidity premium. This is proved in Corollary 1. Moreover, this liquidity premium

can be calculated numerically using available methods for the solutions of PDEs of

type (1.1).

These results are proved by the techniques developed in a series of papers by Soner

and Touzi [30–33], by Cheridito, Soner and Touzi in [7,8] and by Cheridito, Soner,

Touzi and Victoir in [9].

Although the set of admissible strategies that we consider is motivated by techni-

cal integrability conditions, our results are comforted by a formal description of the

corresponding hedging strategy which has a relevant financial interpretation. As we il-

lustrate in Section 4 the optimal hedging strategy exhibits an asymmetry between the

claims with convex and concave payoffs. For derivatives with convex payoff the hedging

strategy is of dynamic Black-Scholes type. However, when the claim to be hedged has

a concave payoff there are two options for the trader: either employ a buy-and-hold

strategy at a higher cost of construction but no further liquidity costs, or employ a

perfect Black-Scholes type replicating strategy but expect liquidity costs growing over

time. Depending on the market conditions it might be cheaper to use the buy-and-hold

type hedge than the replicating strategy when the liquidity cost associated with the

replicating strategy is expected to be high. In Section 4 we show that this decision

should be based on the level of concavity of the value function for the minimal super-

replication price and give a precise level below which it is cheaper to use a buy-and-hold

strategy.

The outline of the paper is as follows. Section 2 formulates the problem. Section 3

presents the main results. Section 4 describes the formal hedging strategy. Section 5

shows the viscosity property of the dynamic programming equation. Section 6 discusses

the terminal condition, Section 7 finds the growth condition for the value function,

while Section 8 shows the uniqueness of the solution. In the Appendix, we discuss the

convexity properties and an illustrative example.

2 Problem formulation

Throughout this paper, we fix a finite time horizon T > 0, and we consider a one-

dimensional Brownian motion W = {W (t) , 0 ≤ t ≤ T} defined on a complete proba-
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bility space (Ω,F ,P). We denote by F = {F(t) , 0 ≤ t ≤ T} the smallest filtration that

contains the filtration generated by W and satisfies the usual conditions.

2.1 The financial market

The financial market consists of two assets, and the objective of the investor is to

optimally allocate his wealth between these assets in order to hedge some contingent

liability.

The first asset is non-risky. Without loss of generality, we normalize its price to

unity, which means that this asset is taken as the numéraire.

The risky asset is subject to liquidity cost. Following Çetin, Jarrow and Protter

[4], we account for the liquidity cost by modeling the price process of this asset as a

function of the exchanged volume. We thus introduce a supply curve

S (t, S(t), ν) ,

where ν ∈ R indicates the volume of the transaction, the process S(t) = S (t, S(t), 0)

is the marginal price process defined by the stochastic differential equation

dS(r)

S(r)
= µ (r, S(r)) dr + σ (r, S(r)) dW (r) (2.2)

and some given initial condition S(0), and S : R+×R+×R −→ R is a smooth function

representing the price per share for some given volume of transaction and the marginal

price. In addition to the technical conditions imposed in [4] on the supply curve, we

assume for each t and s,

∂S

∂ν
(t, s, 0) > 0.

In order to ensure that the stochastic differential equation (2.2) has a unique strong

condition, we assume that the coefficient functions µ, σ : [0, T ]×R+ −→ R satisfy the

usual local Lipschitz and linear growth conditions.

In order to exclude arbitrage opportunities, we assume the existence of an equiva-

lent martingale measure P0, i.e.

dS(r)

S(r)
= σ (r, S(r)) dW 0(r) ,

where W 0 is a standard Brownian motion under P0, so that the process S is a martin-

gale under P0.

We shall frequently move the time origin from zero to an arbitrary t ∈ [0, T ], and we

will denote by {St,s(r), r ∈ [t, T ]} the process defined by (2.2) and the initial condition

St,s(t) = s.
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2.2 Trading strategies

A trading strategy is defined by a pair (X,Y ) where X(t) denotes the wealth in the

bank, and Y (t) is the number of shares held at each time t in the portfolio. For reasons

which will be clear later, we restrict the process Y to be of the form

Y (r) =

N−1∑
n=0

yn1{r≥τn+1} +

∫ r

t
α(u)du+

∫ r

t
Γ (u)dSt,s(u) , (2.3)

so that it has finite quadratic variation. Here, t = τ0 < τ1 < . . . is an increasing

sequence of [t, T ]-valued F−stopping times, the random variable

N := inf{n ∈ N : τn = T}

indicates the number of jumps, yn is an Rd-valued, F(τn)−measurable random variable

satisfying yn1{τn=T} = 0; α and Γ are two F−progressively measurable real processes.

We will show in the next section that it is not optimal to have jumps in Y .

We continue by deriving the continuous-time dynamics of our state variables. This

derivation follows the discrete-time argument of [4]. Let t = t0 < . . . < tn = T be a

partition of the interval [0, T ], and set δψ(ti) := ψ(ti) − ψ(ti−1) for any function ψ.

By the self-financing condition, it follows that

δX(ti) + δY (ti)S (ti, Sti , δY (ti)) = 0 , 1 ≤ i ≤ n .

Summing up these equalities, it follows from direct manipulations that

X(T ) + Y (T )S(T ) = X(t) + Y (t)S(t)

−
n∑
i=1

[δY (ti)S (ti, Sti , δY (ti)) + (Y (t)S(t)− Y (T )S(T ))]

= X(t) + Y (t)S(t)−
n∑
i=1

[δY (ti)S(ti) + (Y (t)S(t)− Y (T )S(T ))]

−
n∑
i=1

δY (ti) [S (ti, Sti , δY (ti))− S (ti)]

= X(t) + Y (t)S(t) +

n∑
i=1

Y (ti−1)δS(ti)

−
n∑
i=1

δY (ti) [S (ti, Sti , δY (ti))− S (ti)] . (2.4)

The continuous-time dynamics of the process

Z := X + Y S

are obtained by taking limits in (2.4) as the time step of the partition max{(ti −
ti−1), 1 ≤ i ≤ n} shrinks to zero. The last sum term in (2.4) is the term due to the

liquidity cost. Under the smoothness assumption on ν 7−→ S(t, s, ν), it follows that

n∑
i=1

δY (ti) [S (ti, S(ti), Sti , δY (ti))− S (ti, S(ti), 0)]

−→
∫ T

t

d[Y, Y ]cr
4` (r, S(r))

+

N−1∑
k=0

yk
[
S
(
τk, S(τk), yk

)
− S (τk)

]
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in probability, where

`(t, s) :=

[
4
∂S

∂ν
(t, s, 0)

]−1

. (2.5)

In view of the form of the continuous-time process Y in (2.3), this provides

Z(r) = Z(t) +

∫ r

t
Y (u)dS(u)−

∫ r

t

1

4` (r, S(r))
Γ (r)2σ (r, S(r))2 S(r)2dr (2.6)

−
N−1∑
k=0

yk
[
S
(
τk, S(τk), yk

)
− S (τk)

]
1{r<τk+1} .

In the absence of jumps in the portfolio process, the process Z approaches the classical

wealth process in frictionless markets for a large `. Therefore, we will refer to ` as the

liquidity index of the market.

In the absence of liquidity costs, the process Z represents the total value of the

portfolio of the investor. In the present setting, we assume that the investor is not

subject to any liquidity cost at the final time T . Then, although the process Z has

no direct financial interpretation, its final value Z(T ) is the total value of the investor

portfolio at time T . A discussion of initial and terminal liquidity costs is given in

Remark 1.

2.3 Admissible trading strategies and the hedging problem

The purpose of the investor is to hedge without risk some given contingent claim

G = g (S(T )) for some function g : R+ −→ R .

In order to formulate the super-hedging problem in the context of our financial market

with liquidity cost, we need to restrict further the trading strategies as in [33].

For B, b ≥ 0, and for an F−progressively measurable process {H(r) , t ≤ r ≤ T}
taking values in R, we define

‖H‖B,bt,s :=

∥∥∥∥∥ sup
t≤r≤T

|H(r)|
1 + |St,s(r)|B

∥∥∥∥∥
Lb(Ω,F,P)

.

Throughout the paper, we fix B > 0. A trading strategy Y defined by (2.3) is said to

be admissible if there is a parameter b > 0 such that

‖N‖∞ <∞ , ‖Y ‖B,∞t,s + ‖Γ‖B,∞t,s + ‖α‖B,bt,s < ∞ ,

and the process Γ is of the form

Γ (r) = Γ (t) +

∫ r

t
a(u)du+

∫ r

t
ξ(u)dW (u) , (2.7)

where a and ξ are two real-valued F−progressively measurable processes satisfying,

‖a‖B,bt,s + ‖ξ‖B,2t,s < ∞ .

Clearly a larger parameter B implies a larger admissible set. Hence, the parameter B

can be viewed as an indicator of market depth. We refer to [8] and [33] for a justification
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of such restrictions. In addition, already discussed convergence result of the Binomial

model [19] provides further support for this class of trading strategies.

Also, notice that we use the framework of [33] where the restrictions on the drift

terms α and a are relaxed compared to [8]. This relaxation plays a crucial role in the

present paper because, in contrast with our previous work [8], the state variable Z in

(2.6) exhibits a jump term.

The collection of all admissible trading strategies Y = {Y (r), 0 ≤ r ≤ T} is denoted

byAt,s. For every Y ∈ At,s, we denote by ZYt,z the process defined by (2.6). The purpose

of this paper is to solve the super-hedging problem

V (t, s) := inf
{
z ∈ R : ZYt,z(T ) ≥ g (St,s(T )) for some Y ∈ At,s

}
. (2.8)

Notice that this formulation ignores the liquidity cost both at the time origin t and the

final time T . As a consequence of Proposition 1 below, the elimination of the initial

liquidity cost does not entail any loss of generality, see Remark 1. However the absence

of liquidity cost at the final time is a standing assumption throughout the paper.

In the subsequent section, we will prove that we can restrict the portfolios to be

continuous, so that the above value function V coincides with

V cont(t, s) := inf
{
z ∈ R : ZYt,z(T ) ≥ g (St,s(T )) for some Y ∈ Acontt,s

}
, (2.9)

where Acontt,s consists of all continuous portfolio processes in At,s.

3 Main results

We need the following mild technical conditions. The first assumption is needed to

ensure that the value function is locally bounded.

g is bounded from below and sup
s>0

g(s)

1 + s
< ∞ . (3.10)

Indeed, the lower bound on g is immediately inherited by V , and the affine growth

condition guarantees the existence of a trivial buy-and hold strategy which super-

hedges the contingent claim g (S(T )), thus producing a locally bounded upper bound

for g, see Proposition 2 below.

We place the following standard condition on the volatility function,

σ is bounded and Lipschitz continuous. (3.11)

The following condition on the liquidity function is needed for the comparison result

of Section 6,

` is locally Lipschitz continuous, and (3.12)

lδ := inf
{
`(t, s) : δ ≤ s ≤ δ−1, t ∈ [0, T ]

}
> 0 for every δ > 0 .
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3.1 Optimality of continuous portfolios

In this subsection, we will first prove the optimality of continuous portfolio processes.

Intuitively, it is clear that in an illiquid market it is better to make consecutive small

trades instead of a large one. Then taking this idea to the limit, we formally see that

jumps in the portfolio are not optimal. The following result proves this intuition. From

the technical viewpoint, let us stress that the relaxation on the processes α and a

plays a crucial role for the next result so that our definition of the set of admissible

strategies allows to preclude jumps from optimal strategies, thus agreeing with the

economic intuition.

Proposition 1 Assume (3.10), (3.11) and (3.12). Then, V cont = V .

Proof. Fix (t, s) in [0, T ) × (0,∞). The inequality V cont(t, s) ≥ V (t, s) is obvious as

Acontt,s ⊂ At,s. To prove the reverse inequality, let z > V (t, s) and Y ∈ At,s be such

that Z(T ) ≥ g (S(T )) a.s.. We denote by τ1, . . . , τN the jump times of the portfolio

process Y . From the definition of admissible strategies, recall that ‖N‖∞ <∞.

Let ε > 0 be given. We first start by eliminating the final jump at time τN . Notice

that ZYt,z(T ) = ZYτN ,ZτN
(T ) ≥ g(S(T )) a.s.. Then, with zN := z + ε, it follows from

Lemmas 5.2 and 5.4 in [33] that ZYNt,zN (T ) ≥ g(S(T )) a.s., for some YN ∈ At,s with

YN = Y on [t, τN ) and (YN , ΓN ) is continuous on (τN−1, T ].

Repeating the above procedure backward, we may eliminate all the jumps. Hence,

with z0 := z + ε‖N‖∞, there exists Y0 ∈ Acontt,s such that Y t,z0,Y0(T ) ≥ g(S(T )) a.s..

Hence, z0 ≥ V cont(t, s). Since ε > 0 and z > V (t, s) are arbitrary, we conclude that

V (t, s) ≥ V cont(t, s). 2

We close this subsection by discussing the initial and final liquidation costs.

Remark 1 The previous result on the continuity of the optimal portfolio also proves

that there is no initial liquidity cost. Indeed, suppose we start with a portfolio value

different than the optimal one. Then by shifting the initial wealth by ε, we can use the

Proposition 5.1 of [31]. This shows that we can construct a super-replicating portfolio

with an arbitrary initial position in the risky asset as long as the initial wealth in the

bank account is epsilon larger.

The situation at the final time is different. At maturity, we are forced to liquidate.

This results in a liquidation cost. We chose to ignore this in our analysis. Including

this cost will make the liquidity premium even larger. Hence this assumption does not

affect the chief result of this paper; namely the existence of a liquidity cost. On the

other hand, this final liquidity cost can be driven to zero, if a nonzero amount of time

is given for liquidation.

The liquidity premium that we prove to exist, however, is due to continuous time

trading. Moreover, this premium can not be avoided by spreading our trades over time.

This is the motivation behind ignoring the final liquidity cost.

3.2 The dynamic programming equation characterization

In this subsection, we prove the viscosity property of the minimal super-replication

cost. Let V and V cont be as in (2.8) and (2.9).
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Theorem 1 Assume (3.10), (3.11), (3.12) and that the payoff function g is contin-

uous. Then, V = V cont is the unique continuous viscosity solution of the dynamic

programming equation

−Vt + Ĥ (t, s, Vss) := sup
β≥0

(
−Vt −

1

2
s2σ2(Vss + β)− s2σ2

4`
(Vss + β)2

)
= 0(3.13)

on [0, T )×(0,∞), satisfying the terminal condition V (T, .) = g and the growth condition

−C ≤ V (t, s) ≤ C(1 + s), (t, s) ∈ [0, T ]× R+, for some constant C > 0 . (3.14)

The proof of this theorem is completed in several steps. The viscosity property

of the value function and the terminal data follows from a general result proved in

Theorem 3.2 of the paper [33]. The growth condition (3.14) is derived in Section 5.

Finally, the uniqueness result follows from the comparison result of Section 6.

We close this subsection by several observations on the structure of the equation

(3.13). First, observe that the dynamic programming equation (3.13) is parabolic, i.e.

non-increasing in Vss, as all dynamic programming equations should be. Moreover, the

differential operator appearing on the left-hand side of (3.13) is the parabolic envelope

of the first guess operator

−Vt +H (t, s, Vss) := −Vt −
1

2
s2σ2Vss −

s2σ2

4`
V 2
ss .

We refer to [7] for more details on the construction of parabolic majorants Ĥ of H.

Finally, by direct manipulation, we see that the maximizer in the dynamic pro-

gramming equation (3.13) is given by

β̂(t, s) := (Vss(t, s) + `(t, s))− , (3.15)

so that we can rewrite the dynamic programming equation as (1.1).

3.3 Liquidity premium

Let VBS be the Black-Scholes price of the claim g. Clearly, V ≥ VBS and the liquidity

premium is the difference. Our next result states that liquidity premium is zero only

for affine pay-offs.

Corollary 1 Assume that the hypothesis of the previous theorem hold. Then, V = VBS
if and only if g is an affine function. Hence the liquidity premium is non-zero for all

non-trivial claims.

Proof. By definition of Ĥ, it is easily seen that

−Vt −H
(
t, s, Vss + β̂

)
= 0

where β̂ ≥ 0 is given by (3.15). If V = V BS , then V is smooth and is a classical solution

both of the above equation and the Black-Scholes equation. This immediately implies

that β̂ = Vss = 0. Then g is affine. The reverse implication is trivial by verifying that

affine functions satisfies the PDE of V . 2
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4 Formal description of an optimal hedging strategy

We now provide a formal description of an optimal hedging strategy for a payoff g(ST )

under liquidity costs. An illustrative example is studied in the Appendix 7.2. The

analysis of this section will be restricted to a formal discussion as we will ignore some

admissibility restrictions and regularity conditions.

For concreteness we work in the context of the classical Black-Scholes model, i.e.

σ(t, s) ≡ σ, for some positive constant σ. This would also enable us to compare our

results with the classical Black-Scholes formula. We also assume that ` is independent

of the t-variable.

4.1 Usual hedge

When the minimal super-replication cost V is a classical solution of (3.13) and if

Ĥ(t, s, Vss(t, s)) = H(t, s, Vss(t, s)) for all (t, s), then the usual hedge is replicating.

We first state and prove this result. Then, in the Appendix, we provide sufficient

conditions on `.

First recall that Ĥ(t, s, Vss(t, s)) = H(t, s, Vss(t, s)) if and only if Vss(t, s) ≥
−`(t, s). This condition is equivalent to the convexity of

V̂ (t, s) := V (t, s) +

∫ s

1

∫ s′

1
`(t, s′′) ds′′ds′.

Theorem 2 Let V be the value function. Assume that V̂ defined above is convex.

Then, V is smooth and it is a classical solution of (3.13). Moreover, the classical hedge

Y (u) = Vs(u, S(u)) is replicating.

Proof. We know that V is a viscosity solution of (3.13). Moreover, the convexity of

V̂ defined above implies that optimizer β in (3.13) is zero and that (3.13) is locally

uniformly elliptic with a convex nonlinearity. Then, one can use the celebrated regu-

larity result of Evans [15] and Krylov & Safanov [23,24] to conclude that V is smooth.

Therefore, it is a classical solution of (3.13). Since (3.13) is a parabolic equation in one

space dimension, one can prove this regularity result directly without referring to the

deep regularity theory of Evans & Krylov. Indeed, a fixed point argument using the

results and the techniques from the classic textbook of Ladyzhenskaya, Solonnikov and

Uralceva [25] also yields this regularity.

Moreover,

Vss(t, s) > −`(t, s), ∀ (t, s) (4.16)

and (3.13) holds with Ĥ(t, s, Vss(t, s)) = H(t, s, Vss(t, s)). Then, by a standard appli-

cation of the Ito calculus, we can show that the classical hedge Y (u) = Vs(u, S(u)) is

replicating. 2

In the Appendix 7.1, we discuss two sufficient conditions for (4.16).
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4.2 Buy-and-hold versus dynamic hedging

In this subsection, we discuss the general structure of the hedge. An illustrative example

with g(s) = s ∧ 1 will later be discussed in subsection 7.2. To simplify the discussion,

we assume that we the supply function is of the following form:

S (s, ν) := seαsν/4 so that `(s) =
1

αs2
,

Set

φ(t, s) :=
1

4α

[
σ2(t− T ) + 4 ln s

]
, (t, s) ∈ [0, T ]× R+ , (4.17)

so that φss + ` = 0.

Before turning to the description of a hedging strategy in the context of our financial

market with liquidity costs, we would like to discuss the asymmetry between concavity

and convexity from the point of view of superhedging. This will turn out to be the

driving intuition for our hedging strategy.

The Black-Scholes hedging theory in a complete market says that the optimal

superhedging strategy of some contingent claim is in fact a perfect replicating strategy,

and consists in the dynamic strategy of holding at each time r, the number ∂V
∂s (r, Sr)

of shares of the underlying risky asset. In our context, this strategy is more expensive

than in the frictionless Black-Scholes model since it induces a non-zero gamma process,

implying a penalization on the wealth process.

A buy-and-hold strategy on some time interval [t, τ) is defined by Y (r) = Y (t) for

every r ∈ [t, τ). In particular, Γ = 0 on [t, τ), the wealth process is not subject to

the liquidity cost penalty, and it is given by the same expression as in the classical

frictionless framework:

Z(r) = Z(t) + Y (t) (S(r)− S(t)) for r ∈ [t, τ) .

For a concave payoff, a trivial static superhedging strategy is available. Indeed, per-

forming the buy-and-hold strategy Y (t) = ∂g
∂s (S(t)) on [t, τ) (for a non-smooth g, let

Yt be a measurable selection in the supergradient of g at S(t)), and starting from the

capital Zt = g(S(t)), it follows from the concavity of the payoff function g that

Z(τ) = Z(t) + Y (t) (S(τ)− S(t)) ≥ g (S(τ)) .

This discussion shows that, in our context of financial market with liquidity costs, when

the super-replication value is concave, there is a trade-off between

- paying a higher cost for a buy-and-hold strategy, thus avoiding the liquidity costs,

- performing the Black-Scholes replicating strategy but paying the liquidity costs.

The hedging strategy which will be described in the next subsection provides a

precise definition of the level of concavity below which the liquidity cost induced by

a perfect hedging strategy is so significant that it is cheaper to use a buy-and-hold

strategy. In the subsequent subsection we answer the question how a risk manager

prefers a Black-Scholes type replicating strategy over a buy-and-hold strategy by split-

ting the value of the option into two parts and replicating one part by the classical

Black-Scholes hedge while hedging the other part by a combination of a buy-and-hold-

strategy together with a classical hedge. The latter is achieved by optimally separating

the state space into regions in which one or the other strategy is optimal.
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4.3 Hedging under liquidity costs

In order to discuss the hedging strategy, we introduce the following open set:

C := {(t, s) ∈ [0, T )× (0,∞) : Vss(t, s) < −`(t, s)} .

Observe that on C, (1.1) reduces to

−Vt +
1

4
s2σ2(t, s)`(s) = 0 . (4.18)

Note that (V − φ)ss < 0 and (V − φ)t = 0 on C. This implies that (V − φ)tt =

(V − φ)ts = 0 on C. Hence

(t, s) 7−→ (V − φ)(t, s) is concave and (V − φ)t = 0 on C . (4.19)

Given an arbitrary initial position (t, s) ∈ C, we define the exit time

θ := inf{u > t : (u, S(u)) 6∈ C} .

We now consider the initial capital V (t, s) at time t, together with the hedging strategy

{Y (u), t ≤ u < θ} defined by

Y (t) := Vs(t, s), Γ (u) := φss(u, S(u)), and α(u) := Lφs(u, S(u)) .

In words, this hedging strategy consists in dynamically replicating the value function

φ, and performing a buy-and-hold strategy in order to super-hedge the remaining value

(V − φ). Then, we directly calculate for τ ∈ (t, θ) that:

Z(τ) = V (t, s) +

∫ τ

t
Y (u)dS(u)− 1

4

∫ τ

t
`−1(S(u))Γ 2(u)σ2(u, S(u))S2(u)du

= V (t, s) + Vs(t, s)(S(τ)− s) +

∫ τ

t

(∫ u

t
Lφs(r, S(r))dr + φss(r, S(r))dS(r)

)
dS(u)

−1

4

∫ τ

t
`(u, S(u))σ2S2(u)du

= (V − φ)(t, s) + (V − φ)s(t, s)[S(τ)− s] + φ (τ, S(τ))

−
∫ τ

t

(
Lφ(u, S(u)) +

1

4
`(u, S(u))σ2(u, S(u))S2(u)

)
du ,

where we applied Itô’s lemma twice to the process φ(u, S(u)). We next observe that

Lφ = φt +
1

2
σ2s2φss = −1

4
`(t, s)σ2s2 on C .

Together with (4.19), this implies that

Z(τ) = (V − φ)(t, s) + (V − φ)s(t, s)[S(τ)− s] + φ (τ, S(τ))

≥ (V − φ) (τ, S(τ)) + φ (τ, S(τ)) = V (τ, S(τ)) .

This shows that the above defined strategy is a super-hedging strategy in C. Outside

C, one can show by Itô’s lemma that the hedging strategy consists in performing a

perfect replicating Black-Scholes strategy on the total value function V , i.e. Y (u) =

Vs(u, S(u)).

In conclusion, the super-hedging strategy in our financial market with liquidity

costs is formally described by applying successively a perfect dynamic replicating Black-

Scholes strategy outside C and the above mixed strategy in C which consists in dynam-

ically hedging φ and super-hedging the difference (V − φ) by means of a buy-and-hold

strategy .
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5 Growth condition

In this section, we prove that the growth condition (3.10) placed on the pay-off g

implies a similar growth condition on the minimal super-replication prices, ṽ and v.

Proposition 2 Assume (3.10). Then, there is a constant C so that

−C ≤ V (t, s) ≤ C[1 + s], ∀ t ∈ [0, T ], s ≥ 0. (5.20)

Proof. Let −C be a lower bound for g. Fix any initial point (t, s), and let Y be a super-

replicating portfolio. Since the corresponding wealth process ZY is a supermartingale,

we have the following inequalities

Z(t) ≥ E[Z(T ) | Ft] ≥ E[g(St,s(T )) | Ft] ≥ −C.

Hence we have the lower bound.

To derive the upper bound, we use the bound g(s) ≤ C(1 + s), s > 0, for some

C > 0, of (3.10). Since V (T, s) = g(s), it only remains to derive this upper bound for

t < T . Consider the buy-and-hold strategy consisting in holding an amount C on the

bank and C shares of the risky asset until the maturity T , i.e. Y (u) = C. Clearly, ZY

is super-replicating. Notice that this buy-and-hold strategy induces a liquidity cost at

the initial time t. As in Proposition 1, this liquidity cost can be avoided within our

set of admissible strategies, see also Remark 1. Hence, for every ε > 0, one can find a

super-replicating strategy with initial cost ε+C(1+s), and therefore V (t, s) ≤ C(1+s)

for every t ∈ [0, T ). 2

6 Uniqueness

To complete the proof of the main Theorem 1, we need to prove a comparison result

for (3.13). Due to the quadratic nonlinearity in (3.13), standard results do not directly

apply to this equation. Moreover, due to the lack of homogeneity in the s-variable, the

techniques used in [2] do not apply either. However, we use the special structure of the

equation coming from the fact that it is one dimensional, and consider the following

equivalent equation.

− A(t, s) Vt + F (t, s, Vss) = 0, (6.21)

where

A(t, s) :=
4`(t, s)

s2σ2(t, s)
, F (t, s, Vss) :=

[
`2(t, s)−

(
(Vss + `(t, s))+

)2
]
. (6.22)

Proposition 3 Let Condition (3.11) and (3.12) hold, and let w̃ be a lower semi-

continuous supersolution of (6.21) and w be an upper semi-continuous subsolution of

(6.21). Further assume that w̃ and w satisfy the growth condition (5.20) and the bound-

ary conditions

w(T, s) ≤ w̃(T, s), ∀ s ≥ 0, (6.23)

w(t, 0) ≤ w̃(t, 0), ∀ t ∈ [0, T ]. (6.24)

Then, w ≤ w̃ on [0, T ]× R+.
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Proof.

1. Set

ψ(t, s) := w(t, s)− w̃(t, s).

The goal is to show that ψ ≤ 0 on [0, T ]×R+. We suppose to the contrary and assume

that there exists (t0, s0) ∈ [0, T ] × R+ such that ψ(t0, s0) > 0. Since ψ ≤ 0 on the

parabolic boundary
(
{T} × R+) ∪ ([0, T ]× {0}) and ψ is upper semi-continuous, it is

clear that t0 < T and s0 > 0. Moreover, again by the upper semi-continuity, for any

compact subset K ⊂ [0, T ]× R+ containing (t0, s0) there exists δ > 0 so that we have

sup
K

ψ = sup
N∩K

ψ where N := [0, T − 2δ]× [2δ, δ−1) .

2. Following the usual trick in the theory of viscosity solutions [10], we construct a

strict super-solution to (6.21). In view of the previous step, we only need this property

on the domain N .

For γ ≥ 1, we set

η(t, s) := [s ln(s) + γ] (T − t+ 1).

so that, for (t, s) ∈ N

I[η](t, s) := −A(s)ηt(t, s) + F (s, ηss(t, s))

= A(s)[s ln(s) + γ]− (T − t+ 1)2

s2
− 2`(s)(T − t+ 1)

s

=
1

s2

(
4`(s)

σ2(t, s)
[s ln(s) + γ]− (T − t+ 1)2 − 2s`(s)(T − t+ 1)

)
=

1

s2

(
4`(s)

σ2(t, s)
[s ln(s) + γ]− c− cs`(s)

)
≥ `(s)

s2σ2(t, s)

(
[2γ − σ2(t, s)

`(s)
c] + [4s ln(s) + 2γ − cσ2(t, s)s]

)
.

By conditions (3.11) and (3.12),

sup
N

{
σ2(t, s)

`(s)
+ σ2(t, s)

}
<∞.

Hence, there is γ ≥ 1 so that

c[η] := inf
N

I[η] > 0.

Let C be the constant in (5.20). We can choose γ ≥ 1 so that in addition to above

inequality, we also have

η(t, s) ≥ C[1 + s] ≥ max{ w(t, s) ; w̃(t, s) }. (6.25)

3. For µ ∈ [0, 1] set

wµ := (1− µ) w̃ + µ η.

Let I[·] be defined as in the previous step. Then, by the concavity of F , on N ,

I[wµ] ≥ (1− µ) I[w̃] + µ I[η] ≥ µ c[η].

Hence, wµ is a strict super-solution of (6.21) on N .
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4. Set

ψµ(t, s) := w(t, s)− wµ(t, s).

In step 1, we assumed that ψ(t0, s0) > 0. Hence for µ sufficiently small we also have

ψµ(t0, s0) > 0. In view of (6.24), (6.23) and (6.25), ψµ ≤ 0 on the parabolic boundary

({T} × R+)(∪[0, T ] × {0}). Also for all µ > 0, the growth of η is faster than linear

and by (5.20) and step 1, we conclude that ψµ attains its maximum at some point

(tµ, sµ) ∈ [0, T − 2δ]× [2δ, (2δ)−1) ⊂ N :

ψµ(tµ, sµ) = sup
N

ψµ = sup
[0,T ]×[0,∞)

ψµ.

Fix µ > 0 satisfying above.

5. Let µ be as above and for α > 0, consider the auxiliary function

Φα,µ(t, s; t̄, s̄) := w(t, s)− wµ(t̄, s̄)− α

2
[|t− t̄|2 + |s− s̄|2].

In view of the previous step, for all small µ > 0 and sufficiently large α ≥ 1, there is a

maximizer (tα,µ, sα,µ, t̄α,µ, s̄α,µ) of Φα,µ. Moreover, as α tends to infinity, (tα,µ, sα,µ, t̄α,µ, s̄α,µ)

approaches to (tµ, sµ, tµ, sµ). Since (tµ, sµ) ∈ [0, T−2δ]×[2δ, (2δ)−1) ⊂ N , for all large

α, (tα,µ, sα,µ, t̄α,µ, s̄α,µ) ∈ N ×N .

Also,

lim
α→∞

α [|tα,µ− t̄α,µ|2+|sα,µ−s̄α,µ|2] = 0, cµ := sup
α>1

[|sα,µ|+|s̄α,µ|] <∞. (6.26)

6. By the Crandall-Ishii Lemma (see [10] or Section V.6 in [16]), there are aα,µ ≤ bα,µ
such that

(qα, pα, aα,µ) ∈ D+(1,2)w(tα,µ, sα,µ), (qα, pα, bα,µ) ∈ D−(1,2)wµ(t̄α,µ, s̄α,µ),

qα := α [tα,µ − t̄α,µ], pα := α [sα,µ − s̄α,µ],

and the sets D−(1,2), D+(1,2) are defined in [10,16]. Formally, qα is the generalized

time derivative, pα is the generalized space derivative and aα,µ, bα,µ are the generalized

second derivatives. We now use the viscosity property of w and wµ to obtain,

−A(tα,µ, sα,µ)qα + F (tα,µ, sα,µ, aα,µ) ≤ 0, (6.27)

−A(t̄α,µ, s̄α,µ)qα + F (t̄α,µ, s̄α,µ, bα,µ) ≥ µc[η]. (6.28)

Moreover, as in page 217 in [16], we can show that aα,µ, bα,µ satisfy |aα,µ|+| ≤ bα,µ| ≤
α and [

aα,µ 0

0 − bα,µ

]
≤ 3α

[
1 −1

−1 1

]
. (6.29)

Using (6.26), (6.29) and the local Lipschitz property of the coefficients (3.11)-(3.12),

we will show in Lemma 1 below that there is a constant Cµ such that∣∣A(tα,µ, sα,µ)−A(t̄α,µ, s̄α,µ)
∣∣ |qα| ≤ Cµα

(
|tα,µ − t̄α,µ|2 + |sα,µ − s̄α,µ|2

)
(6.30)

−F (tα,µ, sα,µ, aα,µ) + F (t̄α,µ, s̄α,µ, bα,µ) ≤ Cµ
(
α|tα,µ − t̄α,µ|2 + α|sα,µ − s̄α,µ|2

+|tα,µ − t̄α,µ|+ |sα,µ − s̄α,µ|
)

(6.31)
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7. Subtract (6.27) from (6.28) and then use (6.30). The result is,

µ c[η] ≤ Cµα [|tα,µ − t̄α,µ|2 + |sα,µ − s̄α,µ|2].

We let α tend to infinity and use (6.26). This implies that µc[η] ≤ 0. However, this

contradicts the fact that µ and c[η] are strictly positive. Hence, there is no (t0, s0) as

in step 1. Therefore, ψ ≤ 0 on [0, T ]× R+. 2

We complete the above proof by proving the technical estimate (6.30).

Lemma 1 Assume (3.11)-(3.12), then (6.30) holds for all α ≥ 1.

Proof.

1. In view of (3.11) and (3.12), the coefficient A defined by (6.22) is locally Lipschitz

on N . Since by 6.26 sα,µ and s̄α,µ are uniformly bounded in α, there exists a constant,

Cµ possibly depending on µ so that∣∣A(tα,µ, sα,µ)−A(t̄α,µ, s̄α,µ)
∣∣ |qα| ≤ Cµ

[∣∣tα,µ − t̄α,µ∣∣+
∣∣sα,µ − s̄α,µ∣∣] |qα|

= Cµ α
[∣∣tα,µ − t̄α,µ∣∣2 +

∣∣sα,µ − s̄α,µ∣∣ ∣∣tα,µ − t̄α,µ∣∣]
≤ Cµ α

[∣∣tα,µ − t̄α,µ∣∣2 +
∣∣sα,µ − s̄α,µ∣∣2]

2. We continue by proving the second inequality in (6.30). To simplify the presentation,

we suppress the superscripts in our notation, i.e. s = sα,µ, a = aα,µ etc. By the

definition of F , (6.22),

−F (tα,µ, sα,µ, aα,µ) + F (t̄α,µ, s̄α,µ, bα,µ)

= −F (t, s, a) + F (t̄, s̄, b)

= `2(t̄, s̄)− `2(t, s) + (a+ `(t, s))+2 − (b+ `(t̄, s̄))+2

= Cµ
(
|tα,µ − t̄α,µ||sα,µ − s̄α,µ|

)
+ (a+ `(t, s))+2 − (b+ `(t̄, s̄))+2.

If (a+`(t, s))+2−(b+`(t̄, s̄))+2 ≤ 0, then the proof of the required estimate is complete.

We then continue to proof the estimate in the case

(a+ `(t, s))+2 − (b+ `(t̄, s̄))+2 > 0 . (6.32)

Since the matrix inequality (6.29) implies that a ≤ b, it follows from the increase of

the function z 7−→ z+ that

(a+ `(t, s))+2 − (b+ `(t̄, s̄))+2

=
(

(a+ `(t, s))+ − (b+ `(t̄, s̄))+
) (

(a+ `(t, s))+ + (b+ `(t̄, s̄))+
)

≤
(

(a+ `(t, s))+ − (b+ `(t̄, s̄))+
) (

(b+ `(t, s))+ + (b+ `(t̄, s̄))+
)

≤ ((a− b) + Cµ(|s− s̄|+ |t− t̄|)) (|b|+ Cµ)

3. We will now use again the restriction (6.29) to estimate the right hand side of the

final inequality in step 2. We already know that (6.29) implies that a ≤ b, but it is

stronger than that. Indeed, multiply (6.29) by a general two vector (x, y) both from

right and left. The result is,

ax2 − by2 ≤ 3α(x− y)2, ∀ x, y ∈ R1.
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By choosing x = y, we obtain a ≤ b. But this choice may not be optimal and by

calculus we conclude that

a− b ≤ − b2

3α+ b
.

4. Observe that the above estimates implies that b2

3α+b ≥ Cµ(|t− t̄|+|s− s̄|) contradicts

(6.32). Hence b2

3α+b ≤ Cµ(|t− t̄|+ |s− s̄|). Since |b| ≤ α, this implies that

b2 ≤ Cµα (|t− t̄|+ |s− s̄|).

with a possibly different constant denoted by Cµ again. We substitute this into the

estimate of step 2. The result is

(a+ `(t, s))+2 − (b+ `(t̄, s̄))+2

≤ Cµ(|t− t̄|+ |s− s̄|) (|b|+ Cµ)

≤ Cµ(|t− t̄|+ |s− s̄|) + Cµ|b| (|t− t̄|+ |s− s̄|)

≤ Cµ(|t− t̄|+ |s− s̄|) + Cµ
[
|b|2 + 1

]
(|t− t̄|+ |s− s̄|)

≤ Cµ(|t− t̄|+ |s− s̄|) + Cµ [Cµα (|t− t̄|+ |s− s̄|) + 1] (|t− t̄|+ |s− s̄|)

≤ Cµ
(
|t− t̄|+ |s− s̄|+ α |s− s̄|2 + α |t− t̄|2

)
.

2

7 Appendix

7.1 Sufficient Conditions for (4.16)

In the following two remarks, we state conditions that imply (4.16). Set

L(s) := s
√
`(s).

Our arguments below require polynomial type growth conditions on the functions re-

lated to the second derivative of the value function. Here we avoid these technical

discussions and we simply assume the appropriate growth condition. However, they

could be easily verified in all interesting examples.

Remark 2 Set

h(t, s) :=
sσ

2
√
`(s)

Vss(t, s).

Suppose that s2Lss/L is bounded from above, the claim g is convex and h is polyno-

mially growing. Then, the minimal super-replicating cost V is convex. In particular,

(4.16) holds.

Since g is convex, (4.16) holds on an open set including {T}×[0,∞). On this subset,

0 = −Vt −
σ2s2

4`(s)
(Vss)

2 − σ2s2

2
Vss. (7.33)
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Then,

0 = −Vt − h2(t, s)− σL(s)h.

By a direct calculation,

0 = −ht −
sσ

2
√
`(s)

(h2)ss −
sσ2

2
√
`(s)

(Lh)ss

= −ht −
sσ√
`(s)

[
hhss + (hs)

2
]
− sσ2

2
√
`(s)

[Lhss + Lshs + Lssh]

= −ht −
sσ

2
√
`(s)

[Vss + `]hss − a(t, s) hs + b(t, s) h,

where

a(t, s) =
sσ

2
√
`(s)

[2hs + σLs] , b(s) := − sσ2

2
√
`(s)

Lss = −σ
2

2

s2Lss(s)

L(s)
.

We assume that h(T, ·) ≥ 0 and b(s) is bounded from below. Hence, by the Feynman-

Kac representation of linear equations (or equivalently by the classical maximum prin-

ciple), we conclude that h is non-negative. Hence, the value function is convex on the

open set (7.33) holds. By iterating the procedure, we conclude that this open set is the

whole space and V is convex. 2

Remark 3 Set

H(t, s) :=
sσ

2
√
`(s)

[Vss(t, s) + `(s)] .

Suppose that L2(s) = s2`(s) is concave, the claim gss(s) ≥ −`(t, s) and H is polyno-

mially growing. Then, the minimal super-replicating cost V satisfies (4.16).

Again (7.33) holds on an open set including {T} × [0,∞). We rewrite it as

0 = −Vt +
σ2L2(s)

4
− σ2s2

4`(s)
(Vss + `(s))2.

Then,

0 = −Ht −
sσ

2
√
`(s)

[
H2 − σ2L2

4

]
ss

= −Ht −
sσ

2
√
`(s)

[
2HHss + 2(Hs)

2 − σ2

4
(L2)ss

]
≤ −Ht −

sσ

2
√
`(s)

[
2HHss + 2(Hs)

2
]
.

Again, we conclude by using the maximum principle or equivalently the Feynman-Kac

representation. 2
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7.2 An Example

In this subsection, we provide a simple example in which the buy-and-hold regime

is non-empty. Since Theorem 2 and Remark 2 imply that for convex terminal data

hedging is classical, we study the simplest concave pay-off: namely,

g(s) := s ∧ 1,

with supply curve as in the previous section, i.e.,

`(s) = 1/(αs2), φ(t, s) =
1

4α

[
σ2(t− T ) + 4 ln s

]
.

For brevity, we will not provide all technical details of the subsequent arguments.

However, we believe that these arguments can be turned into a rigorous proof with

some care.

Since the claim g has a concave discontinuity at s = 1 and the equation (3.13) is

degenerate for sufficiently negative second derivatives, we expect that the value function

inherits this property on some interval (t∗, T ]. Then, (t, 1) ∈ C for t ∈ (t∗, T ). Since on

C (1.1) has the form (4.18), a direct calculation implies that

V (t, 1) = 1 + φ(t, 1), ∀ t ∈ [t∗, T ].

We continue by constructing the value function using this additional boundary

condition. We also use the intuition that C = (t∗, T ) × {1}. Indeed, let t∗ < T to be

chosen below and v+ be the solution of dynamic programming equation (3.13) on the

domain (t∗, T )× (1,∞) with boundary condition

v+(T, s) = g(s) = 1, s ≥ 1, and v+(t, 1) = V (t, 1) = 1 + φ(t, 1), t > t∗.

Observe that the boundary condition at s = 1 formally implies that v+ss(t, 1) = −`(1).

This together with the terminal condition and the arguments of Remark 3 imply that

v+ss(t, s) ≥ −`(s) and v+ is smooth. Similarly, we define v− as the solution of (3.13)

on the domain (t∗, T )× (0, 1) with boundary condition

v−(T, s) = g(s) = s, s ≤ 1, and v−(t, 1) = V (t, 1) = 1 + φ(t, 1), t > t∗.

The same argument implies that v−ss(t, s) ≥ −`(s) as well. Set

v+s (1+, t) := lim
s↓1

v+s (s, t), v−s (1−, t) := lim
s↑1

v−s (s, t).

Observe that v+s (1+, T ) = 0 and v−s (1+, T ) = 1. Let t∗ be the smallest time point such

that

v+s (1+, t) < v−s (1−, t), ∀ t ∈ (t∗, T ].

We formally expect that t∗ < T . Then,

V̄ (t, s) := v+(t, s)1{s≥1} + v−(t, s)1{s≤1},

has a concave first order discontinuity at s = 1. Using this fact, one may directly show

that V̄ is a viscosity solution of (3.13) on (t∗, T )× (0,∞), although it is discontinuous

at s = 1. Then, by the comparison result for (3.13), V̄ is equal to the value function

V on this region. For t < t∗, the value function satisfies the condition (4.16) and it is

a smooth solution.
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Given the above structure of the value function, we can construct a hedge along the

lines described in the previous section. However, in this example C = (t∗, T )×{1} and

this simplifies the construction. Indeed, with an initial point t0 > t∗, s0 = 1, choose

δ ∈ (v+s (1+, t0), v−s (1−, t0)). Set

ψ(t, s) := 1+(δ−φs(t, 1))(s−1)+φ(t, s) = 1+(δ−1/α)(s−1)+
1

4α

[
σ2(t− T ) + 4 ln s

]
,

so that ψ solves the equation (7.33) and equivalently (3.13). Moreover, for each t ≥ t0
set

L(t) := max
{
s > 1 : ψs(t, s

′) ≥ v+s (t, s′)), ∀ s′ ∈ (1, s)
}
,

R(t) := min
{
s > 1 : ψs(t, s

′) ≤ v−s (t, s′)), ∀ s′ ∈ (s, 1)
}
.

Now define the hedge by Y (u) = ψs(u, S(u)), until the exit time τ1 of the process

(u, S(u)) from the domain (R(t), L(t)).

It is clear that Y (τ1) = Vs(τ1, S(τ1)) and by the calculations of subsection 4.2,

Z(τ1) = ψ(τ1, S(τ1)) > V (τ1, S(τ1)).

After the exit time τ1, we set Y (u) := Vs(u, S(u)) until the next stopping time S(τ2) =

1.

We would like to continue this process. For that we need Y (τ2) to be strictly in the

interval (v+s (1+, τ2), v−s (1−, τ2)) but in fact Y (τ2) is equal to one of the end points.

However,

Z(τ2)− V (τ2, S(τ2)) = Z(τ1)− V (τ1, S(τ1)) > Z(t0)− V (t0, 1) = 0,

Moreover, by the results of [33] (see also Remark 1), we may change the portfolio value

Y (τ2) to any value (in particular, to a point in the interval (v+s (1+, τ2), v−s (1−, τ2)) )

with arbitrarily small cost which can be covered by the gains Z(τ2) − V (τ2, S(τ2)).

Hence, we may reiterate the process to replicate this particular claim from any initial

data (t0, 1). From any other initial data we simply follow the usual hedge until the

stopping time S(τ) = 1. Then, we use the above procedure.
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6. Çetin, U. and Rogers, L.C.G. (2006) Modelling liquidity effects in discrete time, Math.
Finance, forthcoming.

7. Cheridito, P., Soner, H.M. and Touzi, N. (2005a). The multi-dimensional super-replication
problem under gamma constraints, Annales de l’Institute Henri Poincaré (C) Non Linear
Analysis, 22 (5): 633-666.

8. Cheridito, P., Soner, H.M. and Touzi, N. (2005b). Small time path behavior of double
stochastic integrals and applications to stochastic control, Annals of Applied Probability, 15
(4): 2472-2495.

9. Cheridito, P., Soner, H.M., Touzi, N., and Victoir, N. (2007). Second Order Backward
Stochastic Differential Equations and Fully Non-Linear Parabolic PDEs, Communications
on Pure and Applied Mathematics, 60 (7): 1081-1110.

10. Crandall, M.G., Ishii, H., Lions, P.L. (1992). User’s guide to viscosity solutions of second
order partial differential equations, Bull. Amer. Math. Soc. 27(1), 1–67.
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