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Abstract 
This paper analyses the international dimension of fiscal policy using a small open economy 
framework in which the government finances its spending by levying distortionary taxation 
and issuing non-state-contingent debt. The main finding of the paper is that, once the open 
economy aspect of the policy problem is considered, it is not optimal to smooth taxes 
following idiosyncratic shocks. Even when prices are flexible and inflation can costlessly act 
as a shock absorber to restore fiscal equilibrium, the presence of a terms of trade externality 
lead to movements in the tax rate. Also in contrast with the closed economy, the introduction 
of sticky prices can reduce the optimal volatility of taxes. 
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1 Introduction1

This paper aims at analyzing the international dimension of �scal policy. The neoclassical literature

on optimal �scal policy has focused mainly on closed economy models suggesting that, when taxes are

distortionary, welfare would be maximized if taxes are smoothed over time and across states of nature

(see Barro, 1979 and Lucas and Stokey, 1983). In these models, if possible, taxes would be essentially

invariant (see Lucas and Stokey, 1983 and Chari, Christiano and Kehoe, 1991) or would follow a random

walk (see Barro, 1979, Aiyagari et al. 2002).

Our analysis shows that in a small open economy optimal policy departs from tax smoothing.

As emphasised in Corsetti and Pesenti (2001) and Obstfeld and Rogo¤ (1998), policymakers in open

economies are in�uenced by a �terms of trade externality�. In an open economy that is a monopolist

producer of its own goods, a real exchange rate appreciation can lead to higher welfare by allowing

domestic agents to consume more for lower levels of domestic production. Thus, policymakers have an

incentive to use �scal policy to exploit this externality. As a result, distortionary taxes vary over time

and across states of nature under the optimal plan.

The afore-mentioned incentive is similar to the one discussed in the recent international monetary

policy literature. Considering a model in which taxes are lump sum, Tille (2002), Benigno and Benigno

(2003), Sutherland (2005), De Paoli (2008), among others, �nd that optimal policy deviates from price

stability in order to allow policymakers to strategically manage the terms of trade. That is, in the

monetary stabilization case, in�ation varies over time and across states of nature. Our analysis also

explores the implications of the terms of trade externality for the behavior of in�ation when both �scal

and monetary stabilization issues are present.

Our work is also related to recent contributions that analyse monetary and �scal policy interactions

in open economies. Beetsma and Jensen (2005) study these interactions in a two-country monetary

union model in which public spending delivers utility to the consumer but taxes are lump sum. Similar

assumptions are considered in Gali and Monacelli (2008), who examine a continuum of small economies

in a currency union setting. Lombardo and Sutherland (2004) investigate the costs and bene�ts from

�scal cooperation in a two-period version similar in the structure as in Beetsma and Jensen (2004).

Ferrero (2008) presents a currency union model in which lump sum taxes are not available to �scal

authorities and derives the optimal plan under commitment for the �scal and monetary stabilization

problem. In another interesting work revisiting the issues in the optimal currency area literature, Adao,

Correia and Teles (2006) examine the implications of the choice of exchange rate regimes for �scal

policy. In contrast to these studies, our work concentrates on the analysis of a small open economy, in

which strategic interactions between countries can be dismissed.

Our small open economy is characterized by a set of standard assumptions. Firms are monopolistic

producers of di¤erentiated goods and the economy is perfectly integrated with the rest of the world.

Indeed there are no trade frictions (i.e. the law of one price holds) and capital markets are perfect

(i.e. asset markets are complete). Following the recent contributions by Benigno and Woodford (2003),

Schmitt-Grohe and Uribe (2004) and Siu (2004) we allow for distortionary income taxation and restrict

1Gianluca Benigno would like to thank the World Economic and Finance program for the ESRC grant RES-165-25-0018
under which this research was supported.
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government debt to one period nominal or real riskless bonds.2

In order to highlight the �scal dimension of the optimal policy problem, our analysis focuses initially

on the case of �exible prices. In this setting, policymakers in the small open economy face di¤erent policy

incentives. On the one hand, there is an incentive to avoid distortions on households�consumption-

leisure choice caused by �uctuations in income taxes. And on the other hand, there is an incentive

to exploit the �terms of trade externality� by varying income taxes. This is because movements in

the level of distortionary taxation may induce a real exchange rate appreciation, which, as mentioned

above, may lower domestic disutility of production without a corresponding decline in the utility of

consumption.3 Thus, while in a closed economy tax smoothing is optimal; in an open economy varying

taxes may improve welfare.

Once we allow for sticky prices, in�ation generates ine¢ ciency in the allocation of resources. In this

case, both in�ation and taxes create distortions in agents�consumption-leisure decisions. But, for this

exact reason, in�ation, like taxes, can also be used to exploit the terms of trade externality. So the

introduction of price rigidities could reduce the variability of taxes under the optimal plan.

Our quantitative results show that, compared with taxes, the optimal volatility of in�ation is sig-

ni�cantly lower, suggesting that the cost of in�ation overshadows the ine¢ ciency caused by taxation.

This result is an outcome of the trade-o¤ between price stability and tax smoothing that arises from

the presence of the terms of trade externality. Thus, it is not an outcome of a trade-o¤ (emphasized

by the Benigno and Woodford (2003), Schmitt-Grohe and Uribe (2004) and Siu (2004)) between price

stability and tax smoothing that arises when in�ation can be used as a �scal stabilizer, i.e., when the

government issues nominal bonds. Our quantitative results hold independently of the denomination of

government bonds.

In terms of the methodology, we follow a linear-quadratic approach (as proposed by Benigno and

Woodford (2003) and Sutherland (2002)) and characterize a utility-based loss function for a small

open economy. Our work encompasses as special cases the closed economy framework (Benigno and

Woodford, 2003) and the small open economy case in which there are endogenous lump sum taxes (De

Paoli, 2008). Under �exible prices the loss function can be written as a quadratic expression of output

and real exchange rate gaps. With price rigidities, the variability of domestic producer in�ation also

a¤ects welfare.

The linear quadratic approach also allows us to derive simple policy rules that describe the optimal

state-contigent responses to shocks. We do so by deriving targeting rules a la Svensson (2003). In

particular, the optimal plan is composed by two rules: one that speci�es targeting a linear combination

of domestic producer in�ation, domestic output growth and changes in the real exchange rate and

another that seeks to stabilize expected producer in�ation to zero.

The reminder of the paper is structured as follows. Section 2 describes the structure of the model;

section 3 present the model in log-linear approximation; Section 4 discusses the policy problem while

the analysis of the optimal policy plan is conducted is Section 5. Section 6 concludes.

2Our approach, however, does not consider state-contingent debt and alternative forms of distortionary taxes, as in
Correia et al. (2003). These authors assess how this rich set of policy instruments could lead to equivalence between the
�exible-price and the sticky-price equilibrium.

3The validity of this claim depends on the speci�ed values for the structural parameter (in particular the elasticity of
intertemporal and intratemporal substitution).
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2 Model

2.1 Household behavior

We consider a two-country framework, a small open economy and the rest of the world. Each country

is populated by agents who consume a basket of goods consisting of home and foreign produced goods.

The model follows closely the one proposed by De Paoli (2008) and Gali and Monacelli (2005) for the

case in which there is no �scal policy stabilization problem. We consider a very simple small open

economy model in which markets are complete and producer currency pricing holds.

There is a measure n of agents in our small open economy, that have the following utility function:

U jt = Et

1X
s=t

�s�t
�
U(Cjs)� V (ys(h); "Y;s)

�
(1)

Households obtain utility from consumption U(C) and contribute to the production of a di¤erentiated

good y(h) attaining disutility V (y(h); "Y ). Productivity shocks are denoted by "Y;s. We abstract from

any monetary frictions by considering a cashless economy as in Woodford (2003, chapter 2). The

consumption index C is a Dixit-Stiglitz aggregator of home and foreign goods as

C =
h
v
1
�C

��1
�

H + (1� v) 1�C
��1
�

F

i �
��1

where � > 0 is the intratemporal elasticity of substitution and CH and CF are the two consumption

sub-indexes that refer, respectively, to the consumption of home-produced and foreign-produced goods.

v is a function of the relative size of the small economy with respect to the rest of the world, n; and of

the degree of openness, � : (1� v) = (1� n)�:
Similar preferences are speci�ed for the rest of the world:

C =
h
v�

1
�C

��1
�

H + (1� v�) 1�C
��1
�

F

i �
��1

(2)

with v� = n�.

Note that the speci�cation of v and v� gives rise to home bias in consumption, as in Sutherland

(2002). The size of the bias decreases with degree of openness �. Moreover, the proportion of foreign-

produced goods in Home consumption preferences is proportional to Foreign size and the proportion of

home-produced goods in Foreign consumption preferences is proportional to Home size.

We have

CH =

"�
1

n

� 1
�
Z n

0

c (z)
��1
� dz

# �
��1

; CF =

"�
1

1� n

� 1
�
Z 1

n

c (z)
��1
� dz

# �
��1

(3)

where � > 1 is the elasticity of substitution for goods produced within a country. The consumption-

based index for the small open economy that corresponds to the above speci�cations of preferences is

given by:

P =
h
vP 1��H + (1� v) (PF )1��

i 1
1��

; � > 0 (4)

where PH is the price sub-index for home-produced goods expressed in the domestic currency and PF

is the price sub-index for foreign produced goods expressed in the domestic currency.

PH =

��
1

n

�Z n

0

p (z)
1��

dz

� 1
1��

; PF =

��
1

1� n

�Z 1

n

p (z)
1��

dz

� 1
1��

(5)
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The law of one price holds: p(h) = Sp�(h) and p(f) = Sp�(f), where S is the nominal exchange rate

(the price of foreign currency in terms of domestic currency). We de�ne the real exchange rate as

RS = SP�

P :

We assume, as in Chari et al. (2002), that markets are complete domestically and internationally.

As a result, marginal utilities of income are equalized across countries at all times and states of nature:

UC
�
C�t+1

�
UC (C�t )

P �t
P �t+1

=
UC (Ct+1)

UC (Ct)

St+1Pt
StPt+1

(6)

Given our preference speci�cation, the total demands of the generic good h, produced in country H,

and of the good f; produced in country F, are respectively:

yd(h) =

�
p(h)

PH

���(�
PH
P

��� "
vC +

v�(1� n)
n

�
1

RS

���
C�

#
+G

)

yd(f) =

�
p(f)

PF

���(�
PF
P

��� "
(1� v)n
1� n C + (1� v�)

�
1

RS

���
C�

#
+G�

)
where G and G� are country-speci�c government purchase shocks.

To characterize our small open economy we use the de�nition of v and v� and take the limit for

n! 0; so that

yd(h) =

�
p(h)

PH

��� (�
PH
P

��� "
(1� �)C + �

�
1

RS

���
C�

#
+G

)
(7)

yd(f) =

�
p(f)

PF

���
fC� +G�g

2.2 Price setting mechanism

Prices follows a partial adjustment rule a la Calvo in which in each period a fraction � 2 [0; 1) of

randomly chosen �rms is not allowed to change the nominal price of the good it produces. The remaining

fraction of �rms (1��) choose prices optimally by maximizing the expected discounted value of pro�ts4 .
Therefore, the optimal choice of producers that can set their price ~pt(j) at time T is:

Et

(X
(��)T�tUc(CT )

�
~pt(j)

PH;t

���
YH;T

�
~pt(j)

PH;T

PH;T
PT

� �muT
(1� �T )(� � 1)

Vy (~yt;T (j); "Y;T )

Uc(CT )

�)
= 0 (8)

Monopolistic competition in production leads to a wedge between marginal utility of consumption

and marginal disutility of production, represented by �mut
(1��t)(��1) : Movements in the tax rate � t a¤ect

this wedge and generate distortions in agents choice between consumption and labor. However, dif-

ferently from to the case studied in De Paoli (2008), changes in the tax rate are no longer exogenous.

We allow for exogenous �uctuations in this wedge by assuming a time varying mark-up shock mut5 :

Given this price setting speci�cation a la Calvo, the price index evolves according to the following law

of motion:
4All households within a country that can modify their price at a certain time face the same discounted value of the

streams of current and future marginal costs under the assumption that the new price is maintained. Thus they will set
the same price.

5This mark up shock is introduced in order to allow for the evaluation of pure cost push shocks. It can be interpreted
as a shock to the level of monopolistic power of �rms. Alternatively, it may be thought as a shock to wage mark up in an
environment where the labour market is also characterized by imperfect competition and di¤erentiated labour input.
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(PH;t)
1�� = �P 1��H;t�1 + (1� �) (~pt(h))

1�� (9)

2.3 Government budget constraint

In the present framework we consider two alternative speci�cations for government debt. In particular,

we consider the case in which the government issues bonds denominated in domestic currency and the

case in which public debt is denoted in real terms (or, in other words, debt is indexed to consumer price

in�ation). The structure of the debt denomination is exogenously given. Moreover, we abstract from

the existence of seigniorage revenues.

In the �rst case we focus on the situation in which the government issues one period nominal risk

free bonds expressed in local currency units, collects taxes and faces exogenous expenditure streams.

Government debt Dn
t , expressed in nominal terms, follows the law of motion:

Dn
t = D

n
t�1(1 + it�1)� PH;tst

where st is the real primary budget surplus:

st � � tYt �Gt � Trt

and Gt and Trt are exogenously given government purchases and (lump-sum) government transfers,

and � t denotes income tax rate. We de�ne

dnt �
Dn
t (1 + it)

Pt
;

in order to rewrite the government budget constraint as

dnt = d
n
t�1
(1 + it)

�t
+
PH;t
Pt

st(1 + it) (10)

Besides the case of nominal bonds, we consider the case in which the government issues a riskless real

one-period bonds (Dr
t ), or, equivalently, the case in which government bonds are indexed to consumer

price in�ation. Under this speci�cation, the government budget constrain can be written as:

drt = d
r
t�1(1 + it) +

PH;t
Pt

st(1 + i
r
t ) (11)

where

drt � Dr
t (1 + i

r
t )

The implication for �scal and monetary policy for the di¤erent denomination of debt are explored later.

Note that we can obtain expressions analogous to (8), (9), (10) and (11) for the foreign economy.

3 A log-linear representation of the model

We approximate the model around a steady state in which the exogenous variables "y;t, Gt and mut

take constant values "y, �G > 0 and mu � 1. We further focus on a steady-state in which �H;t �
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PH;t=PH;t�1 = 1. In this steady-state RS = 1, �C = �C�, �Y = �Y � and �UC( �C; 0) = �� �Vy( �Y ; 0)
6 . Log

deviations from the steady state are denoted with a hat.

The small open economy system of equilibrium conditions derived from log linearizing equations (8),

(7), (6), (10), (11) and (4) is given by the following set of equations (see Table 1):

Table 1: System of log-linear equilibrium conditions

Phillips Curve

b�Ht = k �� bCt + �bYt � bpH +dmut + !b� t � �b"Y;t�+ �Etb�Ht+1
Demand

Ŷt = ��p̂H + (1� �)Ĉ + �Ĉ� + ��cRSt + ĝt
Risk Sharing Condition

Ĉt = Ĉ
�
t +

1
�
cRSt

Government Budget Constraint

edt = dss(1� �)(�� bCt � �
1��RSt) + �(b� t + bYt)� bgt + �Et edt+1

Price Index

(1� �)p̂H + �cRS = 0
�where edt=bdt�1�dss(a�RSt+bb�Ht )��dss bCt

The �rst equation is derived from the price setting condition (8) and represents the Phillips Curve

for our small open economy7 . By inspection of this equation we can see that a policy of pure domestic

price stabilization, i.e a policy that sets b�Ht = 0 in every state, and for every period leads to the same
equilibrium allocation that would arise in the case of perfectly �exible prices, i.e. when � = 0 and

therefore k !1: The demand equation is derived from log-linearizing condition (7). The government

budget constraint is represented in a compact form in order to allow for di¤erent type of bonds. We

can set a = �=(1� �) and b = 1 to retrieve the nominal bonds case and a = b = 0 for the case of real

bonds. The last equation is derived from the price index (4) and describes the relationship between

domestic relative prices and the real exchange rate.

Note that in the case of zero steady state government debt, the denomination of government debt is

irrelevant for the dynamics of the small open economy. In this case, the government budget constraint

becomes:
6This speci�cation implies a speci�c level of initial distribution of wealth across countries. Appendix A contains the

full characterization of the steady state.
7We denote: bpH;t = ln(PH;t=Pt); b�H;t = ln(PH;t=PH;t�1), ĝt =

Gt�G
Y

and bdt = dt�d
Y

: Moreover, as shown in the
appendix, � represents the coe¢ cient of relative risk aversion and � the inverse of the elasticity of goods production. Also
we de�ne k = (1���)(1��)

�(1+��)
; ! = �

1�� and dss =
d
Y
: Appendix B has a detailed derivation of the approximations.
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bdt�1 = �(b� t + bYt)� bgt + � bdt (12)

The system of structural equilibrium conditions is closed by specifying the monetary and �scal policy

rules. Given the domestic exogenous variables b"y;t,bgt,dmut and the external shock Ĉ�t , we can determine
the dynamics of bYt; cRSt; bCt; b�Ht ; bdt and bpH;t8 :
Foreign dynamics are governed by the foreign Phillips curve, demand condition and government

budget constraint:

Table 2: Foreign system of log-linear equilibrium conditions

Phillips Curve

b��t = k ��Ĉ�t + �bY �t + !b��t +dmu�t � �b"�Y;t�+ �Etb��t+1
Demand

Ŷ �t = Ĉ
� + ĝ�t

Government Budget Constraint

ed�t = ��dss(1� �)Ĉ�t + ��(b��t + bY �t )� bg�t + �Et ed�t+1
�where ed�t=bd�t�1�d�ssab��t��d�ssĈ�

t

The speci�cation of the foreign policy rules complete the system of equilibrium conditions which

determine the evolution of Ŷ �t ; Ĉ
�; bd�t ; b��t and b��t . We should note that the dynamics of the rest of the

world is not a¤ected by Home variables. Therefore, policymakers in the small open economy can treat

C�t as an exogenous shock. Moreover, the policy choice of the rest of the world and the denomination

of foreign public debt do not in�uence how C�t a¤ects the small open economy.

4 Welfare measure

In a microfounded model a natural measure of welfare is the expected utility of agents belonging to the

economy. In our small open economy this can be written as:

W = Et0

( 1X
t=t0

�t�t0 [U(Ct)� V (yt (h) ; "Y t)dh]
)
: (13)

We assume that the policy authority�s goal is to maximize domestic welfare. We obtain the objective

function from a second-order approximation of the utility function, or, equivalently, a second-order

Taylor expansion of Equation (13). As shown in the Appendix, the Taylor expansion implies

Wt0 = Uc
�CEt0

X
�t

" bCt � 1
�
bYt + 1

2 (1� �) bC2t
� 1
2
(�+1)
� (bYt � �

(�+1)b"Y;t)2 � 1
2
�
k�

�
�Ht
�2 #+ t:i:p+O(jj�jj3) (14)

8 In order to retrieve the value of the nominal exchange rate and interest rate we can use households� intertemporal
choice (i.e. the Euler equation) and the de�nition of the real exchange rate.
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where the term t:i:p stands for terms independent of policy, that is, constants or function of exogenous

shocks that are not a¤ected by the policy choice. The term O(jj�jj3) refers to terms of order strictly
higher than two. And the parameter � denotes the steady state degree of monopolistic distortion, i.e.

� = �mu
(1��)(��1) .

Following the method of Benigno and Woodford (2003) and Sutherland (2002), we use a second

order approximation to some of the structural equilibrium conditions in order to eliminate the linear

terms that appear in Equation (14). It follows that the loss function for our small open economy can

be expressed as a quadratic function of bYt; cRSt; and b�Ht :
Lito = Uc �CEt0

X
�t
�
1

2
�Y by2t + 12�RS brs2t + 12��(b�Ht )2

�
+ t:i:p; (15)

where the brst = (cRSt � cRSTt ); byt = (bYt � bY Tt ) are the welfare-based gaps, and bY Tt and cRSTt are the
target output and real exchange rate that are functions of exogenous shocks while the weights �Y ;�RS

and �� depend on structural parameters of the model. These are de�ned in appendix B.

The welfare function (15), indicates that policymakers should seek to minimize the discounted value

of a weighted sum of squared deviations of in�ation from zero and squared �uctuations in the output

gap and real exchange rate gap. As in De Paoli (2008), the open economy dimension of the model

implies the existence of a real exchange rate gap in the policy objective function.

The current model features three economic frictions that are common to the closed economy counter-

part (which can be replicated in our framework by setting � = 0): (a) monopolistic competition which

generates an ine¢ cient level of production; (b) staggered prices, which create dispersion of output

across the di¤erentiated goods; and (c) distortionary income taxes that give rise to a wedge in agents�

consumption-labour decisions. Therefore, parameters such as the degree of monopolistic competition

�, the degree of price stickiness �, and the steady state level of government taxes � are important

determinants of the weights �� and �Y in the loss function.

In an open economy, however, another policy incentive arises. As described in Corsetti and Pesenti

(2001) "In an open economy there exists an economic distortion that is directly associated with openness,

namely, a country�s power to a¤ect its terms of trade by in�uencing the supply of labour product. [...]

the improved terms of trade allow domestic agent to �nance higher consumption for any given level of

labour e¤ort." The linear terms in equation (14) capture analytically this policy incentive: the welfare

expression in a small open economy is a¤ected by the unconditional means of consumption and output,

and these terms depend directly by the real exchange rate. In particular when we set � = (1��)�1, the
term E[ bCt� bYt

� ] can be rewritten as a function of E[(1���)cRSt]:9 That is, the unconditional mean of the
real exchange rate has a direct impact on welfare. This term represent the �terms of trade externality�

as in highlighted in Obstfeld and Rogo¤ (1998).10 Note that in Gali and Monacelli (2005), where the

policy problem in an open economy is isomorphic to a closed economy, the linear term is cancelled by

9As shown in De Paoli (2004), the assumption of � = (1 � �)�1 guarantees that the steady-state is e¢ cient when
�� = 1. Moreover, when � = (1� �)�1, using the �rst order approximation of the demand equation and the risk sharing
condition, this term E[ bCt � bYt

�
] can be expressed as a function of E[(1� ��)cRSt]: Thus, to a �rst order approximation,

the linear terms in equation (14) can be expressed by E[(1� ��)cRSt]:
10For alternative works that similarly identify the terms of trade rate externality, see Corsetti and Pesenti, 2001, Benigno

and Benigno, 2003, Arseneau, 2004, among others).
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imposing � = � = 1 so that the external distortion peculiar to the open economy disappears.

When domestic and foreign goods are substitutes in the utility (i.e. when �� > 1), an appreciated

real exchange rate, on average, can improve welfare by decreasing the disutility of producing at home

without an equivalent fall in the utility of consumption. This is because the appreciation induces

lower levels of domestic production and lower consumption of domestic goods, while leading to larger

consumption of foreign goods. That is to say, the small open economy, as a monopolist over the goods

it produces, can gain from reducing the supply and increasing the price of its goods. When goods

are complements in the utility (i.e. when �� < 1), however, a fall in consumption of domestic goods

is accompanied by a fall in foreign goods consumption. An appreciation of the real exchange rate

is unable to divert consumption towards foreign goods. In this case, a higher unconditional mean of

real exchange rate (i.e. a depreciation of the real exchange rate) increases welfare, by creating a rise

in consumption larger than the rise in output. Finally, when the marginal utility of consuming one

good does no depend on the consumption of the other good (i.e. when �� = 1), and in this case where

� = (1� �)�1, welfare does not depend on the level of the real exchange rate (i.e. �RS = 0).
But what are the implications of this externality for optimal policy? In our framework, monetary

and �scal policy can in�uence the overall volatility of macro variables in order to minimise the loss

function (15). As suggested above, when �� > 1; the terms of trade externality implies that a more

appreciated exchange rate can improve welfare. Using a second order approximation to the equilibrium

conditions, we can show that the mean of the real exchange rate depends positively on its volatility.

Therefore, as long as �� > 1; inducing a less volatile exchange rate can produce a more appreciated

exchange rate on average.

To illustrate this result we focus initially on the �exible price speci�cation of the model, i.e. � = 0

(the value of the other parameters are speci�ed in Table 3). In general, by using a the second order

approximation of the equilibrium conditions, it is possible to express the unconditional mean of the real

exchange rate as a function of second moments of the di¤erent macro variable. Under �exible prices,

the unconditional mean of the real exchange rate can actually be expressed solely as a function of the

real exchange rate volatility. In particular �gures (1) and (2) show the relationship between the mean

and variance of the real exchange rate for di¤erent values of � and �. The �gures show that the e¤ect

of the real exchange rate volatility on its mean is increasing on the degree of openness (�) and the

elasticity of substitution between home and foreign-produced goods (�). More importantly, regardless

of the value of � and �, the higher the level of the exchange rate volatility, the more appreciated is

the real exchange rate on average. However, the welfare e¤ect of this volatility depend critically on

parameter values. In particular it depends on whether �� is bigger or smaller than unity. Figure (3)

plots the linear term in equation (14) as a function of the real exchange rate volatility. This is done

for di¤erent values of �; holding � = 1. Since the unconditional mean of the real exchange rate is

increasing in the volatility of the real exchange rate, higher volatility of the real exchange rate improves

welfare when a more depreciated exchange rate is welfare improving (i.e. when �� < 1): On the other

hand, when a more appreciated exchange rate improves welfare (i.e. when �� > 1); lower volatility of

the real exchange rate is welfare improving.

[INSERT HERE FIGURES 1,2, 3]
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5 Optimal Policy

In this section we analyze optimal policy under alternative speci�cations of the model. We start

by characterizing the �exible price case and then turn to sticky prices. Throughout the analysis we

explore the di¤erences between the open economy and the closed economy cases. We also explore the

implications of having real versus nominal government debt. In what follows our analysis is restricted to

the case in which monopolistic competition ine¢ ciencies in steady-state output are set to � = (1��)�1

(as in Gali and Monacelli (2005)) in order to facilitate the analytical illustration of the results.11 We

will concentrate on the policy implication of distortionary taxation, sticky prices and the terms of trade

externality.

Once we explore the properties of the optimal allocation we calibrate our model as in Table 3. For

the calibration of the shocks, we follow Gali and Monacelli (2005) who �t AR(1) processes to (log) labor

productivity in Canada (their proxy for domestic productivity) using quarterly, HP-�ltered data over

the sample period 1963:1 2002:4 with the following estimates b"Y;t = 0:66(0:06)b"Y;t�1+at, �at = 0:0071.
In order to compute the volatilities of the variable of interests, we generate simulated time series of

length T for the variables of interest and compute the standard deviation. We repeat this procedure

J times and then compute the average of the moments. We set T = 400 quarters and J = 500. We

compute the moments based on these Monte Carlo simulations because, under certain speci�cations,

our model is non stationary.

5.1 The case of Flexible Prices

When prices are �exible (that is, � = 0), the loss function derived in the previous section simpli�es to:

min Uc �CEt0
X

�t
�
1

2
�Y by2t + 12�RS brs2t

�
+ t:i:p: (16)

Alternatively, using the relationship between distortionary taxes and output dictated by the Phillips

curve, it is possible to rewrite the objective function (16) as

min Uc �CEt0
X

�t
�
1

2
�� (b� t � b�Tt )2 + 12�RS brs2t

�
+ t:i:p+O(jj�jj3);

where �� = � !
�+�(1+l)�1�Y and b�Tt is the desired level for the level of distortionary taxation, which

also depend on exogenous shocks. Under this speci�cation, domestic producer in�ation is not costly

(the assumption that � = 0 implies that �� = 0), but policymakers� incentives are a¤ected by tax

distortions and the terms of trade externality.

The constraints of the policy problem are given by the equilibrium conditions presented in Table

1, noting that under �exible prices k�1 = 0. We de�ne 't as the Lagrange multiplier associated with

the government budget constraint, representing the marginal value, measured in utility terms, of one

unit of the government revenue in any given period. As shown in the Appendix, we impose further

constraints, associated with initial conditions b�t0 and cRSt0 ; to ensure that the �rst order conditions to
11This parameterization guarantees that the steady state is e¢ cient when the elasticities of intratemporal and intertem-

poral substitution are unitary, or when the economy is closed.
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the problem are time invariant.12 Thus, the �rst order conditions of the policy problem can be written

as follows:

�RS brst + (1 + l)

�(1� �)�Y byt = �m0't + (a+ 1)dss('t � 't�1); (17)

�bdss('t � 't�1) = 0; (18)

and

Et't+1 = 't; (19)

wherem0 is a constant de�ned in the Appendix. The above equations represent the general optimal plan

under �exible prices.13 In what follows we illustrate both graphically and analytically the properties of

the optimal plan for the various cases.

The case of nominal government debt

When bonds are denominated in nominal terms, in�ation a¤ects the real value of government debt

and therefore has direct �scal consequences. Under this speci�cation (i.e. when dss 6= 0 and b 6= 0);
the optimal plan can be summarized by

�RS brst + (1 + l)

�(1� �)�Y byt = 0; (20)

or, equivalently,

�RS brst + (1 + l)

�(1� �)�� (b� t � b�T 0t ) = 0: (21)

The above equation can be interpreted as the small open economy targeting rule à la Gianonni and

Woodford (2003) and Svensson (2003). This rule prescribes stabilizing a linear combination of the

output gap and the real exchange rate gap. Policymakers should allow some �uctuations in output,

or, alternatively, some �uctuations in the tax rate around the desired target. These �uctuations are a

consequence of the terms of trade externality described in the previous section. Indeed, if we were in a

closed economy framework (� = 0) equation (20) becomes:

byt = (b� t � b�T 0t ) = 0: (22)

The output gap is fully stabilized (as in Benigno and Woodford (2003)) and the �rst best can be

achieved. It is easy to show that this result holds also for the small open economy under the further

restriction �� = 1; for which �RS = 0 so that the loss function is not a¤ected by real exchange rate

�uctuations. Indeed this isomorphism among the closed and open economy optimal policy problems is

12This method follows Woodford�s (1999) timeless perspective approach and ensures that the policy problem does not
constitute a time inconsistent problem. The policymaker�s stated future course of action is such that the same policy
process tomorrow will result in actions consistent with the announced plan. McCallum 2005 refers to this approach as
"strategic coherence" and argues that the timeless perspective does not coincide with the concept of time-consistency
described by Kydland and Prescott (1977). �Time-inconsistency� has been understood in the prior literature to mean
that it will not be optimal at a date later than time t to implement the policy which was determined as optimal at t. As
stated in Taylor 2005 (mimeo, Bank of England) the �timeless perspective� concept can be thought of a way of choosing
a policy which is constrained-optimal. The constraints capture the idea that in an ongoing policy regime, policymakers
should not take advantage of the fact that expectations are predetermined.
13 In the exercises to follow, the second order conditions are veri�ed numerically.
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Table 3: Parameter Values used in the Quantitative Analysis
Parameter Value Notes:
� 0:99 Specifying a quarterly model
� 0:47 Following Rotemberg and Woodford (1997)
� 2:3 Following the range as in Obstfeld and Rogo¤ (1998) (unless speci�ed otherwise)
� 0:2 This implies a 20% import share of the GDP
� 1 Specifying a Log utility function
� 0:66 Characterizing an average length of price contract of 3 quarters
� 10 Following Benigno and Woodford (2003)
dss 2:4 Steady state debt to GDP of 60% (unless speci�ed otherwise)
sdv("y) 0:71% Consistent with Gali and Monacelli (2005) and Kehoe and Perri (2002)
� 0:2 Steady state taxes of 20% of GDP

identical to the case analyzed by Gali and Monacelli (2005) and De Paoli (2008) for the monetary policy

stabilization policy in a framework in which taxes are lump sum. When � = � = 1 the substitution

and income e¤ects associated with terms of trade movements cancel out and there is no terms of trade

externality. Under these restrictions, there is only one policy incentive: to smooth taxes across states

and times in order to minimize distortions in agents�labour-leisure decisions.

Since in�ation is not costly, optimal policy can induce unexpected variations in domestic prices in

order to restore �scal equilibrium. The resulting allocation is the same as the one that would prevail

if state-contingent debt were available. This �nding is consistent with the ones of Bohn (1990), Chari,

Christiano and Kehoe (1991) and Benigno and Woodford (2003).

On the other hand when �� 6= 1; it is possible to improve welfare by combined changes in the tax rate
gap and the real exchange rate gap. Figure (4) displays the relationship between the sample standard

deviation of the tax instrument and the intratemporal elasticity of substitution, �: The �gure shows

that, unless � = � = 1, taxes vary over time. This is because, outside this knife-edge case, there is

trade o¤ between stabilizing taxes, and minimizing the �scal distortion, and exploiting the terms of

trade externality.

[INSERT FIGURE 4 HERE]

In terms of the dynamic properties of the variables of interests, as shown in the appendix, if the

government only issues nominal bonds and prices are �exible, 't is time-invariant and all economic

variables follow a stationary process. But these assumptions also imply that the evolution of expected

producer in�ation and nominal debt are indeterminate; we can only determine the evolution of real

debt. This can be veri�ed by inspection of the government budget constraint.

The case in which the government solvency condition is independent of in�ation

When the government only issues real debt (i.e. b = 0) or the steady state debt is zero (i.e. dss = 0),

the path of in�ation does not a¤ect the government budget constraint and it is not possible to use

in�ation as a shock-absorber. In fact, under �exible prices, in�ation does not a¤ect the entire system of

equilibrium condition (speci�ed in Table 1). That is to say, producer price in�ation is indeterminate.

12



Combining equations (17), (18) and (19) we obtain the following expression:

�RSEt� brst+1 + (1 + l)

�(1� �)�Y Et�byt+1 = 0; 14 (23)

and in the case of a closed economy (� = 0), we have:

Et�byt+1 = Et�(b� t+1 � b�Tt+1) = 0: (24)

In a closed economy, as emphasized in the analysis shown in Barro (1979) and Aiyagari et al. (2002), if a

shock creates �scal imbalances and in�ation cannot act as a shock absorber by a¤ecting the value of real

debt, taxes have to do the adjustment. But in order to minimize distortions in the consumption/leisure

trade-o¤, the expected tax gap should be kept constant. For example following a one period productivity

shock, the tax rate would follow a random walk. Taxes vary across states but they remain constant

after the shock hits the economy.

In an open economy, it is no longer optimal to fully stabilize the expected tax gap. As illustrated

in Equation (23), policymakers should stabilize expected movements in the output and real exchange

rate gap. As in the case of nominal bonds, there is a trade-o¤ between reducing �scal distortions and

exploiting the terms of trade externality. In terms of dynamic properties of the variables of interest

now, di¤erently from the case in which in�ation a¤ects the government budget constraint, government

debt follows a unit root process (see Appendix). Moreover, taxes, output and the real exchange rate

face permanent changes following a temporary shock to �scal conditions.

5.2 The case of sticky prices

We now turn to the optimal policy problem in the case of sticky prices (i.e. � > 0) and characterize

the general optimal �scal and monetary plan. The policy problem consists of choosing the path of

fb�Ht ; bYt; cRSt; bdt;b� tg as to minimize (15), subject to: the equilibrium conditions speci�ed in table 1; the

initial condition for bdt0�1; and the constraints on b�t0 and cRSt0 that ensure a time-invariant optimal
policy problem (see Appendix for details).

As before, we express the optimal state-contingent response to shocks in the form of targeting rules.

In particular the optimal plan can be written as follows�
(1 + l)�y
(1� �)�

�
�byt +�RS� brst + � k��

(1� �) + bdssk

�
(
b�Ht + dss(a+ 1)b�Ht�1) = 0 (25)

Etb�Ht+1 = 0; (26)

where 
 =
h
dss

�
(1��)
(1��) � (1 + a)

�
+
�
(1+l)(�(1��)��)

�(1��) + 1��
(1��)

�i
:15

We �rst note that the variables of interest in this targeting rule are: current and past domestic

producer in�ation, the rate of change in the real exchange rate gap, and the rate of change of the

output gap. Also, equation (26) states that expected producer in�ation is set to zero under the optimal

plan.

14Di¤erently from the case presented before this equation does not characterise a targeting rule, because, if speci�ed
by itself, the equilibrium dynamic is not determined under this rule. Equation (23) is simply an equilibrium condition
implied by the optimal plan, which is illustrated by equations (17) to (19).
15See appendix for full derivation of the optimal policy problem.
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As shown in the Appendix, equations (25) and (26) together with the constraints speci�ed in Table

1 imply that the dynamics of output, the real exchange rate and taxes follows a non stationary process.

This result contrasts with the case of �exible prices, in which, when bonds are nominal, all the variables

follow a stationary process, since in�ation can work as a shock absorber following exogenous shocks.

Closed versus Open Economy

When the economy is closed, the loss function is only a¤ected by in�ation and output variability.

Although there are two policy incentives - reducing the ine¢ ciencies created by distortionary taxation

and minimizing the price distortions - and two policy instruments - an active �scal and monetary policies

- the �rst best cannot be achieved. If we further assume that debt is zero in steady state, i.e. dss = 0,

the optimal plan implies

!Et�(b� t+1 � b�T 0t+1) + k�1�Ht = 0: (27)

In general, it�s not possible to keep simultaneously in�ation and taxes constant across states and over

time.16 In our small open economy the optimal policy, given by equations (25) and (26), implies

�RSEt� brst+1 + (1 + l)

�(1� �)�Y Et�byt+1 = 0; (28)

and

Etb�t+1 = 0 (29)

Equation (28) is identical to equation (23) obtained under �exible prices. Therefore, when there is

no nominal burden from existing debt (i.e. dss = 0), the optimal policy under both �exible and sticky

prices prescribes the stabilization of expected growth rate of the output gap and expected change in the

real exchange rate gap. A di¤erence among these two cases arises because while under �exible prices

only taxes a¤ect the labor leisure trade-o¤, with sticky prices, both domestic producer in�ation and

taxes do so. Therefore, under sticky prices, movements in both taxes and in�ation can lead to changes

in the real exchange rate. Policymakers have, thus, a "choice" between allowing some �uctuations

in in�ation or �uctuations in taxes in order to exploit the exchange rate externality. While optimal

in�ation volatility is decreasing in the degree of nominal rigidity, for our parametrization, the volatility

of taxes initially tend to decrease and then increases with � (see �gure 5). When price rigidities are

introduced, in�ation can be used to a¤ect the real exchange rate and this fact reduces the required

movement in taxes. But as the degree of nominal rigidities increases, so does the distortions generated

by them. So, for signi�cantly high levels of �, in�ation is practically constant and only taxes are used

to exploit the terms of trade externality (�gure 5).

[INSERT FIGURE 5 HERE]

From a quantitative point of view, however, our framework suggests that the cost of in�ation will

overshadow the ine¢ ciency caused by varying distortionary taxation and, therefore, changes in domestic

16 Nor is it possible, as in the �exible price case, to move tax rates permanently (and smooth them in subsequent
periods). By inspection of the Phillips curve we note that, when prices are sticky, a permanent change in taxes would
imply a non stationary process for in�ation (and an explosive path for the domestic price level).
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producer in�ation are quantitatively small. Note that this result holds even in a model with real bonds

and is a consequence of the con�ict between price stability and the incentive to strategically a¤ect

the real exchange rate. This is di¤erent, however, from the trade-o¤ (emphasized by the Benigno and

Woodford (2003), Schmitt-Grohe and Uribe (2004) and Siu (2004)) between price stability and the use

of in�ation as insurance that arise only in models in which the government issues nominal bonds.

6 Conclusion

This paper presents an integrated analysis of �scal and monetary policy in a small open economy.

The literature on optimal policy in open economies has extensively analysed the monetary stabilization

problem when in�ation is costly and taxation is non-distortionary. In the present work, we start our

analysis by characterizing the opposite scenario. That is, we study the optimal policy problem in an

environment in which prices are perfectly �exible (and therefore in�ation is costless) and production

taxation a¤ects households labour-leisure trade o¤ (i.e. taxes are distortionary). We lay out this

speci�cation in order to highlight the international dimension of �scal policy. Our results show that,

whereas it is optimal to perfectly smooth taxes in a closed economy, the optimal tax rate varies over

time in an open economy. Managing the level of proportional taxes may improve welfare by a¤ecting

the real exchange rate and the overall level of consumption utility and production disutility.

When prices are sticky, movements in the in�ation rate a¤ects individuals�production and consump-

tion choices. Thus, once nominal rigidities are incorporated into the analysis, both in�ation and taxes

can be used strategically to a¤ect the terms of trade and the overall level of utility. As a result, the

introduction of price rigidity can decrease the required variability of tax rates. But the presence of

nominal rigidities also reduces the policy incentive to use in�ation to a¤ect the level of real government

debt.
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A Appendix: Steady state equations
In this appendix we derive the steady state conditions and de�ne some parameters that depend on these
conditions. All variables in steady state are denoted with a bar.
From the demand equation at Home, we have:

yd(h) =

�
p(h)

PH

��� �
PH
P

��� "
vC +

v�(1� n)
n

�
1

RS

���
C�

#
(A.1)

yd(f) =

�
p(f)

PF

��� �
PF
P

��� "
(1� v)n
1� n C + (1� v�)

�
1

RS

���
C�

#

Normalizing PH = PF , we have:

Y = vC +
v�(1� n)

n
C� +G (A.2)

Y
�
=
(1� v)n
1� n C + (1� v�)C� (A.3)

If we specify the proportion of foreign-produced goods in home consumption as 1 � v = (1 � n)�
and the proportion of home-produced goods in foreign consumption is v� = n�; and take the limiting
case where n = 0, we have.

Y = (1� �)C + �C� +G (A.4)

And from the Foreign demand:

Y
�
= C

�
(A.5)

For further reference, we de�ne the following steady state dependent constants:

dg =
G

Y

db = (1� �)
C

Y

Moreover, using equation (A.4), we can notice that:

�C�

Y
= 1� db � dg

From the government budget constraint we have:

�D = Ps (A.6)

where � = ��1(1� �) and the steady state �scal surplus de�ned as:

s = �Y �G� Tr (A.7)

Thus, the steady state constants de�ned in the text are:

s = s�1Y

18



s� = s
�1�Y

The Symmetric Steady State:

From the complete asset market assumption we have:

RSt = �0

�
Ct
C�t

��
(A.8)

where

�0 = RS0

�
C0
C�0

��
(A.9)

Assuming an initial level of wealth such that �0 = 1; the steady state version of (A.8) implies
C = C

�
: If, moreover we assume G = 0 we have:

dg = 0

db = (1� �)

And in the case of Tr = 0, we have:

s = 1=�

s� = 1

Finally, applying our normalization to the price setting equations we have:

UC(C) = �Vy
�
�C� + (1� �)C

�
(A.10)

UC(C
�
) = ��Vy

�
C
��
. (A.11)

where

� =
�mu

(1� ��)(� � 1)

(1� �) = 1

�

� = 1� (1� ��)(� � 1)
�mu

0 � � < 1;� > 1

B Appendix: Welfare derivation
In this appendix, we derive the 1st and 2nd order approximation of the equilibrium conditions of the
model. Moreover, we show the second order approximation of the utility function in order to address
welfare analysis. To simplify and clarify the algebra, we use the following isoelastic functional forms:

U(Ct) =
C1��t

1� �

V (yt(h); "Y;T ) =
"��y;tyt(h)

�+1

� + 1
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B.1 Demand
As shown in the text, home demand equation is:

YH;t =

�
PH;t
Pt

��� "
(1� �)Ct + �

�
1

RSt

���
C�t

#
+ gt (B.12)

Therefore, the �rst order approximation to the above equation is:

ŶH = ��(1� dg)bpH + dbĈ + (1� db � dg)Ĉ� + �(1� db � dg)cRS + bg (B.13)

In the symmetric steady state, where db = 1� � and dg = 0, equation (B.13) becomes:

ŶH = ��bpH + (1� �)Ĉ + �Ĉ� + ��cRS + bg (B.14)

And the second order approximation to the demand function is:X
�t
�
d0yyt +

1

2
y0tDyyt + y

0
tDeet

�
+ t:i:p+O(jj�jj3) = 0

where

yt =
h bYt Ĉt bpHt b� t cRSt i

et =
� b"yt dmut bgt Ĉ�t

�
d0y =

�
�1 db ��(1� dg) 0 �(1� db � dg)

�

D0
y =

266664
0 0 0 0 0
0 (1� db)db ��dbdg 0 ��(1� db � dg)db
0 ��dbdg �2(1� dg)dg 0 ��2dg(1� db � dg)
0 0 0 0 0

0 ��(1� db � dg)db ��2dg(1� db � dg) 0 �2(1� db � dg)(db + dg)

377775

D0
e =

266664
0 0 0 0 0
0 0 0 �db �(1� db � dg)db
0 0 0 �(1� dg) ��dg(1� db � dg)
0 0 0 0 0
0 0 0 ��(1� db � dg) �(1� db � dg)(db + dg)

377775
Moreover, in the symmetric equilibrium:

d0y =
�
�1 1� � �� 0 ��

�

D0
y =

266664
0 0 0 0 0
0 �(1� �) 0 0 ���(1� �)
0 0 0 0 0
0 0 0 0 0

0 ���(1� �) 0 0 �2�(1� �)

377775

D0
e =

266664
0 0 0 0 0
0 0 0 �(1� �) ��(1� �)
0 0 0 � 0
0 0 0 0 0
0 0 0 ��� ��(1� �)

377775
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B.2 Risk Sharing Equation
In a perfectly integrated capital market, the value of the intertemporal marginal rate of substitution is
equated across borders:

UC
�
C�t+1

�
UC (C�t )

P �t
P �t+1

=
UC (Ct+1)

UC (Ct)

St+1Pt
StPt+1

(B.15)

Assuming the symmetric steady state equilibrium, the log linear approximation to the above condi-
tion is:

Ĉ�t = Ĉt +
1

�
cRSt (B.16)

Given our utility function speci�cation, equation (B.15) gives rise to a exact log linear expression
and therefore the �rst and second order approximation are identical. In matrix notation, we have:X

Et�
t

�
c0yyt +

1

2
y0tCyyt + y

0
tCeet

�
+ t:i:p+O(jj�jj3) = 0

c0y =
�
0 �1 0 0 1

�

�
c0e =

�
0 0 0 1

�
C 0y = 0

C 0e = 0

B.3 The Real Exchange Rate
Given our preference speci�cation for the small open economy, and knowing that in the rest of the world
PF = SP

�; we can write the price level in the following form:�
P

PH

�1��
= (1� �) + �

�
RS

P

PH

�1��
(B.17)

Therefore, the �rst order approximation to the above expression is:

bp
H
= � �

cRS
1� � (B.18)

Moreover, the second order approximation to equation (B.17) is:X
Et�

t

�
f 0yyt +

1

2
y0tFyyt + y

0
tFeet

�
+ t:i:p+O(jj�jj3) = 0

f 0y =
�
0 0 �(1� �) 0 ��

�

F 0y = �(� � 1)

266664
0 0 0 0 0
0 0 0 0 0
0 0 0 0 �1
0 0 0 0 0
0 0 �1 0 (1� �=(1� �))

377775
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B.4 Price Setting
The �rst and second-order approximation to the price setting equation follow Benigno and Benigno
(2003). The introduction of the tax component is done in the same manner as in Benigno and Woodford
(2003). The optimal price setting condition of sellers that can reset their prices is:

Et

(X
(��)T�tUc(CT )

�
~pt(h)

PH;t

���
YH;T

�
~pt(h)

PH;T

PH;T
PT

� �mctVy (~yt;T (h); "Y;t)

(1� �)(1� � t)Uc(CT )

�)
= 0 (B.19)

where

~yt(h) =

�
~pt(h)

PH;t

���
YH;t (B.20)

and mut is a markup shock, and income taxes are represented by � t.
Therefore the evolution of the domestic price level is:

(PH;t)
1�� = �P 1��H;t�1 + (1� �) (~pt(h))

1�� (B.21)

We can write the second order approximation for equation (B.19) as follows:

Vo = E0

( 1X
t=0

�tzt +
1

2
ztXt +

1

2

�(1 + �)

k

�
�Ht
�2)

+ t:i:p+O(jj�jj3) (B.22)

where:

zt = �bYt + � bCt � bpH +dmut � bqt � �b"Y;t
Xt = (2 + �)bYt � � bCt + bpH +dmut + bqt � �b"Y;t

We de�ne qt = 1� � t and, therefore:

bqt = �!b� t � 1
2

!

1� � b�2t
where ! = �

1�� :
The �rst order approximation to the price setting equation can be written in the following way:

b�Ht = k �� bCt + �bYt � bpH +dmut + !b� t � �b"Y;t�+ �Etb�Ht+1 (B.23)

where k = (1� ��)(1� �)=�(1 + ��):
And the second order approximation to the price setting can be written as follows:

Qto = �
X

Et�
t

�
a0yyt +

1

2
y0tAyyt + y

0
tAeet

�
+ t:i:p+O(jj�jj3) (B.24)

with

a0y =
�
� � �1 ! 0

�

A0y =

266664
�(2 + �) � �1 ! 0

� ��2 � ��! 0
�1 � �1 ! 0
! ��! ! ! 0
0 0 0 0 0

377775

A0e =

266664
��(1 + �) 1 + � 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

377775
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B.5 Government Budget Constraint
We assume at �rst that all public debt consists of riskless nominal one-period bonds. The law of motion
of government debt is:

Dt = Dt�1(1 + it�1)� PH;tst;
where

st � � tYt �Gt � Trt:
De�ning

d0t �
Dt (1 + it)

Pt
;

we can rewrite the government budget constraint as

d0t = d
0
t�1
(1 + it)

�t
+
PH;t
Pt

st(1 + it):

In log-linear terms the government budget constraint is given by

�d̂0t = d̂
0
t�1 +

�s�1

1� � it � s
�1p̂H;t � s�s�1

�
Ŷt + �̂ t

�
+ ĝt + cTr � s�1

1� �

�b�Ht + �=(1� �)�RSt� :
In order to derive a second order approximation to the intertemporal government solvency condition
we de�ne:

NWt =
d0t�1
�t

UC
�
CT ; �C;T

�
; (B.25)

and, therefore:

NWt = Et

1X
T=t

UC
�
CT ; �C;T

�
stpH;t (B.26)

The second order aproximation to condition (B.26) is

UC
�
CT ; �C;T

�
stpH;t = Ucs

8<: 1� � bC + bpH + hs� (b� + bY ) + s� (b� + bY )2 � sbgi
+ 1
2�
2 bC2 + hs� (b� + bY ) + s� (b� + bY )2 � sbgi (�� bC + bpH)

9=;
Ucs

8><>:
1 + s� bY � � bC + bpH + s�b� + 1

2s�
bY 2 � �s� bY bC + s� bY bpH

+s�b� bY + 1
2�
2 bC2 + 1

2 bp2H + s�b�2
��s�b� bC + s�b� bpH + �sbg bC � sbpHbg

9>=>;
+t:i:p+O(jj�jj3)

Therefore, de�ning gNW t =
NWt�NW

NW
, we have:

gNW t = (1� �)
�
b0yyt +

1

2
y0tByyt + y

0
tBeet

�
+ �EtgNW t+1 + t:i:p+O(jj�jj3)

b0y =
�
s� �� 1 s� 0

�

B0y =

266664
s� ��s� s� s� 0
��s� �2 0 ��s� 0
s� 0 1 s� 0
s� ��s� s� s� 0
0 0 0 0 0

377775
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B0e =

266664
0 0 0 0
0 0 �s 0
0 0 �s 0
0 0 0 0
0 0 0 0

377775
Note that

�t = b�Ht + �

1� ��RSt;

therefore, the �rst order aproximation to condition (B.25) is

gNW t = �� bCt + bd0t�1 � b�t = �� bCt + bd0t�1 � ( �

1� ��RSt + b�Ht )
Hence, the �rst order approximation of the intertemporal budget constraint can be written as:

�� bCt + bd0t�1 � ( �

1� ��RSt + b�Ht ) = (1� �)(�� bCt + bpH;t + s� (b� t + bYt)� sbgt)
+�Et

�
�� bCt+1 + bd0t � ( �

1� ��RS
�
t+1 + b�Ht+1)�

Throughtout the text we use an alternative representation of the budget constraint in order to allow
for a zero steady state government debt. The above equation is rescaled, using bdt = dss bd0t (note that
s� =

�
dss(1��) ).

��dss bCt + bdt�1 � ( �

1� �dss�RSt + dssb�Ht ) = (1� �)dss(�� bCt + bpH;t) + �(b� t + bYt)� bgt
+�Etdss

�
�� bCt+1 + bdt � ( �

1� ��RS
�
t+1 + b�Ht+1)�

An analogous derivation can be conducted in the case of Real Bonds. In order to derive the second
order approximation to the government budget constraint we use a the recursive formulation, in which:

RWt = d
r0

t�1UC (Ct) (B.27)

and

RWt = Et

1X
T=t

�T�tUC (CT ) stpH;t (B.28)

De�ning gRW t =
RWt�RW

RW
, we have:

gRW t = (1� �)
�
rb0yyt +

1

2
y0tRByyt + y

0
tRBeet

�
+ �EtgRW t+1 + t:i:p+O(jj�jj3) (B.29)

rb0y =
�
s� �� 1 s� 0

�

RB0y =

266664
s� ��s� s� s� 0
��s� �2 0 ��s� 0
s� 0 1 s� 0
s� ��s� s� s� 0
0 0 0 0 0

377775
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RB0e =

266664
0 0 0 0
0 0 �s 0
0 0 �s 0
0 0 0 0
0 0 0 0

377775
And the �rst order approximation of the intertemporal budget constraint is:

�� bCt + bdr0t�1 = (1� �)(�� bCt + bpH;t + s� (b� t + bYt)� sbgt) (B.30)

+�Et

h
�� bCt+1 + bdr0t i

We should note that welfare function just depend on rb0y; RB
0
y and RB

0
e which are equal to b

0
y; B

0
y

and B0e: Therefore the loss function formulation is independent of the denomination of government
debt. However, the �rst order approximation to the government budget constraint changes with the
bond denomination. Hence, the constraint of the policy problem varies according to the type of bond
being issued by the government.

Morover, we can write the budget constraint as follows:

�� bCt + bd0t�1 � (a�RSt + bb�Ht ) = (1� �)(�� bCt � �

1� �RSt + s� (b� t + bYt)� sbgt) (B.31)

+�Et

h
�� bCt+1 + bd0t � (a�RSt+1 + bb�Ht+1)i

where: a = �=(1 � �) and b = 1 in the case of nominal bonds; and a = b = 0 in the case of real
bonds (in this case bd0t = bdr0t ). Alternatively, rescaling the above equation using bd0t = dss bdt we obtain
the government budget constraint as speci�ed in the text (see table 1).

B.6 Welfare
Following Benigno and Benigno (2003), the second order approximation to the utility function can be
written as:

U jt = Et

1X
s=t

�s�t
�
U(Cjs)� V (yjs; �Y;s)

�
(B.32)

Wto = Uc �CEt0
X

�t
�
w0yyt �

1

2
y0tWyyt � y0tWeet �

1

2
w��

2
t

�
+ t:i:p+O(jj�jj3) (B.33)

w0� =
�

�k

w0y =
�
�1=� 1 0 0 0

�

W 0
y =

266664
(1+�)
� 0 0 0 0

0 �(1� �) 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

377775

W 0
e =

266664
� �
� 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

377775
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Using the second order approximation of the equilibrium condition, we can eliminate the term w0yyt:
Do do so, we will derive the vector Lx; such that:�

ay dy fy cy by
�
Lx = wy

Giving the values of ay; by; fy; cy; and dy de�ned in this appendix, we have:

Lx1 =

�
(�1 + �) (1� ��)�2 + (� (�1 + �) 2��� 1 + 2�)�� �

�
(�1 + �)




Lx2 =
�� (�1 + �) + (	 (�1 + �))




Lx3 =
(�1 + �)� (1� ��)�� � (�1 + �)��+	� + ��




Lx5 =
(�1 + �) (1� ��)�2 + (� (�1 + �) 2��� 1 + 2�)�� �




where:
	 = ((� + 1) � � �), � = (�1 + � � dss + dss�) ; 
 = �	l � �� � 	, l = (�� � 1)�(2 � �) and

1� � = 1=�:
Note: these parameters where derived under the special case where there is a symmetric

steady state (G = 0).
And the loss function Lto can be written as follows

Lto = Uc �CEt0
X

�t
�
1

2
y0tLyyt + y

0
tLeet +

1

2
l��

2
t

�
+ t:i:p+O(jj�jj3) (B.34)

where:

Ly =Wy + Lx1Ay + Lx2Dy + Lx3Fy + Lx5By

Le =We + Lx1Ae + Lx2De

L� = w� + Lx1a�

Note that Lx4 is irrelevant since Cy = 0

To write the model just in terms of the output, real exchange rate, taxes and in�ation, we de�ne
the matrixes N and Ne mapping all endogenous variables into [Yt; Tt] and the errors in the following
way:

y0t = N [Yt; RSt; � t] +Neet (B.35)

N =

266664
1 0 0
1 � l+�

�(1��) 0

0 � �
(1��) 0

0 0 1
0 1 0

377775

Ne =

266664
0 0 0 0
0 0 �1 0
0 0 0 0
0 0 0 0
0 0 0 0

377775
Equation (B.34) can therefore be expressed as:
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Lto = Uc �CEt0
X

�t
�
1

2

hbYt; cRSt;b� ti0 L0

y

hbYt; cRSt;b� ti+ hbYt; cRSt;b� ti0 L0

eet +
1

2
l��

2
t

�
(B.36)

+t:i:p+O(jj�jj3) (B.37)

where:

L0y = N
0LyN

L0e = N
0LyNe +N

0Le

The last step is to eliminate the cross variables terms bYtcRSt: For that we use the following identity
(derived from combining the demand function with the risk sharing condition):

2bYtcRSt = �(1� �)
(1 + l)

bYt2 + (1 + l)

�(1� �)
cRS2t + t:i:p+O(jj�jj3) (B.38)

and, therefore:

hbYt; cRSt;b� ti0 L0

y

hbYt; cRSt;b� ti =
hbYt; cRSt;b� ti0

24 lyy lyt 0
lyr lyy 0
0 0 0

35hbYt; cRSt;b� ti (B.39)

= (lyy +
�(1� �)
(1 + l)

lyt)bY 2t + (ltt + (1 + l)

�(1� �) lyr)
cRS2t

+t:i:p+O(jj�jj3) (B.40)

Substituting (B.39) into (B.36), we have:

Lto = Uc �CEt0
X

�t

24 1
2 (lyy +

�(1��)
(1+l) lyt)

bY 2t + (ltt + (1+l)(1��)
� lyr)cRS2t

+
hbYt; cRSti0 L0

eet +
1
2 l��

2
t

35+ t:i:p+O(jj�jj3) (B.41)

Finally, we rewrite the previous equation as deviations from the target variables:

Lto = Uc �CEt0
X

�t
�
1

2
�Y (bYt � bY Tt )2 + 12�RS(cRSt � cRSTt )2 + 12��(b�Ht )2

�
(B.42)

+t:i:p+O(jj�jj3) (B.43)

where:

�Y = Lx5

(
�2�� + �2dss (1� �) + � +

�
�� � �2dss (1� �)

�
(l + �)� ���

1 + l

)

+Lx2

(
(1� �)�+ (��) (l + �) (1� �)� �� (1� �)

2
�

1 + l

)

+Lx1

(
2�� �2 + (2 + �) � +

�
�
�� �2

�
(l + �)� (�1 + �)��
1 + l

)

+(� + 1) (1� �)� 1� (�1 + �) (l + �)
1 + l

+ �2
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�RS = Lx5

8<:dss (1� �)
h
(l + �)

2
+ �2 � (1 + l) (l + �)

i
+ 1

� (1 + l) l�

(1� �)2

9=;
+Lx3

�
� (� � 1)
1� �

�

+Lx2

8<: (l + �)�
�
� � 1

�

�
� �� (1� �)

�
+ �2� (1� �)

9=;
+Lx1

(
l (l + 2�) + 1+l

� l (�� 1)
(1� �)2

)

� (l + �) (�1 + �)
(1� �) �2

�� =
�(1� �)

k
+ (1 + �)

�

k
Lx1

and

bY Tt = qeyet

cRSTt = qerset
with

qey =
1

�RS

� �
� + Lx1(1 + �)� �Lx1(1 + �) �qeyg Lx2 (1� �)�

�
qeyg = Lx5

�
� (1 + �)� �2dss (1� �)

	
+Lx1 f� (�� 1)g
+Lx2

�
�2 � 1

	
+1� �

qet =
1

�RS

h
0 0 �qerg �Lx2

n
(l+�)�
� + �� (1� �)

o i

qerg = Lx5

�
(l + �) �dss (1� �)� l

1� �

�
+Lx2

�
(l + �) (1 + �)

�
� ��

1� � � ��
2

�
+Lx1

�
�l�
1� �

�
+
(l + �) (�1 + �)

� (1� �)

B.6.1 Special Case

Assumptions�: � = � = 1 and � = �

�Y
1� � = (� + 1)

28



�RS
1� � = 0

��
1� � =

�

kbY Tt = qeyet

where:
qey =

1

1 + �

�
� 0 �1 0

�
and cRSTt = 0
�Note: In the text we use the above speci�cation (as in Galí and Monacelli, 2005). However, by

inspection of the weights presented in this Appendix, we can verify that the necessary conditions for a
zero weight of the exchange rate in the loss function are �� = 1 and dss(�� �) = 0:

C Appendix: Optimal Fiscal Policy under Flexible Prices
The optimal policy can be represented by the following Lagrangian:The optimal policy can be repre-
sented by the following Lagrangian:

L = Et0
X

�t�t0

2666666664

1
2�Y (

bYt � bY Tt )2 + 1
2�RS(

cRSt � cRSTt )2 + '1;t ��Ŷt + (1� �)�1cRSt � !b� t�+
+'2;t

 
�dsscRSt + bdt�1 � dss(a�RSt + bb�Ht ) + dss(1� �)( 1

1��
cRSt)

��(b� t + bYt) + �Et hdsscRSt+1 � bdt + dss(a�RSt+1 + bb�Ht+1)i
!

+'3;t

�bYt � (1+l)
�(1��)

cRSt�
+bdss'2;t0�1b�Ht0 + dss(a+ 1)'2;t0�1cRSHt0

3777777775
+t:i:p+O(jj�jj3):

The last line of the Lagrangian contains the constraints for the optimal policy that ensure that the
problem is time invariant. And these are the �rst order conditions:

�bdss('2;t � '2;t�1) = 0; (C.44)

�y(bYt � bY Tt ) + �'1;t � �'2;t + '3;t = 0; (C.45)

�y(cRSt � cRSTt ) + 1

(1� �)'1;t � dss(a+ 1)('2;t � '2;t�1) (C.46)

+dss
(1� �)
(1� �)'2;t + �adss(Et'2;t+1 � '2;t)�

(1 + l)

�(1� �)'3;t = 0;

!'1;t � �'2;t = 0; (C.47)

and
�'2;t + Et'2;t+1 = 0: (C.48)

In addition, the �rst order condition at time t0 implies bdss('2;t0 � '2;t0�1) = 0. Substituting

Ĉt = Ĉ
�
t +

1
�
cRSt into the government budget constraint we have

��dssĈ�t � dsscRSt + d̂0t�1 � dss(a�cRSt + b�̂Ht ) = dss(1� �)(��Ĉ�t � 1

1� �
cRSt)+ (C.49)

+�(�̂ t + Ŷt)� ĝt + �Et
h
��dssĈ�t+1 � dsscRSt+1 + d̂0t � dss(a�cRSt+1 + b�̂Ht+1)i
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Furthermore, under the assumption that � = 0 the Phillips curve implies

�!�1
�
�(1 + l) + �

(1 + l)

�
(Ŷt � bY Tt ) = (b� t � b�T 0t ) (C.50)

By integrating equation (C.49) forward we can rewrite the intertemporal budget constraint of the
government as

d̂0t�1 � dssb�̂Ht = bft + dssa��(1� �)
(1 + l)

(bYt � bY Tt )+ (C.51)

dss�(1� �)
1 + l

(Ŷt � bY Tt ) + (1� �)(1 + l)
dssEt

1X
s=0

�t+s
h
m
�bYt � bY Tt �i ;

where

m �
�
�(1� !�1�) (1 + l)

(1� �) � dss�(1 + !�1)
�

and

bft � dssa��(1� �)
(1 + l)

h
� bC�t � bgt + bY Tt i+ � (l + �)1 + l

dssĈ
�
t �

�(1� �)
1 + l

dssgt +
�(1� �)
1 + l

dssY
T
t +

+(1� �)dssEt
1X
s=0

�t+s
��

�

(1� �) dss
� �

1 + l

� bY Tt +
�

(1� �) dss
b�T 0t +

�� �s(1 + l)
1 + l

gt �
�l

1 + l
C�t

�
The combination of the �rst order condition implies:

�RS�(1� �)
(1 + l)

(bYt � bY Tt � �t) +
(1 + l)

�(1� �)�Y (
bYt � bY Tt ) (C.52)

+m0'2;t � dss(1 + a)('2;t � '2;t�1) = 0;

where �t � bC�t + bgt � bY Tt + (1+l)
�(1��)

cRSTt and m0 =
1

1��

�
�s+ �(1+l)��

!� + ��
! �

��(1�l)
�

�
: Alternatively we

can write:

(bYt � bY Tt ) = m1�t �m2'2;t + (1 + a)dssm3('2;t � '2;t�1) (C.53)

where

m1 =

�
(1 + l)2�Y +�RS�

2(1� �)2
�RS�2(1� �)2

��1

m2 =

�
(1 + l)2�Y +�RS�

2(1� �)2
�(1 + l)

��1
m0

m3 =

�
(1 + l)2�Y +�RS�

2(1� �)2
�(1� �)(1 + l)

��1
Moreover, substitution equation (C.53) into equation (C.51) we have:

'2;t =
�(1 + l)
(n1 + n2)

bdt�1 + 1

(n1 + n2)
f
0

t +
n1

(n1 + n2)
'2;t�1 (C.54)

and using (C.48) we have

'2;t =
�(1 + l)
n2

bdt + 1

n2
Etf

0

t+1 (C.55)
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where:

n1 = �((1� �)m� dss�(1� �))m3dss

n2 = (dss�(1� �) +m)m2

Therefore the evolution of the lagrange multiplier and government debt can be written as

'2;t =
1

(n1 + n2)
(f

0

t � Et�1f
0

t ) + '2;t�1 (C.56)

bdt = bdt�1 � n2
(1 + l)

1

(n1 + n2)
(f

0

t � Et�1f
0

t ) +
1

(1 + l)
Etf

0

t+1 (C.57)

Case (i) : dss = 0
In this case, equation (C.54) implies:

'2;t =
�(1 + l)
n2

bdt�1 + 1

n2
f
0

t (C.58)

and

bdt = bdt�1 + 1

(1 + l)
Et�f

0

t+1 (C.59)

Case (ii) : dss 6= 0 and of Nominal Bonds
In this case, we de�ne a = �

(1��) and b = �1. The �rst order condition at time t0 combined with
(C.44) implies that '2;t is constant over time. In this case, the �rst order conditions (C.44) to (C.48)
can be expressed as the following targeting rule:

�RS(cRSt � cRSTt ) + (1 + l)

�(1� �)�Y (
bYt � bY Tt ) = 0:

Moreover, in the special case where � = � = 1 and � = 1=(1� �);

bYt = bY Tt : (C.60)

Equation (C.51) implies

d̂t�1 � dssb�̂Ht = bft; (C.61)

that is, if the underlying structural disturbances composing bY Tt are stationary, output and the real
exchange rate will also be stationary. Finally, Equation (C.61) determines the evolution of real debt.

D Appendix: Optimal Fiscal andMonetary Policy when Prices
are Sticky:

IIn this case the Lagrangian is:

L = Et0
X

�t�t0

2666666666664

1
2�Y (

bYt � bY Tt )2 + 1
2�RS(

cRSt � cRSTt )2 + 1
2��

�b�Ht �2
+'1;t

�
�k�1�Ht + �Ŷt + (1� �)�1cRSt � !b� t + �Et�Ht �+

+'2;t

 
�dsscRSt + bdt�1 � dss(a�RSt + bb�Ht ) + dss(1� �)( 1

1��
cRSt)

��(b� t + bYt) + �Et hdsscRSt+1 � bdt + dss(a�RSt+1 + bb�Ht+1)i
!

+'3;t

�bYt � (1+l)
�(1��)

cRSt�
+'1;t0�1k

�1b�Ht0 + bdss'2;t0�1b�Ht0 + dss(a+ 1)'2;t0�1cRSHt0

3777777777775
+t:i:p+O(jj�jj3):
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As before, the last line in the Lagrangian contain constraints in the initial conditions that ensure a
time-invariant policy problem. The �rst order conditions are:

��b�Ht � ('1;t � '1;t�1)k�1 � bdss('2;t � '2;t�1) = 0; (D.62)

�y(bYt � bY Tt ) + �'1;t � �'2;t + '3;t = 0; (D.63)

�y(cRSt � cRSTt ) + 1

(1� �)'1;t � dss(a+ 1)('2;t � '2;t�1) (D.64)

+dss
(1� �)
(1� �)'2;t + �adss(Et'2;t+1 � '2;t)�

(1 + l)

�(1� �)'3;t = 0;

�!'1;t = �'2;t; (D.65)

and
�'2;t + Et'2;t+1 = 0: (D.66)

These equations imply that:

Etb�Ht+1 = 0 (D.67)

And the �rst order conditions can be combined and written as:�
(1 + l)�y
(1� �)�

�
�byt +�RS� brst + � k��

(1� �) + bdssk

�
(
b�Ht + dss(a+ 1)b�Ht�1) = 0 (D.68)

where brst = (cRSt�cRSTt ); byt = (bYt�bY Tt ) , and 
 = hdss � (1��)(1��) � (1 + a)
�
+
�
(1+l)(�(1��)��)

�(1��) + 1��
(1��)

�i
Moreover, combining the �rst order condition with the government budget constraint and the Phillips

Curve leads to the following expressions:
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f
0
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0

t

(n01 + n
0
2)

+ '2;t�1 (D.69)

bdt = Ef
0
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1 + l
�
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('2;t � '2;t�1) (D.70)

�RS brst + (1 + l)

�(1� �)�Y byt = �m0'2;t + (a+ 1)dss('2;t � '2;t�1); (D.71)

where:

n01 = � ((1� �)m+ dss�(1� �))(a+ 1)m3dss + dssm4 +m5)
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Figure D.1: Figure 1

Figure D.2: Figure 2
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Figure D.3: Figure 3

Figure D.4: Figure 4
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Figure D.5: Figure 5
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