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Abstract

This paper compares the leader and follower payoff in a duopoly game, as they
arise in sequential play, with the Nash payoff in simultaneous play. If the game
is symmetric, has a unique symmetric Nash equilibrium, and players’ payoffs are
monotonic in the opponent’s choice along their own best reply function, then the
follower payoff is either higher than the leader payoff, or even lower than in the
simultaneous game. This gap for the possible follower payoff had not been observed
in earlier duopoly models of endogenous timing.
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1 Introduction

The classic duopoly model of quantity competition by Cournot (1838) is a game between
two firms that simultaneously choose quantities, with Cournot’s solution as the unique
Nash equilibrium. The “leadership game” of von Stackelberg (1934) uses the same payoff
functions, but where one firm, the leader, moves first, assuming a best reply of the second-
moving firm, the follower. The Stackelberg solution is then a subgame perfect equilibrium
of this sequential game.

Many recent papers are concerned with endogenizing the “timing” in the sequential
game, that is, the order of play which determines the roles of leader and follower. In
a much-cited paper, Hamilton and Slutsky (1990) take a given duopoly game and let
players decide to act in one of two periods. If one player moves in the first period and
the other in the second, they become leader and follower, respectively. If they move in
the same period, their payoffs are as in simultaneous play. The leader-follower outcome
is a Nash equilibrium of the two-period game only if the follower’s payoff is not smaller
than her Nash payoff in the simultaneous game. In that case, there are typically two pure
Nash equilibria, with either order of play; van Damme and Hurkens (1999; 2004) use
risk dominance to select one of these equilibria. If the follower would suffer compared to
simultaneous play, both players act in the first period, using their equilibrium strategies
from the simultaneous game.

These papers and others (for example, Amir (1995)) compare explicitly the follower
payoff to the payoff the player would get as a leader or in simultaneous play. The point
of the present paper is a simple observation which so far, apparently, has not been made
explicitly: If the game is symmetric and certain standard assumptions hold, then the fol-
lower gets either less than in the simultaneous game, or more than the leader. That is,
the seemingly natural case that both players profit from sequential play as compared to
simultaneous play, but the leader more so than if he was follower, can only occur in non-
symmetric games.

Our assumptions about the duopoly game are designed to be general while allowing
for a very simple proof. Apart from symmetry, we assume intervals as strategy spaces,
unique best replies, a unique symmetric Nash equilibrium in the simultaneous game, and
monotonicity of payoffs in the other player’s strategy along the own best reply function.

These assumptions encompass many duopoly models of quantity or price compe-
tition. Hamilton and Slutsky (1990) make similar assumptions. Gal-Or (1985) com-
pares leader and follower payoffs for identical firms with differentiable payoff functions.
Dowrick (1986) assumes specific functional forms of quantity competition or price com-
petition with heterogeneous goods, and also looks at simultaneous play.

The following papers on endogenous timing differ from our setup, and give further
references, in particular to applied work in industrial organization. Boyer and Moreaux
(1987) allow firms to choose both prices and quantities. Deneckere and Kovenock (1992)
study duopolies with price setting and capacity constraints. Amir and Grilo (1999) and
Amir, Grilo, and Jin (1999) allow for multiple Nash equilibria in the simultaneous game
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and use the theory of supermodular games (see also Vives (1999)). Tasnádi (2003) con-
siders price setting with homogeneous goods.

Leadership in mixed extensions of finite games is analyzed by von Stengel and Zamir
(2004), with an example (in Section 7) of a symmetric game where the follower payoff
can be arbitrary relative to leader payoff and simultaneous payoff. In this example, each
player’s strategy set is not an interval but a two-dimensional mixed strategy simplex.
When considering mixed strategies, best replies are not unique. To keep the present study
short, we do not consider best reply correspondences instead of functions.

In Section 2, we state and discuss our assumptions in detail, and state and prove the
main Theorem 1. We assume monotonicity only along the own best reply function, a
property also used by Hamilton and Slutsky (1990, p. 41). Best reply functions do not
have to be monotonic.

However, as discussed in Section 3, monotonic best replies determine the follower
payoff. If the best reply function increases, then the follower profits from sequential play,
and if it decreases, she suffers. For increasing best reply functions, this has been observed
by Gal-Or (1985) and van Damme and Hurkens (2004, p. 405). For decreasing best reply
functions, Gal-Or compares only follower and leader payoff, and does not consider the
simultaneous game. Games with increasing or decreasing best reply functions are often
called games with strategic complements or substitutes, respectively.

In Section 4, we give examples showing that the main assumptions of symmetry and
monotonicity cannot be weakened.

2 Assumptions and theorem

The duopoly games considered here are assumed to fulfill the following conditions.
(a) The players’ strategy sets are (not necessarily compact) real intervals X and Y , with

payoff a(x,y) to player I and b(x,y) to player II for player I’s strategy x in X and II’s
strategy y in Y .

(b) The best reply r(y) to y is always unique, a(r(y),y) = maxx∈X a(x,y), and so is the
best reply s(x) to x, with b(x,s(x)) = maxy∈Y b(x,y).

(c) The payoffs a(r(y),y) and b(x,s(x)) are (not necessarily strictly) monotonic in y re-
spectively x.

(d) For some xL in X and yL in Y , the payoffs aL = a(xL,s(xL)) = maxx∈X a(x,s(x)) and
bL = b(r(yL),yL) = maxy∈Y b(r(y),y) exist, which are the payoffs to player I and II
when the respective player is a leader. Moreover, xL and yL are unique. The follower
payoffs are denoted bF = b(xL,s(xL)) and aF = a(r(yL),yL).

(e) The game is symmetric, that is, X = Y and a(x,y) = b(y,x), and for some yN in Y ,

> <
r(y) = y for y = yN .

< >
(1)
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Condition (a) is, for example, fulfilled for X = Y = [0,∞). The payoff functions
are typically continuous, but we do not require this. Condition (b) is strong but often
made. Condition (c) states that a player always prefers a higher or lower choice of the
opponent along the own best reply function. Hamilton and Slutsky (1990, p. 41) assume
condition (c) for their Theorem VI.

Condition (d) holds when payoffs are continuous and strategy sets are compact. With-
out compactness, it may fail, for example in the symmetric game where x,y≥ 0 and

a(x,y) = b(y,x) = 4y− (y+3)2

4(x+1)
− x (2)

where r(y) = s(y) = (y + 1)/2, condition (c) holds since a(r(y),y) = 3y− 2, and which
has a unique Nash equilibrium at x = y = 1, but where the leader payoff a(x,s(x)) exceeds
15x/16−2 and is therefore unbounded.

Generically, player I as leader has a unique payoff-maximizing strategy xL. If the
leader’s strategy is not unique, the follower payoff depends on which leader strategy is
chosen. We assume uniqueness of xL and yL for simplicity. Otherwise, Theorem 1 below
would still apply, but then the follower payoffs have to be defined depending on the choice
of the leader strategy.

When the game is symmetric as stated in (e), then obviously s(x) = r(x), and the
game has a unique symmetric Nash equilibrium (xN ,yN) where xN = yN . Conversely, if
payoff functions are continuous and the strategy sets are compact intervals, then (1) holds
when the game has only one symmetric Nash equilibrium (to see this, consider the best
reply function at the endpoints of the interval). Note that non-symmetric Nash equilibria
(x,y) with x = r(y) and y = s(x) and x 6= y may exist. One may consider uniqueness of
the Nash equilibrium as an alternative to (e) when the game is not symmetric. However,
example (7) below shows that our theorem fails in this case.

Theorem 1. Under conditions (a)–(e), consider the leader payoff aL = a(xL,s(xL)) = bL,
follower payoff bF = b(xL,s(xL)), and Nash payoff aN = bN = b(xN ,yN), where xN = yN .
Then bF > bL or bF ≤ bN .

Proof. If bL = bN , the claim is trivial. Player I as leader can always get at least the Nash
payoff aN by choosing xN . If xL = xN , then, since xL is unique by (d), aL = aN , that is,
bL = bN , so we can assume aL > aN and thus xL 6= xN .

We can assume that a(r(y),y) is increasing in y, since if a(r(y),y) is decreasing in y
we can reverse the order on Y and X (by replacing y by −y and x by −x, say), so that (1)
continues to hold. It may be useful to consider the example in Figure 1, explained after
this proof, for the following argument.

If xL < xN , then, since s(x) = r(x),

bF = b(xL,s(xL)) = a(r(xL),xL)≤ a(r(xN),xN) = bN .

If xL > xN = yN , then r(xL) < xL by (1). Thus,

bL = aL = a(xL,r(xL)) < a(r(r(xL)),r(xL))≤ a(r(xL),xL) = b(xL,s(xL)) = bF .

4



The first inequality holds since r(r(xL)) is the unique best reply to r(xL), which is different
from xL, since otherwise r(r(xL)) = xL > r(xL) and thus r(xL) < xN by (1), giving

aL = a(xL,r(xL))≤ a(r(r(xL)),r(xL))≤ a(r(xN),xN) = aN (3)

which we have excluded; so r(r(xL)) 6= xL and the inequality is strict.

The proof shows that if condition (c) is strengthened so that a(r(y),y) is strictly mono-
tonic in y, then the follower payoff bF is strictly less than the Nash payoff bN if it is not
greater than the leader payoff (unless all these payoffs coincide).
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Figure 1 Contour lines of a(x,y) in (4) for α = 0.7 (left) and α = 10 (right). The thick
line is player II’s best reply function s(x) = r(x) with xL = 0.121 (left) and
xL = 2.808 (right), with (xL,s(xL)) indicated by a big dot.

If the best reply function is monotonic, then the game has strategic substitutes or
complements, where Theorem 1 presents a familiar results; we discuss this relationship
in the next section. The following example shows that Theorem 1 holds even if the best
reply function is not monotonic: Let x,y≥ 0 and consider the function, which will be the
best reply function of player I,

r(y) =
3
2
− 1

(y−1)2 +1
.

This function decreases for y ∈ [0,1], with r(0) = 1, and increases from its minimum at
y = 1 for y≥ 1. We consider the game with payoff functions

a(x,y) = b(y,x) =−x2

2
+ x · r(y)+α · y (4)
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for α = 0.7 and α = 10. Then d
dxa(x,y) = −x + r(y), which is zero if and only if x =

r(y), and r(y) is indeed player I’s best reply to y. Figure 1 shows the contour lines of
a(x,y), with r(y) shown as the thin curve defined by the points where the contours have a
horizontal tangent. Moreover, a(r(y),y) is strictly increasing in y. Player II’s best reply is
given by s(x) = r(x), shown as a thick curve in Figure 1. The symmetric Nash equilibrium
(xN ,xN) at the intersection of the best reply curves is obtained for approximately xN =
0.634. In the leadership game, player I maximizes a(x,s(x)) on player II’s curve with the
resulting value xL = 0.121 < xN for α = 0.7 and xL = 2.808 > xN for α = 10, indicated
by a dot; the two values for α correspond to the two cases in the proof of Theorem 1.

3 Strategic complements and substitutes

Players’ strategies are called strategic substitutes if the best reply to “more aggressive”
behavior is “less aggressive” behavior, and strategic complements if the best reply to
“more aggressive” behavior is “more aggressive” behavior. We use this terminology, in
terms of best replies, following Mas-Colell, Whinston, and Green (1995, p. 415). Assume
that “aggressive behavior” is an order on the strategy set (here an interval) representing the
negative preference of the other player. For example, in quantity competition, player I typ-
ically prefers a lower quantity y of the other firm, as “less aggressive” behavior, because
a(x,y) is decreasing in y. In price competition, players typically prefer a higher price of
the opponent as “less aggressive”. Then strategic substitutes correspond to decreasing
best reply functions, and strategic complements to increasing best reply functions. This
does not depend on the chosen order on the interval as long as it is the same for both
players.

If a(x,y) is monotonic in y, the same monotonicity in y holds for a(r(y),y), as in
assumption (c):

Lemma 2. Given (a) and (b), if a(x,y) is (strictly or non-strictly) increasing or decreasing
in y, then so is a(r(y),y).

Proof. For y,y′ ∈ Y and y < y′, and a(x,y) strictly increasing in y, we have

a(r(y),y) < a(r(y),y′)≤ a(r(y′),y′). (5)

If a(x,y) is strictly decreasing in y, we conclude (5) from y > y′. For non-strict mono-
tonicity, replace < by ≤ in (5).

As mentioned, Hamilton and Slutsky (1990, p. 41) assume condition (c) for their
Theorem VI. Amir (1995) notes that this condition is also necessary for their Theorem V,
although he uses the stronger assumption that a(x,y) is monotonic in y.

Monotonicity of a(r(y),y) in y is strictly weaker than monotonicity of a(x,y) in y. In
the following example with x,y≥ 0 and

a(x,y) = (2x− (y+1)) · (y+1− x), (6)
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where a(x,y) ≥ 0 for 2x−1 ≥ y ≥ x− 1, we have r(y) = 3(y + 1)/4, which is a linearly
increasing best reply function. Here, a(r(y),y) = (y + 1)2/8, which is strictly increasing
in y, but a(x,y) is not monotonic in y. If (6) defines a symmetric game with a(x,y) =
b(y,x), then Theorem 1 applies with xN = 3, xL = 4.2, s(xL) = 3.9, and bN = 2, bL = 2.45,
bF = 3.38.

Strategic complements and substitutes mean that r(y) increases or decreases, respec-
tively. Even when only a(r(y),y) increases in y (but not generally a(x,y) in y), this can be
reasonably interpreted as a unique preference of player I for larger values of y as “less ag-
gressive behavior”. Then strategic complements and substitutes give rise to the two cases
bF > bL and bF ≤ bN , respectively, in Theorem 1. We exclude the trivial case bL = bN ,
which arises, for example, when there is no strategic interaction.

Proposition 3. Assume conditions (a)–(e) and the notation in Theorem 1, and let bL > bN .
If r(y) is increasing in y, then bF > bL, so that in a game with strategic complements the
follower is better off than the leader. If r(y) is decreasing in y, then bF ≤ bN , so that in a
game with strategic substitutes the follower is worse off than in the simultaneous game.

Proof. As in the proof Theorem 1, we can assume that a(r(y),y), which is equal to
b(y,r(y)), is increasing in y, if necessary by reversing the order on both X and Y . This
does not affect whether r:X → Y is increasing or decreasing.

Suppose that r(y) is increasing in y. Then yL ≤ yN implies r(yL) ≤ r(yN) = yN and
therefore (3) which contradicts bL > bN . This excludes the first case in the proof of
Theorem 1, so the second case yL > yN applies, where bF > bL.

If r(y) is decreasing in y, then yL ≥ yN implies r(yL) ≤ r(yN) = yN , which gives the
same contradiction, so that the first case yL < yN in the proof of Theorem 1 applies, that
is, bF ≤ bN .

4 Symmetry and monotonicity are necessary

Theorem 1 is stated in such a way that it still makes sense for non-symmetric games,
namely that player II prefers being follower to being leader (or is worse off than in the
Nash equilibrium), rather than just stating “the follower is better off than the leader”.

The following example shows that the symmetry condition (e) is necessary. Consider
the game with x,y≥ 0 and payoff functions

a(x,y) = x · (4
3

+
2
3

y− x),

b(x,y) = y · (4
3

+
2
3

x− y)+4x
(7)

which has the (symmetric and linear) best reply functions r(y) = (2 + y)/3 and s(x) =
(2 + x)/3. Moreover, a(x,y) is increasing in y and b(x,y) is increasing in x. The unique
Nash equilibrium is (1,1) with payoffs aN = 1 to player I and bN = 5 to player II.
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When player I in (7) is a leader, the function a(x,s(x)) is maximized for xL = 8/7 with
payoff aL = a(xL,s(xL)) = 1 + 1/63 to player I as leader and payoff bF = b(xL,s(xL)) =
5 + 65/147 to player II as follower. However, when player II is the leader, her function
b(r(y),y) is maximized for yL = 2 with payoff bL = b(r(yL),yL) = 5 + 7/9, and payoff
aF = a(r(yL),yL) = 1 + 7/9 to player I as follower. Note that bL > bF > bN , so the
conclusion of Theorem 1 does not apply. Here, player II prefers being a leader to being a
follower, whereas player I prefers following to leading. This agrees with Dowrick (1986,
p. 255, Proposition 2): “If both firms have upward-sloping reaction functions, then if one
prefers to lead, the other must prefer to be the von Stackelberg follower.” All assumptions
by Dowrick are met in (7), writing (for y > 0) b(x,y) = y · (4/3+2x/3+4x/y−y) where
the second factor has negative derivative with respect to y and positive derivative with
respect to x. Dowrick (1986, p. 257, Proposition 3) notes that both firms prefer to be
followers when they “face similar cost and demand structures”, which however is not
made precise. Boyer and Moreaux (1987) quantify this distinction in terms of the “cost
differential” between the firms, for a specific payoff function.

Without the monotonicity condition (c), it may happen that bL > bF > bN , even when
the game is symmetric. Consider the symmetric game with x,y≥ 0 and payoff

a(x,y) = b(y,x) = (0.72x−0.125y−0.785)(6.16− y−0.72x) (8)

which has the (linear) best reply function

r(y) = max(
1389−175y

288
, 0)≈max(4.823−0.608y, 0).

The unique Nash equilibrium is (xN ,yN) = (3,3) and has payoff bN = b(3,3) = 1. The
leader payoff is bL = aL = a(xL,s(xL))≈ a(6.822,0.678)≈ 2.306 and the follower payoff
is bF = b(xL,s(xL)) ≈ 1.322, with bL > bF > bN . Here, a(r(y),y) = ((43− 9y)/16)2 as
long as r(y) > 0, that is, y < 7.937. This function is not monotonic, but has a minimum
for y = 43/9≈ 4.778.

The function in the example (8) does not make too much sense from an economic
viewpoint since the follower payoff bF is obtained as a product of two negative terms (un-
like the payoff in the Nash equilibrium), which is crucial for this particular construction.
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Tasnádi, A. (2003), Endogenous timing of moves in an asymmetric price-setting duopoly. Por-
tuguese Economic Journal 2, 23–35.

van Damme, E., and S. Hurkens (1999), Endogenous Stackelberg leadership. Games and Eco-
nomic Behavior 28, 105–129.

van Damme, E., and S. Hurkens (2004), Endogenous price leadership. Games and Economic Be-
havior 47, 404–420.

Vives, X. (1999), Oligopoly Pricing. MIT Press, Cambridge, Mass.

von Stackelberg, H. (1934), Marktform und Gleichgewicht. Springer, Vienna.

von Stengel, B., and S. Zamir (2004), Leadership with Commitment to Mixed Strategies. Research
Report LSE-CDAM-2004-01, London School of Economics.

9


	Follower payoffs (coversheet).doc
	follower payoffs (author version).pdf

