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Abstract

Van Fraassen’s Judy Benjamin problem has generally been taken to show that not

all rational changes of belief can be modelled in a probabilistic framework if the

available update rules are restricted to Bayes’s rule and Jeffrey’s generalization

thereof. But alternative rules based on distance functions between probability

assignments that allegedly can handle the problem seem to have counterintuitive

consequences. Taking our cue from a recent proposal by Bradley, we argue that

Jeffrey’s rule can solve the Judy Benjamin problem after all. Moreover, we show

that the specific instance of Jeffrey’s rule that solves the Judy Benjamin problem

can be underpinned by a particular distance function. Finally, we extend the set

of distance functions to ones that take into account the varying degrees to which

propositions may be epistemically entrenched.

Often a learning experience makes us certain of a proposition we were previously

uncertain of. But, as Jeffrey famously pointed out, not all learning is like that. Some-

times learning consists in a person’s becoming more certain of some proposition or

propositions without her becoming entirely certain of any of them. To cite a well-worn

example, a glimpse of a cloth by candlelight may make one more certain that the cloth

is blue without making one certain that it is blue (Jeffrey [1983:165 f]). Both kinds of

learning can be readily handled by probabilistic means, the first by dint of Bayes’s rule

(also known as “conditionalization”), the second by dint of Jeffrey’s generalization of

that rule. Van Fraassen’s [1981] Judy Benjamin problem is generally taken to show

that there are types of learning experiences that fall outside the scope of both Bayes’s

and Jeffrey’s rule.1

While we do not want to contest the general point that there exist cases of learn-

ing that cannot be adequately dealt with by either of these rules, we do disagree with

van Fraassen that the Judy Benjamin problem forces us to resort to a probabilistic

update rule beyond the aforementioned ones. Taking our cue from a recent proposal

by Bradley [2005], we will argue not only that the learning event described in van

Fraassen’s problem poses no special difficulties to Jeffrey’s rule, but also that this

rule permits a more satisfactory solution to the problem than any of the alternative

1See also van Fraassen [1989:342 ff] and van Fraassen, Hughes, and Harman [1986].
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rules that have been discussed in this context. Indeed, we will point to a specific ap-

plication of Jeffrey’s rule that yields a solution satisfying all the constraints that are

pre-theoretically valid in the Judy Benjamin story and that moreover can be under-

pinned by a variant of one of the aforementioned alternative rules; this variant rule,

like the other rules, counsels a particular type of distance minimization between the

pre- and post-update probability assignments under the given constraints.

We take this to be a surprising result, given that the case of Judy has already in-

vited comparison between several distance functions, and given that the new distance

function to be presented would seem to be a rather obvious one. But we want to go

beyond this result and consider a wider range of update rules. For, as will be seen,

Jeffrey’s rule and the associated distance function provide only a partial answer to the

question how one ought to update one’s degrees of belief in response to the learning

of an indicative conditional, a question that, on our analysis, occupies center stage

in the Judy Benjamin problem.2 While to our mind the partial answer suffices for

tackling the designated problem, it is of independent interest to have a more general

probabilistic account of what it is to learn an indicative conditional, which is still lack-

ing from the literature. In the final section of the paper, we provide the beginnings of

such an account.

1. The Judy Benjamin problem. In the Judy Benjamin problem, a soldier—the fic-

tional character Judy Benjamin—is dropped with her platoon in an area that is di-

vided in two halves, Red territory (R) and Blue territory (¬R), respectively, with each

territory in turn being divided in equal parts, Second Company area (S) and Head-

quarters Company area (¬S). Since the platoon was dropped more or less at the

center, Judy Benjamin deems it equally likely that they are in one area as that they

are in any of the others, that is, where Pr0 is her initial degrees-of-belief function,3

Pr0(R∧S) = Pr0(R∧¬S) = Pr0(¬R∧S) = Pr0(¬R∧¬S) = 1/4. They then receive the

following radio message:

(1) I can’t be sure where you are. If you are in Red territory, the odds are

3 : 1 that you are in Headquarters Company area.

After this, the radio contact breaks down. Supposing Judy accepts this message, how

should she adjust her degrees of belief? It is obvious that at least (i) should hold for

her new degrees-of-belief function Pr1:

(i) her conditional degree of belief for being in Headquarters Company area (¬S)

given that she is in Red territory (R) is three times her conditional degree of belief

for being in Second Company area (S) given R; as these conditional degrees of

belief must sum to 1, it follows that Pr1(¬S |R) = 3/4 and Pr1(S |R) = 1/4.

But (ii) and (iii) seem intuitively no less compelling as desiderata to be satisfied by her

new degrees-of-belief function:

(ii) none of her conditional degrees of belief given any proposition in {R ∧ S,R ∧

¬S,¬R} has changed, that is, Pr1(A |X) = Pr0(A |X) for all A, with X ∈ {R ∧

2See in the same vein Nayak et al. [1996].
3More precisely, Pr0 is a probability function that represents degrees of belief, but in this paper we

will refer to such functions as degrees-of-belief functions.
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S,R∧¬S,¬R}; after all, (1) seems to contain no information that could warrant

a change in those conditional degrees of belief;

(iii) Pr1(¬R) = Pr0(¬R) = Pr0(¬R ∧ S) + Pr0(¬R ∧ ¬S) = 1/2, for neither does (1)

seem to contain any information relevant to whether she is in Red rather than

in Blue territory.

The question then is whether there is any probabilistic update rule that respects (i)–

(iii).

A preliminary question to be asked is whether there is any probabilistic update

rule that applies to (1) at all. It is clear that neither Bayes’s rule nor Jeffrey’s rule was

devised for this kind of learning event, and it is generally thought that neither of them

is applicable to (1).4 A rule that does apply, and that van Fraassen discusses—while

stopping short of endorsing it—is the rule he calls “infomin.” Given, first, a prior

degrees-of-belief function Pr0 defined on an algebra F , second, the partition {Ai} of

minimal elements (i.e., strongest consistent propositions) of F such that Pr0(Ai) > 0

for all i, and third, constraints π to be imposed on the posterior degrees-of-belief

function, this rule demands that we adopt the posterior degrees-of-belief function

Pr1 ∈ {Pr | Pr satisfies π} that minimizes the following “relative entropy” function:

(2) RE(Pr0,Pr1) =
∑

i

Pr1(Ai) log
Pr1(Ai)

Pr0(Ai)
.

Informally put, suppose we have collected all degrees-of-belief functions defined on

a given language in a space of functions, so that changes from one belief state to

another can be represented as moves from one point in the space of functions to

another. RE then defines something that is in certain respects similar to a distance

function on this space, thereby allowing us to regard some belief changes as being

more radical than others, depending on the distance that the point representing the

new belief state has to the point representing the old belief state. The normative

principle that subsequently determines the update is that changes in belief states

must respect the constraint or constraints imposed by the receipt of new information,

but must otherwise be maximally prudent and conservative. This can be spelled out

as the requirement that we minimize RE under a set of constraints. In van Fraassen,

Hughes, and Harman [1986], two further rules, similar to infomin, are discussed that

also apply unambiguously to (1).

As it turns out, application to the Judy Benjamin case of any of the said rules

leads to a violation of desideratum (iii). For instance, according to infomin Judy’s

new degree of belief for being in Blue territory should be (approximately) .532. But

instead of looking for a formal rule that does satisfy all of (i)–(iii), van Fraassen and

his coauthors seek to downplay the importance of (iii).5 Suppose—they argue, giving

4Though Grove and Halpern [1997] argue that Judy can deal with (1) by means of Bayes’s rule. In

order to do so, she is supposed to extend the algebra on which her degrees-of-belief function is defined

by including the event that the radio officer tells Judy a conditional degree of belief, and perhaps further

specifics of the protocol that the radio operator is using to formulate his messages to her. Note, however,

that our understanding of a conditional is not normally cast in terms of the exact reasons for stating

the conditional, or in terms of the specifics of the protocol the utterer is using. It is often cast in terms

of a blanket or unspecific idea of how the antecedent and consequent are related. In other words, it is

doubtful that the requisite extension of the algebra is generally available.
5Williamson [2009] makes the curious remark that by objecting to a rule that it fails to respect (iii)

one begs the question, as this objection “assumes that one should continue to equivocate between red
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Peter Williams credit for the argument—that the radio officer had said:

(3) If you are in Red territory, then the odds are 0 : 1 that you are in Second

Company area.

Then he would effectively have told the platoon that it is not in Red Second Company

area. And this, the authors contend, would have allowed Judy to conditionalize on

¬R ∨¬S, with the obvious result that Pr1(¬R) = 2/3 and Pr1(R) = 1/3, where Pr1 is

again her new degrees-of-belief function after the update. The second message seems

not essentially different from the first:6 they both contain information relevant to how

one ought to grade the possibilities consistent with one’s being in Red territory, but

not about how one ought to grade the more general possibility of being in Red territory

and that of being in Blue territory relative to one another; differently put, there seems

to be nothing special about odds 0 : 1 as opposed to odds 3 : 1 (or any other odds).

Yet the receipt of (3) leads to a change in Judy’s degree of belief for being in Blue

territory. But then not too much should be made of the fact that, given the update

rules van Fraassen, Hughes, and Harman discuss, Judy’s degree of belief for being in

Blue territory changes after the receipt of (1) as well.

What van Fraassen and his coauthors consider to be more troubling is that we seem

to have no principled grounds for choosing between the update rules they discuss,

as these rules all satisfy (i) and (ii) and also satisfy any more formal (“symmetry”) re-

quirement that one might plausibly want to impose, and as, moreover, quasi-empirical

considerations (comparison with respect to performance by means of computer sim-

ulations) give a rather mixed result. This is troubling, given that these rules do not

generally agree in their outputs; they yield for instance slightly different answers as

to what Judy’s degrees of belief in the propositions of interest ought to be after an

update on (1). The problem of selecting a unique update rule of the kind at issue is

regarded to be still open today.7

Here, we want to argue for two related claims on these update rules. First, we

maintain that the problem of choosing the correct distance function is to some extent

independent of the Judy Benjamin problem, as the latter calls neither for infomin

nor for any similar rule. As intimated earlier, we think that Jeffrey’s rule, even if not

devised for inputs like (1), can handle them perfectly well, and indeed more naturally

than the rules van Fraassen and others consider in this context: Jeffrey’s rule yields a

solution to the Judy Benjamin problem that satisfies not only (i) and (ii) but also (iii).

Of course, in view of the above argument against (iii), this may not seem very telling.

However, in the next section we will explain why, as we believe, van Fraassen, Hughes,

and Harman have been too quick in dismissing (iii).

Our second claim directly concerns the choice of a distance function. If instead

of using Jeffrey’s rule one wants, for whatever reason, to use an update rule based

on a distance function between probability assignments, then a perfectly respectable

and blue if the evidence permits” (p. 7 of manuscript). This is curious as it is entirely unclear how one

could beg any questions simply by registering one’s intuitive verdict (as opposed to giving an argument)

that (1) contains no information relevant to whether Judy is in Red rather than in Blue territory, and that

therefore her probabilities for being in Red territory and, respectively, Blue territory should not change.
6Here we are ignoring the fact that zero probability is not the same as logical truth: events with

measure zero may nevertheless happen.
7See on this also Joyce [1999:215 ff], who discusses some further rules still. Uffink [1995] contains a

systematic critique of various attempts to justify infomin.
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such rule is available that satisfies all of (i)–(iii). We state this rule in Section 4, and

we prove that it has the desired property.

2. Updating on conditionals: the simple view. Why should the learning of (3) lead

Judy to conditionalize on ¬R∨¬S, as the aforementioned authors suppose she does,

and ought to do, in that event? They do not say, but the only at least prima fa-

cie plausible answer we can think of on their behalf is this: “Because the indicative

conditional (3) has the truth conditions of the material conditional, R ⊃¬S, or equiv-

alently, ¬R ∨ ¬S. So, if we learn the former we should conditionalize on the latter.”

Whether or not this is what they would really want to answer in response to our ques-

tion, the view that the truth conditions of the indicative conditional are those of the

corresponding material conditional,8 and learning the indicative conditional amounts

to conditionalizing on the material conditional, is interesting in its own right—if for

no other reason, then for its alluring simplicity. But is it correct? We are raising

two questions here, one about the truth conditions of indicative conditionals, the

other about how one should update on such conditionals, supposing an indicative

conditional to have the truth conditions of the corresponding material conditional.

To make the second question more general: How is one to update on an indicative

conditional—whether or not it has the truth conditions of the material conditional—

and in particular, is there a defensible update rule that agrees with how, according to

van Fraassen, Hughes, and Harman, Judy should respond to the learning of (3)?

Famously, there is little consensus about the semantics of indicative conditionals.9

The major divide among semanticists is between those who hold that such condition-

als have truth conditions and those who deny this. The latter typically do think that

conditionals have assertability and acceptability conditions. Most popular here is the

view according to which a conditional is assertable by/acceptable to someone iff her

degree of belief in the consequent given the antecedent is high.10 But even among

those who do think that conditionals have truth conditions, the material conditional

account, according to which a conditional has the same truth conditions as the cor-

responding material conditional, though once popular, is currently very much out

of favor. The first part of the answer we gave above on behalf of van Fraassen and

his coauthors is thus anything but uncontroversial. Strictly speaking, however, one

could hold that updating on a conditional is updating on the corresponding material

conditional even though one denies that the former has the truth conditions of the

latter; such a position would leave something to be explained, but it is consistent.

This makes the second question of how we ought to update on a conditional the more

important one.

8At least when the indicative conditional’s antecedent and consequent are both propositions in the

algebra on which we take people’s degrees-of-belief functions to be defined. Plausibly, in the Judy story

this condition is supposed not to hold for the conditional in (1). (Grove and Halpern [1997] is aimed

exactly at repairing this.)
9From here on, by the unqualified use of “conditional” we refer to indicative conditionals. We should

also say that, throughout, we will be concerned exclusively with so-called simple conditionals, that is,

conditionals which do not contain embedded conditionals. If, as for instance Jackson [1987:127–137]

and Edgington [1995:382 ff] argue, by far the most non-simple conditionals that we encounter in daily

life can either be reduced to simple ones or be dismissed as being incomprehensible, it is not much of a

restriction that we limit ourselves to simple conditionals.
10See, for instance, Adams [1975] and Edgington [1995] for influential defenses of this view.
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With respect to this question, which will be central in the following, the situation

is in a sense still a bit worse than “lack of consensus”: it is a question that, for some

reason or other, has received little to no attention in the literature, even though the

answer to it would seem far from obvious given any of the better-known views on the

semantics of conditionals.11

For instance, it might be thought that if conditionals do not have truth conditions,

and thus do not express propositions, then probabilities will just have to be defined

on sentences—which is possible, of course. However, that does not really solve the

problem for those who deny that conditionals have truth conditions, for they cannot

maintain that probabilities of conditionals are probabilities of truth. Indeed, they

generally recognize that probabilities of conditionals are probabilities in name only

and are really to be thought of as degrees of assertability/acceptability. But then in

order to use Bayes’s rule for updating on conditionals, we would have to be able to

mix probabilities of truth and degrees of assertability/acceptability. We are unaware

of any proposal of how to do this. In fact, it is not clear whether this idea of mixing

makes sense at all.

Of more immediate concern is that even if we grant that a conditional has the

same truth conditions as the corresponding material conditional, it is still unclear

what updating on a conditional amounts to. It might initially be thought that if there

is any position that has a straightforward answer to our question, it is the material

conditional account. If, for any A and B, “If A, B” has the truth conditions of ¬A∨ B,

why is the answer to the question not simply the one that was suggested above on

behalf of van Fraassen et al., to wit, that to update on the former is to apply Bayes’s

rule to the latter? Closer inspection reveals that, even assuming that the material

conditional account provides the right semantics for conditionals, the answer to the

question about updating cannot be so simple.

First consider

Fact 2.1 For all A, B such that Pr(A) > 0 and Pr(B) > 0, Pr(A |A⊃ B) à Pr(A); if, in

addition, Pr(A) < 1 and Pr(B |A) < 1, then Pr(A |A⊃B) < Pr(A).12

Thus, supposing that the proper way to update on a conditional is to conditionalize on

the corresponding material conditional, it follows that by learning a conditional, one

can never become more certain of that conditional’s antecedent and that, under very

general conditions, one can only become less certain of the antecedent. However, we

take the following example to be an incontrovertible case in which the probability of

the antecedent of a conditional must remain invariant upon learning that conditional.

11Cf. Skyrms [1980:169]: “[W]e have no clear conception of what it might be to conditionalize on a

conditional.” But see also Adams [1994], where a logical model of updating on conditional informa-

tion is presented. In this paper, Adams employs a metalanguage for probability statements in which

conditionals can be formalized, and then derives some intuitive connections between these statements

and probability assignments over the object language. As he admits, though, a full integration of lev-

els is problematic (see also Adams [1998:147 n]). Grove and Halpern [1997] can be taken as a further

development of Adams’s proposal. However, their approach runs into its own problems; see footnote 4.
12The following is a slight modification and extension of a proof given in Williamson [2007:232 n] (see

also Popper and Miller [1983]): Pr(A ⊃ B) = 1 − Pr(A ∧ ¬B) = 1 − Pr(A)Pr(¬B |A) = 1 − Pr(A)Pr(A ∧

¬B |A) á 1 − Pr(A ∧ ¬B |A) = Pr(A ⊃ B |A). If Pr(B |A) < 1, then Pr(¬B |A) > 0 and hence also

Pr(A∧¬B |A) > 0, so if also Pr(A) < 1, then “á” can be replaced by “>” in the foregoing. Fact 2.1 follows

immediately from this, as, by probability theory, Pr(A |B) à (<) Pr(A) iff Pr(B |A) à (<) Pr(B) for all

A and B such that Pr(A) and Pr(B) are positive. (Note that if Pr(B) > 0, then automatically Pr(A⊃B) > 0.)

6



Example 1 Sarah and Marian have arranged to go for sundowners at the Westcliff

hotel tomorrow. Sarah feels there is some chance that it will rain, but thinks they

can always enjoy the view from inside. To make sure, Marian consults the staff at

the Westcliff hotel and finds out that in the event of rain, the inside area will be

occupied by a wedding party. So she tells Sarah: “If it rains tomorrow, we cannot

have sundowners at the Westcliff.” Upon learning this conditional, Sarah sets her

probability for sundowners and rain to zero, but she does not adapt her probability

for rain.

For Sarah, neither her initial degree of belief for rain tomorrow, Pr0(R), nor her initial

degree of belief for having sundowners at the Westcliff, Pr0(S), has an extreme value;

nor is she initially certain that they will not have sundowners in the event of rain, that

is, Pr0(¬S |R) < 1. Hence, by Fact 2.1, and assuming conditionalization, we must have

that Pr1(R) = Pr0(R |A ⊃ B) < Pr0(R). But surely we do not want to say that Sarah

should optimistically reduce her probability for rain after learning the conditional!

No matter how keen she is on the sundowners, she should simply set the probability

for having sundowners while it is raining (i.e., R ∧ S) to zero, meanwhile leaving her

probability for rain as it is, precisely as (we said) she does.

We would like to point to another problem one faces if one wants to maintain that

updating on “If R, ¬S” is updating on ¬R ∨ ¬S. For this, we return to the story of

Judy Benjamin. Suppose, after the platoon was dropped, the radio officer had said:

(4) It is as likely that you are in Red territory as that you are in Blue territory,

and if you are in Red territory, then you’re in Headquarters Company

area.

We venture that, whatever effect this message should have on Judy’s belief system,

the order of the conjuncts of the message should not matter. That is to say, if the

officer had said:

(5) If you are in Red territory, then you’re in Headquarters Company area,

and it is as likely that you are in Red territory as that you are in Blue

territory,

then that should have had the same effect on Judy’s belief system. Indeed, according

to standard semantics, and assuming that conditionals have truth conditions (whether

or not they are those of the corresponding material conditionals), the two messages

have exactly the same truth conditions, and hence the same meaning. So how could

learning one have a different effect on one’s belief system than learning the other?

One might try to argue that there is some pragmatic difference between the mes-

sages which could explain possible differences in the result of updating on the one

rather than on the other, but we fail to see how any of the known pragmatic mecha-

nisms could be successfully invoked here to show that there is a difference between

(4) and (5). It should for instance be clear that the Gricean idea that the order of

the conjuncts should reflect temporal order does not apply to these sentences: the

conjuncts do not report events that have occurred in some definite order.

Now consider what happens if we identify updating on a conditional with updating

on the corresponding material conditional and then update on (4) and, respectively,

(5). For generality, just suppose that for the initial probability function Pr0, Pr0(R) = ρ

and thus Pr0(¬R) = 1−ρ, and say that Pr0(R∧ S) = ρσ and Pr0(R∧¬S) = ρ(1−σ),
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with 0 < σ < 1. Now Judy first updates—by means of Jeffrey conditionalization—

on the first conjunct of (4). This yields Pr1(R) = Pr1(¬R) = 1/2 and Pr1(R ∧ ¬S) =

(1 − σ)/2. She then updates on the second part of that message, which—as per the

targeted assumption—means that she conditionalizes on the proposition ¬R ∨ ¬S.

One easily calculates that this yields Pr2(¬R) = 1/(2−σ) and Pr2(R) = Pr2(R∧¬S) =

(1−σ)/(2−σ). Since σ ≠ 1, the probability of being in Red territory does not equal

that of being in Blue territory. Next suppose that she updates on the first conjunct

of (5) first. Then we get Pr1(¬R) = (1 − ρ)/(1 − ρσ) and Pr1(R) = Pr0(R ∧ ¬S) =

ρ(1−σ)/(1−ρσ). Finally, she updates on the second conjunct of (5), again by means

of Jeffrey conditionalization. This yields, of course, Pr2(R) = Pr2(¬R) = 1/2. So

now her degree of belief for being in Red territory does equal that for being in Blue

territory!

Here it might be retorted that, once we admit Jeffrey conditionalization, we are

committed to order dependence in any case. While this is true, it does not mean that

we should not take measures to counteract such dependence whenever that depen-

dence is intuitively unpalatable and we can take such measures (without abandoning

Jeffrey’s rule altogether); and, as we shall see later on, we can take such measures

indeed. In addition to this, the case we are considering is not one in which Judy gets,

more or less by coincidence, one piece of information before the other. The informa-

tion is provided to her by someone in a particular order. If the order were supposed to

matter, one would expect the radio officer to be careful in determining that order. But

it seems that in asserting sentences of the sort we are considering here—that is, the

radio messages (4) and (5)—we tend to be indifferent between asserting the conjuncts

in one order and asserting them in the other order. And this is so because we expect

that the order will not matter to what the addressee ends up believing.

Hence, while attractively simple, the thought that learning a conditional consists

of conditionalizing on the corresponding material conditional appears doubtful.13

Recall now what led us to these considerations. Van Fraassen, Hughes, and Harman

sought to discredit, or at least mitigate the force of, the intuition that the learning

of (1) should leave Judy’s degree of belief for her being in Blue territory unchanged, by

arguing that it is violated anyhow if we learn (3), which seems not relevantly different

from (1). As we saw, however, the obvious argument underlying the claim about the

learning of (3) is predicated on a semantics of conditionals as well as on a view on

how we are to update on conditionals both of which are contentious. Of course, van

Fraassen and his coauthors may have had some other argument in mind when claiming

that the learning of (3) would allow Judy to conditionalize on ¬R ∨ ¬S. And, quite

apart from what argument they may have had in mind, there might, as a matter of

fact, simply be no acceptable account of conditionals or updating on conditionals on

which the learning of (1) or (3) leaves Judy’s degree of belief for being in Blue territory

unchanged. In that case, we should perhaps not give a lot of weight to the designated

intuition indeed. In the following, however, we propose a probabilistic account of

updating on conditionals that does allow us to solve the Judy Benjamin problem in

an intuitively perfectly satisfactory way.

13What to say, from a Bayesian perspective, about the other major truth-conditional view on condition-

als—basically, Stalnaker’s possible worlds semantics—is quite unclear. Nolan [2003] hints, in note 41 of

the paper, that given this semantics the probability of a conditional is determined by an imaging function

in the sense of Lewis [1976]. However, he relegates elaboration of that hint to future work. What can

already now be said is that the example he gives on p. 261, in which he assesses the probability of a given

conditional, is utterly unconvincing.
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3. Conditionals and Jeffrey conditioning. The bulk of our proposal, to be presented

in this section, concerns the kind of case in which, intuitively, the learning of a con-

ditional is or would be irrelevant to one’s degree of belief for the conditional’s an-

tecedent. While this may be the normal case, the rule for updating on conditionals to

be presented in this section does not apply universally, as will be seen in Section 5.

However, it does apply to the Judy Benjamin case as well as to the case from Exam-

ple 1, as in both the learning of the relevant conditional should intuitively leave the

probability of the antecedent unaltered.

First consider updates on conditionals of the general form “If A, then the odds for

B1, . . . , Bn are c1 : · · · : cn,” where the set {¬A,A∧B1, . . . , A∧Bn} partitions the space

on which we suppose people’s degrees-of-belief functions to be defined. For basically

the same reasons we wanted (i)–(iii) to hold in the Judy Benjamin story, we will, for

the general case, want to adopt the following desiderata:

(i*) after learning the conditional, a person’s conditional degree of belief for Bi given

A should equal ci
/∑n

j=1 cj , for all i;

(ii*) learning the conditional should leave a person’s degrees of belief conditional on

each of the propositions ¬A and A∧ Bi (i à n) unchanged;

(iii*) a person’s degree of belief for A after she learns the conditional should equal

her degree of belief for A immediately before she learns the conditional.

The rule for updating on conditionals of the designated kind that we want to

propose consists of two parts. The first part says that, after the learning of the con-

ditional, a person’s degrees of belief should be in accordance with (i*) indeed; that is,

it dictates that

(6) After learning “If A, then the odds for B1, . . . , Bn are c1 : · · · : cn,” where

{¬A,A∧ B1, . . . , A∧ Bn} is a partition, a person should set her degree of

belief for Bi conditional on A equal to ci
/∑n

j=1 cj , for all i.

So, for instance, after learning (1), Judy should set her conditional degree of belief for

being in Headquarters Company area given that she is in Red territory equal to 3/4

and her conditional degree of belief for being in Second Company area given that she

is in Red territory equal to 1/4.

The second part of the rule answers the question how one is to accommodate

shifts in one’s conditional degrees of belief such as are brought about by following (6).

For the kind of case at issue—the kind in which learning a conditional gives one no

reason to revise one’s degree of belief for the conditional’s antecedent—an answer

has already been proposed by Bradley [2005]. Specifically, he proposes the following

general update rule—which he dubbed “Adams conditioning”—for adjusting one’s

degrees of belief in response to an induced change in one or more of one’s conditional

degrees of belief:14

Definition 3.1 Let a partition {¬A,A∧B1, . . . , A∧Bn} be given such that, on one’s initial

degrees-of-belief function Pr0, it holds that Pr0(Bi |A) > 0 for all i, and suppose that

one is caused to change some or all of one’s conditional degrees of belief Pr0(Bi |A)

14Bradley [2005:351] states a slightly less general version of this definition, but it is clear from his

considerations that he subscribes to the version given here as well.
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to Pr1(Bi |A). Then one updates by Adams conditioning on this change iff, for all

propositions C,

Pr1(C) = Pr0(C |¬A)Pr0(¬A) +

n
∑

i=1

Pr0(C |A∧ Bi)Pr1(Bi |A)Pr0(A).

Combined, the two parts yield the following formula for accommodating conditionals

of the form and kind considered above:

(7) Pr1(C) = Pr0(C |¬A)Pr0(¬A) +

n
∑

i=1

Pr0(C |A∧ Bi)
ci

∑n
j=1 cj

Pr0(A)

for all propositions C. Clearly, conditionals of the form “If A, B” can be thought of

as being special instances of the more general form considered so far: “If A, then the

odds for B,¬B are 1 : 0.” As one readily verifies (because then by (6) we must have

Pr1(B |A) = 1 and Pr1(¬B |A) = 0), instead of (7) we can use the simpler

(8) Pr1(C) = Pr0(C |¬A)Pr0(¬A) + Pr0(C |A∧ B)Pr0(A).

Now notice that updating by (7) (or by (8), in the simplest case) satisfies desidera-

tum (i*) by construction. That it satisfies (ii*) and (iii*) as well follows from15

Theorem 3.1 (Bradley) Given a partition {¬A,A∧ B1, . . . , A∧ Bn} such that, for all i,

Pr0(Bi |A) > 0. Then a person’s new degrees-of-belief function Pr1 comes from her old

degrees-of-belief function Pr0 by Adams conditioning on a change in the conditional

degrees of belief for Bi given A, for all i, iff for all C

• Pr1(A) = Pr0(A);

• Pr1(C |A∧ Bi) = Pr0(C |A∧ Bi);

• Pr1(C |A∧¬Bi) = Pr0(C |A∧¬Bi);

• Pr1(C |¬A) = Pr0(C |¬A).

As desiderata (i)–(iii) are special instances of (i*)–(iii*), we see immediately that up-

dating on (1) by dint of (7) yields a fully satisfactory outcome in the Judy Benjamin

case. Moreover, if (7) is accepted, then updating on (3), too, leaves Judy’s degree of

belief for being in Red territory unchanged, and similarly in the case of Example 1. So,

contrary to what van Fraassen claims, (3) certainly does not show that the intuition

underlying the third desideratum cannot be generally respected anyway. Finally, as

the conditional sentence that is part of (4) and (5) would, in the given context, seem

of the sort that makes (7) applicable—neither in (4) nor in (5) does it seem to provide

additional information relevant to Judy’s degree of belief for being in Red territory—

accepting (7) has the additional virtue that updating on (4) yields exactly the same

outcome as updating on (5).

The for present purposes perhaps most crucial observation of Bradley’s paper is

that, in view of Theorem 3.1, “Adams conditioning is just a special case of Jeffrey

conditioning” (p. 352). As (7) is just a special case of Adams conditioning, updat-

ing on a conditional “If A, then the odds for B1, . . . , Bn are c1 : · · · : cn” on our ac-

count is also really just a Jeffrey update. To be more exact, it is a Jeffrey update

15See the Appendix of Bradley [2005] for a proof (the theorem proved there is a bit less general than

the one stated here, but it is obvious that Bradley’s proof generalizes swiftly to one for Theorem 3.1).
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on the partition {¬A,A ∧ B1, . . . , A ∧ Bn}, with constraints Pr1(¬A) = Pr0(¬A) and

Pr1(Bi |A) = ci
/∑n

j=1 cj . This means that solving the Judy Benjamin problem does

not require any exotic update rule: Jeffrey’s rule suffices for that, and it solves the

problem in a fully satisfactory way, unlike the rules that have been more commonly

called upon in dealing with this problem.

Some might object that we cannot simply use Jeffrey’s rule for the kind of update

required in the case of Judy. After all—they might say—Jeffrey’s rule takes a proba-

bility assignment over an entire partition as input, and in the case of Judy only part

of that assignment is given. But this objection overlooks the fact that the context of

the Judy Benjamin case provides us with the additional probabilistic information that

is needed for applying Jeffrey’s rule, as expressed in (iii). Jeffrey’s rule does not place

requirements on how we obtain the probability assignment over the partition. Indeed,

in the prototypical cases for which Jeffrey proposed his rule, a clear separation be-

tween probabilities that derive from explicit information and those that derive from

context does not seem feasible. Moreover, to suggest that Adams conditioning has an

edge over Jeffrey’s rule because it does not rely on such contextual elements would

be wrongheaded. Whether we decide to apply Adams conditioning on the basis of the

context or rather supply the additional input probability to Jeffrey’s rule on the same

basis is neither here nor there.

4. A distance function for Adams conditioning. While, as we argued, no exotic rule

is needed to solve the Judy Benjamin problem, it is still interesting to note that a

distance function very much like RE also does the trick, in particular, that it solves

the problem in a way that does justice to all of (i)–(iii). To see this, first note that RE

is not a proper distance measure, for it is not symmetric: the distance from Pr0 to

Pr1, as measured by this function, is not equal to the distance from Pr1 to Pr0. So we

can obtain an alternative function, which we call “Inverse Relative Entropy,” by simply

swapping the roles of the two probability functions:

(9) IRE(Pr0,Pr1) =
∑

i

Pr0(Ai) log
Pr0(Ai)

Pr1(Ai)
.

Here, the Ai are again the minimal elements of the algebraF. Like RE, the function IRE

reaches the minimal value 0 iff the old and the new probability assignment are equal.

Moreover, if we impose a constraint pertaining to all propositions of a partition of the

minimal elements of F, with Pr0(Ai) > 0 for all i, then updating by IRE minimization

also concurs with updating by Jeffrey’s rule.16

But, importantly, the results of minimizing IRE differ from the results achieved by

means of minimizing RE in cases in which the constraint does not involve all propo-

sitions of the designated partition. In the Appendix, we prove the following theorem:

Theorem 4.1 Let {¬A,A∧ B1, . . . , A∧ Bn} be a partition such that Pr0(Bi |A) > 0, for

all i = 1, . . . , n. Say that on this partition we impose the constraint that Pr1(A ∧ B1) :

· · · : Pr1(A ∧ Bn) = c1 : · · · : cn, and we find the new assignment Pr1 by minimizing

the IRE distance between Pr0 and Pr1. Then we have for all C and i that

16We do not provide a proof for this, but it can be seen to follow quite easily from Lemma A.1 in the

Appendix.

11



• Pr1(A) = Pr0(A);

• Pr1(C |A∧ Bi) = Pr0(C |A∧ Bi);

• Pr1(C |A∧¬Bi) = Pr0(C |A∧¬Bi);

• Pr1(C |¬A) = Pr0(C |¬A).

Comparing clauses 1–4 of Theorem 4.1 with clauses 1–4 of Theorem 3.1 shows im-

mediately that Adams conditioning on a conditional of the form “If A, then the odds

for B1, . . . , Bn are c1 : · · · : cn” leads to exactly the same result as minimizing IRE

under the (sole) constraint that the odds for A∧ B1, . . . , A∧ Bn are to be c1 : · · · : cn.

For the Judy Benjamin problem, this is a happy result. It means that we can have

a perfectly adequate solution to this problem even if we favor an approach that has

Judy determine her new probability function by minimizing the distance (according to

some distance function) between that and her old probability function. What makes

the result not just a happy one but also a surprising one is that it does not require

straying very far from the rules van Fraassen and his coauthors have investigated.

To the contrary, IRE minimization is arguably a very close cousin to infomin, which

requires minimizing RE, because the notion of closeness under the distance RE, or

“RE-closeness” for short, is very similar to what may be called IRE-closeness. In fact,

they are not just formally very similar—which is clear from comparing (2) with (9)—

but also conceptually: where infomin has you select the probability function that is

RE-closest to your present probability function as seen from your current perspective,

IRE minimization has you select the probability function that is RE-closest to your

present probability function as seen from the perspective you will have after adopting

the probability function to be selected.

5. Updating on conditionals continued: epistemic entrenchment. We are inclined

to think that Adams conditioning, or, equivalently, Jeffrey conditioning with the ex-

plicit constraint of keeping the antecedent’s probability fixed in the update, or, again

equivalently, IRE minimization, covers most of the cases of learning a conditional.

Unfortunately, however, it would be wrong to think that it covers all of them, as Ex-

ample 2 already shows.

Example 2 A jeweller has been shot in his store and robbed of a golden watch. How-

ever, it is not clear at this point what the relation between these two events is; perhaps

someone shot the jeweller and then someone else saw an opportunity to steal the

watch. Kate thinks there is some chance that Henry is the robber (R). On the other

hand, she strongly doubts that he is capable of shooting someone, and thus, that he is

the shooter (S). Now the inspector, after hearing the testimonies of several witnesses,

tells Kate: “If Henry robbed the jeweller, then he also shot him.” As a result, Kate

becomes more confident that Henry is not the robber, while her probability for Henry

having shot the jeweller does not change.

As far as this description of the case goes, Kate’s response seems pre-theoretically

perfectly in order. If it is, then the learning of a conditional can decrease our degree of

belief for the antecedent. Clearly, such learning events cannot be based on Adams con-

ditioning, or on the corresponding kind of Jeffrey update, or on IRE minimization, all

of which necessarily leave the probability of the conditional’s antecedent unchanged

upon learning the conditional. In fact, if it had not been for the problems advanced
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earlier, conditioning on the material conditional would have seemed more suitable,

since that operation accommodates our intuition that the probability of Henry being

the robber decreases.

To accommodate the case of Kate, we can proceed much like we did in the cases

of Judy and Sarah. From the conditional itself and the context we can determine the

constraints that the new probability assignment must satisfy, such that we can derive

a new probability assignment over the entire partition, and then we can apply Jeffrey’s

rule. In particular, the conditional determines that the probability of Henry’s being

the robber but not having shot the jeweller is zero. We might further stipulate that the

probability of Henry’s having shot the jeweller does not change as an effect of learning

the said conditional. This effectively determines a new probability assignment to the

propositions of the partition {R∧S,R∧¬S,¬R∧S,¬R∧¬S}, which is all we need to

run Jeffrey’s rule. In a sense, Example 2 is the mirror image of Example 1: where Sarah

held onto her probability for the antecedent, Kate wants to leave the probability of

the consequent unaffected. And indeed, by suitable transformations of the variables

we can devise a variant of Adams conditioning for this case, and a distance function

to go with it.

It seems, though, that we can tell a different story about Kate on the basis of the

example. Naturally, Kate’s belief that Henry is up to robbery may vary in strength. In

addition to the constraints of the foregoing, she might also wish to impose the con-

straint that learning the conditional must not affect the probability of the antecedent

either. However, she cannot simultaneously satisfy these constraints; her beliefs are

subject to forces pulling in opposite directions. On the one hand, she cherishes the

idea that Henry is not a murderer, but on the other hand she realizes full well that

he was in need of some fast cash and might therefore well be the robber. Hence, she

must try to find a trade-off between maintaining a high probability of Henry’s being

the robber and maintaining a low probability of his having shot the jeweller, and she

must do so under the constraint that he cannot have done the former without having

done the latter.

Even in this case, Kate may use Jeffrey’s rule. She can determine a new probability

assignment to the propositions of the above-mentioned partition and simply take this

as input to the rule. However, the probabilities that Kate assigns to these propositions

upon accepting “If Henry is the robber, then he also shot the jeweller” depend on her

initial probabilities, and further on the firmness, or, as we shall say in the following,

epistemic entrenchments, of her beliefs about Henry’s being the robber and his having

shot the jeweller.17 Setting the probability of the propositions to some new value

by hand seems to ignore these dependencies, or rather leaves the impact of these

dependencies to be worked out independently of the update mechanism.

In the remainder of this section, we would like to present, though somewhat tenta-

tively, a distance function that incorporates these dependencies directly. The attrac-

tive feature of the resulting update mechanism is that it does not require us to fill in a

new probability distribution over the partition, as is the case in a Jeffrey update, nor

to pin part of it down to the old value by default, as in Adams conditioning. Instead,

the update mechanism presented in the following requires us to bring to the table the

epistemic entrenchments of the propositions under scrutiny. The new probabilities

17Nayak et al. [1996] also draw upon the notion of epistemic entrenchment in their account of updating

on conditionals, which, however, is a strictly qualitative extension of AGM theory and does not consider

probabilistic change.
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for the antecedent and consequent then follow from the old probabilities together

with those epistemic entrenchments.

There are many different ways of incorporating epistemic entrenchments in a dis-

tance function. Outside the relatively well-known territory of relative entropy, we find

a plethora of such functions, all with their own peculiarities. For present purposes,

we will use a variant of the so-called Hellinger distance function.

The Hellinger distance reads as follows:

(10) HEL(Pr0,Pr1) =
∑

i

(

√

Pr1(Qi)−
√

Pr0(Qi)

)2

.

Recall that the propositionsQi represent the strongest consistent propositions in the

algebra. For instance, in the murder case we might set Q1 = R ∧ S, Q2 = R ∧ ¬S,

Q3 = ¬R ∧ S, and Q4 = ¬R ∧ ¬S. As with infomin, or the rule of minimizing IRE,

we can minimize the Hellinger distance between the old and new probability assign-

ments under any constraint. Moreover, as with the other rules, this update procedure

generalizes Jeffrey’s rule: if we fix the probability assignment over a whole partition,

the result of minimizing HEL is equal to the result of a Jeffrey update. But there is

also an important difference between, on the one hand, distance functions like RE

and IRE and, on the other, HEL. For RE, for instance, negative deviations from the old

probability assignment of some Qi , that is, Pr1(Qi) − Pr0(Qi) < 0, lead to negative

contributions to the total distance; but these negative contributions are always off-

set by positive contributions due to deviations from the old probabilities of other

propositions Qj , with i ≠ j , in such a way that the net contribution of all deviations

is always positive. For HEL, we have that all deviations, positive and negative ones,

lead to positive contributions to the total distance. We will use this property of HEL

to construct a distance function that also takes into account the various epistemic

entrenchments of the propositions Qi .

The crucial property of this new distance function is that we factor in the devi-

ations from different propositions in the partition differently. Whereas HEL weighs

the contributions from deviations for the propositions Qi all equally, the “epistemic

entrenchment” function

(11) EE(Pr0,Pr1) =
∑

i

wi

(

√

Pr1(Qi)−
√

Pr0(Qi)

)2

,

with the wi being elements of R+∪{ω}, allows us to give more weight to deviations in

probability of some of theQi—for instance, those entailing the consequent of a given

conditional—than to deviations in probability of others, for instance, those entailing

the negation of the consequent. It thereby allows us to regulate whether, and to what

extent, learning a conditional reflects back on the probability of the antecedent or

rather influences the probability of the consequent. Clearly, this opens up a whole

range of trade-offs between adapting the probability of the antecedent and that of the

consequent, within which Jeffrey’s rule and the procedure of minimizing HEL are just

two special cases.

To illustrate the new rule, we show how it facilitates the type of update that Kate

was supposed to make in the foregoing, trading off deviations in antecedent and con-

sequent. A more general formulation of Kate’s case involves an update on conditional

odds, with the constraint thatQ1 (i.e., Henry is the robber and also the shooter, R∧S)
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is to be r times as likely as Q2 (= R ∧ ¬S), and the further constraint that the new

probability function must somehow conserve the low probability for S and the high

probability for R, to varying degrees. Imagine that we choose w1 = w3 � w2 = w4, so

that deviations Pr1(Q2)−Pr0(Q2) and Pr1(Q4)−Pr0(Q4)make (much) smaller contri-

butions to the total distance than deviations Pr1(Q1)−Pr0(Q1) and Pr1(Q3)−Pr0(Q3).

Then the probability assignment Pr that is closest to the old assignment Pr0 is one in

which the probabilities for Q1 and Q3 have deviated less than if all weights had been

equal. Therefore, setting the weights wi to these values makes the deviations in the

probability for Henry’s having shot the jeweler, S, smaller than if the propositions

had all had the same weight. In other words, these values of the wi are associated

with an epistemic state of Kate in which she is strongly inclined to stick to her low

probability for S, but much less inclined to stick to her high probability for R.18

Some further illustrations of how the weights wi determine which of the probabil-

ities will remain close to their initial value and which will diverge more widely with

the addition of the constraint are given in the table below, which shows a number of

new probability assignments arrived at by minimizing EE from the initial probability

assignment

Pr0(Q1) = .1 Pr0(Q3) = .1

Pr0(Q2) = .7 Pr0(Q4) = .1

under the constraint that Pr1(Q1)/Pr1(Q2) = r , as a function of r and the weights wi
attached to the various Qi . For the latter, we set w1 = w3 and w2 = w4 = 1, and we

vary the value of w1(= w3). The results show that we can regulate the trade-off that

Kate makes between adapting her probabilities for R and, respectively, S by changing

the weights (numbers have been rounded to two decimal places).19

r w1 Pr1(Q1) Pr1(Q2) Pr1(Q3) Pr1(Q4)

3 1 .53 .18 .15 .15

5 .21 .07 .13 .60

100 .10 .03 .10 .76

50 1 .47 .01 .26 .26

5 .15 .00 .13 .72

100 .10 .00 .10 .79

18If we setw3 = w4 � w1 = w2, then the probability for R stays close to its original value. In particular,

if we set w3 = w4 = ω and w1 = w2 ∈ R
+, deviations in the probability of R lead to infinitely large

contributions in the distance between the old and the new probability assignment. As a result, the new

probability for R stays equal to the old value, just as in the application of IRE or Adams conditioning. In

fact, it is not difficult to show that these update rules are limiting cases of EE.
19The table may give the impression that the application of EE can lead to a collapse of one of the

probabilities to zero even while the constraint does not entail a probability of zero. Fortunately, this

cannot happen. Clearly, if the constraint forces a particular ratio between the probability of two propo-

sitions in a partition, neither proposition can obtain a probability of zero because a ratio always requires

two nonzero probabilities. If, on the other hand, the constraint forces a particular absolute difference

between the two probabilities, neither probability will be forced to zero either. At zero, the derivative

of the distance function EE is minus infinity, whereas nowhere on the domain is it positive and infinite.

Therefore, decreasing the probability of one of the propositions in the partition to zero, in favor of an in-

crease of the probabilities of any number of other propositions, can never lead to a positive contribution

in the total distance function.
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Recall that the above is intended as a tentative proposal only. One reason for being

a little hesitant about it is that the weights a person is, on the proposal, supposed to

assign to the relevant propositions will not come out of thin air but may be assumed

to be interconnected with (even if presumably not fully determined by) things she

believes; nor will these weights remain fixed once and for all but will, plausibly, them-

selves change in response to things the person learns. And, as it stands, our proposal

is silent on both of these issues. To properly address them, we may well have to go be-

yond our current representation of epistemic states in terms of degrees of belief plus

weights. For instance, it is conceivable, and it might be helpful for present concerns,

to incorporate into the epistemic state a metric on possible worlds next to probability

and weight functions. Or one could represent epistemic states as sets of probability

assignments instead of single ones—as various authors have suggested as a way of

dealing with vague probabilities—so that learning a constraint on these probability

assignments could be accommodated by conditionalizing on the set of assignments.

Finally, it may well be that learning other types of information, which might involve

more complicated constraints on the belief state of the agent, necessitates the use

of entirely different update techniques; the various types of constraint that may be

associated with learning an indicative conditional by no means exhaust the spectrum.

On the other hand, when it comes to updating on conditionals that are proba-

bilistically dependent on their antecedents, we should not too readily discount the

possibility that all has been said about it once the rule of minimizing EE, or a kindred

rule, has been pointed out. It may be that we cannot resort to any further rules for

determining or adapting the weights representing the degrees of epistemic entrench-

ment, but that we have to rely on our own judgment for those purposes. Consider

that something very similar is already the case for the kind of uncertain learning

events that Jeffrey’s rule was devised for: there is no rule telling us how a glimpse of

a tablecloth in a poorly lit room is to change our assignment of probabilities to the

various relevant propositions concerning the cloth’s color. Basically the same point

also applies to Adams conditioning (or, equivalently, Jeffrey’s rule with the explicit

constraint that the probability of the antecedent is to be kept fixed, or, again equiva-

lently, the rule of IRE minimization) in that it may fall entirely upon us to decide, on

the basis of contextual information, whether or not this rule applies to the learning of

a given conditional. In fact, the point may be more general still. As Bradley [2005:362]

stresses, even Bayes’s rule “should not be thought of as a universal and mechanical

rule of updating, but as a technique to be applied in the right circumstances, as a tool

in what Jeffrey terms the ‘art of judgment’.” In the same way, determining and adapt-

ing the weights EE supposes, or deciding when Adams conditioning applies, may be an

art, or a skill, rather than a matter of calculation or derivation from more fundamental

epistemic principles.

6. Summary. We take our main results to be the following. First, we have shown that

van Fraassen has been too quick in dismissing the intuitive verdict that Judy’s degree

of belief for her being in Red territory should not change as a result of updating on (1).

That verdict might be hard to uphold if we were committed to the view that learning

a conditional occasions conditionalizing on the corresponding material conditional,

but this view was seen to run into several difficulties. Second, it was argued that,

contrary to what has been generally supposed, Jeffrey’s well-known version of con-
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ditionalization is enough to solve satisfactorily the Judy Benjamin problem. Third,

this proposed application of Jeffrey’s rule appeared to relate naturally to Adams con-

ditioning, which in turn was shown to have a natural underpinning in terms of an

inverse relative entropy distance minimization rule. And finally, as Adams condition-

ing and the corresponding distance minimization rule apply only to conditionals the

learning of which does not affect the probability of their antecedent, we provided a

further distance function especially for the remaining class of conditionals. However,

our commitment to this rule was more provisional, and we explicitly left open the

possibility of other rules applying to the said class.
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Appendix: proof of Theorem 4.1

We first prove two lemmas. The first of these establishes that when minimizing IRE, a

change to the probability of a compound proposition leads to changes in the probabili-

ties of the propositions it consists of that are proportional to the original probabilities

of these latter propositions. Note that this is the same as saying that updating by min-

imizing IRE respects the rigidity condition imposed by Jeffrey. As Diaconis and Zabell

[1982] show, several distance functions can replicate Jeffrey’s rule; because the func-

tion IRE satisfies the rigidity condition, as made explicit in Lemma A.1, it also coincides

with Jeffrey updating. That is, if the constraints on the probabilities concern a whole

partition of propositions, the result of updating by IRE minimization is the same as

the result of updating by Jeffrey’s rule. The second lemma, on the other hand, is less

naturally connected to the extant literature. It concerns the behavior of the distance

IRE under the type of constraints associated with conditionals.

For the proof, assume a partition {Q1,Q2, . . . ,QN} of strongest consistent proposi-

tions of a given algebra. Define U and V as disjoint sets composed of elements of this

partition, U =
⋃m
j=1Qj and V =

⋃n
j=m+1Qj ; thus, U∩V = ∅. LetW =

⋃n
j=1Qj = U∪V.

Let Pr0 be a probability assignment over the partition. We are looking for the proba-

bility assignment Pr1 over the same partition that minimizes IRE under a given con-

straint. For convenience we write Prk(U) =: uk, Prk(V) =: vk, Prk(W) =: wk = uk + vk,

and Prk(Qj) =: qkj , for k = 0,1.

Lemma A.1 Let the constraint be such that w1 = w0 + s, for s ∈ R. Now write u1 =

u0 + ts and v1 = v0 + (1− t)s. Then the minimum distance IRE(Pr0,Pr1) is reached at

t =
u0

w0
.

Proof. Note that both U and V are composed of elements Qj , and that the distance

function IRE must be evaluated on the level of these strongest consistent proposi-

tions. First, we consider single pairs Qj and Qj′ , that is, we look at changes in their
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proportion if their total probability increases. Using the conventions above, we write

the derivative of the distance as

d

dt
IRE(Pr0,Prj) =

d

dt

[

c + q0j log
q0j

q0j + ts
+ q0j′ log

q0j′

q0j′ + (1− t)s

]

=
d

dt

[

c + q0j logq0j + q0j′ logq0j′

− q0j log(q0j + ts)− q0j′ log
(

q0j′ + (1− t)s
)

]

=
q0j′s

q0j′ + (1− t)s
−

q0js

q0j + ts
.

Here c represents the contributions from deviations in the probability of all the propo-

sitions other than Qj and Qj′ , none of which depend on t . Setting
d
dt

IRE = 0 we can

solve for t , and with some algebra we find that t =
q0j

q0j+q0j′
. That is to say, the propor-

tions of Qj and Qj′ do not change. Moreover, since

d2

dt2
IRE(Pr0,Pr1) =

q0j′s
2

(

q0j′ + (1− t)s
)2 +

q0js
2

(q0j + ts)2
> 0

for all t , this minimum is unique.

Now consider U and V, which are aggregates of these elementary propositions,

and the constraint that imposes the shift w1 = w0 + s. Whatever the details of this

shift, for every Qj within W there is some value for sj such that q1j = q0j + sj . By

the above fact we have that, for each pair Qj and Qj+1, the increases sj and sj+1 will

be proportional to the probabilities q0j and q0(j+1), so
sj
sj+1

=
q0j

q0(j+1)
for every j < n.

Finally, we have that
∑n
j=1 sj = s. We now have n constraints on the same number of

increases sj . We solve for the sj and find

sj =
q0j

∑n
j′=1 q0j′

s for j à n,

and hence that
m
∑

j=1

q1j =

m
∑

j=1

q0j +

∑m
j=1 q0j

∑n
j=1 q0j

s.

This comes down to u1 = u0 +
u0

w0
s, and thus v1 = v0 +

v0

w0
s. ì

Lemma A.2 Let the constraint be
v1

u1
= r , and let w1 = w0 + t , for t ∈ R. Then the

minimum distance IRE(Pr0,Pr1) is reached at t = 0, so w1 = w0.

Proof. To arrive at a probability assignment that fulfills to the constraint, we first

adapt the initial probabilities u0 and v0 by a specific deviation s:

v1

u1
=

v0 + s

u0 − s
= r .

We solve for s and obtain the solution

s =
ru0 − v0

1+ r
.
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Note that r > 0, and that s can take any value depending on r ; the resulting probabil-

ities u1 and v1 must have the required proportion.

Now consider additional deviations (1+ r)t from propositions outside W, writing

w1 = w0 + (1+ r)t . Accordingly, we have u1 = u0 − s + t and v1 = v0 + s + rt , thereby

making sure that the required proportion of u1 and v1 is maintained. The parameter

t thus labels all the possible probability functions fulfilling the constraint. We deter-

mine where in the domain of t the total distance IRE(Pr0,Pr1) is minimal. Note that

by Lemma A.1 the deviation s is distributed proportionally among the elements Qj
within both U and V. Hence we can write

IRE(Pr0,Pr1) =

m
∑

j=1

q0j log
q0j

q0j +
q0j

u0

(

t −
ru0−v0

1+r

)

+

n
∑

j=m+1

q0j log
q0j

q0j +
q0j

v0

(

rt +
ru0−v0

1+r

)

+

N
∑

j=n+1

q0j log
q0j

q0j −
q0j

(1−w0)
(1+ r)t

.

We now use that

q0j −
q0j

u0

ru0 − v0

1+ r
=

q0j(u0 + v0)

u0(1+ r)
, q0j +

q0j

v0

ru0 − v0

1+ r
=

rq0j(u0 + v0)

v0(1+ r)
.

By some further algebra we arrive at

IRE(Pr0,Pr1) = c −

n
∑

j=1

q0j log
(

w0 + (1+ r)t
)

−

N
∑

j=n+1

q0j log
(

1−w0 − (1+ r)t
)

= c − w0 log
(

w0 + (1+ r)t
)

− (1−w0) log
(

1−w0 − (1+ r)t
)

,

where c does not depend on t . We take the derivative with respect to t , and find

d

dt
IRE(Pr0,Pr1) =

(1−w0)(1+ r)

(1−w0)− (1+ r)t
−

w0(1+ r)

w0 + (1+ r)t
.

Setting
d
dt

IRE(Pr0,Pr1) = 0, we can solve for t , and find that t = 0. Moreover, since

d2

d2t
IRE(Pr0,Pr1) =

w0(1+ r)
2

(

w0 + (1+ r)t
)2 +

(1−w0)(1+ r)
2

(

(1−w0)− (1+ r)t
)2 > 0

for all t , this minimum is unique. Hence we have that w1 = w0. ì

With these lemmas in place, we prove the four equalities in Theorem 4.1. Recall that

the constraint is that Pr1(A ∧ B1) : · · · : Pr1(A ∧ Bn) = c1 : · · · : cn. Now identify,

in Lemma A.1, the variable U with the proposition ¬A∧ C and V with ¬A∧¬C, and

assume that the constraint leads to some deviation w1 = w0 + s, as above. We can

then apply the lemma and derive that

u1

w1
=

u0 +
u0

w0
s

w0 + s
=

u0

w0
,
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and hence that Pr1(C |¬A) = Pr0(C |¬A). In the same vein identify, for every i à n,

U with A ∧ Bi ∧ C and V with A ∧ Bi ∧ ¬C, and assume that the constraint leads to

w1 = w0 + s. We can then again apply Lemma A.1, and by analogous reasoning we

arrive at Pr1(C |A∧ Bi) = Pr0(C |A∧ Bi) for each i à n. A similar argument, for each

i à n, yields Pr1(C |A∧¬Bi) = Pr0(C |A∧¬Bi). Thus we have proved the last three

clauses of Theorem 4.1.

To complete the proof, we need to show that Pr1(A) = Pr0(A), meaning that the

probability of the antecedent does not change when we update by IRE minimization

on the constraint at issue. We prove this by a repeated application of both lemmas in

a mathematical induction over the index i of the propositions Bi . The induction base

is that the invariance holds for a constraint of the form Pr(A∧B1) : Pr(A∧B2) = u1 :

v1 = 1 : r . This can be proved by a direct application of Lemma A.2, followed by an

application of Lemma A.1. First, we identify U with A ∧ B1, V with A ∧ B2, and then

derive from Lemma A.2 that w1 = w0, so that Pr1

(

A∧ (B1∨B2)
)

= Pr0

(

A∧ (B1∨B2)
)

.

Then we identify U with ¬A, V with A ∧
∨

i>2 Bi , so that by Lemma A.1, using s = 0,

we can derive that Pr1(¬A) = Pr0(¬A), and hence that Pr1(A) = Pr0(A).

For the induction step, assume the induction hypothesis that Pr1(A) = Pr0(A), and

hence that Pr1(¬A) = Pr0(¬A), after having imposed the constraint that Pr1(A∧B1) :

· · · : Pr1(A ∧ Bi) = c1 : · · · : ci . We are now imposing a further constraint on the

proposition A∧Bi+1, to wit, Pr′1(A∧B1) : · · · : Pr′1(A∧Bi+1) = c1 : · · · : ci+1. First, we

identifyU withA∧
∨

k<i+1 Bk, and V withA∧Bi+1, and we apply Lemma A.2 to find that

w1 = w0. Note that the probability function Pr′1 that we arrive at by applying the lemma

in this way is closest to the probability function Pr1, and not necessarily closest to Pr0.

In any case, by application of Lemma A.1, we can derive that the probability function

Pr′1 has the same proportions among the probabilities of propositions outside W as

do Pr1 and Pr0. These propositions include ¬A, so we have that Pr′1(¬A) = Pr0(¬A)

and Pr′1(¬A) = Pr1(¬A) = Pr0(¬A).

To complete the proof of the inductive step, we must show that the newly found

probability function Pr′1 is not just closest to the probability function Pr1, but that, of

all those functions Pr satisfying the constraint Pr(A ∧ B1) : · · · : Pr(A ∧ Bi+1) = c1 :

· · · : ci+1, it is also closest to the probability function Pr0. First note that the space of

probability functions satisfying this constraint can be parameterized by t , according

to

∀k à i + 1 : Pr(A∧ Bk) = Pr′1(A∧ Bk)+ tck,

Pr



¬A∨
∨

k>i+1

Bk



 = Pr′1



¬A∨
∨

k>i+1

Bk



− t
∑

kài+1

ck.

We can write the deviations t in terms of the contributions from A ∧
∨

k<i+1 Bk and

A∧Bi+1 separately as t
∑

k<i+1 ck and tci+1. By the induction hypothesis we know that

over the propositions A ∧
∨

k<i+1 Bk all nonzero t give a positive contribution to the

total distance IRE(Pr0,Pr1). We must now check whether this positive contribution

is offset by the contribution from the proposition A ∧ Bi+1. We write A ∧ Bi+1 = U

and ¬A ∨
∨

k>i+1 Bk = V, and assume that both consist of elements Qj , as specified

in the foregoing. Then, again using Lemma A.1, the net contribution of deviations
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associated with the change tci+1 in U to the total distance becomes

∆IRE(Pr0,Pr1) =

m
∑

j=1

q1j log
q1j

q1j +
q1j

u1
ci+1t

−

m
∑

j=1

q1j log
q1j

q1j

+

n
∑

j=m+1

q1j log
q1j

q1j −
q1j

v1
t
∑

kài+1 ck

−

n
∑

j=m+1

q1j log
q1j

q1j −
q1j

v1
t
∑

j<i+1 cj
.

Note that this expression concerns, not the minimal distance to Pr1, but rather the

change in the distance to Pr0 effected by varying t . By some algebra, we obtain

∆IRE(Pr0,Pr1) =

c − u1 log(u1 + tci+1) − v1 log



v1 − t
∑

kài+1

ck



 + v1 log



v1 − t
∑

k<i+1

ck



 ,

where c is a constant not depending on t . We take the derivative with respect to t and

find

d

dt
∆IRE(Pr0,Pr1) =

u1ci+1

u1 + tci+1
−

v1

∑

kài+1 ck

v1 − t
∑

kài+1 ck
+

v1

∑

k<i+1 ck

v1 − t
∑

k<i+1 ck
.

At t = 0 this derivative is zero. Moreover, the second derivative is

d2

dt2
∆IRE(Pr0,Pr1) =

u1c
2
i+1

(u1 + tci+1)2
+

v1

(∑

kài+1 ck
)2

(

v1 − t
∑

kài+1 ck
)2 −

v1

(∑

k<i+1 ck
)2

(

v1 − t
∑

k<i+1 ck
)2 .

The middle term on the right is strictly larger than the rightmost term, and so the

second derivative is positive everywhere. Hence, t = 0 is a global minimum for the

distance IRE.

Consequently, we cannot offset the positive contribution to the distance from the

propositions A ∧
∨

k<i+1 Bk by adapting the probability of the proposition A ∧ Bi+1

by any amount t , since any further deviation from the probability of that proposition

leads to a further increase in the distance. Therefore, the probability Pr′1 of the fore-

going is indeed the probability closest to the probability Pr0, according to the distance

IRE. And because Pr′1(A) = Pr0(A), we have thereby proved the inductive step, which

completes the proof. ì
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