


 

   

Abstract 
This paper shows that, with (partial) irreversibility, higher uncertainty reduces the impact 
effect of demand shocks on investment. Uncertainty increases real option values making 
firms more cautious when investing or disinvesting. This is confirmed both numerically for a 
model with a rich mix of adjustment costs, time-varying uncertainty, and aggregation over 
investment decisions and time, and also empirically for a panel of manufacturing firms. 
These cautionary effects of uncertainty are large - going from the lower quartile to the upper 
quartile of the uncertainty distribution typically halves the first year investment response to 
demand shocks. This implies the responsiveness of firms to any given policy stimulus may be 
much lower in periods of high uncertainty, such as after major shocks like OPEC I and 9/11.   
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1. Introduction

Recent theoretical analyses of investment under uncertainty have highlighted the

e¤ects of irreversibility in generating �real options�(e.g. Dixit and Pindyck (1994)).

In these models uncertainty increases the separation between the marginal product of

capital which justi�es investment and the marginal product of capital which justi�es

disinvestment. This increases the range of inaction where investment is zero as the

�rm prefers to �wait and see�rather than undertaking a costly action with uncertain

consequences. In short, investment behaviour becomes more cautious.

Firm-level data is attractive for investigating this e¤ect of uncertainty on the

degree of caution since empirical measures of uncertainty can be constructed based

on share price volatility (e.g. Leahy and Whited (1996)). One important di¢ culty

for direct testing of real options models of investment under uncertainty using �rm

data, however, is the extreme rarity of observations with zero investment in annual

consolidated accounts. If we believed that these �rms make a single investment de-

cision in each year this lack of zeros would reject the canonical real options model of

a single investment decision with its region of inaction. However, given the extensive

evidence of discrete and lumpy adjustments in more disaggregated plant-level data

(e.g. Doms and Dunne (1998)), this lack of zeros at the �rm level is suggestive of

aggregation over types of capital, production units and time.

Previous research has shown that aggregation does not eliminate the impact

of lumpy micro investment decisions for more aggregated investment dynamics.1

This raises the question of whether the e¤ects of uncertainty and irreversibility on

short run investment dynamics can be detected in an econometric study of �rm-

level investment spending. To investigate this issue we develop a model of the

�rm�s investment decisions that allows for two types of capital, a rich speci�cation

of adjustment costs, time-varying uncertainty, alternative functional forms for the

1See, for example, Bertola and Caballero (1994), Caballero and Engel (1999), Abel and Eberly
(2001), and Doyle and Whited (2001). Thomas (2002) and Veracierto (2002) �nd that in general
equilibrium models the impact of non-convex investment costs on the business cycle may be small.
These papers are necessarily based on relatively simple models of �rm investment - including a
constant level of uncertainty - to enable complex general equilibrium modelling. Our focus here is on
much richer (partial equilibrium) micro models that include �uctuations in the level of uncertainty.
These are appropriate for estimation on �rm-level data.
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revenue function and extensive aggregation over time and over production units.

We solve this theoretical model numerically and simulate �rm-level panel data. We

use this simulated data in two ways. First we analyse it directly to con�rm two

properties of �rm-level investment dynamics in this framework. One property is the

e¤ect of higher uncertainty on the degree of caution in investment decisions as noted

above. We show that, with (partial) irreversibility, the impact e¤ect on investment

of a given �rm-level demand shock tends to be weaker for �rms that are subject

to a higher level of uncertainty. We also show that the response of investment to

demand shocks tends to be convex, as larger shocks induce �rms to invest in more

types of capital and at more production units (the extensive margin). This in turn

induces more adjustment at the intensive margin, with these aggregation e¤ects

being reinforced by supermodularity in the production technology.

We also use our simulated data to show that both of these e¤ects can be de-

tected using a relatively simple dynamic econometric speci�cation to approximate

the complex �rm-level investment dynamics implied by this framework. Our start-

ing point is an error correction model (ECM) of investment that has been widely

used in �rm-level studies. We add two types of terms. First, an interaction between

real sales growth and measured uncertainty tests for the more cautious response of

investment to demand shocks at higher levels of uncertainty. Second, a non-linear

sales growth term to test for convexity in the response of investment to demand

shocks. Generalised Method of Moments (GMM) estimation on the simulated panel

data indicates that we can reject the null hypothesis of a common, linear response

of investment to demand shocks, provided the dynamic speci�cation used is su¢ -

ciently rich for standard tests of overidentifying restrictions not to indicate severe

misspeci�cation of the econometric model.

We then apply the same econometric approach to study the investment behaviour

of a sample of 672 publicly traded UK manufacturing companies over the period

1972 to 1991. We �nd evidence both of more cautious investment behaviour for

�rms subject to greater uncertainty, and of a convex response of investment to real

sales growth. While there may be other explanations for these patterns in company

investment dynamics, we conclude that the investment behaviour of large �rms is
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consistent with a partial irreversibility model in which uncertainty dampens the

short run adjustment of investment to demand shocks.

Finally, simple simulations using our estimated econometric model suggest that

observed �uctuations in uncertainty can play an economically important role in

shaping �rm-level investment decisions. For example, we �nd that a one standard

deviation increase in our measure of uncertainty, as occurred after 9/11 and the

�rst OPEC oil crisis, can halve the impact e¤ect of demand shocks on company

investment. While we do not model the behaviour of labour demand, the existence

of similar labour hiring and �ring costs would imply that higher uncertainty would

also make employment responses to demand shocks more cautious. This suggests

that �rms will generally be less responsive to monetary and �scal stimulus in peri-

ods of high uncertainty, which is important for policy-makers trying to respond to

major shocks during periods of high uncertainty.2 Several papers have also reported

evidence of an increase in �rm-speci�c uncertainty in the US and other OECD coun-

tries in recent years,3 which our analysis indicates could have signi�cant e¤ects on

investment dynamics.

The plan of the paper is as follows. Section 2 considers two implications of uncer-

tainty and irreversibility for investment behaviour, and con�rms these numerically

using simulated data. Section 3 develops our econometric investment equation and

shows, using the simulated data, that tests based on this model can detect these

e¤ects on investment dynamics. Section 4 takes this econometric model to real

company investment data to test for the presence of these e¤ects, while section 5

examines their magnitude. Section 6 o¤ers some concluding remarks.

2. Simulating investment dynamics under uncertainty

The typical model in the literature considers investment in a single partially irre-

versible capital good, with a Cobb-Douglas revenue function and demand conditions

which follow a Brownian motion process with constant variance. Investment only

2See Bloom (2006) on the evidence for steep rises in uncertainty after major macro shocks.
3Campbell et al. (2001) study US �rms in the period 1962-1997 and �nd an increase in the

�rm-level (but not market-level) volatility of annualised daily stock returns in the 1980s and 1990s
compared to the 1960s and 1970s. See also Philippon (2003) for evidence of increased sales growth
volatility for US �rms, and Thesmar and Thoenig (2003) for similar evidence on French �rms.
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occurs when the �rm�s marginal revenue product of capital hits an upper threshold,

given by the traditional user cost of capital plus an option value for investment.

Similarly disinvestment only occurs when the marginal revenue product hits a lower

threshold, given by the user cost for selling capital less an option value for disin-

vestment. The �rm chooses to wait and do nothing if its marginal revenue product

of capital lies between these two thresholds.

As the marginal revenue product of capital evolves stochastically over time this

approach predicts that the �rm will undertake sporadic bursts of investment or

disinvestment, consistent with the typical evidence from plant-level data (see, for

example, Doms and Dunne (1998) or Nilson and Schiantarelli (2003)). Abel and

Eberly (1996) show by comparative statics that the option values are increasing in

the (time invariant) level of uncertainty. This suggests that �rms which face a higher

level of uncertainty are less likely to respond to a given demand shock.

2.1. Aggregation and �rm-level investment

Annual investment data for publicly traded UK and US �rms, however, do not dis-

play the discrete switches from zero to non-zero investment regimes indicated by this

basic model. In particular observations with zero investment spending are almost

completely absent from their company accounts. Table 1 reports evidence from our

sample of 672 UK manufacturing companies, and from a sample of UK manufactur-

ing establishments that contain one or more plants at the same location. There are

two distinct patterns of aggregation that can be observed: �rst aggregation across

types of capital (structures, equipment and vehicles); and second aggregation across

plants within the establishment or the �rm. In both cases we observe a higher pro-

portion of observations with zero investment when we consider more disaggregated

data. There is also likely to be a third type of aggregation - temporal aggregation -

as the frequency of shocks and investment decisions is likely to be much higher than

that of the (annual) data.

[Table 1 about here]

In view of this we explicitly consider a framework in which �rms invest in multiple

types of capital goods, across multiple production units, and there is aggregation over
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time. These production units experience idiosyncratic unit-level productivity shocks

as well as a common �rm-level demand shock. In this more general framework, but in

a model with a constant level of uncertainty and partial irreversibilities only, Eberly

and Van Mieghem (1997) have shown that the optimal investment decisions for each

unit will follow a multi-dimensional threshold policy. Extending this to allow for

time-varying uncertainty and temporal aggregation provides two implications which

are the focus of our simulation and empirical investigation.

The �rst implication is that the response of company investment to demand

shocks should be lower at higher levels of uncertainty due to the �cautionary�e¤ect

of uncertainty. For each production unit or type of capital the option to wait and

do nothing is more valuable for �rms that face a higher level of demand uncertainty.

Following a given positive demand shock investment by such �rms is expected to be

lower, as both less units (or types of capital) will invest (the extensive margin) and

each unit (type) that does invest will invest less (the intensive margin), with any

supermodularity in the production technology reinforcing these e¤ects.4 Similarly

the impact of a given negative demand shock on �rm-level disinvestment is also

expected to be smaller for �rms that face a higher level of uncertainty.

Second, the investment response will be convex in response to positive demand

shocks and concave in response to negative demand shocks. When the �rm expe-

riences a positive demand shock it may invest in a greater number of production

units or types of capital (the extensive margin) and it may invest more in each unit

or type of capital (the intensive margin). Larger demand shocks will a¤ect both

margins, and any supermodularity in the production technology would make these

two e¤ects reinforcing. Thus, the more types of capital the �rm is induced to invest

in, the more it wants to invest in those types of capital which are already adjusting,

generating a convex response. The same reasoning also suggests that the response

of �rm-level disinvestment to negative demand shocks will be concave.

4Supermodularity is a general concept for complementarity. A function f :Rn ! R is de�ned
as supermodular if 8 x; x0 2 Rn, f(x) + f(x0) � f(min(x; x0)) + f(max(x; x0)). If f is twice

di¤erentiable this implies @2f(x1;x2;::xn)
@xi@xj

� 0 8 i 6= j. The Cobb-Douglas and CES production
functions are both supermodular.
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As these investment models do not have closed form solutions we cannot prove

these properties analytically. In the next section we con�rm them using numerical

simulations.

2.2. The simulation model

We start by parameterising one model from the general class of supermodular ho-

mogeneous models that we are considering. Firms are assumed to operate a large

collection of individual production units, with the number chosen to ensure that full

aggregation has occurred. In the simulation this is set at 250 units per �rm, chosen

by increasing the number of units until the results were no longer sensitive to this

number.5

Each unit faces an iso-elastic demand curve for its output, which is produced

using labour and two types of capital. Demand conditions evolve as a geometric ran-

dom walk with time-varying uncertainty, and have a unit-speci�c idiosyncratic com-

ponent and a common �rm-level component. Demand shocks, uncertainty shocks

and optimisation occur in monthly discrete time. Labour is costless to adjust while

both types of capital are costly to adjust.

2.2.1. The production unit model

In the basic model each production unit has a reduced form supermodular revenue

function R(X;K1; K2)

R(X;K1; K2) = X
K�

1K
�
2 (2.1)

based on an underlying Cobb-Douglas production function after labour, a �exible

factor of production, has been optimised out. Demand and productivity conditions

have been combined into one index, X, henceforth called demand conditions. For

computational tractability we normalize this demand conditions parameter through

the substitution, P
1����

 = X, so that the revenue function is homogeneous of degree

5In the UK Census of Production microdata the average size of a manufacturing production
unit is about 20 employees. The mean size of �rms in our sample is 4,440 employees, suggesting a
mean of around 220 units per �rm. Tests on speci�cations with di¤erent degrees of cross-sectional
aggregation (5, 10 and 50 units per �rm) and temporal aggregation (2, 4 and 6 periods per year)
con�rm the robustness of our results to these assumptions.
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one in (P;K1; K2), where

R(X;K1; K2) = eR(P;K1; K2) (2.2)

= P 1����K�
1K

�
2 : (2.3)

In the simulation we set � = 0:4 and � = 0:4; corresponding to a 25% mark-up and

constant returns to scale in the physical production function, with equal coe¢ cients

on each type of capital.

Demand conditions are a composite of a unit-level (PU) and a �rm-level (P F )

component, P = PU � P F . The unit-level demand (or productivity) conditions
evolve over time as an augmented geometric random walk with stochastic volatility:

PUt = PUt�1(1 + �(�t) + �tV
U
t ) V Ut � N(0; 1) (2.4)

�t = �t�1 + ��(�
� � �t�1) + ��Wt Wt � N(0; 1): (2.5)

Here �(�t) is the mean drift in unit-level demand conditions, �2t is the variance

of unit-level demand conditions, �� is the long run mean of �t, �� is the rate of

convergence to this mean, and �2� is the variance of the shocks to this variance

process. The terms V Ut and Wt are the i.i.d. shocks to unit-level demand and

variance conditions respectively.

The �rm-level demand process is also an augmented geometric random walk

with stochastic volatility, which for tractability we assume has the same mean and

variance:

P Ft = P
F
t�1(1 + �(�t) + �tV

F
t ) V Ft � N(0; 1): (2.6)

Hence, the overall demand process logP has drift 2�(�t) and variance 2�2t . While

this demand structure may seem complex, it is formulated to ensure that units

within the same �rm have linked investment behaviour due to the common �rm-

level demand shocks and level of uncertainty, but also display some independent

behaviour due to idiosyncratic shocks. The baseline value of 2�(�t) is set to 4%

(average real sales growth), invariant to the level of uncertainty, although we also

report below some experiments that allow for more general drifts.

The two types of capital are costly to adjust. We start by modelling only partial

irreversibility adjustment costs whereby the resale price of a unit of capital is less
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than the purchase price. Capital type 1 is assumed more costly to adjust (for

example, specialised equipment), while capital type 2 is less costly to adjust (for

example, vehicles). For the simulation we set the resale loss for capital of type 1 to

50% and the resale loss for capital of type 2 to 20%.6

These adjustment costs are de�ned by the �rm�s adjustment cost function,

C(P;K1; K2; I1; I2). We assume, for numerical tractability, that newly invested

capital enters production immediately, that both types of capital depreciate at an

annualized rate of 10%, and that the �rm has an annualized discount rate of 10%.

2.2.2. Solving the production unit model

The complexity of the model necessitates numerical simulation, but analytical results

can be used to show that the problem has a unique-valued continuous solution,7 and

an (almost everywhere) unique policy function. This means our numerical results

will be convergent with the unique analytical solution.

In principle we have a model with too many state variables to be solved using

numerical methods given current computing power. The unit�s optimization prob-

lem, however, can be simpli�ed by noting that the revenue function, adjustment cost

function, depreciation schedules and expectations operators are all jointly homoge-

neous of degree one in (P;K1; K2). This allows us to normalize by one state variable

- capital type 1 - simplifying the model and dramatically increasing the speed of

the numerical solution routine. This e¤ectively gives us one state �for free�, in that

we estimate on two major state spaces ( P
K1
and K2

K1
) but for three underlying state

variables.
6Our choice of adjustment cost parameters is based on the literature where available, in par-

ticular Cooper and Haltiwanger (2006). The qualitative results from our analysis of the simulated
data are not sensitive to moderate changes to the adjustment cost parameter values, although as
discussed in section 3.2, they are sensitive to the type of adjustment costs considered.

7An application of Stokey and Lucas (1989) for the continuous, concave and almost surely
bounded normalized returns and cost function for models with partial irreversibilities (this section)
and quadratic adjustment costs; and Caballero and Leahy (1996) for the extension to models with
�xed costs in section (3.2.2).
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The optimization problem (before normalization) can be stated as:

V (Pt; K1t; K2t; �t) = max
I1t;I2t

eR(Pt; K1t; + I1t; K2t + I2t)� C(Pt; K1t; K2t; I1t; I2t)

+
1

1 + r
E[V (Pt+1; (K1t + I1t)(1� �); (K2t + I2t)(1� �); �t+1)]

where r is the discount rate, � is the depreciation rate, E[:] is the expectations

operator, Ijt is investment in type j (j = 1; 2) capital at time t and Kjt is the stock

of type j capital. Using the homogeneity in (P;K1; K2) this can be re-written as:

K1tV (P
�
t ; 1; K

�
2t; �t) = max

I�1t;I
�
2t

K1t
eR(P �t ; 1 + I�1t; K�

2t(1 + I
�
2t))�K1tC(P

�
t ; 1; K

�
2t; I

�
1t; I

�
2tK

�
2t)

+
1

1 + r
K1t+1E[V (P

�
t+1; 1; K

�
2t+1; �t+1)]

where starred variables are K�
2 =

K2

K1
; P � = P

K1
; I�1 =

I1
K1

and I�2 =
I2
K2
. Upon

normalization by K1t this simpli�es to:

V (P �t ; 1; K
�
2t; �t) = max

I�1t;I
�
2t

eR(P �t ; 1 + I�1t; K�
2t(1 + I

�
2t))� C(P �t ; 1; K�

2t; I
�
1t; I

�
2tK

�
2t)

+
(1 + I�1t)(1� �)

1 + r
E[V (P �t+1; 1; K

�
2t+1; �t+1)]

which is a function of only the state variables ( P
K1
; K2

K1
; �). We let uncertainty, �t,

take �ve equally-spaced values from 0.05 to 0.5, with a symmetric monthly transition

matrix that is approximately calibrated against (the variance and autocorrelation

of) our stock-returns measure of uncertainty for UK listed �rms, described in section

4.1 below. The simulation is run on a state space of ( P
K1
; K2

K1
; �) of (100,100,5).8

2.2.3. Aggregation to �rm-level data

Simulated data is generated by taking the numerical solutions for the optimal in-

vestment functions and feeding in demand and uncertainty shocks at a monthly

frequency. The simulation is run for 60 months to generate an initial ergodic distri-

bution. Annual �rm-level investment data is then generated by aggregating across

the two types of capital, across the 250 units and across 12 months within each year.

Capital stocks and the level of the demand conditions are summed across all units

at the end of each year, while uncertainty is measured as the average yearly value.
8We also need the optimal control space of (I�1 ; I

�
2 ) of dimension (100,100), so that the full

returns function in the Bellman equation has dimensionality (100,100,100,100,5). The program and
a manual explaining the underlying techniques are available at http://cep.lse.ac.uk/matlabcode or
from nbloom@stanford.edu.
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2.3. Investigating the theoretical implications

Using the model and solution method outlined above we generate simulated invest-

ment and demand data for a panel of 50,000 �rms and 25 years. We con�rm the two

implications for short run investment dynamics highlighted in section 2 by consider-

ing the relationship between �rm-level annual investment rates and demand growth

in this simulated data. As the drift in the demand process is common to all �rms,

and the idiosyncratic shocks are averaged across 250 production units, there is a

simple correspondence between demand growth and the �rm-level demand shock in

this simulation.

Figure 1 presents Lowess smoothed non-parametric plots9 of investment against

demand growth for observations around the 10th, 25th, 50th, 75th and 90th percentiles

of the distribution of uncertainty (�t).10 Investment rates are measured as annual

investment divided by the capital stock at the beginning of the year, and annual

demand growth is measured as the percentage change comparing the beginning

and the end of the year. The �rst implication - that the short run response of

investment to demand shocks will be lower at higher uncertainty - indicates that the

slope of these response functions is lower at higher levels of uncertainty. It is evident

that these non-parametric regression estimates do indeed become �atter as the level

of uncertainty rises, consistent with the �rst implication. In quantitative terms,

comparing investment responses to -10% and +25% demand growth, the gradient

of the investment response to demand growth approximately doubles when moving

from the third quartile to the �rst quartile of the distribution of uncertainty, and

approximately triples when moving from the 90th percentile to the 10th percentile.

Hence, di¤erences in the level of uncertainty generate substantial variation in the

short run response of investment to demand shocks, and this is clearly seen in our

9Lowess smoothing estimates a linear regression at each data point, using Cleveland�s (1979)
tricube weighting over a moving window of 5% of the data, to generate a non-parametrically
smoothed data series. Lowess is similar to Kernel smoothing but uses information on both the
mean and the slope of the data, and so is more e¢ cient in estimating functions with continuous �rst
derivatives, which our aggregated data has asymptotically (in the number of production units).
10As this variance parameter has a �ve point process in the underlying monthly model, we obtain

considerable clustering of observations around these values, even in the average annual �rm data.
Although we use 1.25 million generated observations, there are no observations in the sample at
the 10th and 25th percentiles of uncertainty with annual demand growth above 27% and 64%
respectively, so the lines are not estimated beyond these points.
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simulated �rm-level data despite extensive aggregation across two types of capital,

250 production units and 12 monthly decision periods.

The second implication - that the short run response of investment to demand

shocks is non-linear - indicates that these response functions are convex for pos-

itive investment and concave for negative investment. Focusing �rst on positive

investment, it is evident that all �ve curves are indeed convex, with a proportion-

ally larger response to larger positive shocks. Looking at negative investment the

picture is unclear because, even for large negative demand growth of -25%, most

�rms are still undertaking positive gross investment. This re�ects the combination

of longer run dynamics with pent-up investment demand, 4% demand drift and 10%

depreciation, which even in the presence of relatively low degrees of irreversibility

generates very few �rm-level disinvestment observations (2% in our simulated data

sample and 3% in the real UK data). Thus, we cannot identify the concavity in the

disinvestment responses in either the simulation or in actual UK data, and therefore

we concentrate on the convex response for positive investment in the remainder of

the paper.

3. Evaluating our empirical speci�cation

The next step is to investigate the empirical importance of these properties of short

run investment dynamics in actual �rm-level data, which requires an appropriate

econometric speci�cation. If we observed the true underlying demand shocks and

demand variance this would be relatively straightforward as we could, for example,

use the same the non-parametric approach used in the previous section to analyse

short run investment responses to exogenous demand shocks. However, in real �rm-

level datasets we only observe proxies for demand growth such as sales growth and

proxies for uncertainty such as share price volatility. Among other issues, this re-

quires us to deal with the problem that outcomes like sales and share prices are

jointly determined with the �rm�s investment decisions. To do this we consider

GMM estimates of dynamic econometric investment equations.

Our starting point is a reduced form error correction model that provides a

�exible distinction between short run in�uences on investment rates and longer term

11



in�uences on capital stocks. This has been widely used in recent empirical studies of

company investment behaviour.11 Bloom (2000) shows that the actual capital stock

series chosen by a �rm under partial irreversibility has a long run growth rate equal

to that of the hypothetical capital stock series that the same �rm would choose

under costless reversibility, essentially because the gap between these two series is

bounded. This implies that the logarithms of the two series should be cointegrated,

and thus provides one motivation for considering an error correction model of capital

stock adjustment.12

This cointegration result indicates that

logKit = logK
�
it + eit (3.1)

whereKit is the actual capital stock for �rm i in period t, K�
it is the capital stock this

�rm would have chosen in the absence of adjustment costs, and eit is a stationary

error term. We specify this hypothetical frictionless level of the capital stock as

logK�
it = log Yit + A

�
i +B

�
t (3.2)

where Yit is the (real) sales of �rm i in period t, and A�i and B
�
t are unobserved

�rm-speci�c and time-speci�c e¤ects re�ecting possible variation across �rms in

the components of and response to the user cost of capital (Chetty, 2006). This

formulation is consistent, for example, with the frictionless demand for capital for

a �rm with a constant returns to scale CES production function and iso-elastic

demand, and implies that the logs of the actual capital stock and real sales are

cointegrated, provided the user cost of capital is stationary.13 Note that this does

not impose that the actual capital stock and its hypothetical frictionless level are

equal on average, since the error term eit need not be mean zero. However, the

partial irreversibility framework indicates that eit will be serially correlated in a

11See, for example, Hall, Mairesse and Mulkay (1999) and Bond, Harho¤and Van Reenen (2003).
12The representation theorem of Engle and Granger (1987) shows that the dynamic relationship

between two I(1) series that are cointegrated can be formulated as an error correction relationship.
13Both this speci�cation and the results in Bloom (2000) are based on a single production unit

with one type of capital. To check that this provides an accurate approximation for our aggregated
�rm-level data, we con�rmed that log capital was cointegrated with log sales in our simulated
data, with a coe¢ cient of 1.008 on log sales. In sections 3.2 and 4.4 we also consider relaxing the
restriction in (3.2) that this coe¢ cient is unity.
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highly complex way. Any parsimonious speci�cation of these dynamics should be

viewed as an approximation, the quality of which we will investigate using simulated

investment data in the next section.

A basic error correction representation of the dynamic relationship between

logKit and logK�
it, using equation (3.2), would have the form

� logKit = �� log Yit + �(log Yi;t�s � logKi;t�s) + Ai +Bt + vit (3.3)

where Ai and Bt are again unobserved �rm-speci�c and time-speci�c e¤ects and vit

is, at least approximately, a serially uncorrelated error term. A key property is that

the coe¢ cient � on the error correction term should be positive, so that �rms with a

capital stock level below their target will eventually adjust upwards, and vice versa.

We use the approximation � logKit � (Iit=Ki;t�1)� �i, where Iit is gross invest-
ment and �i is the (possibly �rm-speci�c) depreciation rate. To test for the e¤ect of

uncertainty on the impact e¤ect of demand shocks (the �rst implication), we add an

interaction term between a measure of uncertainty (SDit) and current sales growth

(� log Yit). A negative coe¢ cient on this interaction term would indicate that the

short run response of investment to demand shocks is indeed lower at higher levels

of uncertainty. To allow for other possible e¤ects of uncertainty on the level of the

capital stock in either the short run or the long run, we also consider further terms

in both the change (�SDit) and the level (SDit) of our measure of uncertainty. To

test for non-linearity in the short run response of investment to demand shocks (the

second implication), we add a higher order term in current sales growth (� log Yit)2.

A positive coe¢ cient on this squared term would be consistent with this implication,

indicating a convex relationship between investment and demand shocks, recalling

that our samples are dominated by observations on �rms with positive gross invest-

ment.

These additional terms then give us an empirical speci�cation of the form

Iit
Ki;t�1

= �1� log Yit + �2(� log Yit)
2 + �3(SDit �� log Yit) (3.4)

+�(log Yi;t�1 � logKi;t�1) + 1SDit + 2�SDit + Ai + �i +Bt + vit:
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3.1. Testing our empirical speci�cation on simulated data

To investigate whether this econometric approach can detect the properties of short

run investment dynamics highlighted in section 2, we use our simulation model

to generate data for a panel of 1,000 �rms and 15 years. This allows us to con-

sider whether this relatively simple dynamic econometric speci�cation provides an

adequate approximation to the complex investment dynamics suggested by mod-

els with partial irreversibility, and to compare speci�cations that use sales and a

stock-returns measure of uncertainty with speci�cations that use the true underly-

ing demand and uncertainty variables. Sales (Yit) are generated from the revenue

function and aggregated across production units and months. Monthly stock re-

turns are generated by aggregating the value function across units and adding in

monthly net cash �ows (revenue less investment costs). The within-year standard

deviation of these monthly returns (SDit) provides our �rm-level measure of uncer-

tainty, which mimics the kind of measure used in our empirical analysis in section

4. Table 2 reports the sample correlation matrix for key variables in our simulated

dataset. This demonstrates that the standard deviation of monthly stock returns is

positively correlated with the underlying standard deviation of demand shocks (�it),

supporting the use of this as an empirical measure of uncertainty. In what follows

we use lower cases to denote natural logarithms, so for example, yit = log Yit.

[Tables 2 and 3 about here]

In Table 3 we present the results of estimating the augmented error correction

model of investment using this simulated �rm-level panel. In column (1) we �rst

report OLS estimates using as explanatory variables the annual measures of the �true�

demand (P ) and uncertainty (�) variables that were used to generate this simulated

investment data. Our tests detect signi�cant heterogeneity in the impact e¤ect of

demand shocks on �rm-level investment, depending on the level of uncertainty, and

signi�cant convexity in the response of investment to demand shocks. We also �nd

evidence of �error correcting�behaviour, with the actual capital stock adjusting in

the long run towards a target that is cointegrated with its frictionless level. We �nd

no evidence here that a permanent increase in the level of uncertainty would a¤ect

14



the level of the capital stock in the long run, but there is an indication that increases

in uncertainty reduce investment in the short run in ways that are not fully captured

by our multiplicative interaction term.

Column (2) of Table 3 uses instead the empirical counterparts to the demand

and uncertainty variables, based on annual levels of simulated sales (Yit) and the

within-year standard deviation of simulated monthly stock returns (SDit). As these

variables are jointly determined with investment decisions we treat them as endoge-

nous and report GMM estimates. To mimic our empirical analysis of real company

data more closely, we also allow for the possibility of unobserved �rm-speci�c ef-

fects here, and estimate this speci�cation in �rst-di¤erences. The instruments used

are the second and third lags of our simulated investment, capital, sales and un-

certainty measures, following Arellano and Bond (1991). A Sargan-Hansen test of

overidentifying restrictions does not reject this speci�cation, and there is no sig-

ni�cant evidence of second-order serial correlation in the �rst-di¤erenced residuals.

While the parameter estimates are less precise in this case, we again detect signif-

icant evidence that uncertainty in�uences the short run response of investment to

demand shocks, and that this response is convex. It should be noted, however, that

this was not always the case if we imposed simpler dynamic speci�cations that were

rejected by the test of overidentifying restrictions (for example, if we omit the error

correction term). This illustrates the potential importance of controlling for longer

run investment dynamics when testing the properties of the short run responses to

demand shocks. For other calibrations of the simulation model we found that al-

ternative dynamic speci�cations or instrument sets may be required. The negative

coe¢ cient on the interaction term and the positive coe¢ cient on the squared term,

however, were found consistently across speci�cations that were not rejected by the

test of overidentifying restrictions.

Considering the magnitude of this e¤ect of uncertainty, we �nd that the predicted

impact e¤ect of sales growth on investment rates increases by 79% when moving from

the third quartile to the �rst quartile in the distribution of measured uncertainty,

and by 168% when moving from the 90th percentile to the 10th percentile. These

di¤erences are quantitatively similar to those that we estimated directly for the
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underlying model in section 2.3.

This suggests that our econometric tests have power to detect these properties of

short run investment dynamics, at least using this simulated dataset. Interestingly

we also �nd that the longer run capital stock adjustment process is approximated

quite well by our error correction speci�cation, and that our GMM estimates using

measured sales and uncertainty variables even provide quantitative estimates of the

e¤ect of uncertainty on short run responses to demand shocks that are in the right

ballpark.

In columns (3) and (4) of Table 3 we con�rm that these properties of short

run investment dynamics are also found using two alternative speci�cations of our

simulation model, which approximate Hartman (1972) and Abel (1983) type e¤ects

of uncertainty on the expected marginal revenue product of capital (MRPC).14 In

column (3) we set the drift in the demand process 2�(�t) = 0:04 +
�2t
2
, so that the

expected MRPC is increasing in uncertainty. As expected, this generates a positive

long run e¤ect of the level of uncertainty on the level of the capital stock. Neverthe-

less we can still detect the negative e¤ect of uncertainty on the short run response

of investment to demand shocks, and the convex shape of these short run responses.

In column (4) we set the drift 2�(�t) = 0:04 � �2t
2
, so that the expected MRPC is

decreasing in uncertainty. This generates a negative long run e¤ect of uncertainty

on the level of the capital stock, but has little impact on either the interaction term

between demand growth and uncertainty or on our higher order demand growth

term. This suggests, �rst, that our econometric tests of the properties of short run

14In a competitive model with shocks to output prices and a �exible factor (such as labour) the
marginal revenue product of capital (MRPC) is convex in demand conditions, so uncertainty has a
positive impact on the expected MRPC. For example, with a revenue function R = ZKaLb (where
Z is a demand process, K is capital and L is labour), after optimizing out labour net revenue

equals CZ
1

1�bK
a

1�b (where C is a constant) and the MRPC equals aC
1�bZ

1
1�bK

a+b�1
1�b . If Z is a

geometric Brownian process with drift � and variance � then E[dZ
1

1�b =Z
1

1�b ] = (� + b
1�b

�2

2 )
dt
1�b ,

so the expected growth of MRPC equals (�+ b
1�b

�2

2 )
1
1�b ; which is increasing in uncertainty. How-

ever, as Caballero (1991) notes, the sign of this e¤ect is sensitive to assumptions such as the
degree of imperfect competition, and whether the underlying shocks are to prices or quantities.
Under alternative assumptions the marginal revenue product of capital can become concave in
demand conditions, with a negative impact of uncertainty. To qualitatively simulate these pos-
itive and negative Hartman-Abel e¤ects in our linear homogeneous speci�cation, we adjust our
demand drift term by ��2

2 , noting that the quantitative e¤ects would also depend on the exact
convexity/concavity of the underlying MRPC in demand conditions.
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investment dynamics appear to be robust (at least to these modi�cations), and sec-

ondly, that the longer run e¤ects of uncertainty are theoretically ambiguous and

need to be determined empirically. This echoes the discussions both in Leahy and

Whited (1996), who outline a range of potentially positive and negative e¤ects of

uncertainty, and in Abel and Eberly (1999), who note the ambiguous long run e¤ects

of uncertainty on capital stock levels in a partial irreversibility framework.

3.2. Simulation robustness tests

To assess the generality of our predictions on the uncertainty-demand growth inter-

action term and on the demand growth squared term, we now investigate whether

these e¤ects are found for an alternative revenue function, and for alternative types

of adjustment costs.

[Table 4 about here]

3.2.1. A CES speci�cation

The simulation model and assumptions require only a supermodular homogeneous

unit revenue function, so we can replace the Cobb-Douglas revenue function (2.1)

with a function of a CES aggregator over the two types of capital

R(X;K1; K2) = X
�(K�

1 +K
�
2 )


� (3.5)

The associated linear homogeneous revenue function is then de�ned by eR(P;K1; K2) =

P 1�(K�
1 +K

�
2 )


� , where P = X

�
1� . We set � = 0:5 and  = 0:8.

Column (1) of Table 4 presents OLS results for simulated �rm-level data with

this alternative CES speci�cation, using the true demand and uncertainty variables.

We again �nd that the short run response of investment to demand shocks is convex,

and that higher uncertainty reduces this impact e¤ect of demand shocks on invest-

ment. First-di¤erenced GMM estimates, using sales as a measure of demand and

stock-return volatility as a measure of uncertainty, also yielded a signi�cant positive

coe¢ cient on the sales growth squared term and a signi�cant negative coe¢ cient on

the uncertainty interaction term.15 This suggests that our empirical tests can detect

15Coe¢ cients (standard deviations) of 0.627 (0.132) on the sales growth term and -1.452 (0.467)
on the uncertainty interaction term.
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