
 

 

Tugkan Batu, Petra Berenbrink and Christian Sohler 
A sublinear-time approximation scheme for 
bin packing 
 
Article (Accepted version) 
(Refereed) 
Original citation: 
Batu, Tugkan and Berenbrink, Petra and Sohler, Christian (2009) A sublinear-time approximation 
scheme for bin packing. Theoretical computer science, 410 (47-49). pp. 5082-5092 
 
DOI: 10.1016/j.tcs.2009.08.006  
 
© 2009 Elsevier B.V.
 
This version available at: http://eprints.lse.ac.uk/25979/  
Available in LSE Research Online: November 2009 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any 
article(s) in LSE Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities 
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 
This document is the author’s final manuscript accepted version of the journal article, 
incorporating any revisions agreed during the peer review process.  Some differences between 
this version and the published version may remain.  You are advised to consult the publisher’s 
version if you wish to cite from it. 

http://www2.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=t.batu@lse.ac.uk
http://www.sciencedirect.com/science/journal/03043975
http://dx.doi.org/10.1016/j.tcs.2009.08.006
http://www.elsevier.com/
http://eprints.lse.ac.uk/25979/


A Sublinear-Time Approximation Scheme for Bin Packing

Tuğkan Batu∗ Petra Berenbrink† Christian Sohler‡

November 13, 2009

Abstract

The bin packing problem is defined as follows: given a set of n items with sizes 0 <
w1, w2, . . . , wn ≤ 1, find a packing of these items into a minimum number of unit-size bins
possible.

We present a sublinear-time asymptotic approximation scheme for the bin packing problem;
that is, for any ε > 0, we present an algorithm Aε that has sampling access to the input instance
and outputs a value k such that Copt ≤ k ≤ (1+ε) ·Copt+1, where Copt is the cost of an optimal
solution. It is clear that uniform sampling by itself will not allow a sublinear-time algorithm
in this setting; a small number of items might constitute most of the total weight and uniform
samples will not hit them. In this work we use weighted samples, where item i is sampled with
probability proportional to its weight: that is, with probability wi/

∑
i wi. In the presence of

weighted samples, the approximation algorithm runs in Õ(
√

n · poly(1/ε)) + g(1/ε) time, where
g(x) is an exponential function of x. When both weighted sampling and uniform sampling are
allowed, Õ(n1/3 · poly(1/ε)) + g(1/ε) time suffices. In addition to an approximate value to Copt,
our algorithm can also output a constant-size “template” of a packing that can later be used to
find a near-optimal packing in linear time.
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1 Introduction

The bin packing problem is a classical combinatorial optimisation problem and defined as follows:
given a set X of n items with sizes 0 < w1, w2, . . . , wn ≤ 1, find a packing of these items into
fewest unit-size bins possible. Bin packing has many applications in industry whenever certain
items (paper, wood, pipes, etc.) can be bought only in a fixed given length and have to be cut
to the lengths needed in the application. The bin packing problem is NP -hard and therefore, a
number of approximation algorithms and heuristics have been developed: for example, first fit, best
fit, sum-of-squares, or Gilmore–Gomory cuts [1, 5, 6, 13, 14].

Although these heuristics typically perform well in practice, it would be good to also have an
estimate of the cost of an optimal solution in order to detect cases where the heuristic does not
provide a good solution. However, we also do not want to spend much time on computing such a
value. Ideally, we would like to compute such a value by taking a small sample of the input set and
analyse only this sample set. In this paper we address this question of designing a sublinear-time
algorithm to approximate the optimal value of a solution to the bin packing problem. We also
believe that the (non-uniform) sampling process used to compute a sample set gives important
insights how to obtain representative sample sets for this problem. In particular, it could be
interesting to combine our sampling methods with known heuristics to approximate the cost of a
solution quickly.

Our results. We present a sublinear-time approximation scheme for the cost of the bin packing
problem. We assume that the algorithm has access to an oracle that gives weighted samples of the
input items; that is, the probability that the oracle returns item (i, wi) is wi/

∑
j wj . We assume

that the algorithm receives both the index and the weight of the item so that it can distinguish
between different items of same weight. Our algorithm takes Õ(

√
n · poly(1/ε)) weighted samples

from the input and returns an integer k such that

Copt ≤ k ≤ (1 + ε) · Copt + 1,

where Copt is the optimal value for the given problem instance.
It is clear that in the absence of an oracle that gives weighted samples as described above, a

sublinear-time algorithm taking uniform samples from the input items may fail to identify the items
of large size, hence, fail to output a good approximation to the number of bins needed. Note that
we do not require that the algorithm knows the total weight of the items. In fact, the total weight
of the items gives a 2-approximation to the optimal solution since in the optimal packing, all but
one of the bins are guaranteed to be half full. We will show that one can approximate the total
weight of the items using samples. Moreover, if the total weight of the items is part of the input,
then our algorithm yields a constant-time approximation scheme for bin packing.

Estimating the total weight with a sample size that is linear in the reciprocal of the average
weight can be done by a simple application of the Chernoff-Hoeffding bounds. However, when
the total weight is small, which corresponds to an instance that fits in a small number of bins,
this approach might be very inefficient. Therefore, we propose another method to estimate the
total weight that uses Õ(

√
n) weighted samples regardless of the average weight. We then show

that the uniform samples can be helpful when used together with weighted samples. We present
an algorithm that has access to both uniform and weighted samples and approximates the total
weight using Õ(n1/3 · poly(1/ε)) weighted and uniform samples. Both of these results are tight up
to polylogarithmic factors in terms of n.
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As it is a sublinear-time algorithm, our algorithm cannot output a description of a packing that
achieves a near-optimal cost. However, it is still possible to extract a constant-size description of a
“template” packing from our algorithm that can be used to find a packing (with the same cost as
output) in linear time.

Related Work. Our bin packing algorithm is based on the linear-time (1 + ε)-approximation
algorithm of Fernandez de la Vega and Lueker [11]. The main idea behind that algorithm is to
simplify the input instance by grouping all the items into a constant number of groups and using a
single weight value for each item in a group. This new input instance with only a constant number
of different weights is then used to obtain an approximation to the optimal value for the original
input. For a survey about bin packing algorithms, see [12].

The field of sublinear algorithms studies the question of how to approximate the output for a
given problem by only looking at a small random sample of the input. Sublinear algorithms are
known for a number of problems from different areas. For instance, property testing algorithms
are sublinear algorithms that solve relaxations of the standard decision problems. In particular,
the goal of a property testing algorithm is to distinguish between the input instances that have a
specific property and the input instances that are far from any input instance that has the property.
Although property testing adopts this “dual” notion of approximation, the algorithms may also
lead to approximations in the standard sense. For example, the property tester of Goldreich et
al. [15] for ρ-cut problem yields a constant-time approximation scheme for Max-Cut problem on
dense graphs. In a graph with average degree d and n vertices, it is known that one can estimate
the number of connected components up to an additive error of εn in time polynomial in 1/ε [16].
Based on this idea, an algorithm to estimate the weight of the minimum spanning tree has been
developed, since this weight can be expressed as the sum of the number of connected components
in certain subgraphs [4]. Variants of this algorithm have been designed to estimate the weight
of Euclidean and metric minimum spanning trees in sublinear time [7, 9]. It is also possible to
estimate the average degree [17, 10] of the vertices in a graph and the cost of a minimum vertex
cover [24] in sublinear time.

In the area of clustering it is known that one can compute an approximate solution for the
k-median and k-means problems in Õ(nk) time for the metric variant of the problem [19, 21, 25].
Notice that this is also sublinear in the input size because the description size of an arbitrary
metric space is Θ(n2). For the same setting, one can also approximate the cost of a basic facility
location problem in Õ(n) time [2]. The quality of a uniformly distributed random sample has been
analysed for a number of clustering variants [22, 8]. Also, for the min-sum 2-clustering problem, a
sublinear-time (1 + ε)-approximation algorithm is given [20].

In the context of property testing of distributions, Batu et al. [3] give a sublinear-time algorithm
that takes samples from a discrete distribution on n items and outputs a (1 + ε)-approximation to
the (Shannon) entropy of the distribution. In fact, we borrow some techniques from [3] to obtain
our results in this paper.

Independently from our results, the authors of [23] present algorithms to approximate the sum
of n weighted variables using weighted sampling. Their upper bounds on the sample complexity
(Õ(

√
n) for weighted sampling and Õ(n1/3) if both uniform and weighted samples are used) are

essentially the same as our bounds. However, their algorithm is quite different from ours. The main
idea of our algorithm is as follows. We divide the interval [0, 1] into k sub-intervals of geometrically
growing lengths, for a suitable chosen k. We assign one bucket to every interval. Then, we sample
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items according to their weight and sort them into the corresponding buckets. Finally, for every
bucket, we use the sample frequencies to estimate the total weight contribution of items falling
into the bucket. The sum of these weight contributions is used as an approximation for the total
weight of all items. The main idea of the algorithm in [23] is as follows. The authors first guess
a total weight αn and fix a uniform bucket size εα accordingly. Every input item is then broken
down into pieces of that uniform size. If the guess αn is now approximately correct, this should
result in roughly εn uniform sized buckets. The authors use weighted sampling to sample from
these uniform sized buckets, and use number of samples they need until they see a repeated bucket
to decide if the initial guess is correct or not. If it is correct, they output αn, otherwise they
try another guess. The sample complexity for both results are roughly the same. For the case
of weighted samples only, we need O(

√
n · (log n + log(1/ε))/ε3) samples, whereas the approach

of [23] uses O(
√

n · log n · (log log n + log(1/ε))/ε3.5) many samples. For the case of uniform and
weighted samples, we need O(n1/3 ·(log n+log(1/ε))/ε3) samples, whereas the approach of [23] uses
O(n1/3 · log n · (log log n + log(1/ε))/ε4.5) many samples.

Organisation. The paper is organised as follows. In Section 2, we present our algorithm for
bin packing instances where all items have large weight. In Section 3, we present our algorithm
for general bin packing instances. In Section 4, we describe our algorithms for estimating the
total weight of the items. Finally, in Section 5, we conclude with some implications about related
problems.

2 Algorithm for Packing Heavy Items

In the following, we consider only heavy instances of bin packing problem: we assume that for all
1 ≤ i ≤ n, we have wi ≥ γ. As a direct consequence, any bin can contain at most 1/γ items,
which will be very useful in our analysis. We show that for heavy instances, we get a (1 + ε)-
approximation algorithm with a running time independent of the input size. This algorithm is
based on the algorithm of Fernandez de la Vega and Lueker [11].

Throughout this section, we assume that the algorithm has access to uniform samples from the
items in the input; for the general algorithm in Section 3, uniform samples from the heavy items
of the instance can be simulated using weighted samples (provided that the total weight of the
heavy items is sufficiently high) by incurring an additional factor of 1/γ in the sample complexity.
Simply, retaining to a sample of an item with weight w ≥ γ with probability γ/w ensures that we
have uniform sampling from the heavy items.

The outline of the algorithm is as follows. We first use random sampling from the input to
subdivide [0, 1] into intervals I1, . . . , Ik for k = O(ε−2) such that for each interval Ij , 1 ≤ j ≤ k,
there are roughly εn items whose weight lies in Ij . Let ij be the index of the heaviest item in
interval Ij . The next step is to consider a simplified input instance that has exactly εn items of
weight wij for each interval Ij . The optimal solution to this new instance is a good approximation
to the optimal solution of our original instance. Then, we create a new “thinned-out” instance
by reducing the number of items of weight wij to some constant. Finally, we solve the problem
on this new instance optimally and rescale the cost of the solution. This way we obtain a good
approximation to an optimal solution for the original instance. Since we can solve the thinned-out
instance in time independent of n, we have a constant-time algorithm.
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2.1 Subdivision into Intervals

We first describe our algorithm that subdivides [0, 1] into intervals such that any interval Ij contains
roughly εn items with weight in Ij . In the case of non-unique item weights, we use the index of
the item as tie-breaker. In this case, the endpoint of an interval is given by a weight and the
index of the item; that is, items with the same weight may be contained in different intervals. Our
subdivision algorithm is described below.

Algorithm Subdivision(k, r)

1. Pick s = k · r items i1, . . . , is uniformly at random with repetition from X. Let S
denote the multiset of the selected items.

2. Sort items according to their weights (using indices as tie breakers).

3. Let 〈iπ(1), . . . , iπ(s)〉 be the resulting sequence of items.

4. Define interval I1 = (0, iπ(r)] and Ij = (iπ((j−1)·r), iπ(j·r)], for 2 ≤ j ≤ k − 1, and
Ik = (iπ((k−1)·r), 1].

The algorithm takes every r-th item from the sorted list S and considers the induced intervals.
Note that S is a multiset since items can occur several times in S. A boundary set B is defined as a
multiset of k−1 items from X.1 The weights of these items can be regarded as interval boundaries
since they subdivide [0, 1] into k intervals I1, . . . Ik. A boundary set B is called bad, if for at least one
of the intervals Ij there are either less than d(1−εγ) ·n/ke items in X whose weight is in Ij or there
are more than b(1 + εγ) · n/kc items in X with a weight in Ij . Any boundary set that is not bad is
called good, that is, it is a boundary set where every induced interval contains the weight of roughly
n/k items from the input set X. Similarly, we call an interval Ij bad if it contains the weight of
at most d(1 − εγ)n/ke or at least b(1 + εγ) · n/kc items from X. The following lemma shows that
with high probability, every interval Ij constructed by Algorithm Subdivision contains roughly
n/k items from X for large enough r.

Lemma 1 Let r = O(k·ln(k/εγ)
ε2·γ2 ). With probability at least 7/8, we have for 1 ≤ j ≤ k,

d(1 − εγ) · n/ke ≤
∣∣{i : wi ∈ Ij

}∣∣ ≤ b(1 + εγ) · n/kc.

Proof. We say that a boundary set B is destroyed by sample set S if at least one interval Ij

induced by B contains either the weights of at most (1 − εγ/2) · s/k items from S or the weights
of more than (1 + εγ/2) · s/k items from S. Our goal is to show that every bad boundary set is
destroyed with high probability. A boundary set B is valid for sample set S if B ⊆ S, and for each
of the induced intervals Ij , S contains exactly r sample items whose weights are in Ij . Clearly, for
every sample set S, there is a unique valid boundary set BS . For a representative sample set S, we
would expect that BS is good and thus, the intervals approximately subdivide the input set X into
k subsets of roughly equal size.

We will consider the probability that a bad boundary set B is destroyed by a sample set S,
conditioned on the event that B ⊆ S. In other words, S consists of the k−1 interval boundaries and

1For technical reasons, we allow that an item occurs more than once in B. In this case, the corresponding interval
induced by B is empty. If we write B ⊆ S, we assume that the items that occur more than once in B must occur at
least as many times in the multiset S.
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s−k+1 items chosen uniformly at random from X. Without loss of generality, we can assume that
the first k − 1 items of S are the items of B. Let us first assume that B induces a bad interval Ibad

that contains the weight of at most (1 − ε)n/k items from X. Note that at most one of boundary
items can be contained in Ibad. Now let us consider the remaining s′ = s − k + 1 items. Let Yi

denote the indicator random variable for the event that the weight of the ith remaining item is
contained in Ibad. Clearly, we have

Pr[Yi = 1] ≤ (1 − εγ)/k.

We can assume equality for the analysis. By Chernoff bounds we have

Pr[
s′∑

i=1

Yi ≥ (1 + λ) · E[
s′∑

i=1

Yi]] ≤ e−λ2·E[
∑s′

i=1 Yi]/3.

Using λ = εγ/3, we get

Pr[
s′∑

i=1

Yi ≥ (1 − εγ

2
)s′/k] ≤ Pr[

s′∑
i=1

Yi ≥ (1 + εγ/2) · (1 − εγ)s′/k] ≤ e−ε2·γ2·(1−εγ)·s′/(27k).

Now let us assume that we have a bad interval Ibad induced by B that contains the weight of
more than (1+ ε)n/k points from X. We proceed similarly to the previous case. Again we consider
the remaining s′ = s−k +1 items and use Yi to denote the indicator random variable for the event
that the weight of the i-th remaining item is contained in Ibad. For this case we get

Pr[Yi = 1] ≥ (1 + εγ)/k.

And, again, we can assume equality for the analysis. By Chernoff bounds we have

Pr[
s′∑

i=1

Yi ≤ (1 − λ) · E[
s′∑

i=1

Yi]] ≤ e−λ2·E[
∑s′

i=1 Yi]/3.

Using λ = εγ/3, we get

Pr[
s′∑

i=1

Yi ≤ (1 +
1
2
εγ)s′/k] ≤ e−ε2·γ2·(1−εγ)·s′/(27k) ≤ δ.

Hence, we can conclude that

Pr[B is not destroyed
∣∣ B ⊆ S] ≤ e−ε2·γ2·(1−εγ)·s′/(27k) ≤ e−ε2·γ2·(1−εγ)·r/27 ≤ e−O(k·ln(k/εγ)) ≤ s−k.

Finally, we have to show that, with a good probability, all possible bad boundary sets with
B ⊆ S are destroyed. (Note that we assume only B ⊆ S, we do not assume that the items of B are
the interval borders induced by S). We call a sample S good if all boundary sets B with k−1 items
and B ⊆ S destroyed. If all boundary sets B ⊆ S are destroyed, this also holds for the unique valid
boundary set BS . Let S = {i1, . . . , is}.

Pr[S is good] ≥ 1 −
∑

bad boundary set B
Pr[B ⊆ S] · Pr[B is not destroyed

∣∣ B ⊆ S]

≥ 1 − nk−1 ·
(

s

k − 1

)
· 1
nk−1

· (k − 1)! · s−k

≥ 7/8,
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where the second inequality follows from the fact that Pr[B ⊆ S] ≤
(

s
k−1

)
· 1

nk−1 · (k − 1)!. �

We now consider the following simplified problem instance Xnew. For each interval Ij = (`j , rj ],
1 ≤ j ≤ k, we have b(1 + εγ)n/kc items with weight exactly rj . If the boundary set obtained from
the sample set S is good, then this modification only increases the cost of an optimal solution. We
will show that an optimal solution to our new instance Xnew has cost at most (1+3ε) ·Copt, where
Copt denotes the cost of an optimal solution for X.

Lemma 2 Let k ≥ 1/εγ. If the boundary set used to generate Xnew is good, then we get, for the
cost Cnew of an optimal solution for Xnew,

Copt ≤ Cnew ≤ (1 + 3ε) · Copt.

Proof. Since the boundary set used is good, we know that every interval Ij contains the weight
of at least d(1 − εγ) · n/ke items. Let us consider an optimal assignment of items from X to bins.
We use this assignment to pack most of the items from Xnew. For each rj , 1 ≤ j ≤ k− 1, we select
d(1 − εγ) · n/ke items with weight rj and pack these items into the bins that are used for items
with weight in Ij+1 in an optimal solution for X. Clearly, this way we use at most as many bins
as used in an optimal solution for X. At this point we have packed all but 2εγn/k items whose
weight is in the first k − 1 intervals. Thus, 2(k − 1)εγn/k ≤ 2εγn plus the n/k items with weight
in Ik remain. Each of these items is placed in an individual bin. Since Copt ≥ γn and k ≥ 1/(εγ),
we get that these items incur a cost of at most 3ε · Copt. �

It remains to show that we can use scaling to approximate the cost of an optimal solution.
Let F (γ, k) denote the set of combinatorial distinct fillings of a bin with at most 1/γ items when
we have k different types of items and let f(γ, k) = |F (γ, k)| = O(k1/γ). We prove the following
lemma.

Lemma 3 Let ` be integer. Given an instance X1 of the bin packing problem that consists of
m = df(γ,k)

ε·γ·k e · ` copies of each of k items with weights w1, . . . , wk ∈ [γ, 1]. Furthermore, let X2 be

an instance that consists of df(γ,k)
ε·γ·k e copies of the same set of items. Let C

(X1)
opt and C

(X2)
opt denote

the costs of the optimal solution of X1 and X2, respectively. Then,

C
(X1)
opt ≤ ` · C(X2)

opt ≤ (1 + ε) · C(X1)
opt .

Proof. Let us consider an optimal solution for X2. We copy this solution ` times. This will give
us a solution for instance X1 with cost ` · C(X2)

opt . This shows the first inequality.
To show the second inequality, let us consider an optimal solution for X1. For each filling type

fi ∈ F (γ, k), we round up the number of bins that have that filling type in our optimal solution to
the nearest multiple of `. Let ji be that number. To obtain a solution for X2, we use ji/` many
bins of type fi. Clearly, the cost of the rounded solution is at most an additive term of ` · f(γ, k)
larger than the optimal solution for X1. Since we have m = k · df(γ, k)/(ε · γ · k)e · ` items, we have
ε · C(X1)

opt ≥ ε · γ ·m ≥ ` · f(γ, k), which proves the second inequality. �

Now we are ready to describe our algorithm for heavy items.

6



Algorithm Heavy Items

1. Use Subdivision(k, r) with k = 1/εγ and r = O(k ln(1/εγ)/ε2γ2) to obtain intervals
Ij , 1 ≤ j ≤ k.

2. Define X ′ to be an instance containing b(1 + εγ)n/kc items with weight rj for each
interval Ij = (`j , rj ], 1 ≤ j ≤ k.

3. Create a new instance X ′′ that has df(γ,k)
ε·γ·k e copies of every item with weight rj .

4. Compute the optimal number d of bins for X ′′ and output d · d (1+εγ)·n·ε·γ
f(γ,k) e.

Theorem 4 Let 1 > γ > 0 be a constant. Given oracle access to n items with weights from [γ, 1],
Algorithm Heavy Items outputs in time g′(ε, γ) a value b such that, with high probability,

Copt ≤ b ≤ (1 + ε) · Copt,

where Copt is the cost of an optimal bin packing of the given n items and g′ is a function depending
on ε and γ but is independent of n.

Proof. In our first step (the subdivision algorithm) and the reduction to problem instance Xnew,
we increase the cost of the solution by at most a factor of (1+3ε) by Lemma 2. To apply Lemma 3,
we must have that the number of occurrences of each item is a multiple of df(γ,k)

ε·γ·k e, which costs us

another (1+ε) factor, provided that the number of input items is large enough, that is, n ≥ df(γ,k)
ε·γ·k e·kε

(otherwise, we can solve the problem brute force). Finally, by Lemma 3, we lose another (1 + ε)
factor by scaling down the input instance. Overall, the optimal solution to our new instance may
be at most (1 + ε)2 · (1 + 3ε) ≤ (1 + 27ε) larger than the optimal solution of our input instance.
Using ε = ε/27, the proof follows. �

The instance X ′′ has O(f(γ, k)/εγ) items in it. Hence, the optimal solution to X ′′ can be
computed via dynamic programming in time g′(ε, γ) = O((f(γ, k))k+1) = 2O(log(1/εγ)/εγ2) using
techniques from [18].

3 General Bin Packing Algorithm

In this section we present our algorithm for the general bin packing problem. We first observe
that, if all the items have small weight, say less than some small constant γ, then it is easy to
pack all these items such that each bin is filled up to 1 − γ level. Hence, the total weight of the
items can be used to obtain a (1 − γ)−1-approximation. On the other hand, if all the items have
weight larger than some threshold γ (heavy item), we have seen in Section 2 that we can obtain a
(1 + O(γ))-approximation.

Our algorithm first tries to identify whether the input falls into one of the two cases above.
Namely, if all but a small fraction of the items are light or heavy, we can ignore this minority. We
can obtain a good approximation by considering only the dominant-type items. When both light
and heavy items constitute significant fractions of the input, then they both have to be considered.
In this case, we utilise the fact that both the total weight and the optimal packing of heavy items
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are lower bounds for the cost of an optimal solution. We will use the algorithms presented in
Section 4 to obtain an estimate for the total weight of the items.

Let ε be a constant and γ = ε/c for some c > 1. Call an item i light if wi ≤ γ, call it heavy
otherwise. Also, define W =

∑
i wi, Wh =

∑
heavy i wi, and αh = Wh/W .

Bin Packing Algorithm

1. Take t = O(1/γ) weighted samples and let s be the number of heavy samples. Use α̃h = s/t
as an approximation of αh.

2. Obtain estimate W̃ for the total weight W (as in Section 4).

3. If α̃h < γ, let b = 0. Otherwise, pack the heavy items using Algorithm Heavy Items of
Section 2 within an approximation factor of 1 + γ. Let b be the number of required bins
calculated by that algorithm.

4. Output k = d(1 + 2γ) ·max{W̃ , b}e.

Theorem 5 For every ε ≤ 1, given oracle access to n items with weights from (0, 1], the algorithm
above computes a value k such that, with probability at least 3/4,

Copt ≤ k ≤ (1 + ε) · Copt + 1,

where Copt is the cost of an optimal bin packing of the n items. The running time of the algorithm
is g(ε) + Õ(

√
n/ε5) when only weighted samples are used and g(ε) + Õ(n1/3/ε5) when both weighted

and uniform samples are used, where g(ε) is an exponential function of 1/ε.

Proof. We use γ = ε/4. The first lemma shows that with a probability of 11/12, t weighted
samples are sufficient to calculate a good estimation for αh.

Lemma 6 Assume αh ≥ γ/2. Then, with probability of 11/12, Step 1 of the algorithm calculates
α̃h such that

3
4
αh ≤ α̃h ≤ 5

4
αh.

Furthermore, when αh < γ/2, Pr[α̃h ≥ (3/4) · γ] ≤ 11/12.

Proof. We define t random variables X1 . . . Xt with Xi = 1 if the weight of the ith sample is more
than γ and zero otherwise. X =

∑t
i=1 Xi and E[X] = t · αh. Using Chernoff bounds, we get

Pr[|X − E[X]| ≥ E[X]/4] = Pr[|X − t · αh| ≥ (t/4) · αh] ≤ 2 · e(1/4)2·t·αh/3.

For αh ≥ γ/2, this probability is at most 11/12 with t = O(1/γ). The rest of the lemma follows
since Pr[α̃h ≥ (3/4) · γ] for αh < γ/2 is not larger that the probability for the same event with
αh = γ/2. �

Next, notice that the Algorithm Heavy Items of Section 2 is called only when αh > 3 ·γ/4 by
Lemma 6. Also, notice that Algorithm Heavy Items uses uniform samples from the heavy items.
It is not hard to see that uniform samples from heavy items can be obtained from weighted samples
by paying an additional multiplicative factor 1/γ2 (one 1/γ for getting enough heavy samples and
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another 1/γ for filtering) in the sample complexity. Therefore, the use of Algorithm Heavy
Items with only weighted samples is still valid.

Now, we show that the output k of the algorithm satisfies Copt ≤ k ≤ (1 + ε) ·Copt + 1. Let Ch

be the cost of an optimal bin packing when the input instance is restricted to the heavy items.
We know that dW e ≤ Copt, Ch ≤ Copt, W ≤ W̃ ≤ (1 + γ) · W , and b ≤ (1 + γ) · Ch. Hence,

k = d(1 + 2γ) · max{W̃ , b}e
≤ d(1 + 2γ) · (1 + γ) ·max{W,Ch}e
≤ (1 + 4γ) · dmax{W,Ch}e + 1
≤ (1 + ε) · Copt + 1.

The second to last inequality above follows because for α, x > 0, dα · xe ≤ αdxe + 1.
Now suppose Copt = Ch; that is, the cost of an optimal solution to only heavy items is as large

as the cost of an optimal solution to all the items. Then, by Theorem 4 the fact that Ch ≤ b,

Copt = Ch ≤ d(1 + 2γ) · max{W̃ , b}e = k.

If Ch < Copt, then we can construct a packing such that all but one of the bins is filled up to at
least 1 − γ level (by starting from Ch bins partially filled with heavy items and opening new bins
as necessary). Therefore, in this case,

Copt ≤ d W

1 − γ
e ≤ d(1 + 2γ) ·max{W̃ , b}e = k.

The dependence of the running time of the algorithm on n is determined by the number of
samples used to estimate W . The dependence of the running time on ε is exponential and arises
from Algorithm Heavy Items; namely, g(ε) = 2O(log(1/ε)/ε3). �

Since the lower-bound arguments for total weight estimation in Section 4 directly translates to
lower bounds for sample complexity of bin packing, the running time of our algorithm is tight up
to polylogarithmic factors in terms of n for both kinds of sampling access.

Remark 1. The solution obtained for the scaled-down bin packing instance can be used as a
constant-size “template” of a packing. The grouping of the items, scaling-down factor, and this
solution to the scaled-down instance can be used in conjunction to pack all the items in linear time
while achieving the cost that was output by the algorithm.

Remark 2. Note that estimating the total weight of the items dominates the time and the
sample complexity of our algorithm. If the total weight is given as part of the input, we have an
approximation scheme for bin packing with running time independent of the input size.

4 Estimating the Total Weight of the Items

At first we give a simple lower bound on the number of samples needed to estimate the total weight
of n items.

9



Observation 1 To estimate the total weight of n items up to a constant factor, at least Ω(
√

n)
weighted samples or a linear number of uniform samples are required.

Proof. Consider the bin packing instance of k items of the same weight w and n−k items of weight
almost 0. It is clear that estimating the total weight of these items with weighted samples amounts
to approximately counting the number of items with weight w. By the birthday problem, such a
counting will require Ω(

√
k) samples. The first result now follows with k = O(n). For uniform

samples, we set k to be a constant. Then, we need a linear number of samples to draw the first
item with weight w. �

The following lemma from Batu et al. [3] presents an algorithm that given uniform samples
from a set of items, approximately counts the number of items.

Lemma 7 ([3]) For every ε > 0, there exists an algorithm that, given access to uniform samples
from k items (where k is unknown to the algorithm), outputs ` such that k ≤ ` ≤ (1 + ε) · k with
probability at least 1 − δ using O((

√
k/ε) · log(1/δ)) samples.

Next, we describe our algorithm that approximates the total weight of the items within a factor
of (1 + ε) using Õ(

√
n · poly(1/ε)) weighted samples. The main idea behind the algorithm is to

partition the items into buckets according to their weights such that the weights of the items
in a bucket are of the same magnitude; in particular, the ratio between the weights of any two
items in the same bucket is bounded. Any bucket with a significant total weight will be well
represented in the sample set. Then, we filter the samples from every bucket, so that we get a
uniform distribution over all items from the bucket. These uniform samples are then passed to the
algorithm from Lemma 7 to approximately count the items in each bucket. Finally, we can combine
all these counts to estimate the total weight.

Let β = ε/c for some constant c > 1. The number of items |B| in B is called the size of
B, and the sum of the weights of items in B is called weight of B in the following. We define
B0 = {i : wi ≤ β/n}. For t = dlog(1+β)(n/β)e and j = 1, . . . , t,

Bj =
{

i : wi ∈
(

β · (1 + β)j−1

n
,
β · (1 + β)j

n

]}
.

Algorithm Total Weight Approximation - Weighted Samples

1. Take m = Θ(
√

n · (log n+log(1/ε))/ε3) independent weighted samples from the items,
and let S denote the multiset of the selected items.

2. For j = 1, . . . , t = dlog(1+β)(n/β)e, let Sj = S ∩Bj .

3. Let H = {j : |Sj | > β
2 · m

t }.

4. For each j ∈ H and i ∈ Sj , remove i from Sj with probability 1− β·(1+β)j−1

n·wi
. Call the

resulting multiset S′
j .

5. Run the algorithm of Lemma 7 on each S′
j to get an estimate kj of |Bj | for j ∈ H.

6. Output 1
1−2β

∑
j∈H

β·(1+β)j ·kj

n .

The sample and runtime complexity of the algorithm is O(
√

n · (log n+ log(1/ε))/ε3). The next
lemma proves the correctness of the algorithm above.

10



Lemma 8 For every ε ≤ 1 and β ≤ ε/6, the above algorithm outputs a value W̃ such that, with
probability at least 3/4,

∑
i wi ≤ W̃ ≤ (1 + ε)

∑
i wi, given that

∑
i wi ≥ 1.

Proof. Fix j ∈ H. We first show that the items of S′
j are chosen uniformly and independently

at random from Bj . Fix i ∈ Bj . The probability that we choose item i at any step during the
initial sampling is wi/

∑
i wi. After filtering, item i will be transferred to S′

j with probability
β · (1 + β)j−1/(n · wi). Hence, the probability that item i is in S′

j is

wi∑
i wi

· β · (1 + β)j−1

n · wi
=

β · (1 + β)j−1

n ·
∑

i wi
,

which is identical for any i′ ∈ Bj . Hence, S′
j is a set of uniform and independent samples from Bj .

Next, we show that |S′
j | = Ω(

√
n/β) so that the Step (5) of the algorithm can be performed

with high enough confidence. Since we have that (i) |Sj | > β · m/(2 · t); (ii) the probability
that a particular occurrence of an item is removed from Sj is at most 1 − (1 + β)−1; and (iii)
t = O(log(n/β)/β), we have that

E[|S′
j |] ≥

β ·m
2 · t

· 1
1 + β

= Ω(
√

n/β).

Hence, using Chernoff bounds, we can show that |S′
j | = Ω(

√
n/β) with probability at least 1−1/12t,

and by union bound, |S′
j | = Ω(

√
n/β) for all j ∈ H with probability at least 11/12. Given that

|S′
j | = Ω(

√
n/β), the algorithm from Lemma 7 will return kj such that

|Bj | ≤ kj ≤ (1 + β) · |Bj |, (1)

for all j ∈ H with probability at least 11/12.
Note that

∑
i∈B0

wi ≤ β. For j 6∈ H, |Sj | ≤ (β · m)/(2 · t). Hence, by Chernoff bounds, we can
show that with probability at least 1 − 1/12t,∑

i∈Bj

wi ≤
β

t
·
∑

i

wi.

Therefore, with probability at least 11/12,∑
j 6∈H

∑
i∈Bj

wi ≤ β + β ·
∑

i

wi, (2)

where the leading term β appears as an upper bound on the weight of B0.
Now, assuming Eq. (1) and Eq. (2) hold, we are ready to show that the output of the algorithm

is a good approximation to the total weight. Since∑
i

wi =
∑
j∈H

∑
i∈Bj

wi +
∑
j 6∈H

∑
i∈Bj

wi ≤
∑
j∈H

∑
i∈Bj

wi + (β + β
∑

i

wi)

and
∑

i wi ≥ 1, it follows that ∑
j∈H

∑
i∈Bj

wi ≥ (1 − 2β) ·
∑

i

wi. (3)
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Using Eq. (1), we can show that

∑
j∈H

∑
i∈Bj

wi ≤
∑
j∈H

∑
i∈Bj

β · (1 + β)j

n
≤

∑
j∈H

β · (1 + β)j · |Bj |
n

≤
∑
j∈H

β · (1 + β)j · kj

n
.

Combining this with Eq. (3), we see that the output of the algorithm is at least
∑

i wi. In the other
direction, again using Eq. (1), we have that

1
1 − 2β

∑
j∈H

β · (1 + β)j · kj

n
≤ (1 + β)2

1 − 2β

∑
j∈H

β · (1 + β)j−1 · |Bj |
n

≤ (1 + β)2

1 − 2β

∑
j∈H

∑
i∈Bj

wi ≤ (1 + 6β) ·
∑

i

wi

≤ (1 + ε) ·
∑

i

wi,

where the last two inequalities follow from β ≤ ε/6 ≤ 1/6. The probability that either Eq. (1) or
Eq. (2) does not hold is at most 1/4. Hence, the lemma follows. �

Using Observation 1, we see that the algorithm above has an optimal sample complexity up to
polylogarithmic factors in terms of the dependence on n. The algorithm is given access only to
weighted samples from the input items. One immediate question we can ask is, what if the algorithm
had access to both uniform and weighted samples. The Ω(

√
n) lower bound for weighted-sampling

algorithm arises from distinguishing an instance with n items of weight 1 from an instance of
n/2 items with weight 1 and n/2 items of weight close to 0. The uniform sampling would easily
distinguish these two instances. The following observation states a lower bound for algorithms that
are allowed to use both weighted and uniform sampling.

Observation 2 If the algorithm has access to both uniform and weighted samples, Ω(n1/3) samples
are required to estimate the total weight of n items up to a constant factor.

Proof. Consider the following two instances of the problem: (1) n2/3 items of weight 1, n − n2/3

items of weight almost 0; and (2) 2n2/3 items of weight 1, n − 2n2/3 items of weight almost 0.
After taking only o(n1/3) samples from either instance, with some constant probability, none of the
uniform samples hits an item of weight 1, and none of the samples (weighted or uniform) hits an
item that was sampled before (this holds by the Birthday Problem). Hence, the samples from both
cases are identically distributed, and the instances are indistinguishable with only o(n1/3) samples.

�

Next, we show how to extend the algorithm above to construct an algorithm that has access
to both weighted and uniform samples and has a smaller sample complexity. Note that uniform
sampling can be used to estimate the bucket sizes, as long as the bucket size is large enough; that
is, O(n/k) uniform samples are enough to obtain a reliable estimate for a bucket with at least k
items. We also know that O(

√
k) weighted samples yield a good estimate as long as the weight of
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the bucket is large enough. In the following, we will construct an algorithm that uses the tradeoff
between these two approaches. We will use the counting algorithm (from Lemma 7) only when we
have to count O(n2/3) items—thus, we will need O(n1/3) weighted samples. Otherwise, items in a
bucket with more than Ω(n2/3) items will be counted using uniform samples.

Algorithm Total Weight Approximation - Uniform and Weighted Samples

1. Take m1 = Θ(n1/3 · (log log n + log(1/ε))/ε2) independent uniform samples from the
items, and let R denote the multiset of the selected items.

2. For j = 1, . . . , t = dlog(1+β)(n/β)e, let Rj = R∩Bj . Let L = {j : |Rj | > 1
4 ·m1 ·n−1/3}.

3. For j ∈ L, let kj = (1 + β/2) · |Rj | · n/m1.

4. Take m2 = Θ(n1/3 · (log n + log(1/ε))/ε3) independent weighted samples from the
items, and let S denote the multiset of the selected items.

5. For j = 1, . . . , t = dlog(1+β)(n/β)e, let Sj = S ∩Bj . Let H = {j : |Sj | > β
2 · m2

t } \ L.

6. For each j ∈ H and i ∈ Sj , remove i from Sj with probability 1− β·(1+β)j−1

n·wi
. Call the

resulting multiset S′
j .

7. Run the algorithm of Lemma 7 on each S′
j to get an estimate kj of |Bj | for j ∈ H.

8. Output 1
1−2β

∑
j∈L∪H

β·(1+β)j ·kj

n .

The sample and runtime complexity of the algorithm is O(n1/3 · (log n+log(1/ε))/ε3). The next
lemma proves the correctness of the algorithm.

Lemma 9 For every ε ≤ 1 and β ≤ ε/6, the above algorithm outputs a value W̃ such that, with
probability at least 3/4,

∑
i wi ≤ W̃ ≤ (1 + ε)

∑
i wi, given that

∑
i wi ≥ 1.

Proof. Fix j and suppose |Bj | ≥ n2/3/4. Then, E[|Rj |] = (|Bj |/n)·m1 ≥ m1 ·n−1/3/4. By Chernoff
bounds and log t = O(log log n + log(1/β)), we have that with probability at least 1 − 1/16t,

(1 − β/4) · |Bj | ≤ |Rj | ·
n

m1
≤ (1 + β/4) · |Bj |.

Therefore, we have j ∈ L for any j with |Bj | ≥ n2/3/2, and for any j ∈ L we have |Bj | ≥ n2/3/5.
Finally, we conclude that with probability at least 15/16, for all j ∈ L,

|Bj | ≤ kj ≤ (1 + β) · |Bj |. (4)

The rest of the proof is analogous to the proof of Lemma 8. Using the fact that for j ∈ H,
|Bj | ≤ n2/3, we can show that, with probability of at least 14/16, m2 weighted samples are enough
to guarantee that

|Bj | ≤ kj ≤ (1 + β) · |Bj |, (5)

for all j ∈ H. Similarly, with probability at least 15/16,∑
j 6∈L∪H

∑
i∈Bj

wi ≤ β ·
∑

i

wi. (6)
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Given that Eq. (4), (5), and (6) hold, it follows that∑
j∈L∪H

∑
i∈Bj

wi ≥ (1 − 2β) ·
∑

i

wi. (7)

Once again, analogous to the earlier proof, we can conclude that∑
j∈L∪H

∑
i∈Bj

wi ≤
∑

j∈L∪H

β · (1 + β)j · kj

n

and
1

1 − 2β

∑
j∈L∪H

β · (1 + β)j · kj

n
≤ (1 + ε)

∑
i

wi.

The error probability is bounded by 1/4. �

5 Conclusions

A natural question to ask is what other combinatorial optimisation problems yield themselves to
sublinear-time algorithms? And, perhaps, what modes of access to the input is required to solve
each problem, if at all?

One problem to consider is the vector packing problem, a generalisation of the bin packing. The
input to a vector packing problem is a set of n vectors of d dimensions with values in (0, 1]. Each
dimension describes a bin packing problem that has to be solved with all the other dimensions in
parallel; that is, find an assignment of vectors to a minimum number of bins such that in each bin
and for each dimension, the sum of vector entries along that dimension is at most 1. Given that
we can sample items (i.e., vectors) weighted proportionally to the their L∞ norms, we can get a
d(1 + ε)-approximation to the vector packing problem. The details of this result again follows [11]
and is relatively straightforward.

Another problem with similar flavour is the minimum makespan scheduling problem, defined
as follows: given processing times p1, p2, . . . , pn for n jobs and an integer m, find an assignment
of the jobs to m identical machines so that the completion time (makespan) is minimised. The
close connection between the makespan scheduling and bin packing problem is clear. Namely, the
makespan scheduling problem can be viewed as finding the minimum t such that the n input jobs
can be packed in m bins of size t each.

For a given makespan scheduling instance, two critical quantities are the average load L̄ of a
machine; that is, L̄

def=
∑

i pi/m, and the maximum processing time q
def= maxi pi. It is clear that

both q and L̄ are lower bounds for the minimum makespan. Moreover, q + L̄ is an upper bound
on the minimum makespan and it also is a 2-approximation. We can easily adjust our weighted
samples algorithm to determine whether either q or L̄ dominates the other, and then output an
approximation to the cost of an optimal solution if that is the case. Otherwise, we can make the
following observation: any job i such that pi > β · L̄ for some parameter β is observed in a large
enough sample set of size independent of n, with high probability. We could now try to estimate
the makespan resulting from all smalls jobs with pi ≤ β · L̄, and then to estimate the time it takes
to schedule remaining jobs all of which have been observed in our sample and have a processing
time pi with β · L̄ ≤ pi ≤ β−1 · L̄. This latter problem is seemingly hard to solve even in linear time
in m.
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