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Parametric modelling of thresholds across scales in wavelet
regression

Anestis Antoniadis* Piotr Fryzlewicz!

May 9, 2005

Abstract

We propose a parametric wavelet thresholding procedure for estimation in the “func-
tion plus independent, identically distributed Gaussian noise” model. To reflect the
decreasing sparsity of wavelet coefficients from finer to coarser scales, our thresholds
also decrease. They retain the noise-free reconstruction property while being lower
than the universal threshold, and are jointly parameterized by a single scalar param-
eter. We show that our estimator achieves near-optimal risk rates for the usual range
of Besov spaces. We propose a cross-validation technique for choosing the parameter
of our procedure. A simulation study demonstrates a very good performance of our
estimator compared to other state-of-the-art techniques. We discuss an extension to
non-Gaussian noise.

Keywords: Asymptotic rates, Besov spaces, noise-free reconstruction, thresholding, wavelet decom-
position.

1 Introduction

We are studying the classical nonparametric regression problem of recovering the values of
an unknown function f : [0,1] — R from noisy observations on an equidistant grid:

yZ:f(z/n)+€Za Z:177n22J7 (1)

where &; are independent and distributed as N(0,02). We are concerned with estimators
f based on wavelets: for an overview of wavelet methods in statistics, see e.g. Vidakovic
(1999). Given an orthonormal Discrete Wavelet Transform (DWT) W : R" — R", denote
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the vector of noisy wavelet coefficients by ¥, = Wy, the vector of noise-free wavelet
coefficients by d; = W f, the vector of estimated wavelet coefficients by ch,k =W f , and
the vector of “wavelet noise” coefficients by €;, = We, where j = 0 (j = J — 1) is the
coarsest (finest) detail scale. At any given scale j, the detail coefficients are indexed by
k=1,...,2/. The only smooth coefficient is indexed by (j,k) = (—1,1). By the linearity
of the wavelet transform W, in the wavelet domain (1) becomes

Yik = djk + ik, (2)

where, due to the orthonormality of W, the g;;’s are again independent N(0,0%). In
function estimation via wavelets, each y;; is used to obtain an estimate dj i of dJ k- The
estimate f is then obtained upon applying the inverse wavelet transform W~ to dj k-

For many signals, the representation (2) is sparse, i.e. only a few true coefficients d;
are significantly different from zero. Motivated by this, Donoho and Johnstone (1994)
proposed thresholding as a way of estimating d; ; from y; ;. Thresholding annihilates those
empirical coefficients 1, which fall below a certain threshold ¢, and, provided that ¢ is
chosen “correctly”, is an extremely effective denoising technique despite its simplicity.

For the universal threshold ¢ = o(2log n)'/? (Donoho and Johnstone (1994)), the following
noise-free reconstruction property holds: when the true signal f is constant, then, with
high probability, the estimate f is also constant and equal to the empirical mean of {y;}7 ;.
This is a desirable property, for example, in wavelet-based functional analysis of variance
tests (Abramovich et al. (2004)). It ensures that the reconstruction is visually appealing as,
asymptotically, it contains no noise. The universal threshold is asymptotically the lowest
scale-independent threshold which satisfies the noise-free reconstruction property, but it is
still “too high” in the sense that its application often leads to oversmoothing.

Motivated by the often observed decreasing sparsity of wavelet coefficients from finer to
coarser scales, some authors have proposed scale-dependent thresholds ¢; which often achieve
better mean-square performance than scale-independent thresholds ¢, see e.g. Johnstone
and Silverman (2005). In this paper, we combine these two important issues: the noise-free
reconstruction property, and scale-dependent thresholding. We investigate whether it is
possible to devise a scale-dependent thresholding scheme ¢; which performs better than the
universal threshold in the mean-square sense, but still retains the noise-free reconstruction
property. Moreover, we are particularly interested in the case where we can impose some
parametric dependence between the threshold values {t;}. . 0, i.e. assume t; = tg(j), where
tp is a family of functions parameterized by a single scalar parameter §. The rationale here
is that by choosing ¢; “jointly”, and not separately for each scale, we can potentially obtain
a stable selection procedure even for coarser scales where only a few wavelet coefficients are
available. The function £y will often be referred to as a “threshold profile”.

The paper is organised as follows: in Section 2, we consider a general noise-free recon-
struction property of scale-dependent thresholding, leading to a specific family of threshold
profiles. In Section 3, we demonstrate the mean-square near-optimality of the new thresh-
olding procedure over a range of Besov spaces. In Section 4, we introduce a data-driven
technique for selecting the parameter 6 of our procedure. In Section 5, the performance of



the new method is investigated in a simulation study. In Section 6, we show how to extend
the proposed methodology to non-Gaussian noise distributions.

2 A generic noise-free reconstruction property

The estimator considered in this paper is the hard thresholding estimator

djk(t;) = ik I{|yjul >t} (3)

for j=0,...,J —1and k =1,...,27. However, results analogous to those obtained in this
paper can also be derived for the soft thresholding case. We skip this case for simplicity, and
due to the inferior practical performance of soft thresholding estimators, see e.g. Antoniadis
et al. (2001). We leave the smooth coefficient unchanged: c2_171 = y_1,1. For notational
simplicity, we assume ¢ = 1 throughout the paper. In practice, the parameter ¢ is often
estimated from the data via the Median Absolute Deviation (MAD) estimator on the finest
resolution level J — 1.

The normality, independence and identical distribution of the “wavelet noise” coefficients
€jk are the key ingredients of the denoising-via-thresholding theory due to Donoho and
Johnstone (1994). In particular, the popular universal thresholding procedure is based on
the following relation for independent, identically distributed standard normal variables
Ej k-

P {jzo,...,Jm??lc(:1,...,2j €3] > (21og n)1/2} 70 e @

Using (4), it can be shown that applying the scale-independent threshold t; = ¢ = (21og n)1/?

in (3) leads to the noise-free reconstruction property: if f is a constant signal, then, with
high probability, f is also constant and equal to the empirical mean of {y;}? ;. It can also
be demonstrated that the choice ¢t = (2log n)/? yields near-optimal Mean-Square Error
(MSE) rates over a range of signal smoothness classes, and produces visually appealing
reconstructions even for relatively small sample sizes n. However, it is well known that
the universal threshold oversmooths: for non-zero signals f, too much signal gets killed
in the process of thresholding. There arises a need for lower thresholds; however, replac-
ing t; = t = (2log n)'/? in (3) with t; = t = (alog n)'/? for a < 2 ruins the noise-free
reconstruction property as

pr{ max ejkl > (alog n)1/2} 40 asn— oo
§=0yeyd—13k=1,...,2]

if @ < 2. Thus, the only way of obtaining thresholds which are lower than the universal
threshold ¢ = (2log n)l/ 2. but, possibly, still preserve the noise-free reconstruction property,
is to resort to scale-dependent thresholds ;.

As mentioned in Section 1, one other motivation for using scale-dependent thresholds ¢; is
the fact that for many signals, the coarser the scale, the larger the proportion of d; ;’s which
significantly differ from zero. By estimating those d;;’s as zero, we would unnecessarily kill



significant information, and to prevent this, the use of lower threshold should be considered
at coarses scales. Indeed, the fact that the sparsity often decreases from finer to coarser
scales suggests using thresholding profiles which also decrease.

In what follows, we derive a sufficient condition for scale-dependent thresholds which (a)
are lower than the universal threshold and decrease from finer to coarser scales, and (b)
preserve the noise-free reconstruction property. Let y;; denote wavelet coefficients of a
“pure Gaussian noise” signal and assume that possibly different thresholds ¢; are applied
at each scale j = 0,...,J — 1. It can easily be shown that the noise-free reconstruction
property occurs if and only if

pr (‘yJ71,1| >t7 1V...V |yJ_1,2J—1| >t;j 1 V...V |y0’1| > to) —0 as n — oo.
Denoting the pdf (cdf) of a standard normal by ¢ (®), we obtain

pr (|yj_1,1| >t;1V...V |y‘],1,2J71| >ty 1V...V |yo’1| > to) <

J—1 J—1
D pr(lyiul > 1) =D 272{1 — B(t;)} <2 27(t))/t;.
Ji.k j=0 j=0

3

Thus, a sufficient condition for the “noise-free reconstruction” property is

J—-1
Jim 2% $(t;)2’ /t; = 0. (5)
p=

We assume that our thresholds are of the form ¢; = (2log n)'/?t4(j/(J — 1)), where t4(2) :
[0,1] — [4,1] is a family of continuous, nondecreasing functions with § > 0. Note that
setting ty(z) = 1 yields the classical universal threshold. Continuing from (5), we have

1 Il o—Jt3(75y) +i 1 -1

J-1 ;
3 $(t)2" <
P (4 J log 2)1/2 =t (JJ_'I) = §(4wJ log 2)1/2 ‘

o Tt (L) + 5
=0

As J — oo, it suffices to investigate when the sum is bounded in J. The sum behaves like
1
J / 27 (e 13(@) gy, (6)
0

If t2(z) < z on any set of non-zero measure in [0,1], then (6) is not bounded. Of course,
we cannot speak here of the “smallest permitted” t%(x), as any such that tg(ac) > ¢ and
t3(z) > r a.e. will do, but for simplicity we single out “almost the smallest permitted” t2(z)
of the form t3(z) = 6+ (1—6)z, which is a natural lower boundary for the family of functions
to(z) = {6 + (1 — 0)z}'/2, parameterized by a one-dimensional parameter 6 € [4,1]. The
expression (6) is bounded for any ty(x) of this specific form and thus the threshold profile

J—-1

preserves the noise-free reconstruction property for any ¢ € [d, 1]. Motivated by this result,
we propose to estimate d;j by the hard thresholding estimator (3) with ¢; as in (7). Due
to the particular form of this threshold profile, we label the new estimator “SQRT”.

N1/
tj = (2log n)1/2{¢9+(1—9)L}1 i (7)
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3 Risk properties of the SQRT estimator

In this section, we consider the MSE properties of the SQRT estimator. We assume that
the unknown signal f belongs to a Besov ball of radius C' > 0 on [0, 1], By ,(C), where v > 0
and 0 < p,q < oo. Roughly speaking, the not necessarily integer parameter v indicates the
number of derivatives of f, where their existence is required in the LP-sense, and thus p
can be viewed as the measure of inhomogeneity of f. The additional parameter g provides
a further finer gradation. Besov classes include the traditional Holder and Sobolev classes
of smooth functions (p = ¢ = 0o and p = ¢ = 2, respectively) and various classes of spa-
tially inhomogeneous functions like the class of functions of bounded variation, sandwiched
between Bioo and Bll,l. Also note that if the father and mother wavelets have regularity
r > 0, then the corresponding wavelet basis is an unconditional basis for the Besov spaces
By ,([0,1]) for 0 < rv <7, 0 < p,q < oc. This allows one to characterise Besov balls in
terms of the wavelet coefficients d;,k = d;p /n1/? of the function f in the following way.
Define the Besov sequence ball of radius C as

o0
) = Y PG <O
§=0

where s = v +1/2 — 1/p and ||d|lp = Zijzl |d} |P. The membership of f in By (C) can
be thought of as being equivalent to the membership of {d’; ; }; in b ;(C). The reader is
referred to Meyer (1992) for rigorous definitions and a detailed study of Besov spaces.

The following theorem establishes the MSE near-optimality of our SQRT estimator over a
wide range of Besov sequence spaces.

Theorem 3.1 Given the regression problem (1), letf be the SQRT estimator of f, con-
structed by applying the inverse DWT to the sequence of estimated wavelet coefficients
cij,k(tj) with thresholds t; defined by (7), for any fized 6 € [,1]. Denote J;k(t) = cij,k(t)/nlﬂ.
If0 < p,g< oo and v >1/p, then

2 1 « . 2
sip MSE(f,f) = s —S E{f(i/n) - f(i/n)}
;€65 4(C) & eby (C) VT
o2 J-1 27 X 9 .
= —+4 sup Z ZE {d;-7k(tj) - ;k} < Con~ 2+ log n,
N d ey o(C) 520 k=1

where Cy 1is independent of n.

The rate O(n_%) is the best possible MSE rate for Besov spaces, and SQRT achieves it
up to the logarithmic term: hence the name “near-optimality”. The above rate is identical
to that achieved by the classical universal thresholding estimator. The proof of Theorem
3.1 appears in the Appendix.



4 Data-driven choice of 6

Even though the universal threshold, being a special case of SQRT with 8 = 1, is known
to oversmooth, it is not true that “for any signal, the lower the value of @, the better the
reconstruction”. As a counterexample, consider the zero signal, where the MSE of the
SQRT decreases with 6 increasing: clearly, for the zero signal, the higher the thresholds,
the better the reconstruction. Thus, there arises a need for a data-driven choice of 6.

In this section, we describe a computational procedure, based on the leave-half-out cross-
validation method of Nason (1996), for choosing a suitable value of 8 from the data. Given
the value 6; from a pre-selected grid {6;}%_,, we split the data {y;}* ; into the odd subsam-

ple {ygi,l}?:/ ? and the even subsample {ygz}?:/ ? We then run the SQRT algorithm with
parameter #; on the two subsamples to obtain the odd and even estimates, respectively.
Finally, we measure the distance between the odd estimate and the even subsample, and
add it to the distance between the even estimate and the odd subsample. The selected value
of 6; is the one which minimises the sum of these two distances.

The version of our SQRT algorithm which includes the above cross-validatory procedure
for choosing @ is labelled SQRT-CV. The SQRT-CV algorithm is of computational order
O(Ln) and is fully automatic, i.e. no parameters need to be supplied by the user.

5 Empirical performance of SQRT and SQRT-CV

In this section, we compare the finite-sample performance of the SQRT and SQRT-CV
estimators to a selection of other wavelet denoising methods. Our test functions are Donoho
and Johnstone’s bumps, doppler, heavisine and blocks, as well as the zero signal, sampled at
1024 equispaced points. The standard deviation of the noise is always 1 but it is unknown to
the estimation procedures and always estimated using MAD on the finest detail level. The
respective root signal-to-noise ratios are: 1.33, 1.45, 2.97, 1.91, 0. Note that these signal-to-
noise ratios are relatively low, i.e. the observed signals have a considerably noisy appearance.
The respective analysing wavelets are: Daubechies’ Extremal Phase (DEP) 2, Daubechies’
Least Asymmetric (DLA) 9, DLA 8, DEP 1, and DLA 4. Periodic boundary conditions are
assumed. Due to their superior performance, we only compare the Translation-Invariant
(TTI; Nason and Silverman (1995)) versions of the estimators. The competitors are:

UNIV-TT: TT universal hard thresholding with all levels thresholded. In a recent study
assessing the empirical performance of various wavelet-based denosing methods (An-
toniadis et al. (2001)), UNIV-TI consistently performed the best, or nearly the best,
among various modern wavelet smoothing techniques.

EB-TI: the TT version of the empirical Bayes (eBayes) procedure of Johnstone and Silver-
man (2005). In the simulation study reported therein, eBayes is shown to outperform
several state-of-the-art denoising techniques.



UNIV-TI | EB-TI | SQRT-TT | SQRT-TI-CV

bumps 154 | 134 [126]

doppler 62 71
heavisine 45
blocks 80 87
Z€TO 78 72

Table 1: ISE averaged over 100 sample paths (x1000 (except zero: x10000) and rounded)
for the 4 competing methods. Double box indicates best, and box — 2nd best result. See
the discussion in Section 5.

SQRT-TTI: the TT version of our SQRT estimator with hard thresholding and the profile
defined by #g.01(z) = (0.01 + 0.99z)'/2.

SQRT-CV-TI: the TI version of our SQRT estimator with hard thresholding where @ is
selected using the cross-validatory procedure of Section 4, over the grid §; = 1/10 for
[=2,...,10 and 6; = 0.01.

The ISE for each method, averaged over 100 sample paths, is shown in Table 1. SQRT-
CV-TI is clearly the preferred option here: except the zero signal where it is, naturally
enough, slightly outperformed by UNIV-TI, it outperforms EB-TT by 0-18%, and UNIV-TT
by 6-18%. Given the quality of the competitors, this is indeed a significant improvement.

The computational complexity of the SQRT-TI-CV algorithm is O(n(L + log n)), where
L is the size of the grid {el}zL:y In practice, the software is fast, which is partly due
to the fact that the threshold choice is straightforward and requires no computationally
intensive procedures. The SQRT(-TI)(-CV) algorithm is easy to code in any package which
implements the DWT.

6 Other noise distributions

In this section, we demonstrate how the proposed estimation method can be extended to
non-Gaussian noise distributions. Our setup is

where &; are independent and identically distributed and follow a known distribution, not
necessarily Gaussian, with E(&;) = 0. This is an additive setup where the noise &; does not
depend on the underlying signal f. In the wavelet domain, (8) becomes ;1 = dj i + €,
where the notation is analogous to the Gaussian case. For a fixed j, each component
of the vector {&;;}2._, is identically distributed, and its distribution can be either derived
analytically, or easily approximated numerically via Monte Carlo simulations, by performing
the DWT of simulated vectors {£;}? ;. Thus, in the remaining part of this section we assume



that the distribution of €; ; is known for each j. The noise-free reconstruction property arises
if and only if

pl‘(|éj_1,1| > t~J_1 V...V |<§J_1’2J—1| > t~J_1 V...V |€0,1| > 7?0) —0
as n — co. But we have

pr(l€s—1.1] > t7 1V...V |€J_1,2.]—1| >ty 1V...V |€0,1] > 1?0)
J-1
<Y opr(lgiel > E) = Ppr(gixl > ).
gk J=0

To ensure that our estimator has similar visual properties as in the Gaussian case, i.e. that
a similar small proportion of the noise survives the thresholding, a natural requirement is
that the individual exceedance probabilities pr(|é; x| > ;) should be the same as in the
Gaussian case. In other words, we find fj by numerically solving the equations

pr(|&ikl > 15) = pr(lejn] > t;) = 2{1 — ®(t;)}, j=0,...,J -1,

where ¢; are the SQRT thresholds of the form (7), suitable for Gaussian data. This indeed
guarantees that the noise-free reconstruction property holds as we have

J—1 J—1 J—1
> 2pr(lginl > 1) =2 2{1 - 3(t))} <2 24(t;)/1;,
§=0 j=0 j=0

and the latter quantity converges to zero by formula (5).

Mean-square risk analysis of wavelet thresholding estimators for non-Gaussian data is typi-
cally not straightforward, and, for the estimator proposed in this section, is beyond the scope
of this short communication. However, we note that it can be performed using techniques
as in Neumann and von Sachs (1995).
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A Proof of Theorem 3.1

The second equality is due to the orthonormality of the DWT. For n large enough such that
n? > 4, we apply the “oracle inequality” from Theorem 7 of Donoho and Johnstone (1994)
to obtain

J—1 27

ZZE{ JktJ d',k}QS

7=0 k=1



J—1 2 .
[24+ {0+ 1 —9)ﬁ}2jlog 2}

§=0 k=1 N

% [2 J{0+(1-0) 715 +1} +m1n{ ,n_l}] _

J-1

1< ; ) Ny
—JZ |:24+{9+(1—9)ﬁ}2j10g 2]2 J{6+(1-0) 7}

J-1 2

J . _
+> > [2 4+ {9+ (1 —G)ﬁ}lﬂog 2] min {(d;,)*,n "'} = T+ II.
7j=0 k=1

Note that I is at most of order

2.4+ 2Jlog 2 /J ga—J{0-+(1-0) 7
0

z_y 24+4+2Jlog 2__
2] J1d$§—2J

1:O(logn)’
n

which, incidentally, is of the same order as the corresponding quantity for the universal

threshold: i
244+2Jlog 2~ i_; JY log n
st o(2) o(s2)
j=0

We now focus on I1. Since 6 € [§,1] and j < J—1, note that I7 is less than the corresponding
quantity for the classical universal threshold, which is

J—1 2

(2.4 + log n) Z Z min {n !, ( ;,k)Q} : (9)

=0 k=1

Thus, instead of I1, we shall consider (9). As b ,(C) C by (C) for all g, we only have to
consider the case d’;; € by ,(C), so we can assume |[|d[|, < C277° for all j, where C is a
generic constant. The following argument was considered e.g. in Johnstone and Silverman
(1997). We need to consider the cases p < 2 and p > 2 separately. For p < 2, we first note
the simple inequality

min{la|*, b} = min{lal?, b’} min{|a*"?, 6P} < |a|*~? min{|a?, |bP}

= min{a* |a|*?[b["}.

Applying it with a =n~"/2 b= d;.,k, we bound the double sum in (9) as follows:

J-1 27 J-1 27
> > min{nh (&)%) < )Y min{nt|dy | w21
§=0 k=1 §=0 k=1
< Zmin{?jnfl,Cp27j5pnp/271}. (10)



Note that 2/n 1 < CP277PpP/2-1 if and only if j < J* := (2logy C' +J)/(2v +1). Observe
that asymptotically, we always have J* < J. Assuming that J* is an integer (it has no
impact on the rates), we split (10) into two parts

Jx—1 J-1
Z 2in =t 4 Z CP2~IPpp/271,
i=0 i=1

The first part is a partial sum of an increasing geometric series so, without going into
details, it is bounded from above by a multiple of n=127" = O(n~2/(»+1)). The second
part is a tail of decreasing geometric series so it is bounded from above by a multiple of
nP/2-12777sp — O(n~2/(2»+1))_ This proves the rate for p < 2.

For p > 2, first note that the Holder inequality gives ||d}||5 < 2j(1*2/p)||d;-||12,. With this in
mind, we bound the double sum in (9) as follows:

J—1 21 J—1 _
D> min{n~ (d),)*} < D min{2n7", ||d}|5}
=0 k=1 =0
J—-1 _ o
< ) min{2in7t, 0227 Wi 1720y, (11)
=0

As before, note that 2in~! < €22-2/52(1-2/P) if and only if j < J*. Again splitting the
sum in (11) into two, we obtain

Jx—1 J—1
Z 2n-1 4 Z C292i59i(1-2/p)
=0 j=ar

As we have already noted, the first part behaves like O(n=2*/(2»+1)). The second part is a
decreasing geometric series, so it is bounded from above by a multiple of 2/ (~2s+1-2/p) —
O(n~2/(»+1))_ This proves the desired rate for p > 2. O
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