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ABSTRACT

We consider the co-operative non-transferable utility ‘power game’ PW aris-
ing from a simple voting game W . A strategy is the formation of an alliance
in W , and the payoff of players is their Penrose voting power in the resulting
composite voting game. We study in detail the expediency and stability of
alliances when W is a simple majority or a unanimity voting game, as well as
pointing out a seemingly paradoxical phenomenon that can occur when W is
a super-majority game. We also discuss some cases (including a real-life his-
torical one) in which a dummy in W can become empowered by participating
in an expedient alliance.



Further Reflections
on the Expediency and Stability of Alliances

1 Introduction

The study of the formation and dissolution of alliances of voters aiming to
increase their voting power is relatively new. The present note is a sequel to
our earlier (2002) paper [6] on this subject. Since the latter’s publication, we
have obtained some new results which can be viewed also as a complement
to some of the results obtained by Gelman [7].

We report here our findings regarding the possibility of forming expedient
and stable alliances within an assembly of voters under various decision rules,
depending on the size of the assembly. We shall also show that sometimes an
alliance containing a dummy can be expedient – a fact which may explain a
real-life historical puzzle.

For the reader’s convenience, we repeat in the next section the relevant
definitions used in our earlier paper, which we shall be using in this paper as
well. In sections 3, 4 and 5 we report our new results. Section 6 concludes.

2 Preliminaries

We assume the reader is familiar with the definitions of simple voting game
(SVG) and weighted voting game (WVG) and with the basic definitions and
notation pertaining to them, as laid down in [4, Ch. 2]. In particular, we
shall use the square-bracket notation for WVGs (see [4, Def. 2.3.4]).1

As in [4, Def. 2.3.10], we shall denote by ‘Mn’ the canonical simple ma-
jority WVG with n voters. That is,

Mn :=
[

n+1
2

; 1, 1, . . . , 1︸ ︷︷ ︸
n times

]
. (1)

By ‘M∗
n’ we shall denote the dual of Mn; that is

M∗
n :=

[
n
2
; 1, 1, . . . , 1︸ ︷︷ ︸
n times

]
. (2)

1We use the term ‘game’ in this connection out of deference to common usage. But
although an SVG does have the formal structure of a simple co-operative game with
transferable utility, we do not treat it here as such but as a plain decision rule. For a fuller
discussion of this point, see [4, Comment 2.2.2].
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Note that if n is odd, Mn = M∗
n (Mn is self-dual). But if n is even Mn 6=

M∗
n, and the latter WVG is improper.
Further, as in [4, Def. 2.3.10], we shall denote by ‘Bn’ the canonical una-

nimity WVG with n voters. That is,

Bn := [n; 1, 1, . . . , 1︸ ︷︷ ︸
n times

]. (3)

The dual of Bn is
B∗n := [1; 1, 1, . . . , 1︸ ︷︷ ︸

n times

]. (4)

In what follows, the starting point is some given SVG W whose assembly (ie,
set of voters) is N . We shall denote by ‘ψ’ the Penrose measure of voting
power and refer to it simply as ‘power’, without further qualification. (For
its definition see [4, Def. 3.2.2], where it is denoted by ‘β′’ and referred to
as the ‘Bz [Banzhaf] measure of voting power’.) We denote by ‘ψa[W ]’ the
power of voter a in W .

By a well-known theorem (see [4, Thm. 3.3.14]), among all SVGs W
with n voters, the sum of the voters’ powers attains its maximum when
W ∼= Mn. If n is odd, this condition is also necessary for maximizing the
sum of the powers. If n is even, there are several isomorphism types of SVG
that maximize the sum; among them, those isomorphic to Mn have the
lowest number of winning coalitions, whereas those isomorphic to its dual,
M∗

n, have the highest.
Also, among all SVGs W with n voters, the sum of the voters’ powers

attains its minimum if W ∼= Bn or W ∼= B∗n. For n > 2, this condition is also
necessary (see [4, Thm. 3.3.11]).

We recall that ‘W|&S’ denotes the SVG that results from W when a coalition
S ⊆ N fuses and forms a bloc &S (see [4, Def. 2.3.23]). The assembly ofW|&S

is (N−S)∪{&S}. If W is a weighted voting game (WVG), then so is W|&S:
take the weight of &S to be the sum of the weights that the members of S
had in W , while the weights of all other voters as well as the quota are kept
the same as in W .

In [6, p. 303], an alliance is defined as a bloc &S together with an SVGWS

whose assembly is S, and which is referred to as the internal SVG, or decision
rule, of the alliance. We shall denote this alliance by (S;WS). Informally,
we think of the alliance as formed voluntarily by the members of S.

When the members of S ⊆ N form an alliance (S;WS), this gives rise
to a new composite SVG, which we denote by ‘W‖WS’. The assembly of
W‖WS is N , the same as that of W . The winning coalitions of W‖WS are
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all sets of the form X ∪ Y , with X ⊆ S and Y ⊆ N − S, satisfying at least
one of the following two conditions:

• Y is a winning coalition of W ;

• X is a winning coalition of WS and S ∪ Y is a winning coalition of W .

(For an equivalent definition of W‖WS, which shows it to be a special case
of the general operation of composition of SVGs, see [6, p. 310].)

Informally speaking, W‖WS works as follows. When a bill is proposed,
the members of S decide about it using WS, the agreed internal SVG of their
alliance. Then, when the bill is brought before the plenary, the assembly of
W , all the members of S vote as a bloc, in accordance with their internal
decision; so that now the final outcome is the same as it would have been in
W|&S with the bloc voter &S voting according to the internal decision.

From now on, we put:
s := |S|. (5)

Note that each member of S now has direct voting power in the SVG WS,
as well as indirect voting power in W‖WS, which s/he exercises via the bloc
&S. It is easy to prove:

For every a ∈ S, ψa[W‖WS] = ψa[WS] · ψ&S
[W|&S]. (6)

(See [6, Theorem 4.1]).
However, for voters b ∈ N −S, the equality ψb[W‖WS] = ψb[W|&S] does

not always hold; it does hold provided the number of winning coalitions of the
internal SVG WS is 2s−1, exactly half of the number of all coalitions. (For
explanation, see [6, p. 304].)

In what follows we take W to be exogenously imposed. Its voters are
allowed to form alliances but not to change W itself. We shall therefore rule
out alliances with S = N , because that would amount simply to all members
of the assembly agreeing to adopt a new decision rule instead of W .

Using the terminology introduced in [6, p. 303], we say that the alliance
(S;WS) is feasible if

ψa[W‖WS] ≥ ψa[W ] for all a ∈ S; (7)

and expedient if

ψa[W‖WS] > ψa[W ] for all a ∈ S. (8)

Moreover, we say that a bloc &S is feasible or expedient if there exists some
internal SVG WS such that the resulting alliance (S;WS) is feasible or ex-
pedient, respectively.

3



The idea behind these definitions is the following. We may regard a
voter’s power as a payoff – not in the original W , or indeed in any ‘voting
game’2 – but in a new power game PW induced by W . This PW is a genuine
co-operative game with non-transferable utility, in which the players are the
voters of W , and forming an alliance (in W) is a strategy that affects the
payoffs of all players (not only of members of the alliance).

Games of the form PW , induced in this way by some SVG, have a rather
intricate structure. As far as we know, they have not been investigated
in depth. In [6] we merely scratched the surface. Gelman [7] presents a few
additional results. In the present paper we add a few observations concerning
some games of this form.

In the sequel, we shall make use of the following simple result (see [6,
Thm. 4.2]).

2.1 Proposition A bloc made up of two voters is never expedient. It is
feasible iff originally the two voters have equal powers, or at least one of
them is a dummy. IIII

3 Simple and super majority

In this and the following section we shall consider cases where W is symmet-
ric. In this context, we confine our attention to alliances (S;WS) in which
all voters are equipotent, that is, have equal power. We shall say that the
alliance is optimal if its voters are equipotent and their power attains its
maximal value – which equals the power of a voter in Ms. Of course, if s is
odd then the alliance is optimal just in case WS

∼= Ms.
Gelman [7] considers a simple majority WVG, W ∼= Mn, and within it

alliances of m voters with internal decision rule of the form WS
∼= Mm. He is

particularly interested in the case where n as well as m and n
m

are large. He
concludes that when these numbers are sufficiently large, then although such
an alliance will be expedient, it will nevertheless be unstable because the
power of the voters left outside the alliance will be smaller than the voting
power of those inside it, so the former will try to form another alliance,
possibly with some of the members of the first alliance. But ‘if all voters
form coalitions,3 they become worse off than if they had stayed apart’ [7, p.
9]. This may imply, in turn, an incessant process of forming and disbanding
alliances. In fact, Gelman [7, p. 11] conjectures quite explicitly that ‘the
coalition-formation process is inherently unstable. . . . By this we mean that

2See footnote 1 above.
3By ‘coalition’ Gelman means here what we call an ‘alliance’.
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if voters are in an ongoing process of joining and leaving coalitions, with each
decision made myopically to immediately increase voting power, then there
is no stable equilibrium coalition structure.’

Although it is true that the formation of some alliances may result in
instability, stable alliances do exist even where W ∼= Mn and WS

∼= Mm.
As we shall see, this happens when m is just larger than n

2
– a case not

investigated by Gelman [7]. Consider first the following three instructive
examples.

3.1 Example Let W ∼= M5. Here the power of each voter is 3
8
. In view

of Prop. 2.1, we need only consider alliances (S;WS) of three or four voters.
Any such alliance will make the bloc &S a dictator in W|&S. Hence by (6)

for every a ∈ S, ψa[W‖WS] = ψa[WS].

For reasons of symmetry, we need consider only alliances whose voters are
equipotent. In fact, it is sufficient to consider optimal alliances, because in
this way the members of S maximize their (direct and indirect) power.

For s = 4, an optimal (S;WS) gives each a ∈ S ψa[W‖WS] = ψa[WS] = 3
8
.

So no alliance of four voters is expedient.4

But for s = 3, we have WS
∼= M3, which gives each a ∈ S ψa[W‖WS] =

ψa[WS] = 1
2
. Such an alliance is expedient, and, once formed, it is stable:

no member wishes to defect, and the two voters left out can do nothing to
improve their position.

3.2 Example Let W ∼= M9. Here the power of each voter is 35
128

. In view
of Prop. 2.1, we need only consider alliances (S;WS) with 3 ≤ s ≤ 8; and as
in the preceding example we may assume that WS is optimal.

An alliance with s = 8 is not expedient, as in this case ψa[W‖WS] =
ψa[WS] = 35

128
.

On the other hand, simple calculations show that alliances with s =
3, 4, 5, 6, 7 are expedient, giving each member of S indirect power 25

64
, 45

128
, 3

8
,

5
16

and 5
16

, respectively.
However, alliances with s = 3, 4, 6 and 7 are unstable. In the case of

s = 3 or 4, the voters excluded from the alliance, whose powers decrease as a
result of its formation,5 can retaliate by forming a counter-alliance, reducing

4Note that for all n the power of a voter in M2n is the same as in M2n+1.
5This can be seen without any detailed calculation: it follows from the power-

maximizing property of Mn. If W ∼= Mn and an expedient alliance is formed, then
by definition the powers of its members increase. Hence the total power of all voters ex-
cluded from the alliance must decrease, and by symmetry the power of each of them also
decreases.

5



the powers of the members of S and even turning them into dummies. In
the case of s = 6 or 7, five of the six or seven members will be tempted to
eject the remaining one or two, thereby increasing their (direct and indirect)
power from 5

16
to 3

8
.

If voters behave rationally, they will anticipate the adverse consequences
of forming alliances with s = 3, 4, 6 and 7, and hence such alliances will
not be formed, although they are expedient according to our definition (see
Section 2).6

But an alliance with s = 5 is stable. The four members left out of it
become dummies and can do nothing about it. Note that although three of
the five alliance members may be tempted to form an internal sub-alliance
(in order to raise their indirect power from 3

8
to 1

2
), they are in fact deterred

from doing so because they know that, in reaction, the two members of S left
out of the three-member cabal will surely dissolve the original five-member
alliance, and may even form a new (dictatorial) alliance with three of the
four members that were left out of S.

An interesting situation arises when W ∼= Mn with even n, and an alliance
that contains exactly half of the members.

3.3 Example Let W ∼= M8. Here the power of each voter is 35
128

. Now
consider an alliance (S;WS) with s = 4. As before, we may assume that the
alliance is optimal. Then its members’ direct power is 3

8
and their indirect

power is 45
128

. So this alliance is expedient.
However, the remaining four voters, whose power is much reduced, can

retaliate by forming their counter-alliance, (T ;WT ), where T = N −S. Now
the indirect power of members of S will depend on the choice of WT . This
indirect power will be greatest if the probability of the bloc &T voting ‘yes’
is greatest, because only if &T votes ‘yes’ will the vote of members of S make
any difference. But the probability of &T voting ‘yes’ will be greatest iff the
number of winning coalitions of WT is as high as possible – which is the case
precisely if WT

∼= M∗
4 (that is, two votes sufficient to approve a bill). In

this case, which is the best that members of S can hope for, their indirect
power will still be only 33

128
– less than their original power in W . As for

members of T : they too will have power 33
128

at most, depending on the rule
WS chosen by the first alliance. In any case, all voters are now worse off than
originally. This seems to give rise to a kind of prisoner’s dilemma:7 if one of

6The definition assumes that formation of the alliance is the only change that takes
place.

7Cf. Gelman’s [7] discussion of situations of this kind. As our analysis shows, the
analogy with a true prisoner’s dilemma is incomplete.
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the two alliances dissolves, its members will be in the worst possible position;
but if neither of them dissolves, all voters will still be worse off than in the
original W . So the alliances will not dissolve unless they can agree to do so
simultaneously. However, this apparent dilemma can be resolved in a more
radical way. Every member of each alliance will be tempted to defect and
join the opposite camp – thereby making the latter dictatorial, and reducing
the remaining members of the former to dummies. Thus alliances of size 4
are unstable, and if voters behave rationally they will anticipate this and will
not form such alliances.

The following theorem surveys in general the expediency and stability of
optimal alliances when W ∼= Mn.

3.4 Theorem Let W ∼= Mn, with n > 3. Consider optimal alliances
(S;WS) where S  N . We distinguish four cases, according to the residue
of n modulo 4.

Case 0: n = 4m. Then the alliance is expedient iff 3 ≤ s ≤ n − 1, and
expedient as well as stable iff s = 2m+ 1.

Case 1: n = 4m + 1. Then the alliance is expedient iff 3 ≤ s ≤ n − 2,
and expedient as well as stable iff s = 2m+ 1.

Case 2: n = 4m + 2. Then the alliance is expedient iff 3 ≤ s ≤ n − 1,
and expedient as well as stable iff s = 2m+ 2 or s = 2m+ 3.

Case 3: n = 4m + 3. Then the alliance is expedient iff 3 ≤ s ≤ n − 2,
and expedient as well as stable iff s = 2m+ 2 or s = 2m+ 3.

Proof The arguments used in the preceding examples can easily be extended
and seen to apply here. As far as the expediency claims are concerned, for
small values of n one can perform manually the simple, albeit somewhat
tedious, computation for each alliance of size s. For larger values of n, say
n ≥ 13, the calculation is still quite simple for extreme values of s (close to
3 or to n). For the general case, see Gelman [7, Subsection 3.3].8

An alternative way to prove the expediency claims is to use the so-called
Rae index ρ (where, for any SVG W , ρa[W ] is the probability that voter
a of W is successful; i.e., that the outcome of a division accords with a’s
vote). Since by Penrose’s identity ψa = 2ρa − 1 (see [4, Theorem 3.2.16]), it
is enough to show that, for the s and n specified by our theorem,

ρa[W‖WS] > ρa[W ] for all a ∈ S. (9)

8By the way, Gelman shows that as n increases, the alliance size that maximizes its
members’ indirect power asymptotically approaches a value of approximately 1.4

√
n.
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This inequality can be proved using the fact that ρa[WS] is sufficiently greater
than 1

2
.9

As for the stability claims, the following observations are in order.
In Case 0, if m > 1 an alliance of size 2m is unstable for the reason

illustrated for m = 2 by Example 3.3. The same kind of thing happens for
all m > 1.

Case 1 is unproblematic: here Examples 3.1 and 3.2 are entirely typical.
In Case 2, an alliance of size 2m+ 1 is expedient, but the internal power

of its members is less than twice their original power. The 2m+1 remaining
voters – whose power is reduced – can retaliate by forming a counter-alliance.
Now all voters’ indirect power is half of their internal power – which is less
than their original power – so the situation is unstable. This is similar to the
situation in Case 0 with alliances of size 2m, except that now, since 2m+ 1
is odd, each alliance of this size can only choose the (self-dual) majority rule
as its internal SVG.

In Case 2 and Case 3, an alliance of size 2m + 3 contains a ‘redundant’
member, because even an alliance of size 2m+2 is dictatorial. However, eject-
ing one of the 2m+ 3 members will not change the powers of the remaining
2m+ 2,10 so they have nothing to gain by this. IIII

We know that if W ∼= Mn and an expedient alliance is formed, then all the
voters excluded from the alliance lose power (see footnote 5). The following
example shows that this need not happen if W is a super-majority WVG:
somewhat surprisingly, formation of an alliance can be Pareto optimal!

3.5 Example Let W ∼= [4; 1, 1, 1, 1, 1]. Here the power of each voter is 1
4
,

so the total power is 5
4
.

Now suppose an alliance (S;WS) is formed, where s = 3 and WS
∼= M3.

This alliance is expedient, because the indirect power of each of its members
is 3

8
. However, the power of each of the two excluded voters is still 1

4
, so they

are not worse off than before. The total power is now 13
8
.

Moreover, this alliance is stable. On the one hand, no member of the
alliance would wish to defect because a defector would lose power (even if
the two members left behind were to maintain a – necessarily inexpedient
– two-member alliance!). On the other hand, members of the alliance have
no incentive to admit one of the two excluded voters, because this cannot
increase the powers of the three old members.

9Intuitvely speaking, this means that a’s vote has a sufficiently good chance of ‘carrying
along with it’ all the votes of the other s− 1 members of S. This boosts a’s probability of
belonging to the majority camp in W‖WS compared to that in W.

10See footnote 4.
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Nevertheless, it is worth noting that an optimal four-member alliance is
also expedient, as the power of each of its members is 3

8
– the same as in

the preceding case. Such an alliance is also clearly stable. Since the single
excluded voter is a dummy, the total power is 3

2
.

So if four of the assembly members are vindictive towards the fifth, they
will be inclined to form a four-member alliance; otherwise a three-member
alliance seems more likely to form. As we have seen, this will maximize the
total power, and is in fact Pareto optimal.

This somewhat counter-intuitive example shows that Gelman’s assertion [7,
p. 5] (clearly made with W ∼= Mn in mind) that ‘[f]orming coalitions11 is
beneficial to those who do it but is negative to ‘society’ as a whole, at least
in terms of average voting power’ does not hold in general.

4 Unanimity

In this section we shall assume W is an n-voter unanimity WVG: W ∼= Bn.
The power of each a ∈ N in W is

ψa[W ] =
1

2n−1
. (10)

We consider alliances (S;WS) where 2 < s < n; and, as before, for reasons
of symmetry we can confine our attention to cases where the members of S
are equipotent. We rule out the cases WS

∼= Bs and WS
∼= B∗s in which

WS itself is a unanimity WVG or its dual, as the alliance would then be
inexpedient.12

On the other hand, any other alliance in which the voters are equipotent
is expedient. To see this, let η[WS] be the Banzhaf score in WS of any a ∈ S
(that is, the number of winning coalitions in which a is critical). Then the
direct power of a is η[WS]/2s−1, and a’s indirect power is

ψa[W‖WS] =
η[WS]

2s−1
· 1

2n−s
=
η[WS]

2n−1
. (11)

As we have ruled out WS being a unanimity WVG or its dual, it is clear that
η[WS] > 1, so by (10) the alliance is expedient, as claimed.

11See footnote 3.
12In both cases the indirect power of a member of the alliance is the same as in W.

Moreover, forming an alliance with an internal unanimity rule is vacuous, as the composite
SVG W‖WS would be identical to the original W.
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However, voters excluded from the alliance gain even more power than
those inside it. To show this, let us denote by ‘ω[WS]’ the number of winning
coalitions in WS. Then it is easy to see that the power of each b ∈ N − S in
W‖WS is

ψb[W‖WS] =
ω[WS]

2s
· 1

2n−s−1
=
ω[WS]

2n−1
. (12)

Since WS is not a unanimity WVG, it is impossible for every a ∈ S to belong,
let alone be critical in, every winning coalition. So clearly ω[WS] > η[WS];
hence ψb[W‖WS] > ψa[W‖WS] for every b ∈ N −S and a ∈ S, as claimed.13

Thus, if considerations of envy were admitted, they would imply that no
single expedient alliance in W can be stable. In what follows, we shall ignore
envy.

From now on let us make the reasonable assumption that only optimal al-
liances are formed.

We can specify η[WS] precisely for optimal alliances, distinguishing two
cases, according as s is even or odd. As is well known,14

η[WS] =


1

2

(
2m

m

)
if s = 2m,(

2m

m

)
if s = 2m+ 1.

(13)

By the way, from (11) and (13) it is easy to see that whether s is even or
odd, the power of a member of an optimal alliance of size s is greater than
that of a member of any expedient alliance of size s − 1. Thus Gelman’s
assertion [7, p. 7] (clearly made with W ∼= Mn in mind) that ‘it is never
a good idea to have a coalition15 with an even number of members: if m is
even, it is always as good or better to be in a coalition of size m − 1’ does
not hold in general.

As for ω[WS], we can specify it precisely for odd s. For even s we can
specify the two extreme values: for WS

∼= Ms and WS
∼= M∗

s. It is easy to

13We have ruled out WS
∼= B∗s , as in this case the alliance, albeit feasible, is not expedi-

ent. If such an alliance were formed, then η[WS ] = 1 and ω[WS ] = 2s − 1. So by (11) the
alliance members gain no power, while by (12) those excluded from it do gain power. As
power is the (only) payoff in the power-game PW we are considering in this paper, there
is no reason – other than pure altruism – for forming such an alliance. This is why we
assume it will not form.

14See [4, Thm. 3.3.8].
15See footnote 3.
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see that

ω[WS] =


22m−1 − 1

2

(
2m

m

)
if s = 2m and WS

∼= Ms,

22m−1 +
1

2

(
2m

m

)
if s = 2m and WS

∼= M∗
s,

22m if s = 2m+ 1.

(14)

What happens if a member of an optimal alliance (S;WS) leaves it? Of
course, if the alliance were then to disband, all voters would lose power. But
we now make the reasonable assumption that if s > 3 the s − 1 remaining
members will re-form an optimal alliance. The possible exception is s = 3,
in which case the remaining two members cannot form an expedient alliance,
so they may not form one at all.

It is easy to see that if a member of an optimal alliance is expelled from
it, the remaining members will lose power. So we can rule out expulsion as
a source of instability. On the other hand, we saw that when an expedient
alliance (S;WS) is formed, the voters excluded from it gain more power than
those included in it. Would this tempt a member of an optimal alliance to
defect?

To see whether defection from (S;WS) is advantageous, let us first con-
sider the case where s is even, s = 2m, where m > 1. From (11) and (13)
it follows that before the defection the power of the prospective defector is(
2m
m

)
/2n. After defecting, the defector will be one of the voters excluded

from an optimal alliance of size 2m − 1, so by (12) and (14) her power will
be 22m−1/2n. It is easy to prove by induction on m that 22m−1 >

(
2m
m

)
for all

m > 1. So defection is indeed advantageous. It follows that optimal alliances
of even size are unstable, being vulnerable to defection.

Now let us turn to the somewhat more tricky case where s is odd, s =
2m + 1, where m ≥ 1. In this case the defector deserts 2m partners who
will form an optimal alliance, except perhaps in the special case m = 1. Let
us first assume that these 2m voters form an alliance with internal decision
rule isomorphic to M∗

2m. By (11) and (13), before defecting the power of
the prospective defector is

(
2m
m

)
/2n−1. By (12) and (14), his power after

defecting will be > 22m−1/2n−1. By induction on m it is easy to see that
22m−1 ≥

(
2m
m

)
for all m ≥ 1, so the defector will gain power, and the defection

is advantageous.
But a prospective defector cannot depend on this calculation, because the

2m deserted partners may not adopt a decision rule isomorphic to M∗
2m but

one with a smaller number of winning coalitions. The worst-case scenario for
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defection is that the rule they choose is isomorphic to to M2m.16 From (11),
(12), (13) and (14) it can be seen that in case they do so, the defector will
gain power if 22m−1 − 1

2

(
2m
m

)
>

(
2m
m

)
, or, tidying up:

22m > 3

(
2m

m

)
; (15)

and the defector will lose power if the opposite inequality holds.
It is easy to prove (15) by induction for all m ≥ 3. However, for m = 1

and m = 2 the opposite inequality holds. It follows that all alliances except
those of size 3 or 5 are unstable, as a member of such an alliance will be
better off defecting. Only alliances of size 3 and 5 can be stable, as defection
of a single member from them is ill-advised.

For brevity, we shall call an alliance of size 3 with rule ∼= M3 a trio, and
an alliance of size 5 with rule ∼= M5 a quintet. We shall call a voter who is
not a member of any alliance a singleton.

Once a trio or a quintet is formed, then from the viewpoint of the other
voters it behaves as a single voter. For example, if n > 3 and one trio is
formed, then from the viewpoint of the remaining n− 3 voters it looks as if
they are in a unanimity WVG with n− 2 voters.

If there are three singletons left, they may form a new trio. Similarly, five
singletons may form a new quintet. Also, two singletons may join a trio and
turn it into a quintet. Ultimately there will emerge a configuration in which
the original n voters form quintets, trios and singletons.17 We shall refer to
these as ‘5–3–1’ configurations.

Which 5–3–1 configurations are stable and therefore likely to form? Of
course, if n = 4 or n = 5, there is only one stable option: the formation of
one trio.

For n > 5 we must distinguish five cases, according to the residue of n
modulo 5.

Case 1: If n = 6, there are two Pareto optimal 5–3–1 configurations:
First, one quintet and one singleton. Each member of the quintet has

indirect power 3
16

and the singleton has power 1
2
.

Second, two trios, each of whose members has indirect power 1
4
.

16This may even be most likely, because, among all optimal alliances this is the only one
with a proper SVG – which has some advantages. If m = 1, the two deserted members
have no reason at all to form an alliance (see Thm. 2.1); and forming an alliance with
decision rule isomorphic to M2 is vacuous, because M2 = B2 (see footnote 12).

17We rule out the formation of ‘super-alliances’ one or more of whose members are
themselves a trio or quintet, because such a super-alliance would not be optimal as an
alliance in W.
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Any other 5–3–1 configuration is Pareto inferior to one of these two, but
neither of them is Pareto superior to the other. So we cannot say for certain
which of the two is more likely to form.

Similarly, for all n = 5m+ 1, where m ≥ 1: we can have m quintets and
a singleton; or m− 1 quintets and two trios.

Case 2: If n = 7, there are two Pareto optimal 5–3–1 configurations:
First, one quintet and two singletons. Each member of the quintet has

indirect power 3
32

and each singleton has power 1
4
.

Second, two trios and a singleton. Each member of a trio has indirect
power 1

8
and the singleton has power 1

4
.

Again, any other 5–3–1 configuration is Pareto inferior to one of these
two, but neither of them is Pareto superior to the other. So we cannot say
for certain which of the two is more likely to form.

Similarly, for all n = 5m+ 2, where m ≥ 1: we can have m quintets and
two singletons; or m− 1 quintets, two trios and a singleton.

Case 3: If n = 8, there is just one Pareto optimal 5–3–1 configuration:
a quintet and a trio. Each member of the former has indirect power 3

16
and

each member of the latter has 1
4
. This 5–3–1 configuration is Pareto superior

to any other, and is therefore the one likely to form.
Similarly, for all n = 5m+ 3, where m ≥ 1: we have m quintets and one

trio.
Case 4: If n = 9, there are two Pareto optimal 5–3–1 configurations:
First, one quintet, one trio and a singleton. Each member of the quintet

has indirect power 3
32

, each member of the trio has indirect power 1
8
, and the

singleton power 1
4
.

Second, three trios, each of whose members has indirect power 1
8
.

Again, any other 5–3–1 configuration is Pareto inferior to one of these
two, but neither of them is Pareto superior to the other. So we cannot say
for certain which of the two is more likely to form.

Similarly, for all n = 5m+ 4, where m ≥ 1: we can have m quintets, one
trio and one singleton; or m− 1 quintets and three trios.

Case 5: If n = 10, there is just one Pareto optimal 5–3–1 configuration:
two quintets, each of whose members has indirect power 3

16
. This 5–3–1

configuration is Pareto superior to any other, and is therefore the one likely
to form.

Similarly, for all n = 5m, where m > 1: we have m quintets.
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5 Alliances with a dummy

In this section we wish to explore the possible role of a dummy in the for-
mation of an alliance.

Somewhat surprisingly, a dummy can become empowered via a feasible
alliance, as the following example shows.

5.1 Example During the first period of the European Union (1958–73),
the so called ‘qualified majority’ (QM) decision rule prescribed for its six-
member Council of Ministers by the Treaty of Rome (1957) was a WVG that
assigned to France, Germany, Italy, Belgium, The Netherlands and Lux-
embourg weights 4, 4, 4, 2, 2 and 1, respectively; and the quota required for
passing resolutions on most issues was 12. In this WVG, which is isomorphic
to [12; 4, 4, 4, 2, 2, 1], the powers of the members were 5

16
, 5

16
, 5

16
, 3

16
, 3

16
and 0,

respectively.
Although the Treaty stipulated that this decision rule would only become

effective in 1966, and in practice it was rarely invoked from 1966 to 1973,
as decisions were normally made by consensus, the rule is quite puzzling.
What was the point of giving Luxembourg a useless weight of 1, and why did
Luxembourg agree to be a dummy? This puzzle has often been mentioned
in the literature on decision making in the EU.

Of course, it is possible that the original signatories of the Treaty of Rome,
including the government of Luxembourg, were simply unaware of the QM
anomaly. But there may be another explanation. As is well known, Belgium,
The Netherlands and Luxembourg had operated a Benelux Customs Union
since 1947 (replaced in 1966 by the Benelux Economic Union). It is quite
possible that the Benelux countries agreed informally to act as an alliance
within the EU. A reasonable internal decision rule could be ∼= [3; 2, 2, 1]
– which is in fact a simple majority rule. It is easy to verify that under
this alliance the indirect power of each of the three members would be 3

16
.

Thus the alliance, albeit inexpedient, is feasible – and it would empower
Luxembourg!18

Note that, somewhat surprisingly, a Benelux alliance would benefit the
three non-Benelux members: each would now have power 3

8
.

Is it also possible to form an expedient alliance with a dummy? Moreover,
is it possible to form such an alliance which will also increase the power of
all those excluded from the alliance? The answer to both these questions is
positive, as shown by the following two examples.

18We are indebted to Simon Hix for this explanation. We are also grateful to Frank
Steffen and Matthew Braham for independently raising with us the question as to whether
a dummy can be empowered via an alliance.
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5.2 Example Let W = [13; 5, 5, 3, 3, 3, 1]. Here the power of each of the
first two voters is 7

16
, that of each of the next three voters is 3

16
and the last

voter is a dummy.
Now suppose the last four voters form an alliance with internal decision

rule ∼= M4. Then the indirect power of each of these four is 9
32

. So the
alliance is expedient.

True, this alliance is not stable, for if the voter with weight 1 is ejected,
and the remaining three form an alliance with internal rule ∼= M3, then the
indirect power of each of these three will be 3

8
.19

5.3 Example Let W = [10; 2, 2, 2, 2, 2, 1]. Here each of the first five voters
has power 1

16
and the last voter is a dummy.

Now suppose the last five voters form an alliance with internal decision
rule ∼= M5. Then each of these five has indirect power 3

16
and the first voter,

excluded from the alliance, has power 1
2
. So the alliance is not only expedient,

but also beneficial to the voter excluded from it.
Note that in this case ejecting the voter with weight 1 from the alliance

will not benefit the remaining four: the best they can do is form an alliance
with internal rule isomorphic to M4 or M∗

4 – which will still give them
indirect power 3

16
.

However, neither of these two alliances is stable. In the case of the alliance
of size 5, which includes the [former] dummy, a voter with weight 2 will be
better off defecting. Following such defection, the remaining three voters
with weight 2 will be better off if they eject the dummy. In the case of the
alliance of four voters with weight 2, it will also be advantageous for any of
them to defect.

6 Discussion

The results obtained in this paper constitute a modest advance on the ground
covered by us in [6] and by Gelman [7].

The main result of Section 3, Thm. 3.4, is not too surprising. It confirms
– as well as making more precise – what is intuitively almost obvious: if
W ∼= Mn, then only [dictatorial] alliances whose size is just over n

2
can be

both expedient and stable. A smaller alliance is vulnerable to annihilating

19However, this alliance too is unstable: the two voters with weight 5 excluded from it
– whose loss of power would be substantial as a result of its formation – would be able to
tempt one of the three alliance members to join them in forming a 3-member dictatorial
alliance with an internal decision rule ∼= M3, thereby increasing their power to 1

2 . This
alliance would be stable.
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retaliation by those excluded from it, whereas a larger alliance is, in a sense,
too large for its own good. However, in the cases where n is even, and
particularly where it is divisible by 4, the problem of stability of an alliance
of size n

2
does require some careful scrutiny.

Example 3.5 illustrates a seemingly paradoxical phenomenon that can
occur in a super-majority WVG: a stable expedient alliance may also benefit
those excluded form it. This of course depends on the fact that power games
are not constant-sum games.

Section 4 dealing with the case W ∼= Bn, provides a more extreme il-
lustration of this phenomenon. But the main surprise in this section is the
exceptional behaviour of quintets and trios, and the unique stability of some
5–3–1 configurations. We think that these results could hardly have been
anticipated without detailed analysis.

Finally, in Section 5 we illustrate the seemingly paradoxical fact that
a feasible, and even expedient, alliance may empower a dummy while at
the same time benefiting the voters excluded from it. This is a possible
explanation for the acquiescence of Luxembourg in its dummy status under
the QM rule of the original 6-member EU Council of Ministers. Nevertheless
this paper should not be viewed as an attempt to provide an explanation of
actual alliance formation in terms of Penrose power. If this were the case,
then it would be important to compare this with explanations based on other
measures of power. Rather, our idea was to do a “what if” exercise: what
would happen if voters were to play a cooperative “power game”, which is
played by forming alliances and in which the resulting Penrose power of the
players-voters were regarded by them as the payoff (which, by the nature of
Penrose power must be a non-transferable “utility”). Of course, one could
similarly invent other games, based on some other payoff, which could well
be some other measure of voting power (e.g., the Shapley–Shubik [10] or
the Penrose–Banzhaf power index as modified by Owen [8] for voting games
“with a priori coalitions”), and which could well lead to different results than
we obtained.

Admittedly, the ground covered so far in the study of power games is
rather limited. In this paper we have confined ourselves entirely to WVGs
rather than dealing with SVGs that may not be weighted. Moreover, we have
concentrated for the most part on symmetric WVGs of the simplest kinds:
those isomorphic to Mn or Bn. A more general theory of power games PW
remains to be developed.

There is also need for studies of the extent to which considerations of a
priori voting power can explain the formation, dissolution and [in]stability
of real-life alliances, as well as defection of voters from these alliances. So
far – apart from a claim by Aumann [3], unsupported by any detailed data
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– there are only two proper studies of this kind known to us – one by Chua
and Felsenthal [2], and the other by Andjiga, Badirou, and Mbih [1]– both
of which are concerned with the formation of governmental alliances, i.e.,
ruling coalitions within legislatures, and both arrive at negative or sceptical
conclusions.20

Thus, for example, we re-analysed the 77 governmental alliances examined
by [2], and found that in 51 of these the largest party was a dictator, that in
additional 19 governmental alliances at least one member became a dummy
or lost some power by joining the alliance, and that only seven of these
alliances were either feasible or expedient in comparison to a situation where
no alliance was formed. These results clearly indicate that considerations of
feasibility and expediency (in the technical sense of the present paper) play
no significant role in the formation of governmental alliances.

However, in contrast to governmental alliances – which must form in
legislatures where no party controls an absolute majority of the votes – con-
siderations of feasibility and expediency in forming alliances may play a more
significant role in international organizations or corporate boards of directors,
where alliances may but need not form. To verify this one would need to con-
duct empirical research. But this will not be easy, because the formation of
an alliance in such bodies is often tacit and hence difficult to detect.

20Two additional studies of this kind known to us are those by Riker [9], and by Felsen-
thal and Machover [5], which aim to ascertain whether inter-party migrations of delegates
in the French National Assembly during the period 1953–54 can be explained by consid-
erations of voting power. However, both these studies seem to us inappropriate, as they
ignore in their calculations the existence of a (dictatorial) governmental alliance.
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