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Structural Properties of Network Revenue

Management models: an economic perspective

Alec Morton, London School of Economics and Political Science

April, 2006

Abstract

Many revenue management problems have a network aspect. In this

paper, we argue that a network can be thought of as a system of substi-

tutable and complementary products, and the value of a revenue manage-

ment model should be supermodular or submodular in the availability of

two resources as the resources are economic substitutes or complements.

We demonstrate that this is true in the case of a two-resource dynamic sto-

chastic revenue management model, and show how this applies for multi-

resource deterministic static revenue management models.

1 Introduction

Revenue management (RM) is a subject which has attracted increasing attention

from academics and business people over the last �fteen years or so. The central

RM problem arises when a seller faces a stream of requests for a �xed resource
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from a segmented customer base, and where these requests can be accepted or

rejected. The resource may be a network resource, for example, a network of

�ights.

A number of papers in the recent theoretic literature have focussed on ex-

ploring dynamic network models. While these models are intractable for prob-

lems of realistic size, it is hoped that by better understanding the behaviour

of these models, the research community will be able to design new and better

RM tools, using the coming technologies of dynamic stochastic optimization.

Such technologies often depend critically on structural properties of the model

in question. It is precisely such properties which we seek to elucidate in the

present paper.

Our key insight is that the relationship between the �ight legs in an airline

network will often be one of economic complementarity or substitutability. One

would therefore expect that the value of a dynamic stochastic model will be

either supermodular or submodular in the capacities of these two �ights. We

show that this is indeed so for the two leg-case. Although we do not have a

characterisation for the general n-leg dynamic stochastic case, we show that the

value of a deterministic static RM model on a single hub network is supermod-

ular in the capacity of unlike �ights, and submodular in the capacity of like

�ights. We also show that a plausible conjecture for a three leg network is false

in the deterministic case, and thus in the dynamic case also.
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2 Literature Review

The literature on RM has burgeoned over the last �fteen years. Accordingly,

we take as our starting point the special issue of Transportation Science of May,

1999. The reader interested in earlier literature is referred to the literature

review of McGill and van Ryzin [29] and to the omnibus model of Lautenbacher

and Stidham [27] (but also see Li and Oum [28]), in that special issue.

Recent papers include Secomandi et al. [31] and Boyd and Bilegan [3],

who give fascinating overviews of some of the current issues in practice. Also

worth mentioning in this connection is de Boer et al. [10], who provide an

insightful discussion on the characteristics of some mathematical programming-

based approaches to RM.

Other recent notable papers extend the classical single-leg dynamic model

by incorporating, for example, passenger diversion between fare classes [42], or

nonhomogeneous [41] or semi-Markov [4] stochastic processes. Related streams

of research have been Chatwin�s work on overbooking [5,6,7], the work of Feng

and collaborators [12,13,14,15,16] which deals predominantly with RM in retail,

and work of Kleywegt and Papastavrou [24,25], who study a generalisation of

the RM and other problems, dubbed �the dynamic and stochastic knapsack

problem�.

A number of papers consider dynamic network RM [19,35,38]. The main re-

sult from this literature is that dynamic network models converge to determin-

istic models under a �uid scaling regime. Cooper [9] gives a useful presentation

of the underlying convergence mechanism. Other authors [2,8] seek to develop
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algorithms for approximating the dynamic programming value function. Bert-

simas and Popescu [2] comment on the desirability, and apparent unavailability,

of monotonicity properties for this purpose.

The closest precursor of the present work is by You [40]. You identi�es that,

in the case of a two-leg �ight network, the value function exhibits a monotonicity

property which we shall call antidirectional supermodularity. Our contribution

may be seen as extending and drawing the mathematical and conceptual context

of You�s result.

Outside of RM, we have found some other literatures insightful.

� One of these is the literature on transition monotonicity in queuing sys-

tems [23,39,34,26]. While the application context is very di¤erent, the

structural properties under study are quite similar.

� Another literature explores the structural properties of (deterministic)

constrained optimization systems [e.g. 17,22,43]. We shall draw on this

literature in section 5 to show properties of deterministic RM models.

� Both these literatures draw on ideas from lattice programming [36,37].

While we have not found existing lattice programming results directly

useful in the current context, the methods and philosophy of lattice pro-

gramming has had considerable indirect in�uence on the current work.

The contributions we aim to make in this paper, then, are as follows:

� intuitive insight into plausible structural properties of RM systems
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� the identi�cation of a structural property, antidirectional supermodularity,

which has not been systematically studied

� a (we hope) relatively easy and intuitive proof of the structural properties

of dynamic network RM models with two substitutable and complemen-

tary �ight legs respectively (the latter being the essence of You�s result)

� a demonstration of the structural properties of a deterministic RM model

with n �ight legs on a single hub network structure

� a counterexample to a plausible hypothesis about a deterministic RM

model with three �ight legs (which also is a counterexample to the corre-

sponding hypothesis about a dynamic RM problem with three �ight legs)

3 Complementarity, substitutability and associ-

ated structural properties

The idea of two goods being economic complements or substitutes is such a

natural one that is hard to say exactly what the de�ning characteristic of com-

plementarity in fact is. There has historically been considerable discussion in

economics about how best to understand complementarity, and it has been

demonstrated that the intuitive idea is not free from contradictions [30].

Here we will merely content ourselves by noting two key aspects of the intu-

itive idea of complementarity. One is what Samuelson [30] calls the �either-or�

nature of substitutability, and the �and-both�nature of complementarity: mar-
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ket demand may exist for tea or co¤ee (and so tea and co¤ee are substitutes) but

tea and sugar (in which case tea and sugar are complements). The other aspect

(at least in the case of revenue earning systems) is the notion of submodularity

(supermodularity) of value: the value of tea and co¤ee (sugar) is less (more)

than the value of tea by itself plus the value of co¤ee (sugar) by itself. The

current work can be seen as an exploration of the idea that the �rst notion of

complementarity implies the second.

A particular theme of the current work is that revenue complementarity

and substitutability seem to be closely bound up with certain strong concavity

properties. The close relationship between complementarity and some sort of

a strong concavity principle was pointed out by Nicholas Georgescu-Roegen in

the context of mathematical economics some time ago [20].

All of this provides us with a starting point for our discussion of structural

properties. The function f(�) in the following discussion is understood to be a

real-valued function de�ned on an n-dimensional integral domain Zn , with ei

and ej denoting unit vectors in dimensions i and j. We shall use the notation

�jf(x) to refer to f(x) � f(x � ej); �i+jf(x) to refer to f(x) � f(x � ei � ej);

and �i�jf(x) to refer to f(x)� f(x� ei + ej).

De�nition 1

Consider the expression

�i�jf(x) = �jf(x)� �jf(x� ei)=�if(x)� �if(x� ej)

= f(x)� f(x� ei)� f(x� ej) + f(x� ei � ej)
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If, for all x 2Zn

�i�jf(x) � (�)0 for distinct i,j, then f(�) is said to be submodular

(supermodular) in i and j

�i�if(x) � (�)0 for some i, then f(�) is said to be componentwise con-

cave (convex) in i

�i�jf(x) � (�)0 for distinct i,j and �i�if(x) � (�)0 and �j�jf(x) �

(�)0 then f(�) is said to be directionally concave (convex) in i and j

All but the last are in common usage. The last is due to Shaked and Shan-

tikumar [32].

It will be seen in the ensuing that there is an interesting parallelism between

revenue earning systems (such as RM systems) and cost incurring systems (such

as queueing systems) in this regard. Whereas revenue complementarity (sub-

stitutability) is associated with supermodularity (submodularity) and strong

concavity, cost complementarity (substitutability) is associated with submodu-

larity (supermodularity) and strong convexity in very much the same ways.

It is worth noting that we use the terms "submodularity" and "super-

modularity" to mean what Topkis [36,37] means by decreasing (or antitone)

and increasing (or isotone) di¤erences, whereas Topkis de�nes sub- and super-

modularity in terms of lattice meet and join. Our use of this alternative de�n-

ition is justi�ed by a key result of Topkis [36], which states that in the context

of very general structures, these two properties are equivalent.

We will need a further de�nition in the same spirit as the above, this time

our own.
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De�nition 2

If �i�jf(x) � (�)0 and �i�if(x) � (�)0 and �j�jf(x) � (�)0 for distinct i,j

then we shall say f(�) is antidirectionally convex (concave).

De�nition 3

Consider the expressions

�i�j�if(x) = �if(x)� �if(x� ei + ej) = �i�jf(x)� �i�jf(x� ei)

= f(x)� f(x� ei + ej)� f(x� ei) + f(x� 2ei + ej)

�i+j�if(x) = �if(x)� �if(x� ei � ej) = �i+jf(x)� �i+jf(x� ei)

= f(x)� f(x� ei � ej)� f(x� ei) + f(x� 2ei � ej)

If, for all x 2Zn

�i�j�if(x) �(�)0 and �j�i�jf(x) �(�)0 for distinct i,j, f(�) is said to

be subconcave (superconvex) in i and j

�i+j�if(x) �(�)0 and �i+j�jf(x) �(�)0 for distinct i,j, f(�) is said to

be superconcave (subconvex) in i and j

This terminology is inspired by that of Koole [26] (who de�nes sub- and

super-convexity, but not -concavity).

The reader will note that so far, all properties have been de�ned in terms

of a pair of speci�ed dimensions. If a function is submodular (supermodular,

superconcave, etc) in all pairs of dimensions of its domain, we will simply say
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that it is submodular (supermodular, superconcave, etc). In the case of sub-

modularity and supermodularity, Theorem 3.2 of Topkis [36] and Corollary 2.6.1

from Topkis [37] justi�es that this usage is consistent with the more abstract

lattice theoretic de�nition of sub- and super-modularity in the context of the

domains and functions we will be concerned with in this paper.

A discussion in terms of an airline RM problem may be helpful for con-

creteness. Suppose that f(�) is a value function de�ned over a domain which

represents di¤erent levels of resource (i.e. seat) availability on various di¤erent

�ights legs. In this application context, the � terms represent the values of

particular state transitions which correspond to acceptance of a request for a

seat on the i �ight leg (a �local request�), acceptance of a request for a seat

on both i and j �ight leg (a �through request�) and acceptance of a request to

switch a passenger from the j �ight leg to the i �ight leg (a �switch request�).

Accordingly the sub-(super-)modularity and sub-(super-)concavity (convexity)

properties can be taken to describe particular events (or alternatively, particular

control decisions) being monotone in other RM events or control decisions. A

similar interpretation in terms of queueing systems is possible.

The properties can be helpfully visualised graphically. In Figure 1, we show

the di¤erences on a fragment of the domain. The vertices of the �gure are points

in Z2 with the higher points being higher in the normal partial ordering on Z2.

The righthand dimension is i, the lefthand j. The arrows represent the various

di¤erences: the head of the arrow is at the positive term in the di¤erence and

the tail at the negative term in the di¤erence.
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Figure 1 about here

Visualising the di¤erences in this way makes it possible to derive properties

on the diagrams instead of doing the algebra, which can be tedious. For example,

in Figure 2, we show that if f(�) is submodular, and subconcave in i and j, then

f(�) is also componentwise concave in i.

Figure 2 about here

Verifying algebraically, suppose f(�) is submodular and subconcave.

Then, for any xo 2 Zn;

1.�i�jf(xo) = f(xo)� f(xo � ei)� f(xo � ej) + f(xo � ei � ej) � 0

(from submodularity)

2. �i�j�if(xo�ej) = f(xo�ej)�f(xo�ei)�f(xo�ei�ej)+f(xo�2ei) � 0

(from subconcavity)

3. �i�if(xo) = f(xo)� 2f(xo � ei) + f(xo � 2ei) � 0

(adding 1 and 2 gives componentwise concavity)

Now we shall introduce our �nal de�nition.

De�nition 4 (Directional modularity properties)

a) If f(�) is sub-(super-)modular and subconcave (superconvex) in distinct

dimensions i and j, it will be said to be directionally sub-(super-)modular in i

and j.

b) If f(�) is sub-(super-)modular and subconvex (superconcave) in (distinct)

dimensions i and j, it will be said to be antidirectionally sub-(super-)modular

in i and j.

This family of four properties will do much of the work in the ensuing. In
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fact, although (anti-)directional concavity (convexity) properties are relatively

better known and more immediately recognisable [32,40], the directional modu-

larity properties of De�nition 4 are in fact stronger and more fundamental (this

is formally stated in Proposition 1). Moreover, the inductive argument which

we use in this paper relies on the fact that certain sorts of dynamic program-

ming operator propagate directional modularity, and it can be demonstrated

(although it is tedious to do so) that (anti-)directional concavity (convexity) by

themselves are not propagated by these same operators.

Four easy propositions will show some of the behaviours of these properties.

Each part of these Propositions has a parallel version which is formed in a

purely mechanical fashion by reversing inequalities and exchanging the words

"submodular" and "supermodular"; "convex" and "concave"; "superconvex"

and "subconcave"; and "subconvex" and "superconcave".

Proposition 1

a) If f(�) is directionally submodular in i and j, it is also directionally concave

in i and j.

b) If f(�) is antidirectionally supermodular in i and j, it is also antidirec-

tionally concave in i and j.

Proof

We have already shown above that if f(�) is submodular and subconcave in

i and j, then it is also componentwise concave in i. This is a).

b) can be shown similarly. �

Proposition 2 (Re�ection)
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For f(x) = f(x1; x2; : : : ; xi; : : : ; xj ; : : : xn),

de�ne f~j(x) = f(x1; x2; : : : ; xi; : : : ;�xj ; : : : xn).

f(�) is antidirectionally supermodular in i and j i¤ f~j(�) is directionally

submodular in i and j.

Proof

First, supermodularity. Suppose f(�) is supermodular in i and j.

Then, for any xo 2 Zn, suppose xo = (xo1; x
o
2; : : : ; x

o
i ; : : : ; x

o
j ; : : : x

o
n)and

de�ne xo~j as (xo1; x
o
2; : : : ; x

o
i ; : : : ;�xoj ; : : : xon).

�i�jf(x
o~j + ej) = f(x

o~j + ej)� f(xo~j � ei + ej)� f(xo~j) + f(xo~j � ei)

= f~j(xo � ej)� f~j(xo � ei � ej)� f~j(xo) + f~j(xo � ei)

= ��i�jf~j(xo)

But from supermodularity, �i�jf(�) � 0, so �i�jf~j(xo) �0. So f~j(�) is

submodular in i and j. Similarly, f~j(�) supermodular in i and j implies f(�)

submodular in i and j.

Next, subconcavity. Suppose f(�) is subconcave in i and j

Then, for any xo 2 Zn,

�i�j�if(x
o~j) = f(xo~j)�f(xo~j � ei+ ej)�f(xo~j � ei)+f(xo~j �2ei+ ej)

= f~j(xo)� f~j(xo � ei � ej)� f~j(xo � ei) + f~j(xo � 2ei � ej)

= �i+j�if
~j(xo)

But from f(�) subconcave, �i�j�if(�) � 0, so �i+j�if~j(x) � 0, so f~j(�) is

superconcave. In a similar fashion, it can be shown that f~j(�) superconcave im-

plies f(�) subconcave. �

Proposition 3
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If f(�) is supermodular in i, j and k then the �k are partially ordered on the

points a) x; x�ej ; x�ei; x�ei�ejand b) x; x�ei; x�ek; x�ek�ei as follows:

a) �kf(x) � �kf(x� ej); �kf(x� ei) � �kf(x� ei � ej)

b) �kf(x) � �kf(x� ei) and �kf(x� ek) � �kf(x� ei � ek)

Proof

a) From the de�nition of supermodularity, note that �kf(x) � �kf(x�ej) �

�kf(x� ei � ej) and

�kf(x) � �kf(x� ei) � �kf(x� ei � ej)

b) also follows easily from the de�nition of supermodularity. �

Proposition 4

If f(�) is separable (i.e. f(x) =
Pn

k=1 fk(xk)) and componentwise concave,

then it is directionally submodular and antidirectionally supermodular.

Proof

It is well-known [37] that a separable function is both submodular and su-

permodular. To see superconcavity, note that:

f(x) = fi(xi) + fj(xj) +
Pn=i;j

k=1 fk(xk)

f(x� ei) = fi(xi � 1) + fj(xj) +
Pn=i;j

k=1 fk(xk)

f(x� ei � ej) = fi(xi � 1) + fj(xj � 1) +
Pn=i;j

k=1 fk(xk)

f(x� 2ei � ej) = fi(xi � 2) + fj(xj � 1) +
Pn=i;j

k=1 fk(xk)

where
Pn=i;j

k=1 is the summation over the indices 1,. . . , i-1,i+1,. . . j-1,j+1,. . . ,n.

So, for any xo 2 Zn,

�i+j�if(x
o) = fi(x

o
i )� fi(xoi � 1)� fi(xoi � 1) + fi(xoi � 2) = �i�if(xo) � 0

by componentwise concavity. �
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4 A dynamic two-leg revenue management model

In this section, we shall study a Markov Decision Process model of a two-leg

RM problem. We suppose that we are concerned with a �rm which o¤ers two

products for sale. The �rm keeps track of its inventory using a two-dimensional

state vector x. Requests (which may be accepted or rejected) to purchase, return

or exchange units of resource arrive over a �nite horizon starting at time T and

ending at time 0. There is a penalty for overbooking which for convenience we

shall we suppose to be linear. Time is discretised in our model su¢ ciently �nely

that the probability of more than one request occurring in a single time period

is negligible, and, while the probability of a particular request occurring may

change from one time period to another, this probability may not depend on

the state. Acceptance of a request brings a �reward�: in the case of a request

for capacity, this reward is likely to be positive, and should be interpreted as

a �fare�; in the case of a request for an exchange, it is likely to be positive

and should be construed as a �charge� to the customer; and in the case of a

request for cancellation, it is likely to be negative and should be understood as

a �refund�.

We de�ne the following terms:

1. J�A;t(�) is the expected optimal value function of the DP.

2. Tc;j is the dynamic programming operator for a particular transition re-

quest and reward.

3. X is the state space and f1; 2; : : : ; Fg is the index set of the dimensions
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of the state space.

4. f0; 1; 2; : : : ; Tg is the set of discrete time intervals and is counted back-

wards from T at earliest booking time to 0 at �ight departure

5. L is a lower and U an upper bound on resource, and C and D are vectors

of very large penalties (expressed positively).

6. A = fajg is a set of transition vectors, indexed by f1; 2; :::; Jg, perhaps

including a null transition. f1; : : : ;Kg indexes a set of fare classes and

each pair of a transition aj and fareclass c has a real-valued reward, rc;j

associated with it, except the null transition, which always brings reward

0. (Note that we assume that the number of fareclasses is the same for

each transition: this is without loss because the probability of the arrival

of a request for some fareclass/ transition combination could be 0).

7. Pt = fpc;j;tg are the probabilities of a request for a particular transition

aj with reward rc;j in a particular time period t. The probabilities in Pt

sum to 1.

Assuming the �rm wishes to maximise expected revenue, the optimal policy

can be retrieved from a Dynamic Program characterised by the following value

function, as discussed in [35]:

J�A;t(x) =
PJ

j=1

PK
c=1 pc;j;tTc;jJ

�
A;t�1(x) DynRM(A)

Tc;jf(x) = max
u2f0;1g

(f(x� uaj) + urc;j) for all x 2 X, for t=1 to T

and the following initial conditions
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J�A;0(x) =
PF

i=1(Ci(xi � Li)� �Di(xi � Ui)+) for all x 2 X

We make a number of comments on our modelling choices in the forgoing:

1. This model is very much in the same spirit as other dynamic network

models in the literature [2,9,35]. A notable limitation is that although we

allow the arrival probabilities to be time non-homogeneous, the model is

a discrete time model.

2. The notation DynRM(A) may appear somewhat unusual. The rationale

for this is that we will be interested in a number of families of dynamic

programs. Each family represents a collection of revenue management

problems on a particular network structure. The families are indexed

by sets of transition vectors - the A - and it is these sets which express

network structure.

3. The penalties L and U can be thought of as a device to stop the controller

moving into parts of the state space which are �o¤-limit�either because

there is no more capacity to sell or because there are no more booked pas-

sengers to cancel. A similar device is used in Lautenbacher and Stidham

[27]. The most natural alternative way of modelling �to declare that the

state space has boundaries � complicates proofs without adding insight

as one has to then take into account within the proof the possibility of a

particular control action hitting a boundary. The reader will note that

J�A;0(x) is separable and componentwise concave as a function of x in each

dimension of the state space.
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4. Our model is a traditional �xed-price RM model, rather than a �dynamic

pricing�model [18,19,40]. Fixed price RM models (like the one presently

under consideration) assume that there are a number of streams of demand

for each bundle of resource at di¤erent price levels, which are exogenous

and �xed, and that the control lever available to the controller is to accept

or reject bookings. Dynamic pricing models on the other hand assume that

there is a single stream of demand for each bundle of resource, but that

the controller can control the price of each resource and thus (through a

demand curve) can control demand. The results which we prove here

apply only to the former class of models. However, we can see no reason

why the qualitative insight, which is that a network resource can be use-

fully thought of as a system of economic substitutes and complements, and

that this translates to predictable behaviour of the value of the resource

considered as a function of capacity, does not apply with equal force to

dynamic pricing models.

We cannot derive properties for DynRM(A) without �rst specifying the

set A of possible transitions. In this section, we restrict our attention to

F = 2 and will explore two cases:

1. The complementary case, DynRM(C). Here,

A = C = f(0; 0); (1; 0); (0; 1); (�1; 0); (0;�1); (1; 1); (�1;�1)g

These events will be labelled a0, a1, a2, a�1, a�2, a1+2, and a�(1+2)

respectively. These transitions represent either the null event (a0), the
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arrival of a customer requesting capacity on a particular �ight leg (a1,

a2), the arrival of a customer requesting to cancel such a booking, (a�1,

a�2), a request for a through booking, i.e. one seat on both �ight legs 1

and 2 (a1+2), and a cancellation of such a booking (a�(1+2)).

2. The substitutable case, DynRM(S). Here,

A = S = f(0; 0); (1; 0); (0; 1); (�1; 0); (0;�1); (�1; 1); (1;�1)g

These events will be labelled a0, a1, a2, a�1, a�2, a�1+2, and a1�2, respec-

tively. These transitions represent either the null event (a0), the arrival

of a customer requesting capacity on a particular �ight leg (a1, a2), the

arrival of a customer wishing to cancel a request, (a�1, a�2) or a request

to switch a customer from one �ight leg to another (a�1+2, a1�2).

From an economic point of view, the legs in the complementary (substi-

tutable) case are complementary (substitutable) products and so one would

expect the value of the dynamic program to be supermodular (submodular) in

the capacity of the two state spaces. In fact, as we shall show, J�A;t(x) is an-

tidirectionally supermodular (directionally submodular) in the complementary

(substitutable) case.

First, however, we shall need two lemmata.

Lemma 1 (Preservation of supermodularity)

If f(�) is supermodular in the dimensions of X, then g�(�) and g+(�) are also

supermodular in all dimensions of X where
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g�(x) = T�k f(x) = max(f(x� ek) + s; f(x) + t)

g+(x) = T+k f(x) = max(f(x+ ek) + s; f(x) + t)

for some real-valued s and t.

Proof

See Appendix. �

We note that this result is not implied by the well-known result of Topkis

[36]. We also note that submodularity does not appear to be preserved under

T+k / T
�
k in the same way, although it is preserved if the max operator in the

expression is replaced by the min operator.

Lemma 2 (Unfolding)

Consider a function f :Z2!R. Construct a function ef :Z3!R by ef(x) =
ef(x1; x2; x3) = f(x1� x3; x2� x3). Then f(�) is antidirectionally supermodular
i¤ ef(�) is supermodular.
Proof

Trivially, f(�) supermodular in 1 and 2 i¤ ef(�) supermodular in 1 and 2
It remains to show that f(�) superconcave in 1 and 2 i¤ ef(�) supermodular

in 1 and 3; and in 2 and 3.

Suppose f(�) is superconcave. Then, for any xo 2 Z3

�1+2�1f(x
o + e1 + e2) = f(x

o + e1 + e2)� f(xo + e2)� f(xo) + f(xo � e1)

= ef(xo � e3)� ef(xo � e1 � e3)� ef(xo) + ef(xo � e1)
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= ��1�3 ef(xo)
But we know that �1+2�1f(xo + e1 + e2) � 0, so �1�3 ef(xo) � 0. The

argument for the pair of dimensions 2 and 3 is symmetric, and the argument

for i¤ is obtained by reversing the above proof. �

Theorem 1

The value of DynRM(C) is antidirectionally supermodular in its dimensions.

Proof

The proof is by induction.

Base case. J�C;0(x) is separable and componentwise concave, and by Propo-

sition 4, this means that it is antidirectionally supermodular.

Inductive hypothesis. Suppose that J�C;t�1(x) is antidirectionally supermod-

ular.

Inductive step.

That antidirectional supermodularity propagates in the case of a null arrival

is trivial. For the non-null arrivals, we can form an extension in the manner

of Lemma 2 to get an extension eJ�C;t�1(x), with dimensions indexed as 1,2 and
-(1+2). Note that by Lemma 2, eJ�C;t�1(x) is supermodular.
Now we can rewrite Tc;j eJ�C;t�1(x) for every c,j in one of the following forms:
T�c;j

eJ�C;t�1(x) = maxu2f0;1g( eJ�C;t�1(x�uej)+urc;j) for some unit vector ej ,
or

T+c;j
eJ�C;t�1(x) = maxu2f0;1g( eJ�C;t�1(x + uej) + urc;j) for some unit vector

ej

In the terms of Lemma 1, in the case of a1, a2 and a�(1+2), the operator is
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a T�, and in the case of a�1, a�2 and a1+2, the operator is a T+.

Now we can apply Lemma 1, to see that all the Tc;j eJ�C;t�1(x) are supermod-
ular.

It is trivial that supermodularity is preserved under convex combination, and

so eJ�C;t(x) is supermodular and, by Lemma 2 again, J�C;t(x) is antidirectionally
supermodular. �

There is an interesting relationship between DynRM(C) and DynRM(S),

which makes it possible to construct a proof of the structural properties of the

latter without invoking Lemma 1 again. Speci�cally, it is possible to construct

a partially re�ected system, which is equivalent to DynRM(S), but in which

we count bookings positively on one dimension and negatively on the other

dimension. The Bellman equations of this system are the same as the Bellman

equations of an instance of DynRM(C) and therefore, the value of this model

is antidirectionally supermodular. By Proposition 2, the value of the original

DynRM(S) must then be directionally submodular. This idea of seeing systems

as partial re�ections of one another was developed in quite a di¤erent setting by

Gale and Politof [17] and by Topkis [37] in his proof of the modularity properties

of the Transportation Problem.

Theorem 2

The value of DynRM(S) is directionally submodular in its dimensions.

Proof

Consider an arbitrary instance of DynRM(S).

We construct the equations for the value function, Ĵ�
Ŝ;t
(�), of this system, by
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taking the initial conditions:

Ĵ�
Ŝ;0
(x) = (C1(x1�L1)��D1(x1�U1)+)+ (D2(U2�x2)��C2(L2�x2)+)

and taking the Bellman equations with S replaced everywhere by Ŝ

where Ŝ = f(0; 0); (1; 0); (0;�1); (�1; 0); (0; 1); (�1;�1); (1; 1)g and the mem-

bers of Ŝ are labelled a0, a1, a2, a�1, a�2, a1�2, a2�1.

It can be seen that Ĵ�
Ŝ;t
(�) is equivalent to an instance of DynRM(C) and

therefore by Theorem 1, it is antidirectionally supermodular.

It can also be easily shown by induction that Ĵ�
Ŝ;t
(x) = J�~2S;t (x) in the sense of

Proposition 2. In which case, the antidirectional supermodularity of Ĵ�
Ŝ;t
(x) en-

tails that the value of DynRM(S) is directionally submodular. �

Some interpretation of these results may be helpful.

What we have shown is that the value of DynRM(C), where customers can

request both �ights, is antidirectionally supermodular in its dimensions. Let

us revisit the meaning of antidirectional supermodularity. A function f(x) is

said to be antidirectionally supermodular if

�i�jf(x) � 0

�i+j�if(x) � 0

So in this case, when one moves a unit in one dimension of state space, the

value of the di¤erences in the other dimension of state space increases; and

furthermore, the value of the joint di¤erences, �i+jf(x), decreases. That is to

say, each seat increases in value the more seats are available on the other �ight,
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and so the higher the single-leg fare needed to secure a booking, but contrariwise

(and this is the "antidirectional" idea), the more seats on either �ight, the lower

the fare required to secure a through booking.

At the same time, we have shown that in DynRM(S), where customers can

swap between �ights, the value function is directionally submodular in its di-

mensions. This means that each seat decreases in value the more seats are

available on the other �ight. Moreover, we have shown that the switching curve

is monotone: the fewer seats on one �ight, the higher the minimum premium

needed to secure a switch to that �ight.

It could be objected that in an application context, one would expect the

arrivals of such requests to depend on how many customers had already booked,

yet these models do not to allow for state-independent cancellation and switch

requests. There are three answers to such an objection.

1. The �rst answer is that a version of DynRM(Creduced) where Creduced={a0,

a1, a2, a1+2} would be quite realistic and would continue to exhibit the

structural properties discussed above. An equivalent DynRM(Sreduced)

where Sreduced does not contain switch requests would of course be rather

vacuous, however.

2. The second answer is that Dynamic Programming-based approaches to

RM are unlikely to be applied on the whole of an airline�s network, as

the curse of dimensionality would render such an approach prohibitive.

Rather, they will be deployed on a tightly constrained subnetwork rela-

tively close to �ight departure, where the additional resolution DP ap-
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proaches provide over deterministic approaches will give the greatest ben-

e�t. In such cases, the number of passengers booked already booked will

be large relative to the number of passengers to come, and so modelling

cancellations as state-independent may be a reasonable modelling assump-

tion.

3. The last answer is pragmatic: it has been shown the modelling state-

dependent cancellations in the single leg case destroys the concavity prop-

erty of the DP [33]. Since the single leg model is a special case of our

model, and since our directional submodularity/ antidirectional super-

modularity properties imply componentwise concavity, it is evident that

state-dependent cancellations would destroy the properties presently un-

der study as well. Non-monotonicity may be the price of realism.

Let us relate these results back to the literature. Our Theorem 1 is essen-

tially the same as Theorems 3.2 and 3.3 of You [40], although we feel our proof

mechanism is more general and insightful. There is no direct analogue of The-

orem 2 in the RM literature: however, in the queueing literature, Hajek [23]

shows that the value function of a queueing system with two interacting queues

has the property which we have called directional supermodularity. This result

is qualitatively similar to the present result, and bears out our earlier claim that

just as revenue substitutability is associated with directional submodularity, cost

substitutability is associated with directional supermodularity. Koole [26], again

in a queueing context, presents some results which are similar to Theorems 1

and 2, although expressed in cost, rather than revenue, terms, and developed
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within an alternative theoretical framework and from a di¤erent perspective.

Methodologically, our proof of Lemma 1 is somewhat similar to Weber and

Stidham�s [39] proof of multimodularity properties of a network of queues. There

are a number of di¤erences occasioned by the RM context, in particular in the

handling of boundaries.

It may seem natural to seek a generalisation of these results to a multi-leg

context. However, it is not immediately clear how the above proof mechanism

should be generalised, nor just what form a generalisation should take, as we

will explore in the next section.

5 Multi-leg deterministic RM models

In this section, we shall study a constrained deterministic linear optimization

model, which we shall call DetRM(A). DetRM(A) is a Multi-Commodity Net-

work Flow where each commodity has a single routing ("path") and can be

thought of as optimally assigning demand for transportation over a constrained

network: such models are sometimes used in RM practice, either to generate

allocations which can then be used as booking limits, or more commonly to

obtain estimates of the marginal values of di¤erent resources, which can then

be used as �bid prices�.

The terms of our model are de�ned as follows:

1. As in DynRM(A), f indexes �ights, j indexes transition vectors, and c

indexes fare classes.
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2. A = [a1j : : : jaj j : : : jaJ ], for all column vectors aj 2 A i.e. A is the F � J

arc-path matrix of the underlying network.

3. D =

26666666666666666664

D1

D2

:::

Dc

:::

DK

37777777777777777775

where Dc =

0BBBBBBBBBBBBBBBBBB@

Dc;1

Dc;2

:::

Dc;j

:::

Dc;J

1CCCCCCCCCCCCCCCCCCA

. D 2RC�J can be interpreted as a

column vector of the demand for up to C fare classes on J paths.

4. d =

26666666666666666664

d1

d2

:::

dc

:::

dK

37777777777777777775

where dc =

0BBBBBBBBBBBBBBBBBB@

dc;1

dc;2

:::

dc;j

:::

dc;J

1CCCCCCCCCCCCCCCCCCA

. d 2RC�J (the decision vector) is a

column vector of allocations of demand for C fare classes on J paths.

5. r = [r1jr2j : : : jrcj : : : jrK ] and rc = (rc;1; : : : ; rc;j ; : : : ; rc;J). r 2RC�J is a

row vector of fares.

6. x 2RF is a vector of capacities.

We present here the so-called arc-path formulation [1, p666] of DetRM(A)

z(x) = max
d
rd DetRM(A)

s.t.

1) 0 � A(
PK

c=1 dc) � x
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2) 0 � d � D

DetRM(A) models the situation where demand is known with certainty and

the problem is merely one of assigning demand to �ights. The inequalities 1)

are capacity constraint, which ensure that the total demand assigned cannot

exceed capacity, and the inequalities 2) are demand constraints, which ensure

that demand cannot be allocated unless that demand does indeed exist. Note

that we have written the value of DetRM(A) as a function of x, since we be

varying x parametrically. (x is not the decision variable here.)

It may be helpful to expand on what the constraints 1) are doing. Let us

focus on a single constraints in that set of constraints. The RHS will be the

scalar xi. xi represents the capacity on the ith arc/ �ight leg in the network.

Consider the vector of the total �ow from all commodities on each individual

path through the network (
PK

c=1 dc). Then, from that vector, pick out the

entries representing �ow on paths which pass through �ight leg i and add them

up (the multiplication by the arc path matrix A, which has arcs as its rows,

paths as its columns, and 1s in cells where a given path contains a given arc, 0s

otherwise). This number �the total �ow on the ith arc �has to be less than

the capacity of the ith arc.

Given an instance of DynRM(A), it is possible to �nd a corresponding in-

stance of DetRM(A) by taking Dc;j =
PT

t=0 pc;j;t, as the expectation of demand

to come. It is well-known that for x �0, and where all the aj are non-negative,

the particular instance of DynRM(A) converges to the corresponding instance

of DetRM(A) under an appropriate �uid scaling regime [9].
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We shall study the structural properties of DetRM(A) for two distinct prob-

lems.

De�nition 5

If A is such that f1; ::; Fg can be partitioned into M and N such that for

all non-null aj 2 A, aj = em + en or em or en for some m 2M, n 2 N , we will

say that this DetRM(A) is a partitionable problem and write it as DetRM(PP).

In somewhat less formal terms, this means that we can number the �ight

legs such that each customer request which is not for a single �ight leg will be

for a pair of �ights with one odd and one even number. For an airline with

out-and-back cycles emanating from a single hub, the obvious way to do this is

to number the incoming �ights odd and the outgoing �ights even (many airlines

do indeed number their �ights in this way). For an airline with two hubs, A

and B, and with out-and-back cycles emanating from each hub, and single leg

�ights from hub to hub, the solution is to number A-incoming (outgoing) �ights

and B-outgoing (incoming) �ights odd (even) and the condition is ful�lled as

long as no passenger undertakes a three leg journey passing through both hubs.

A network with three (completely connected) hubs cannot be accommodated in

this framework, but such airlines are relatively rare outside the United States.

In order to explore the properties of DetRM(PP), we shall need a result from

the theory of network �ows.

Theorem 3 (Gale and Politof)

The value of a maximum weight circulation problem on a directed graph is

supermodular (submodular) in the capacity space of two arcs � and �, if every
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cycle on the network containing both � and � orients � and � in the same

(opposite) direction; and neither supermodular or submodular if there exists at

least two cycles, one orienting � and � in the same direction, and the other

orienting � and � in the opposite direction.

Proof

See Gale and Politof [17] �

In other words, where all cycles direct � and � in the same (opposite) direc-

tion, the incremental value of an increase in the capacity of both � and � is not

less than (not greater than) the sum of the value of an increase in the capacity

on � alone plus the value of an increase in the capacity of � alone.

This is useful because we may be able to represent DetRM(PP) as a maxi-

mum weight circulation problem on a directed graph, so that the above result

applies. We present a plausible representation in Figure 3. The heavy arcs are

the �ight arcs: a �ow on these arcs represents passengers carried on a particular

�ight. The light arcs are demand arcs: a �ow on these arcs represents passen-

gers from a particular market segment served. The �ight arcs are directed into

(M) and out of (N ) a central node, and the demand arcs lead from the head of

one �ight arc to the tail of the same or another �ight arc.

Figure 3 about here

Examination of Figure 3 shows that that everyM �ight arc is adjacent to,

and oriented in the same direction as, every N �ight arc. Therefore it is not

possible that there is any cycle which orients such a pair of arcs in the opposite

direction. Moreover, everyM (N ) �ight arc is adjacent to, and oriented in the
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opposite direction to, every otherM (N ) �ight arc. Therefore it is not possible

that there is any cycle which orients such a pair of arcs in the same direction.

Therefore, the value of the maximum weight cycle problem on this graph is

supermodular in every pair of dimensions (m;n) and submodular in every pair

of dimensions (mi;mj) and (ni; nj) for m, mi, mj 2 M and n, ni, nj 2 N .

While we are studying the �gure, it is interesting to note that while no

pair of �ight arcs can be oriented in both the same and opposite directions by

di¤erent cycles, the same is not true of the demand arcs. This can be seen by

examining the arcs � and �: the cycle consisting of arcs marked with numbers

prime orients � and � in the same direction, and the cycle consisting of arcs

marked with numbers double prime orients � and � in the opposite direction.

It remains to show that DetRM(PP) can indeed be represented as a max-

imum weight cycle problem on such a graph. We will do this in the proof of

Theorem 4.

Theorem 4

The value of DetRM(PP) is supermodular in every pair of dimensions (m,

n) and submodular in every pair of dimensions (mi, mj) and (ni, nj) for m, mi,

mj 2 M and n, ni, nj 2 N .

Proof

We assume without loss of generality for all (m; n) 2 M � N , em, en

and em + en 2 A: (Even though the transition is in A, we can always set the

probability of a request for this transition to 0.)

Rewrite DetRM(PP) with additional variables lf representing the total pas-
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senger load on leg f . The F -vector l can be organised as

0BB@ lM

lN

1CCA where

lM=(lm1
, lm2

,. . . , l mM
)T and lN=(ln1 , ln2 ,. . . , lnN )

T , M and N being the

cardinalities of M and N respectively. The matrix A likewise be divided ver-

tically into AM (consisting of the rows relating to the �ights in M), and AN

(consisting of the rows relating to the �ights in N ).

By substituting, DetRM(PP) can now be written as

z(x) = max
d;l
rd

s.t.

1�) 0 � l � x

2) 0 � d � D

3) AM(
PK

c=1 dc)� lM = 0

4) �AN (
PK

c=1 dc) + lN = 0

This revised program can be seen to be a maximum weight circulation prob-

lem on the graph of Figure 3. The objective function maximises the sum of

weighted �ows on the demand arcs, i.e. the revenues. The new constraints 3)

and 4) can be interpreted as the node balance constraints for the nodes on the

left-hand and right-hand of Figure 3, respectively. The revised constraints 1�)

can be reinterpreted as the capacity constraint on the �ight arcs and the con-

straints 2) as the capacity constraints on the demand arcs. The node constraint

for the central node (which is redundant) can be derived by adding up 3) and

4) together. �

This result does not seem to be presented here in its fullest possible gen-
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erality. Glover and colleagues [21] have claimed without proof that a similar

maximum weight circulation problem can be derived whenever the underlying

network is acyclic. As all time-space networks are acyclic, this would provide a

way to demonstrate super- and sub-modularity results for more general network

structures.

This result is entirely consistent with the economic interpretation which we

advanced at the outset of this paper. This says, for example, if we have an

airline which operates a single hub network between cities in the east and cities

in the west, �ights out of (into) cities in the east (west) will be substitutable

with each other, but complimentary with �ights into (out of) cities in the west

(east).

However, once the network structure becomes more complicated, this sort

of pleasing result breaks down. To see this, we will consider another sort of

instance of DetRM(A).

De�nition 6

If we have an instance of DetRM(A) such that F=3 and A={(1,1,0),(0,1,1)

and (1,1,1)} we say that this DetRM(A) is a chain problem, and write it as

DetRM(Ch).

Airline networks containing such sequences of legs and demand patterns are

by no means uncommon. One might naturally expect to �nd that since these

three legs are complements in the �and-both� sense, the value function would

be supermodular in all three pairs of dimensions. However, this is not the case.

To see the counterexample, take DetRM(Ch) with the following parameters:
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r1+2 = $80

r2+3 = $70

D1+2; D2+3; D1+2+3 =1

Now evaluate this program for four values of x under two cases.

Case 1. r1+2+3 = $200

Case 2. r1+2+3 = $120

In Case 1, the optimal solution and the value of the problem are as shown

in Table 1.

Table 1 about here

Checking for the sign of �1�3z(x), we �nd:

z(x)� z(x� e1)� z(x� e3) + z(x� e1 � e3) = $50 > 0

However, in Case 2, the optimal solution and the value of the problem are

as shown in Table 2.

Table 2 about there

Now, checking for the sign of �1�3z(x) gives quite a di¤erent picture:

z(x)� z(x� e1)� z(x� e3) + z(x� e1 � e3) = �$30 < 0

So DetRM(Ch) is neither supermodular nor submodular in general. Note that

as DetRM(Ch) is the deterministic special case of DynRM(Ch), this means that

DynRM(Ch) is not supermodular or submodular either.
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6 Conclusion

In this paper, we have discussed plausible structural properties of network rev-

enue management problems, based an intuitive interpretation of network re-

source as a system of economic substitutes and complements. We have shown

that this interpretation is borne out by structural properties of a two-leg system

in the dynamic case, and shed some light on how these properties apply for more

complex network structures in the multi-leg deterministic case.

The natural next question to ask is whether the results which are obtainable

for the n-resource static deterministic problem can be generalised to the dynamic

stochastic case. Our research into this question is still ongoing, but it does seem

to be true that this is not the case in any simple sense. Of course, from a

more practical standpoint, it would also be good to know more about how such

properties which may be available can be exploited algorithmically. Lastly, we

have tried in this paper to develop a closer linkage between RM and the theory

of queueing networks: strengthening and deepening this linkage may, we feel,

be a way to stronger and more insightful results about the structural properties

of stochastic systems in general.
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7.2 Appendix. Proof of Lemma 1

There are two main cases to consider: g�(�) (I) and g+(�) (II).

We shall deal with I �rst. Consider an arbitrary pair of distinct dimensions

i and j.

There are three possible subcases to consider: i, j and k are all distinct, or

i=k, and j is distinct, or j=k and i is distinct. The latter two are obviously

symmetrical, so we have e¤ectively two subcases.

I.A. i,j,k distinct
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By proposition 3, we know that �kf(x) � �kf(x�ej); �kf(x�ei) � �kf(x�

ei � ej):

We consider the case �kf(x) � �kf(x� ej) � �kf(x� ei) � �kf(x� ei� ej).

The case �kf(x) � �kf(x � ei) � �kf(x � ej) � �kf(x � ei � ej) is obviously

symmetrical.

There are now 5 subsubcases to consider.

I.A.1. �kf(x) � �kf(x� ei) � �kf(x� ej) � �kf(x� ei � ej) � s� t

I.A.2. �kf(x) � �kf(x� ei) � �kf(x� ej) � s� t � �kf(x� ei � ej)

I.A.3. �kf(x) � �kf(x� ei) � s� t � �kf(x� ej) � �kf(x� ei � ej)

I.A.4. �kf(x) � s� t � �kf(x� ei) � �kf(x� ej) � �kf(x� ei � ej)

I.A.5. s� t � �kf(x) � �kf(x� ei) � �kf(x� ej) � �kf(x� ei � ej)

We are interested in the sign of �i�jg�(x) = g�(x) � g�(x � ei) � g�(x �

ej) + g
�(x � ei � ej) in each case. Observe that the result follows trivially in

case I.A.1 and I.A.5, and that the expressions for �i�jg�(x) in cases I.A.2 and

I.A.4 are greater than the expressions for �i�jg�(x) in cases I.A.1 and I.A.5.

Finally, note that in case I.A.3.,

�i�jg
�(x) = g�(x)� g�(x� ei)� g�(x� ej) + g�(x� ei � ej)

= f(x) + t� f(x� ei)� t� f(x� ej � ek)� s+ f(x� ei � ej � ek) + s

= f(x)� f(x� ei)� f(x� ej � ek) + f(x� ei � ej � ek)

= f(x)� f(x� ei)� f(x� ek) + f(x� ei � ek)

+f(x� ek)� f(x� ei � ek)� f(x� ej � ek) + f(x� ei � ej � ek)

Now since �i�jf(x) = f(x)� f(x� ei)� f(x� ek) + f(x� ei � ek) � 0

and
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�i�jf(x�ek) = f(x�ek)�f(x�ei�ek)�f(x�ej�ek)+f(x�ei�ej�ek) � 0

by the hypothesis of the supermodularity of f(x), it follows that �i�jg�(x) �

0:

I.B. i 6= j=k

By proposition 3, we have

�kf(x) � �kf(x� ei)and �kf(x� ek) � �kf(x� ei � ek)

So there are nine subcases altogether, as shown in Table A1.

Table A1 about here

Now we are interested in the sign of �i�jg�(x).

I.B1.1, I.B1.3, and I.B.3.1 and I.B.3.3 are trivial. I.B1.2, I.B2.1 and I.B3.2

are greater than or equal to I.B.1.3, I.B1.1, and I.B3.3 respectively.

I.B2.2 and I.B2.3 are a little more subtle and will be exhibited here.

I.B.2.2 �kf(x) � s�t � �kf(x�ei) and �kf(x�ek) � s�t � �kf(x�ei�ek)

�i�jg
�(x) = g�(x)� g�(x� ei)� g�(x� ek) + g�(x� ei � ek)

= f(x) + t� f(x� ei � ek)� s� f(x� ek)� t+ f(x� ei � ek � ek) + s

= f(x)� f(x� ei � ek)� f(x� ek) + f(x� ei � 2ek)

= �kf(x)� �kf(x� ei � ek)

But the hypotheses of I.B.2.2 imply �kf(x)� �kf(x� ei � ek) � 0

So �i�jg�(x) � 0, as required.

I.B.2.3 s�t � �kf(x) � �kf(x�ei) and �kf(x�ek) � s�t � �kf(x�ei�ek)

�i�jg
�(x) = g�(x)� g�(x� ei)� g�(x� ek) + g�(x� ei � ek)

= f(x� ek)� f(x� ei � ek)� f(x� ek) + f(x� ei � ek � ek) + (s� t)

= �f(x� ei � ek) + f(x� ei � ek � ek) + (s� t)
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= (s� t)� �kf(x� ei � ek) � 0 by the hypothesis of I.B.2.3.

Case II is symmetrical and can be dealt with in a similar manner.

The full workings for these proofs are available from the author on request.
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Table 1

x d1+2 d2+3 d1+2+3 f1 f2 f3 z(x)

(1,1,1) 0 0 1 1 1 1 $200

(0,1,1) 0 1 0 0 1 1 $70

(1,1,0) 1 0 0 1 1 0 $80

(0,1,0) 0 0 0 0 0 0 0

Table 2

x

(1,1,1)

(0,1,1)

(1,1,0)

(0,1,0)

d1+2 d2+3 d1+2+3 f1 f2 f3 z(x)

1 0 0 1 1 0 $120

0 1 0 0 0 1 $70

1 0 0 1 1 0 $80

0 0 0 0 0 0 0

Table A1

�kf(x � ek) �

�kf(x � ei �

ek) � s� t

�kf(x � ek) �

s � t � �kf(x �

ei � ek)

s � t � �kf(x �

ek) � �kf(x �

ei � ek)

�kf(x) �

�kf(x � ei) �

s� t

B:1:1 B:2:1 B:3:1

�kf(x) � s� t �

�kf(x� ei)

B:1:2 B:2:2 B:3:2

s� t � �kf(x) �

�kf(x� ei)

B:1:3 B:2:3 B:3:3
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