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Abstract 
We note that the existence of the maximum likelihood estimates for Poisson regression 
depends on the data configuration. Because standard software does not check for this 
problem, the practitioner may be surprised to find that in some applications estimation of the 
Poisson regression is unusually difficult or even impossible. More seriously, the estimation 
algorithm may lead to spurious maximum likelihood estimates. We identify the signs of the 
non-existence of the maximum likelihood estimates and propose a simple empirical strategy 
to single out the regressors causing this type of identification failure. 
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1. INTRODUCTION

The Poisson regression model is defined by

Pr (yi = j|xi) =
exp (−λ)λj

j!
, j = 0, 1, 2, . . .

where λ is generally specified as λ = exp (x0iβ) = exp (β0 + β1x1i + . . .).1 With this

formulation, β, the vector of parameters of interest, can be estimated my maximizing the

log-likelihood function given by

lnL (β) =
nX
i=1

[− exp (x0iβ) + (x0iβ) yi − ln (yi!)] . (1)

Poisson regression is not only the most widely used model for count data (see Winkel-

mann, 2008, and Cameron and Trivedi, 1997), but it is also becoming increasingly popular

to estimate multiplicative models for other kinds of data (see, among others, Manning and

Mullahy, 2001, and Santos Silva and Tenreyro, 2006).

The reasons that make this estimator popular can be clearly understood by inspecting

the corresponding score vector and Hessian matrix, given respectively by

s (β) =
nX
i=1

[yi − exp(x0iβ)]xi, (2)

and

H (β) = −
nX
i=1

exp(x0iβ)xix
0
i.

The form of the score vector makes clear that β will be consistently estimated as long

as E(yi|xi) = exp(x0iβ), i.e., the only condition required for consistency is the correct

specification of the conditional mean. This is the well known pseudo-maximum likelihood

result of Gourieroux, Monfort and Trognon (1984).

Besides this robustness property, the estimator also has the advantage of being very

well behaved. Indeed, it is easy to see that the Hessian is negative definite for all x and β,

which facilitates the estimation and ensures the uniqueness of the maximum, if it exists.

1See Winkelmann (2008) and Cameron and Trivedi (1997) for further details and background on the

Poisson regression model and its properties.
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Consequently, estimation of β is relatively simple and generally the estimation algorithm

converges in a handful of iterations, even for relatively large problems.

In spite of this general result, for certain data configurations, some of the parameters in β

are not identified by the (pseudo) maximum likelihood estimator described above. That is,

for certain data configurations, the maximum likelihood estimates do not exist. Because

this type of identification failure has not been recognized as a problem in count data

models, standard software does not check for its presence and therefore the practitioner

may be surprised to find that estimation of the Poisson regression is unusually difficult,

even in some apparently simple problems. The next section provides details on when this

problem arises and on how it can be detected.

2. THE PROBLEM

To better see the nature of the problem, it is useful to start by considering the case where

a regressor, say xi2, is zero when yi is positive, otherwise being non-negative with at least

one positive observation. The leading example of a regressor with these characteristics is

a dummy variable that is equal to zero for all observations with positive yi, having some

positive values for yi = 0. From equation (2), the first order condition for a maximum of

(1) corresponding to the parameter associated with xi2 can be written as

s (β2) =
X
x2i>0

− exp(x0iβ̂)x2i = 0,

which can never be satisfied. Therefore, when regressors such as x2 are present, the

(pseudo) maximum likelihood estimate of β does not exist.

More generally, this problem can occur whenever two regressors are perfectly collinear

for the sub-sample with positive observations of yi.2 To see this, write (2) as

s (β) =
X
yi>0

[yi − exp(x0iβ)]xi −
X
yi=0

exp(x0iβ)xi,

2Notice that the problem identified here is very different from the one resulting from perfect collinearity

between regressors. Perfect collinearity leads to the existence on an infinite number of solutions to the

likelihood equations, whereas here we are concerned with the situation where the likelihood equations

have no solution.
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and notice that the first order conditions for a maximum corresponding to β0, β1 and β2

imply X
yi>0

h
yi − exp(x0iβ̂)

i
=

X
yi=0

exp(x0iβ̂), (3a)

X
yi>0

h
yi − exp(x0iβ̂)

i
x1i =

X
yi=0

exp(x0iβ̂)x1i, (3b)

X
yi>0

h
yi − exp(x0iβ̂)

i
x2i =

X
yi=0

exp(x0iβ̂)x2i, (3c)

where β̂ denotes the maximum likelihood estimates of β.

Suppose now that x1 and x2 are perfectly collinear for the sub-sample with positive

observations of yi. In particular, let x2i = α0 + α1x1i for yi > 0. Then, writing x2i as a

function of x1i on the left hand side of (3c) and using equalities (3a) and (3b), it is possible

to obtain

α0

nX
yi=0

exp(x0iβ̂) + α1

nX
yi=0

exp(x0iβ̂)x1i =
nX

yi=0

exp(x0iβ̂)x2i. (4)

Whether or not (4) has a solution depends on the values of α0 and α1, and on the

ranges of x1 and x2 for the observations with yi = 0. For instance, in the illustrative

example presented before, α = β = 0 and for (4) to have a solution it is necessary, but

not sufficient, that x2 has positive and negative values for yi = 0. Heuristically, (4) will

have a solution when there is a reasonable overlap between the ranges of x2i for yi = 0 and

yi > 0. However, it is not possible to provide a sharp criterion determining the existence

of a β̂ that solves (4). Therefore, the existence of this sort of identification problem has

to be investigated on a case-by-case basis.

Of course, Newton-type algorithms used to maximize the likelihood function may achieve

convergence even when (3) has no solution, leading to spurious maximum likelihood esti-

mates, say b. It is easy to see that for b to provide an approximate solution for (4) it has

to be such that exp(x0ib) is close to zero for the observations with yi = 0. Therefore, these

spurious solutions can be easily identified because they are characterized by a “perfect”

fit for the observations with yi = 0.
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This situation is analogous to what happens in binary choice models when there is

complete separation or quasi-complete separation, as described by Albert and Anderson

(1984) and Santner and Duffy (1986). Moreover, it is clear that it can also occur in any

other regression model where the conditional mean is specified in such a way that its image

does not include all the points in the support of the dependent variable. Therefore, this

problem can occur not only in the Poisson regression model but whenever y is non-negative

and the conditional mean is specified as E(yi|xi) = exp(x0iβ).

3. DISCUSSION

The results of the previous section make clear that the non existence of the (pseudo)

maximum likelihood estimates of the Poisson regression models is more likely when the

data has a large number of zeros. For example, this problem is likely to arise when

modelling the number of crimes committed, the number of instances of substance abuse,

or the volume of trade between pairs of countries. Therefore, in these cases, even if the

estimation algorithm converges and delivers a set of estimates, it is recommended that the

researcher checks whether or not the results obtained actually correspond to a maximum of

the (pseudo) log-likelihood function. This can be easily done by checking for the overfitting

of the observations with yi = 0, for example by computing descriptive statistics for the

fitted values of y for the relevant sub sample.

When the researcher identifies a situation where the (pseudo) maximum likelihood esti-

mates do not exist, either because the algorithm does not converge or because convergence

is achieved by overfitting the zeros, it is useful to have a simple strategy to single out the

regressors causing the problem. Because these regressors are characterized by their perfect

collinearity with the others for the sub-sample with yi > 0, they can be identified using

the following procedure, which explores the fact that statistical software generally drop

perfectly collinear explanatory variables in ordinary least squares regression:

Step 1: For the observations with yi > 0, estimate the ordinary least squares regression of

ln (yi) on xi;
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Step 2: Construct a subset of explanatory variable, say x̃i, comprising only the regressors

whose coefficients were estimated in Step 1;

Step 3: Using the observations with yi ≥ 0, i.e., the full sample, run the Poisson regression

of yi on x̃i.3

This procedure eliminates all potentially problematic regressors, even those that actually

do not lead to the non-existence of the maximum likelihood estimates. Therefore, the

researcher should then investigate one-by-one all the variables that were excluded, to see

if any of them can be included in the model.
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